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Abstract

Existing legal judgment prediction methods
usually only consider one single case fact de-
scription as input, which may not fully utilize
the information in the data such as case rela-
tions and frequency. In this paper, we propose
a new perspective that introduces some con-
trastive case relations to construct case triples
as input, and a corresponding judgment pre-
diction framework with case triples modeling
(CTM). Our CTM can more effectively uti-
lize beneficial information to refine the encod-
ing and decoding processes through three cus-
tomized modules, including the case triple mod-
ule, the relational attention module, and the
category decoder module. Finally, we conduct
extensive experiments on two public datasets
to verify the effectiveness of our CTM, includ-
ing overall evaluation, compatibility analysis,
ablation studies, analysis of gain source and
visualization of case representations.

1 Introduction

As an important component of legal intelligence in
civil law systems, legal judgment prediction (LJP)
has received a lot of attention and research in recent
years (Chalkidis et al., 2019; Zhong et al., 2020).
Given a case fact description, LJP usually includes
three sub-tasks, i.e., law article prediction, charge
prediction and terms of penalty prediction for this
case (Xiao et al., 2018), and an example of LJP is
shown on the left side of Figure 1. As an auxiliary
tool to serve legal practitioners and people without
professional knowledge in law, a more accurate
method for LJP is necessary.

The existing legal judgment prediction methods
mainly include two lines of single-task modeling
and multi-task modeling. The former usually fo-
cuses on targeted modeling of a certain sub-task,
such as introducing some more advanced network
architectures (Chen et al., 2019a; Le et al., 2020) or

*Co-corresponding authors

more sources of information (Luo et al., 2017; Hu
et al., 2018; Chen et al., 2019b). The latter takes
multiple sub-tasks as a whole and uses a multi-task
learning (MTL) framework for unified modeling.
The most representative methods in this line aim
to design different decoding structures, including
MTL (Zhong et al., 2018) that ignores the inter-task
dependency, TopJudge (Zhong et al., 2018) that
considers unidirectional topological dependency
among sub-tasks, and MPBFN (Yang et al., 2019)
that considers bidirectional topological dependency.
In this paper, we focus on the line of multi-task
learning because it is more aligned with practical
applications.

Although the existing methods have shown
promising results, as shown on the left side of Fig-
ure 1, most of them only consider the fact descrip-
tion of one single case as input when modeling.
This form of modeling ignores the full utilization
of the beneficial information contained in the data,
such as the case relation and frequency informa-
tion that might provide constraints for modeling.
We believe this may have an adverse effect on the
model and cause a performance bottleneck, such
as cases with low-frequency law articles or charges
suffer from insufficient training. As an example,
we show in Figure 2 the accuracy of MPBFN on
CAIL-small (Xiao et al., 2018) for law articles and
charges of different frequencies. We can find that
the accuracy drops significantly with decreasing
frequency.

To more effectively utilize the beneficial infor-
mation contained in the data, in this paper, we
propose a new perspective that introduces some
contrastive case relations to construct case triples
as the input of the model. Specifically, we sample
some similar and dissimilar cases for a current case
through some carefully designed contrasting case
relations, where these auxiliary cases will be bene-
ficial to improve the performance of the model. An
example of this new form of modeling is shown on
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Fact description

On the afternoon of December
22, 2012, the defendant XXX
took an Apple 4S worth 4,256
Chinese yuan (CNY) from the
owner XXX and did not return
it after using it to make a call.

Charge:  
The crime of theft 

Law article: 
No. 264 

Terms of penalty: 
5 months

encode

Case
representation

decode

On October 3, 2015, the defendant XXX took
away the mobile phone worth 2,253 Chinese
yuan (CNY) that was placed on the counter
by the owner XXX when no one was there.

encode

Case
representation

decode

Similar case

Dissimilar case
On August 17, 2014, the defendant XXX
threatened the victim XXX with a knife, and
fled the scene after stealing his wallet and an
Apple 4S worth 4,256 Chinese yuan (CNY).

