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Abstract

Distance metric learning has become a popular
solution for few-shot Named Entity Recogni-
tion (NER). The typical setup aims to learn
a similarity metric for measuring the seman-
tic similarity between test samples and refer-
ents, where each referent represents an entity
class. The effect of this setup may, however,
be compromised for two reasons. First, there
is typically a limited optimization exerted on
the representations of entity tokens after initing
by pre-trained language models. Second, the
referents may be far from representing corre-
sponding entity classes due to the label scarcity
in the few-shot setting. To address these chal-
lenges, we propose a novel approach named
COntrastive learning with Prompt guiding for
few-shot NER (COPNER). We introduce a
novel prompt composed of class-specific words
to COPNER to serve as 1) supervision signals
for conducting contrastive learning to optimize
token representations; 2) metric referents for
distance-metric inference on test samples. Ex-
perimental results demonstrate that COPNER
outperforms state-of-the-art models with a sig-
nificant margin in most cases. Moreover, COP-
NER shows great potential in the zero-shot set-
ting. The source code is available at: https:
//github.com/AndrewHYC/COPNER.

1 Introduction

As a fundamental task in Nature Language Process
(NLP), Named Entity Recognition (NER) aims to
identify the spans of text according to a pre-defined
set of entity classes, such as person, organization
and location (Sang and De Meulder, 2003). Many
down-stream tasks heavily rely on these extracted
entities, such as aspect-level sentiment (Mao and
Li, 2021), intention recognition (Vedula et al.,
2020), and knowledge graph construction (He et al.,
2021). An enormous number of neural methods
have shown promising ability on NER tasks (Chiu
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and Nichols, 2016; Yadav and Bethard, 2018; Li
et al., 2020), whereas insufficient labeled data in
different domains are still a significant challenging
for the community. Considering obtaining full an-
notated data is labor-intensive and time-consuming,
few-shot NER studies (Fritzler et al., 2019; Yang
and Katiyar, 2020; Das et al., 2021; Cui et al., 2021;
Ma et al., 2021) are raising more attention, which
can alleviate annotation dependence and help neu-
ral methods transfer to other tasks easier.

Recently, Prompt Learning (PL) becomes a pop-
ular technology in NLP and shows great potential
for dealing with few-shot issues (Liu et al., 2021b;
Ding et al., 2021b; Chen et al., 2021; Mao et al.,
2022). Typical prompt learning is designed for
understanding sentence-level tasks by decoding a
special marker of an input. However, it is challeng-
ing to adapt PL to token-level tasks, which needs
to identify the class of each token. Inspired by
PL, TemplateNER (Cui et al., 2021) applies man-
ual templates for few-shot NER, which needs to
enumerate all potential spans and forward prop-
agate many times for each input, which is time-
consuming.

Compared with TemplateNER, distance metirc-
based approaches (Wiseman and Stratos, 2019;
Yang and Katiyar, 2020; Ziyadi et al., 2020) are
more popular and efficient in few-shot NER tasks.
The key idea of this paradigm is to learn a simi-
larity metric for measuring the semantic similarity
between test samples and referents (e.g., prototypes
or the nearest neighbors). The referents are usu-
ally derived from a few labeled samples through
a pre-trained language model, e.g., BERT (Devlin
et al., 2019). While being less costly, these meth-
ods are still limited in two aspects: Firstly, their
ability to capture entity-class-related semantics is
limited, because their main goal is to learn a suit-
able similarity function rather than optimizing the
parameters of a sentence encoder for better entity
representations. Secondly, as an anchored metric
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referent is derived from only few labeled data, it
is insufficient to properly represent the semantics
of the corresponding entity class. This issue may
severely impact the performance of a few-shot NER
model in the inference phase.