Fact description
On the afternoon of December 22, 2012,
the defendant XXX took an Apple 4S worth
4,256 Chinese yuan (CNY) from the owner
XXX and did not return it after using it to
make a call.

Charge:  
The crime of theft 

Law article: 
No. 264 

Terms of penalty: 
5 months

Figure 1: On the left is an illustrative example of legal judgment prediction (LJP), including a case fact description
and the corresponding three prediction sub-tasks. On the right is an example of the proposed new form of modeling,
where some contrastive case relations are introduced to construct case triples as input. Note that in this paper
we focus on prediction of law articles and charges, since that of terms of penalty is known of high difficulty and
variance.
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Figure 2: The prediction accuracy of MPBFN on CAIL-
small for each law article and charge. Note that the IDs
on the horizontal axis have been sorted in a descending
order of frequency.

the right side of Figure 1, and the importance of
different phrases may be more accurately identified
through this case triple.

We then propose a corresponding judgment
prediction framework with case triple modeling
(CTM) to mine information from the constructed
case triples for improving the model. Specifically,
our CTM adds three customized modules to the
traditional encoder and decoder: 1) a case triple
module samples two similar cases and one dissimi-
lar case for an input case based on case labels and
frequency information to form two case triples; 2)
a relational attention module imposes a relational
constraint on the obtained case triples to refine the
encoding process; and 3) a category decoder mod-
ule acts as a switch to select a corresponding decod-
ing branch for a high-frequency or low-frequency
case to further refine the decoding process.

It is intuitive that our CTM does not depend on
a specific encoder or decoder. This means that
our CTM can be easily integrated with some ex-
isting legal judgment prediction methods, and we
will demonstrate its good compatibility in the ex-
periments by combining our CTM with different

encoder and decoder structures. In addition to this,
we conduct other empirical studies on two public
datasets to verify the effectiveness of our CTM,
including overall performance evaluation, ablation
studies, fine-grained performance evaluation and
case representation analysis.

2 Related Work

In this section, we briefly review some related
works on two research topics, including legal judg-
ment prediction and case relations modeling.
Legal Judgment Prediction. Legal judgment pre-
diction can be mainly summarized into two re-
search lines. The first line focuses on the targeted
modeling of a specific sub-task from the perspec-
tive of network architectures (Chen et al., 2019a;
He et al., 2019; Le et al., 2020), available infor-
mation sources (Luo et al., 2017; Hu et al., 2018;
Chen et al., 2019b), and interpretability of the
models (Jiang et al., 2018). The second line con-
siders multiple sub-tasks as a whole and uses a
multi-task learning framework for case modeling.
The most representative methods are MTL (Zhong
et al., 2018), TopJudge (Zhong et al., 2018) and
MPBFN (Yang et al., 2019), in which three dif-
ferent decoding structures are considered respec-
tively. Some recent works have designed some
more sophisticated architectures based on them, es-
pecially in combination with some graph learning
techniques and large-scale pre-trained models (Xu
et al., 2020; Chen et al., 2020; Dong and Niu, 2021;
Yue et al., 2021). Note that since the terms of
penalty prediction is usually of higher difficulty
and variance than the other two sub-tasks, we fo-
cus on law article prediction and charge prediction
similar to (Bao et al., 2019; Chen et al., 2021).
Case Relations Modeling. The idea of case rela-
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Figure 3: The architecture of a judgment prediction framework with our case triple modeling (CTM).

tions modeling is mainly applied to similar case
matching (SCM) tasks in some recent studies on
legal intelligence (Xiao et al., 2019; Peng et al.,
2020; Hong et al., 2020). Unlike legal judgment
prediction, this task is given a set of manually la-
beled case triples as training samples, where each
triple contains two similar cases and one dissimi-
lar case, and the goal is to learn a model that can
identify those two similar ones. This task can be
further relaxed to find some similar cases for a cur-
rent case (Tang and Clematide, 2021; Ostendorff
et al., 2021), which is important in the common law
system. To the best of our knowledge, our work is
the first to introduce a case triple structure to legal
judgment prediction based on some case relations.

3 The Proposed Framework

3.1 Architecture

The judgment prediction framework with case
triple modeling, or CTM for short, is shown in Fig-
ure 3. Note that similar to most works, we consider
each case with only one law article label and one
charge label for simplicity. Given a current case
f = [s; yl, yc, ya], where s = {s1, s2, . . . , sn} rep-
resents the fact description composed of sentences,
yl is the law article label, yc is the charge label, and
ya ∈ {0, 1} is a category label indicating whether
the case is a high-frequency case or not. Note that
a more specific description of high-frequency cases
can be found in the case triple module in Sec 3.2.
The case triple module samples two similar cases
and one dissimilar case to construct the case triple
(f, fsim, fdis) based on some contrastive case re-
lations. Then, a constraint is imposed on the en-
coded representations corresponding to the case
triple (i.e., vf , vfsim and vfdis) in the relational

attention module to refine the encoding process.
In the category decoder module, we first impose

a classification constraint on the category label ya
to inform the model to which category the current
encoded representation belongs, and then switch
the decoder of the corresponding category branch
to refine the decoding process. Finally, the model
obtains the predicted label of each sub-task and
compares it with the respective true label. The final
optimization objective function of our CTM can be
expressed as follows,

min
θ
LCTM = LM + LR + LC + λ∥θ∥, (1)

where LM , LR, and LC denote the prediction loss
for multi-task learning, the constraint loss for the
relational attention module and the loss for the cat-
egory decoder module, respectively, and λ and ∥θ∥
are the tradeoff parameter and the regularization
terms.

3.2 Training

In this section, we describe each module in detail
based on the training process.

The Case Triple Module. We propose a concept
called contrastive case relation that considers both
labels and frequency information for constructing
some case triples. Specifically, we use a threshold
ϕ to pre-divide the labels of the law articles (and
charges) into two sets of low-frequency Al (or Ac)
and high-frequency Bl (or Bc), where Al (or Ac)
contains the labels with the lowest ϕ frequency and
Bl (or Bc) contains the remaining labels. For a case
f , a similar case f l

sim (or f c
sim) on the law articles

(or charges) is sampled from the candidate cases
with the same law article (or charges) label. Then, a
dissimilar case fdis on the charges is sampled from
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the candidate cases with different charge labels and
the corresponding labels do not belong to Ac. The
additional constraint that the labels do not belong
to Ac help cases with low-frequency charge labels
to be more fully trained based on a large number
of opposite references. Since the law articles can
be regarded as the leaf nodes of charges in civil
law systems, i.e., different charge labels must have
different law article labels, we regard this dissimilar
case on the charges as a shared dissimilar case, i.e.,
it is also regarded as a dissimilar case on the law
article. This can reduce the number of cases that
need to be encoded in a subsequent fact description
encoder module to reduce the size of the model.
Finally, we can obtain two types of case triples(
f, f l

sim, fdis
)

and (f, f c
sim, fdis) for f .

Considering that when f is a high-frequency
case, i.e., yl ∈ Bl or yc ∈ Bc, the above two
case triples can enhance the distinction between the
high-frequency cases. When f is a low-frequency
case, i.e., yl ∈ Al or yc ∈ Ac, these triples can
improve its insufficient training and enhance the
distinction between it and the high-frequency cases
by introducing a large number of high-frequency
cases as opposite references. For ease of under-
standing, we give an example of the sampling pro-
cess in Figure 4.

Sampling

Sampling

Sampling

Figure 4: The schematic diagram of a sampling process,
where the law article and charge labels of a case f are
assumed to be yfl and yfc , respectively.