To address these issues, we propose a novel ap-
proach named COntrastive learning with Prompt
guiding for few-shot NER (COPNER). The core
idea of COPNER is to leverage class-specific
words (CWs) from natural language to serve as
the agents of corresponding entity types. Specifi-
cally, the CWs are included by appending a prompt
to the original input sentence. As shown in Figure
1(a), an original input sentence “[BOS] Obama
was born in 1961 [EOS]” is concatenated
with a prompt “person date none”, where
“person”, “date” and “none” are the CWs for
the entity classes of person, date, and non-entity,
respectively. In the training phase, the representa-
tions of CWs are served as token-level supervision
signals that guide the sentence encoder to pull the
representations of tokens belonging to the same
class, and also the representation of the anchored
CW, to be closer. In this way, the sentence en-
coder can learn to capture the dependence between
tokens for aligning the semantics of a mentioned
entity with the semantics of the corresponding CW
in the unified semantic space. In the inference
phase, the representations of CWs are treated as
metric referents for predicting entity classes. As
the representations of CWs contain general and dis-
criminates semantics at the scratch and are further
trained to align with the corresponding entity set,
they are more appropriate and stable than the ref-
erents derived from previous works. Further, we
explore different methods of prompt construction,
aiming to understand the effects of different forms
of prompts.

We summarize existing few-shot NER research
into three settings, including Cross-Label-Space,
Domain Transfer, and In-Label-Space. COPNER
is evaluated under all these settings. We con-
duct experiments on six NER datasets and COP-
NER largely outperforms state-of-the-art(SOTA)
approaches in most cases, especially in complex
scenarios. Specifically, compared with SOTA re-
sults in Few-NERD (INTRA) and Few-NERD (IN-
TER), COPNER raises the F1 scores of 8.28% and
8.03% in these two fine-grained few-shot NER
tasks. In Domain Transfer settings, COPNER also
improves by 9.0% averaged F1 scores under 1-shot

settings. Additionally, considering CWs can inher-
ently carry the relevant category information, we
explore the zero-shot ability of COPNER with sat-
isfied results. The main contributions of this paper
are summarized as follows:

• We propose a novel few-shot NER approach
named COPNER, which combines contrastive
learning and prompt guiding. By introducing
prompts as supervision signals and metric ref-
erents, COPNER overcomes the problem that
typical class referents cannot properly repre-
sent each category due to data scarcity, and
enhances entity representations for better dis-
crimination with contrastive learning.

• We detailly investigate the existing few-shot
NER research and summarize them into three
categories. COPNER is evaluated in all these
categories and outperforms SOTAs in most
cases. Further, we expand the boundaries of
COPNER’s ability to the zero-shot setting and
also achieve satisfied results.

2 Task Formulation

NER is normally treated as a sequence labeling
task. For each input sentence X = {x1, x2, ..., xt},
NER models aim to assign each token xi a label
yi ∈ C, where C is a predefined label set. The
assigned label shows either the token is a part of a
named entity or out of any entity classes.

For each entity class, few-shot NER tasks are
only provided with very limited annotations as su-
pervision for neural models. With a comprehensive
survey, we summarize existing few-shot NER re-
search into three settings, and COPNER is evalu-
ated in all these settings to demonstrate its effec-
tiveness and universality.

2.1 Cross-Label-Space Setting
For few-shot NER with Cross-Label-Space setting,
there is a rich-resource dataset (source set H) for
training and a low-resource dataset (target set L)
for adapting and testing. Notably, the target label
space CL is totally different from the source label
space CH , namely CL∩CH = ∅. Usually, the Cross-
Label-Space setting is combined with N -way K-
shot setting, e.g., a support set consists of N entity
classes and each class has K labeled examples.
To deal with this setting, an NER model needs to
be trained on H first, then adopts to a new label
space using the support set of L. It is challenging
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(c) Inference in target label space

Pre-trained Language Model

[BOS]  Google is located in California [EOS]  none organization location [EOS]
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…

Pre-trained Language Model

[BOS]  Tesla moved to Texas  [EOS]  none organization location [EOS]

origin text prompt

attraction

repulsion

Pre-trained Language Model

[BOS] Barack Obama was born in 1961 [EOS]  person date none [EOS]

origin text prompt

…

(a) Training in source label space

(b) Adapting to target label space with support set

…

…

Source Label Set: {PER, DATE, O}

M(PER) = person
M(DATE) = date
M(O) = none

Target Label Set: {ORG, LOC, O}

M(ORG) = organization
M(LOC) = location
M(O) = none

representations

Figure 1: The illustration of the COPNER framework based on Contrastive Learning with Prompt guiding: (a)
Training in the source label space {PER, DATE, O}. (b) Adapting to the target label space {ORG, LOC, O} with
support set. (c) Inferring by comparing test tokens with class-specific words.

that COPNER needs to handle the problems of low
resources and cross-label space.

2.2 Domain Transfer Setting

Similar to the Cross-Label-Space setting, there is
also a rich-resource dataset (source set H) for train-
ing and a low-resource dataset (target set L) for
adapting. The main difference is these two datasets
come from different domains. For example, H can
be news corpus while L comes from medical data.
Besides, the label spaces of H and L can overlap.
This setting needs COPNER to keep the domain
transfer capability with limited annotations.

2.3 In-Label-Space Setting

Different from the previous two settings that have
a rich-resource dataset, the In-Label-Space setting
supposes that only a small number of labeled ex-
amples can be used for training. Specifically, a
few-shot NER model is first trained on a dataset
Dtrain with a label space C, in which each entity
class has only K samples. Then, the model is eval-
uated by a test set Dtest with the same label space
C. It is a great challenge that COPNER needs to
learn the NER task with only few training samples.

3 Methodology

The key idea of COPNER is to construct prompts
with CWs for both the model training and inference.
For each sentence, the COPNER concatenates a
prompt to it and feeds the supplemented one into
a pre-trained language model (PLM). Then, the
PLM is trained in a contrastive learning fashion.
In this process, the prompts play the role of the
token-level anchors for constructing the positive
pairs and negative pairs of contrastive learning. Fi-
nally, in the inference stage, the representations of
CWs (in the prompt) are served as metric referents
for predicting.

The whole process of COPNER is shown in Fig-
ure 1. We first train the used PLM in source label
spaces. Next, the PLM is fine-tuned by a few sup-
port sets for adapting to new label spaces in eval-
uation tasks, e.g., Cross-Label-Space and Domain
Transfer. Finally, a token-level distance-based met-
ric classifier is employed to obtain the final results
in the inference phase.

3.1 Prompt Guided Few-shot NER Model

First, our method constructs task-specific prompts
for an employed dataset. A class-specific word
mapping M is manually defined, then a unique
class-specific word vi is obtained for each en-
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tity label ci ∈ C with M, where C is the pre-
defined label set. We use a simple yet effective
method to develop M, i.g. using class names of
the given entities as CWs. For example, “LOC” is
used as the label for location entities in most NER
datasets, then the class-specific word “location”
will be assigned to location entities following
M(LOC) = location. These CWs inherently
contain the general semantic information of related
entity classes and can avoid biases from limited
labeled data.

In a specific few-shot task, COPNER maps each
entity class ci ∈ C into a CWs vi by M and con-
catenates these CWs to form a prompt. There are
three ways of concatenating CWs in COPNER,
which are described in Section 3.5.

Next, the generated prompt is appended to each
input sentence X to form the extended input se-
quence X ′ = {x1, x2, ... , xt, v1, ... , vn, vn+1}1,
where t is the length of original input sentence and
n is the number of entity class. Additionally, an
extra class-specific word is added to denote non-
entity class. Following, X ′ is fed into a PLM, e.g.,
BERT (Devlin et al., 2019), for generating con-
textualized representations. COPNER takes final
hidden layer output as the representations of each
token following:

H = [h1, ...,ht,h
′
1, ...,h

′
n]

= PLM([x1, .., xt, v1, ..., vn])
(1)

The representations of CWs in the prompt can be
treated as guides for training the representations of
tokens in the original sentence, which will detailed
in the next section.

3.2 Training in Source Label Space
We employ an episode training strategy (Ding et al.,
2021b) in COPNER, where a Greedy Sampling is
adopted to randomly select an episode set S at
each step. Specifically, the samples in an episode
set S contain N entity classes (N way) with 1∼2
examples per class.

Centered with CWs in the prompt as class an-
chors, COPNER trains the used PLM to reduce
representation distances between each token with
its related CWs while pulling way with unrelated
CWs. Specifically, for each extended input se-
quence X ′ ∈ S, COPNER obtains the representa-
tion sequence [h1, ...,ht,h

′
1, ...,h

′
n+1] by Eq. (1).