The Fact Description Encoder Module. After
constructing the case triples, we need to encode
the fact description of each case. Next, we use
hierarchical Bi-GRU (Yang et al., 2016) as an ex-
ample encoder1, which has also been adopted in
some recent works (Long et al., 2019; Xu et al.,
2020; Ma et al., 2021). Specifically, let each
sentence in the fact description be represented as

1Note that the fact description encoder can be any existing
encoder, and in the experiment section, we use a variety of
encoders to verify the compatibility of CTM.

si = [wi,1, wi,2, . . . , wi,m], where wi,j represents
the j-th word of sentence si, and m denotes the
number of words, a word-level Bi-GRU will act on
each sentence and output a corresponding represen-
tation (Yang et al., 2016),

hi,j = [
−−−→
GRU(wi,j),

←−−−
GRU(wi,j)] ∈ Rdw ,

αi,j =
exp(tanh(Wwhi,j + bw)

Tuw)∑
j exp(tanh(Wwhi,j + bw)Tuw)

,

vsi =
m∑
j=1

αi,jhi,j ,

where wi,j represents an embedding vector of
word wi,j , Ww ∈ Rdw×dw is a weight matrix,
bw ∈ Rdw is a bias vector and uw ∈ Rdw is a
trainable context vector. Then, a sentence-level
Bi-GRU will act on the representation sequence
of the sentences, i.e., [vs1 ,vs2 , . . . ,vsn ], to obtain
the encoded representation of case f (Yang et al.,
2016),

hi = [
−−−→
GRU(vsi),

←−−−
GRU(vsi)] ∈ Rds ,

αi =
exp(tanh(Wshi + bs)

Tus)∑
i exp(tanh(Wshi + bs)Tus)

,

vf =
n∑

i=1

αihi,

where the meaning of Ws,bs and us are similar
to that of Ww,bw and uw, respectively. Similarly,
we can also obtain the encoded representations of
other cases in the case triples, i.e., vl

fsim
, vc

fsim
and

vfdis .
The Relational Attention Module. To refine

the encoding process by extracting beneficial case
relation information from case triples, we first cal-
culate the attention vectors between case f and its
similar and dissimilar cases in the representation
space, as well as the anchor attention to itself,

rl = W3
l (σ(W

1
l vf + (W2

l vf + b2
l ))),

rlsim = W3
l (σ(W

1
l vf + (W2

l v
l
fsim

+ b2
l ))),

rldis = W3
l (σ(W

1
l vf + (W2

l vfdis + b2
l ))),

rc = W3
c(σ(W

1
cvf + (W2

cvf + b2
c))),

rcsim = W3
c(σ(W

1
cvf + (W2

cv
c
fsim

+ b2
c))),

rcdis = W3
c(σ(W

1
cvf + (W2

cvfdis + b2
c))),

where W1
l , W2

l , W3
l and b2

l are weight matrices
and bias vector for the first triple, the parameters
for the second triple are similarly defined, and σ(·)
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is the sigmoid activation function. Inspired by su-
pervised contrastive learning (Schroff et al., 2015;
Patro and Namboodiri, 2018), we impose a rela-
tional constraint on the two triples as an additional
optimization objective,

LR = max(0, βl + ∥rl − rlsim∥22 − ∥rl − rldis∥22)
+max(0, βc + ∥rc − rcsim∥22 − ∥rc − rcdis∥22),

(2)
where βl and βc are weight parameters. An intu-
itive explanation for the relational attention module
is that in the attention vector between two cases, a
higher attention value means that this dimension
plays a greater role in the similarity of the two cases.
By imposing the relational constraints in Eq.(2), we
can further reduce noise from the attention vector
between the current case and the corresponding
similar case, which contributes to the similarity
between the current case and dissimilar case.

The Category Decoder Module. To further
avoid the influence between the high-frequency and
the low-frequency cases, we set up a decoder for
each of them to refine the decoding process. Since
it is difficult for the model to know the category in-
formation of the current encoded representation in
practice, we first impose a classification constraint
to encourage the model to identify the category
information more accurately,

LC = L (ŷa, ya) , (3)

where ŷa = softmax(W2
ca ∗ relu(W1

cavf ) +
b2
ca), W

1
ca, W2

ca and b2
ca are weight matrices and

bias vector. After obtaining the category label
of the current case, we select the corresponding
branch to decode the encoded representation. Note
that the decoders on both branches have the same
structure. Next, we use a unidirectional topological
dependency structure similar to TopJudge (Zhong
et al., 2018) as an example decoder2. The decoding
process can be described as follows,[

hl

cl

]
= LSTMCell

(
vf ,

[
hl

cl

])
,[

hc

cc

]
=

(
Wc,l

[
hl

cl

])
+ bc,l,[

hc

cc

]
= LSTMCell

(
vf ,

[
hc

cc

])
,

where hl and cl are the initial hidden state and
memory cell of the law article prediction task, Wc,l

2Note that in the experiment section, we use decoders
with other dependencies to verify the compatibility of CTM.

and bc,l are the transformation matrix and bias
vector that convert the task to charge prediction,
and hl and hc are the decoded representations for
these two tasks.

The Judgment Prediction Module. After ob-
taining the decoded representation of the current
case, we use a fully connected layer to obtain the
prediction of two different sub-tasks and the loss
of multi-task prediction,

ŷl = softmax(Wl
phl + bl

p),

ŷc = softmax(Wc
phc + bc

p),

LM = L(ŷl, yl) + L(ŷc, yc),
(4)

where Wl
p, bl

p and Wc
p, bc

p are the parameters of
the respective prediction tasks.

4 Experiments

In this section, we first introduce the experimental
setup, and then conduct extensive empirical studies
and show the effectiveness of our CTM.

4.1 Experiment Setup
Datasets. We use the two most common bench-
mark datasets in our experiments, i.e., CAIL-small
and CAIL-big (Xiao et al., 2018). Following the
settings of most previous works, we remove the
cases with fewer than 10 meaningful words, and do
not consider cases associated with multiple law ar-
ticles or charges (Yang et al., 2019; Xu et al., 2020;
Yue et al., 2021). Note that for a more compre-
hensive evaluation, we do not additionally remove
the cases that contain law articles or charges with
a frequency of lower than 100 as they do. Also,
since CAIL-big does not provide a validation set,
we divide the original training set for training and
verification at a ratio of 9:1. The statistics of the
datasets are shown in Table 1.

Table 1: Statistics of the datasets, i.e., CAIL-small and
CAIL-big, used in the experiments.

CAIL-small CAIL-big

Training Cases 105,059 1,432,826
Validation Cases 14,266 159,372

Test Cases 27,953 186,523
Law Articles 177 181

Charges 191 193

Implementation Details. The baselines consid-
ered in the experiments include three existing rep-
resentative methods, i.e., MTL (Zhong et al., 2018),
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TopJudge (Zhong et al., 2018), and MPBFN (Yang
et al., 2019), and two recent state-of-the-art meth-
ods, i.e., LADAN (Xu et al., 2020) and Neur-
Judge (Yue et al., 2021), where LADAN can be in-
tegrated with the first three methods to obtain three
variants. All baselines are implemented on Tensor-
Flow 1.153, Keras 2.3.14 or PyTorch 1.9.15 by refer-
ring to the source code and parameter settings pro-
vided in (Xu et al., 2020; Yue et al., 2021)6,7. We
use four metrics for performance evaluation, includ-
ing accuracy (Acc.), macro-recall (MR), macro-
precision (MP) and macro-F1 (F1).

After some preliminary experiments, we fix the
values of some additional parameters of CTM to
reduce the search space, i.e., ϕ, βl and βc are set to
60%, 0.5 and 0.3, respectively. For all the methods,
we set the maximum number of iterations to 20,
and search the best batch size from {32, 64, 128}
by evaluating the accuracy of the law article predic-
tion on the validation set. We also adopt an early
stopping mechanism with a patience of 5 to avoid
overfitting to the training set. By setting a random
seed from 0 to 7, we run each method for eight
times on Intel(R) Xeon(R) E5-2698 with 8 Tesla
V100 GPU and report their average results8.