1For clarity, our formulates exclude the special marker
"[BOS]" and "[EOS]". The detail utilization of these markers
is shown in Fig 1.

Algorithm 1 Adapting process of COPNER
Input: Xsup: support data; PLM: word encoder; γ: loss

threshold;
Output: PLM
1: Lprev ∈ R+ (arbitrary large);
2: Lft = Lprev − 1;
3: repeat
4: Lprev = Lft;
5: for all (xi, yi) ∈ Xsup do
6: Calculate l(xi) as in Eq. (1) and Eq. (2);
7: end for
8: Calculate Lft as in Eq. (3);
9: Update PLM by back-propagation to reduce Lft;

10: until (Lft > Lprev ∩ Lft < γ)

Next, we construct positive and negative pairs
of each X ′ for contrastive learning. Positive pairs
are defined as (xp, vp), where xp is the pth token
in X and vp is the corresponding gold CW. Nega-
tive pairs are obtained by combining xp and other
unrelated CWs in the prompt.

Then, we can calculate the contrastive loss (Lin
et al., 2021) with respect to xp by:

ℓ(xp) = − log
exp(−d(hp,h

′
p)/τ)∑n+1

q=1 exp(−d(hp,h′
q)/τ)

(2)

where τ denotes a temperature hyper-parameter
proposed by Chen et al. (2020). As in previous
metric-based works, we adopt the Euclidean dis-
tance as the similarity measure, which is calculated
by: d(hp,h

′
q) = ||hp−h′

q||22. The total contrastive
loss L of the episode S is calculate by:

L =
1

|X |
∑
xi∈X

ℓ(xi) (3)

where X denotes the text token set in a sampled S .

3.3 Adapting to Target Label Space
As mentioned in Section 2.1 and 2.2, when han-
dling the settings of Cross-Label-Space and Do-
main Transfer, COPNER needs a certain extent of
transferring ability. For such a reason, COPNER
is fine-tuned with related support sets to adapt new
label spaces after the training phase. This proce-
dure is similar to the training stage, and the only
difference is that the used data come from different
label spaces or domains. Noticeably, such adapt-
ing process may make COPNER over-fit with the
used adapting data, because these adapting data
are usually with small numbers. Inspired by Das
et al. (2021), we develop an early stopping criterion
based on contrastive losses to alleviate the above
problem. In particular, we add a hyper-parameter
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γ as the loss threshold to prevent the model from
not adapting enough or over-fitting. The complete
adapting process with the early stopping criterion
is illustrated in Algorithm 1.

3.4 Inferring from Metric Referents
In the inference phase, CWs in the prompt are re-
garded as metric referents to calculate distance with
each token. We first obtain the representation of a
extended test instance Htest following the rewritten
Eq. (1) as

Htest = [h1, ...,ht,h
′
1, ...,h

′
n,h

′
n+1]. (4)

For each token xi, COPNER can find the near-
est Metric Referent vj in the PLM representation
space, and the corresponding label cj will be as-
signed with this token.

ytesti = argmin
cj

||hi − h′
j ||22 (5)

where hi denotes each token representation and h′
j

denotes each CW representation.
Alternatively, COPNER employs the Viterbi de-

coding algorithm. The used transition probabilities
are calculated between three abstract NER tags (O,
I, I-Other) on the training data. The emission
probabilities are calculated by a SoftMax oper-
ation on the distance distributions between each
test token and CWs during inference. These two
probabilities are fed to a Viterbi decoder to obtain
the final prediction. For more details, please refer
to Structshot (Yang and Katiyar, 2020).

3.5 Prompt Construction
Liu et al. (2021b) shows that different forms of
prompts have different effects on prompt-based
approaches. For further explore these effects on
COPNER, we propose three prompt construction
methods. Figure 2 shows the examples for these
methods and the details are introduced as:

• Queue Prompt: Directly combining the CWs
in random order (the most intuitive way).

• Partition Prompt: Based Queue Prompt, ex-
tra special tokens “[S]” are used to separate
each CWs. “[S]” only serves as a partition
and does not have a specific meaning.