4.2 Overall Results

If not specified, we use hierarchical Bi-GRU as the
default encoder for reporting results, and constrain
the fact description of a case to contain up to 15
sentences, where each sentence contains up to 100
words (Yang et al., 2019; Xu et al., 2020). The com-
parison results between our CTM and the baselines
are shown in Table 2. We can see that our CTM
consistently outperforms all the baselines on all
the metrics across the two datasets of CAIL-small
and CAIL-big. Furthermore, by comparing the re-
sults of F1, we find that considering more complex
decoding dependency structure (i.e., MPBFN) is
more prone to misclassification of low-frequency
cases, and LADAN and NeurJudge alleviate this
problem to some extent by refining the encoding
process. Unlike them, our CTM can significantly
further improve the model performance by intro-
ducing the case triples and customized modules.

3https://www.tensorflow.org/
4https://keras.io/
5https://pytorch.org/
6https://github.com/prometheusXN/LADAN
7https://github.com/yuelinan/NeurJudge
8Note that the source codes are available at https://

github.com/dgliu/COLING22_CTM

4.3 Compatibility Analysis

As described in Sec. 3, since our CTM does not
depend on a specific encoder and decoder, it can
be easily integrated with existing decision pre-
diction methods. We first study the compatibil-
ity of our CTM under different encoder choices.
In addition to the default hierarchical Bi-GRU,
we consider two common encoder choices, i.e.,
TextCNN (Kim, 2014) and Lawformer (Xiao et al.,
2021). For TextCNN, we set the size of each filter
to 64 and the filter widths to (2, 3, 4, 5). Since Law-
former is a pre-trained language model with Long-
former (Beltagy et al., 2020) for legal long docu-
ments, we directly use their provided model9 for
fine-tuning. We compare our CTM variants with
different encoders against their respective baselines,
i.e., adding the same decoder as our CTM for dif-
ferent encoders. We report the results on our CAIL-
small in Table 3, from which we can see that our
CTM brings significant improvement in all cases.

Next, we explore the compatibility of our CTM
on different decoding structures. In addition to
the default unidirectional topological dependency
similar to TopJudge, we consider two decoding
structures, i.e., ignoring the intra-task dependency
similar to MTL and the bidirectional topological
dependency similar to MPBFN. We compare our
CTM variants with different decoding structures
against their respective baselines, i.e., prepending
the same encoder as our CTM for different de-
coding structures. The results on CAIL-small are
shown in Table 4, from which we can see that our
CTM has a significant advantage in all cases.

4.4 Ablation Studies

Moreover, we conduct ablation studies of our CTM
to analyze the role played by each proposed new
module. Specifically, we first consider the removal
of the category decoder module (denoted as ‘w/o
CD’), then consider using only the law article-
based triple in the case triple module and relational
attention module (denoted as ‘w/o CD+DS’), and
finally remove these two modules (denoted as ‘w/o
CD+CT+RA’). The results are shown in Table 5.
We have the following observation: 1) By compar-
ing ‘w/o CD+DS’ and ‘w/o CD+CT+RA’, the intro-
duction of case triples is beneficial to the improve-
ment of the model performance. 2) By comparing
‘w/o CD’ and w/o CD+DS’, multi-case triples are
more efficient than single-case triples. 3) By com-

9https://huggingface.co/xcjthu/Lawformer

https://github.com/dgliu/COLING22_CTM
https://github.com/dgliu/COLING22_CTM
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Table 2: Comparison results between our CTM and the baselines, where the significantly best results (p ≤ 0.05 via
two sample t-test) are marked in bold. Note that the accuracy of law article prediction is the main evaluation metric.

Datasets CAIL-small CAIL-big

Tasks Law Articles (%) Charges (%) Law Articles (%) Charges (%)

Metrics Acc. MR MP F1 Acc. MR MP F1 Acc. MR MP F1 Acc. MR MP F1

MTL 77.06 60.76 63.21 59.60 81.72 68.31 71.54 67.57 95.68 61.79 73.47 64.92 95.53 68.53 80.97 71.79
TopJudge 77.35 60.73 62.94 59.63 81.54 68.09 70.22 67.27 95.73 61.78 73.84 64.99 95.53 67.55 80.06 70.90
MPBFN 72.77 50.55 53.25 48.74 75.41 56.15 59.28 55.15 94.13 48.83 60.99 51.26 93.60 50.06 64.01 52.96

MTL-LADAN 77.95 62.62 64.91 61.25 82.84 71.01 73.74 70.24 95.98 64.41 76.01 67.63 95.86 71.15 82.78 74.57
TopJudge-LADAN 78.45 63.65 65.95 62.39 83.19 71.88 74.00 71.06 96.08 64.91 77.07 68.27 95.90 70.81 82.42 74.08
MPBFN-LADAN 75.49 56.26 59.54 55.04 78.75 63.25 66.26 62.46 95.16 54.44 66.31 56.93 94.64 56.09 70.93 59.18
NeurJudge 78.27 62.20 66.34 61.74 81.01 64.93 69.55 65.26 95.87 65.04 76.65 68.12 94.86 64.88 79.58 68.66

CTM 81.10 69.42 68.37 66.59 87.03 77.85 76.61 75.64 96.57 74.08 77.55 74.46 96.41 79.81 83.23 80.34

Table 3: Comparison results of our CTM variants with
different encoders and their respective baselines.

Tasks Law Articles (%) Charges (%)

Metrics Acc. MR MP F1 Acc. MR MP F1

TextCNN 75.97 54.30 60.84 53.52 80.05 60.72 65.22 60.54
Text-CTM 80.37 67.08 65.53 63.50 85.78 73.97 73.03 70.80

BiGRU 77.35 60.73 62.94 59.63 81.54 68.09 70.22 67.27
BiGRU-CTM 81.10 69.42 68.37 66.59 87.03 77.85 76.61 75.64

Lawformer 81.94 73.77 72.68 71.46 87.24 81.58 81.26 79.80
Law-CTM 84.12 74.63 76.56 73.83 89.82 81.79 83.40 81.05

Table 4: Comparison results of our CTM variants with
different decoding structures and their respective base-
lines.

Tasks Law Articles (%) Charges (%)

Metrics Acc. MR MP F1 Acc. MR MP F1

MTL 77.06 60.76 63.21 59.60 81.72 68.31 71.54 67.57
MTL-CTM 80.85 69.76 68.22 66.72 86.94 78.23 77.18 75.83

TopJudge 77.35 60.73 62.94 59.63 81.54 68.09 70.22 67.27
TopJudge-CTM 81.10 69.42 68.37 66.59 87.03 77.85 76.61 75.64

MPBFN 72.77 50.55 53.25 48.74 75.41 56.15 59.28 55.15
MPBFN-CTM 78.72 62.36 61.71 59.51 82.86 70.74 70.33 68.42

Table 5: Results of the ablation studies on CAIL-small.

Tasks Law Articles (%) Charges (%)

Metrics Acc. MR MP F1 Acc. MR MP F1

CTM 81.10 69.42 68.37 66.59 87.03 77.85 76.61 75.64

w/o CD 78.11 63.16 65.12 61.87 82.68 70.91 72.69 69.93

w/o CD+DS 77.77 62.90 64.59 61.66 82.60 70.66 72.63 69.90

w/o CD+CT+RA 77.35 60.73 62.94 59.63 81.54 68.09 70.22 67.27

Table 6: Average accuracies of our CTM variants and
their respective baselines across different frequency
groups.

Tasks Law Articles (%) Charges (%)

Groups H1 H2 L1 L2 H1 H2 L1 L2

MTL 89.30 81.06 53.73 10.86 88.53 83.60 68.75 44.86
MTL-CTM 89.89 84.73 68.50 21.83 89.74 85.28 83.39 59.92

TopJudge 89.01 78.60 43.04 6.26 89.16 80.47 60.13 27.63
TopJudge-CTM 90.49 84.03 69.96 22.50 89.65 84.67 84.03 63.94

MPBFN 85.94 76.78 40.82 3.64 86.34 78.46 58.08 24.62
MPBFN-CTM 87.78 80.13 60.74 12.87 86.17 79.52 75.71 52.94

paring CTM and ‘w/o CD’, the introduction of the
category decoder module results in greater gains.
This may be due to the fact that refining the en-
coding process alone is still limited by the biased
decoder training, and it is more beneficial to the
model by refining the encoding and decoding pro-
cesses jointly. Overall, the three customized mod-
ules we propose are necessary and can cooperate
to achieve significant performance improvement.