• Continual Prompt: This method employs
continuous representations as special tokens
to separate CWs. Similar with P-tuning (Liu

[CLS]  Barack  Obama  was  born  in  1961 [SEP]                    Prompt [SEP]

Prompt Encoder

BERT

ℎ2 ℎ3ℎ1ℎ0 𝑒(no) 𝑒(person) 𝑒(time)text embedding 𝑒([SEP]) 𝑒([SEP])𝑒([CLS])

[CLS]  Barack  Obama  was  born  in  1961 [SEP]  no person date [SEP]

[CLS]  Barack  Obama  was  born  in  1961 [SEP]  [S] no [S] person [S] date [S] [SEP]

Queue Prompt

Partition Prompt

Continual Prompt

Pseudo tokens[𝑃0] [𝑃1] [𝑃2] [𝑃3](b) The generation process of Continual Prompt

(a) The four different prompts

no person date

Figure 2: The illustration of prompt construction: (a)
Three different forms of the prompt. (b) The process
of generating continual prompts. A Prompt Encoder
is employed to generate continual prompts, which is
optimized with COPNER during training. e(x) denotes
the embedding of token x.

et al., 2021b), the employed continuous repre-
sentations are generated from an independent
prompt encoder (two Bi-LSTM layers). By
this way, we try to encode hidden associations
between CWs into these separated markers.

4 Experiment Setups

4.1 Datasets

COPNER is evaluated with six datasets, in-
cluding OntoNotes 5.0 (Weischedel et al.,
2012), WNUT’17 (Derczynski et al.,
2017), I2B2’14 (Stubbs and Uzuner, 2015),
CONLL’03 (Sang and De Meulder, 2003), MIT-
Movie (Liu et al., 2013), and Few-NERD (Ding
et al., 2021b). Among these datasets, the first five
datasets come from the different domains, which
correspond to the fields of general, social network,
medical, newswire, and review, respectively. The
last Few-NERD is the largest few-shot NER
dataset, which contains INTRA and INTER two
sub-settings, and a total of 66 fine-grained classes
across 8 coarse-grained categories. Details of the
datasets are shown in Table 6.

4.2 Baselines

(1) ProtoBERT is a popular few-shot method
based on the prototypical network (Snell et al.,
2017) with BERT (Devlin et al., 2019) as a back-
bone. (2) NNShot (Wiseman and Stratos, 2019)
is a simple method based on token-level nearest
neighbor classification. (3) StructShot (Yang and
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Katiyar, 2020) adopts an additional Viterbi decoder
based on NNShot. (4) CONTaiNER (Das et al.,
2021) leverages contrastive learning to infer the
distributional distance of Gaussian embeddings of
entities. (5) BERT-tagger (Devlin et al., 2019) is
a traditional BERT-based method which fine-tunes
the BERT model with a label classifier. (6) Tem-
plateNER (Cui et al., 2021) is a template-based
approach, which enumerates all possible n-gram
spans and classifies each of them. (7) EntLM (Ma
et al., 2021) is a few-shot NER method which lever-
ages an entity-oriented LM objective.

4.3 Evaluation on Three Settings

Cross-Label-Space Setting. For this setting, we
evaluate COPNER with the Few-NERD dataset,
which has two different tasks: Few-NERD (IN-
TER) and Few-NERD (INTRA). For INTER, all
the fine-grained entity classes are mutually dis-
joint in train, development, and test sets, while
the coarse-grained categories are shared. For IN-
TRA, the fine-grained entity classes in different
sets belong to different coarse-grained categories.
Few-NERD (INTRA) is more challenging due to
the restrictions of sharing coarse-grained types. We
evaluate COPNER 5000 episodes on the test set
under each setting. As shown in Table 1 and Table
2, COPNER largely outperforms present related
SOTAs in both tasks.

Domain Transfer Setting. This setting focuses
on transferring an NER model to a new domain.
Specifically, we train COPNER on the OntoNotes
5.0 dataset from the general domain and evaluate it
on the test sets of CoNLL’03, WNUT’17, I2B2’14,
which are from the newswire, social and medical
fields, respectively. The support sets of the target
domains are provided by Yang and Katiyar (2020).
For each experiment, COPNER is fine-tuned on
five support sets and the mean and standard devi-
ation of F1 scores on the test set is reported. As
shown in Table 3, COPNER also outperforms SO-
TAs in most cases, especially in the 1-shot setting.

In-Label-Space Setting. In this setting, we eval-
uate COPNER with two NER datasets from differ-
ent domains: CoNLL’03 (Sang and De Meulder,
2003) and MIT-Movie (Liu et al., 2013). As intro-
duced in Section 2.3, only K examples of each
class are available for training. To explore the
few-shot capability of COPNER with different size
of training data, we try different K values from
{5, 10, 20, 50}. For each K-shot values, COPNER

Table 1: F1 Scores (%) in Few-NERD (INTER). +Struct
means using Viterbi Decoding. We color code each
column as best and second best .

Model
5-way 10-way

Avg.
1∼2 shot 5∼10 shot 1∼2 shot 5∼10 shot

ProtoBERT 44.44 58.80 39.09 53.97 49.08
NNShot 54.29 50.56 46.98 50.00 50.46
StructShot 57.33 57.16 49.46 49.39 53.34
CONTaiNER 55.95 61.83 48.35 57.12 55.81

+Struct 56.10 61.90 48.36 57.13 55.87

COPNER 65.39 67.59 59.69 62.32 63.75
+Struct 65.98 67.70 59.56 62.37 63.90

Table 2: F1 Scores (%) in Few-NERD (INTRA). +Struct
means using Viterbi Decoding. We color code each
column as best and second best .

Model
5-way 10-way

Avg.
1∼2 shot 5∼10 shot 1∼2 shot 5∼10 shot

ProtoBERT 23.45 41.93 19.76 34.61 29.94
NNShot 31.01 35.74 21.88 27.67 29.08
StructShot 35.92 38.83 25.38 26.39 31.63
CONTaiNER 40.43 53.70 33.84 47.49 43.87

+Struct 40.40 53.71 33.82 47.51 43.86

COPNER 53.52 58.74 44.13 51.55 51.99
+Struct 54.26 58.84 44.26 51.18 52.14

is trained on three different sampled train sets pro-
vided by Ma et al. (2021), the mean and standard
deviation of F1 scores on the test set is reported.
As shown in Table 4, COPNER also outperforms
state-of-the-art methods in most cases.

5 Results and Discussion

In this section, we discuss the results of different
few-shot NER settings and conduct experiments
under the zero-shot setting. We also explore the
effectiveness of different components of COPNER.

5.1 Overall Few-shot Results
The experimental results demonstrate that COP-
NER achieves a convincing improvement in all
mentioned few-shot NER settings, and reaches
SOTA performance to our best knowledge.

As shown in Table 1 and 2, COPNER outper-
forms the baselines by a large margin in the Cross-
Label-Space setting. We observe a significant im-
provement in the 1-shot setting. A 1-shot sample
may not give sufficient information about the tar-
get class distribution, which limits the performance
of previous methods to a large extent. In contrast,
CWs in COPNER carry class-related semantic in-
formation to ensure excellent performance.

As shown in Table 3, COPNER demonstrates
strong domain transfer capability where support
data are extremely limited. COPNER performs
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Table 3: F1 scores (%) in Domain Transfer task. We report standard deviations from runs with five different support
sets sampled by Yang and Katiyar (2020). +Struct means using Viterbi Decoding. We color code each column as
best and second best .

Model
1 shot 5 shot

CoNLL WNUT I2B2 Avg. CoNLL WNUT I2B2 Avg.