4.5 Analysis of Gain Sources
In order to have a deeper understanding of the
source of the performance gain, we compare and
analyze the accuracy of the three variants of our
CTM and the baselines on law articles and charges
with different frequencies. The results of this fine-
grained evaluation on CAIL-small are shown in
Figure 5, where the IDs on the horizontal axis are
sorted in a descending order of frequency. In Ta-
ble 6, we also report the average accuracies of the
CTM variants and their respective baselines across
four different frequency groups, i.e., the top 20%
(H1), 20% to 40% (H2), 40% to 70% (L1) and the
rest (L2) of the label frequencies. Combining the
above results, we can find that the improvement
of our CTM increases significantly with decreas-
ing frequency, which verifies the effectiveness of
the designed case triples, especially for the low-
frequency cases.

4.6 Visualization of Case Representations
Finally, we analyze the source of performance gain
from the perspective of model training, i.e., com-
pare the case representations generated by the base-
lines and its improved version via our CTM. We
take MPBFN and MPBFN-CTM as an example due
to space limitation. Specifically, in the case sam-
pling module, we have obtained the high-frequency
and low-frequency subsets of the law articles and
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Figure 5: The prediction accuracy of our CTM variants and their respective baselines on law articles and charges with
different frequencies from CAIL-small. Note that the IDs on the horizontal axis have been sorted in a descending
order of frequency.
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Figure 6: Visualization of the representations of some randomly sampled cases with high- and low-frequency
law articles (a) and charges (b) on CAIL-small by MPBFN and MPBFN-CTM. The dots in (c) and (d) are fine-
grained visualization of the representations obtained by MPBFN-CTM on each law article and charge, where the
representations with the same law article or charge are clearly grouped.
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charges. Then, we randomly sample 5 cases for
each high-frequency (or low-frequency) law article
and charge to construct their respective head (or
tail) case sets. We respectively visualize the case
representations generated by MPBFN and MPBFN-
CTM on different sets.

The results are shown in Figure 6(a) and 6(b).
We can find that the case representations generated
by MPBFN have confusion on the head and tail
sets (i.e., the green dots and red dots), and the case
representations generated by MPBFN-CTM can
cluster the head and tail sets separately and dis-
tinguish them effectively (i.e., the purple dots and
blue dots). This clearly shows that the introduc-
tion of the case relations helps guide the encoder
to learn the inter-class discrimination between the
high-frequency and the low-frequency cases. We
further present fine-grained visualization of the rep-
resentations obtained by our CTM on each law
article and each charge in Figure 6(c) and 6(d), re-
spectively. As expected, we can see that most of
the same law articles or charges, i.e., with the same
colors, are clearly grouped.

5 Conclusions and Future Work

In this paper, we introduce some contrastive case
relations to construct case triples as a new form of
modeling, and propose a general judgment predic-
tion framework with case triple modeling (CTM).
Our CTM includes three new modules, i.e., a case
sampling module for constructing case triples, a
relational attention module for extracting informa-
tion from case triples to refine the encoding pro-
cess, and a category decoder module for refining
the decoding process. Finally, we conduct exten-
sive experiments on two public datasets and find
that our CTM can effectively improve the perfor-
mance of legal judgment prediction, especially for
cases with low-frequency law articles or charges,
and is also of good compatibility.

For future works, we plan to extend our CTM
to more scenarios such as cases with multiple law
articles or charges by further improving the corre-
sponding case triple module and relational attention
module. We are also interested in generalizing our
CTM for prediction of the terms of penalty.
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