ProtoBERT 49.9±8.6 17.4±4.9 13.4±3.0 26.9 61.3±9.1 22.8±4.5 17.9±1.8 34.0
NNShot 61.2±10.4 22.7±7.4 15.3±1.6 33.1 74.1±2.3 27.3±5.4 22.0±1.5 41.1
StructShot 62.4±10.5 24.2±8.0 21.4±3.8 36.0 74.8±2.4 30.4±6.5 30.3±2.1 45.2
CONTaiNER 57.8±10.7 24.2±2.9 16.4±1.7 32.8 72.8±2.0 27.7±2.2 24.1±1.9 41.5

+Struct 61.2±10.7 27.5±1.9 21.5±1.7 36.7 75.8±2.7 32.5±3.8 36.7±2.1 48.3

COPNER 67.0±3.8 33.8±2.5 34.6±1.8 45.1 74.9±2.9 34.8±3.1 41.1±1.6 50.2
+Struct 66.5±2.1 34.9±1.8 35.8±1.3 45.7 74.6±3.1 34.2±2.6 43.7±1.5 50.8

Table 4: F1 scores (%) in In-Label-Space NER task. We report standard deviations from runs with three different
support sets sampled by Ma et al. (2021). +Struct means using Viterbi Decoding. We color code each column as
best and second best .

Model
CONLL MIT-Movie

5 shot 10 shot 20 shot 50 shot Avg. 5 shot 10 shot 20 shot 50 shot Avg.

BERT-tagger 41.9±12.1 59.9±10.7 68.7±5.1 73.2±3.1 60.9 39.6±6.4 50.6±7.3 59.3±3.7 71.3±3.0 55.2
NNShot 42.3±8.9 59.2±11.7 66.9±6.1 72.6±3.4 60.3 39.0±5.5 50.5±6.1 58.9±3.5 71.2±2.9 54.9
StructShot 45.8±10.3 62.4±11.0 69.5±6.5 74.7±3.1 63.1 41.6±9.0 53.2±5.5 61.4±3.0 72.0±6.4 57.1
TemplateNER 43.0±6.2 57.9±5.7 66.4±6.1 72.7±2.1 60.0 46.0±3.9 49.3±3.4 59.1±0.4 65.1±0.2 54.9
EntLM 49.5±8.3 64.8±3.9 69.5±4.5 73.7±2.1 64.4 46.6±9.5 57.3±3.7 62.4±4.1 71.9±1.7 59.6

+Struct 51.3±7.7 66.9±3.0 71.2±3.9 74.8±1.9 66.1 49.2±8.9 59.2±4.0 63.9±3.7 73.0±1.8 61.3

COPNER 54.9±4.1 65.3±2.4 70.7±1.8 75.0±1.5 66.5 50.9±4.4 59.7±0.4 66.7±1.8 73.8±0.6 62.8
+Struct 54.2±7.9 66.2±2.9 71.8±1.8 77.0±1.4 67.3 50.1±3.6 61.9±1.4 68.9±2.4 74.6±0.3 63.9

significantly better than all previous methods, espe-
cially in the 1-shot setting. Specifically, COPNER
raises of 5.8%, 7.4% and 14.3% F1 scores on the
CoNLL, WNUT and I2B2 datasets, respectively.

As shown in Table 4, COPNER still achieves
SOTA performance in most cases. In the In-Label-
Space setting, the generalization ability of COP-
NER is examined by limiting the available training
samples. Additionally, the standard deviations of
F1 scores reported by COPNER are lower than
those of other baselines, which indicates that our
method is more stable than these baselines.

5.2 Zero-shot Learning
After trained on a rich-resource dataset, COPNER
has learnt hidden contextual associations between
CWs and tokens of input sentences. We aruge that
these learnt contextual associations help COPNER
to classify unseen entity categories even without
any support data. Several experiments are con-
ducted to demonstrate this idea. Specifically, for
the Cross-Label-Space task and the Domain Trans-
fer task, COPNER needs to make predictions on
the target label spaces without any support set after
training on the source label spaces. As shown in
Table 5, COPNER can handle zero-shot NER tasks

Table 5: F1 Scores (%) in Zero-shot setting. +Struct
means using Viterbi Decoding. We color code each
column as best .

Model
Few-NERD Domain Transfer

INTER INTRA CONLL WNUT I2B2
5 way 10 way 5 way 10 way - - -

COPNER 31.95 19.52 14.72 8.73 46.26 17.58 17.29
+Struct 33.97 20.92 16.06 9.64 49.39 17.41 17.47

with satisfied performance and the Viterbi decoding
can further boost the performance. In the domain
transfer tasks, COPNER under the zero-shot set-
ting is even comparable to the prototypical network
under the 1-shot setting.

5.3 Effect of Class-specific Words
Considering that the semantic information con-
tained in class names can benefit entity encoding,
the class names are selected as CWs introduced in
Section 3.1. To demonstrate the effect of semantics
of class names, we conduct experiments with the
following variants of the CWs:

• Misleading words: We randomly swap the
CWs between labels. For example, we as-
sign “location” for “PER”, “person” for
“ORG”, “organization” for “LOC”.
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Figure 3: F1 Scores (%) in Few-NERD (INTRA) with
the different variations of the CWs.

• Unrelated words: We randomly select some
tokens from BERT’s vocab as CWs, e.g.,
“fully”, “acoustic” or “new”, which are
semantically unrelated to labels.

• Meaningless words: We use the tokens that
are not used in BERT’s vocab for CWs,
such as “[unused0]”, “[unused1]”, etc.
These tokens are semantically meaningless.

As shown in Figure 3, the performance of the
three variants shows a significant decrease com-
pared to the original words. The wrong seman-
tic information in misleading words and unrelated
words may mislead the entity representation learn-
ing leading to huge performance loss. It demon-
strates that semantics matching the entity class is
more effective as a class anchor. The further de-
crease in the performance of meaningless words
further shows that semantic information is crucial
in few-shot metric learning.

5.4 Influence of Prompts

In this subsection, we explore the influences of in-
troducing prompts. In COPNER, prompts provide
category-specific information during the represen-
tation calculation of tokens. To explore its impact,
we conduct analytical experiments and the results
are shown in Table 7 in Appendix. In addition
to comparing the impact of three different prompt
forms introduced in Section 3.5, we construct a
baseline without adding any prompts: Fixed em-
bedding Guiding (FG). More details are described
in Appendix C. All three prompt-based methods
are much better than FG, which indicates that the
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Figure 4: Two-dimensional t-SNE visualizations of the
sampled 6 fine-grained classes from the location cat-
egory. The embeddings are obtained from ProtoBERT,
StructShot, CONTaiNER and COPNER, respectively.

introduction of prompts can effectively improve
the model capability. Both Partition Prompt and
Continue Prompt achieve excellent performance,
but the latter introduces additional parameters, so
we use Partition Prompt in our main experiments.

5.5 Effectiveness Analysis
In this subsection, we summarize two main aspects
to show the effectiveness of COPNER.

Enhanced Entity Representations. Figure 4
shows the two-dimension t-SNE visualization for
the embeddings obtained from four different metric-
based methods. Another one-dimension t-SNE vi-
sualization is shown as Figure 6 in Appendix D.
As shown as these two Figures, COPNER results
in better entity representations with greater differ-
entiation of entity distributions across categories
and more aggregation of similar entity distributions.
More details are described in Appendix D.

Stable Metric Referents. We further investigate
the metric results during inference. As shown in
Figure 5(a), COPNER is more capable of distin-
guishing the positive pairs from the negative pairs
with lower positive-negative distance ratios, which
indicates that the nearest CW inference in COP-
NER has stronger category discrimination ability.
COPNER is also the most stable and least influ-
enced by support set differences, as shown in Fig-
ure 5(b). More details are described in Appendix E.
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Figure 5: Effect of Metric Inference. (a) The ratio
of the positive-pair distance to the mean negative-pair
distance in inference of different models, (b) F1 scores
of different models on 10 different support sets.

6 Related Work

Prompt Learning. GPT-3 (Brown et al., 2020)
is the first try that used manual prompts in task
prediction to improve performance. Then some
ways to build templates manually were proposed
(Petroni et al., 2019; Sanh et al., 2021). Automatic
construction with different forms of templates was
explored, including discrete templates (Shin et al.,
2020; Jiang et al., 2020; Gao et al., 2020) and con-
tinuous prompts (Li and Liang, 2021; Liu et al.,
2021b,a; Qin and Eisner, 2021; Han et al., 2021).
A proper prompt can provide guidance information
for downstream tasks. Therefore, the prompt is
well suited for few-shot tasks where training data
are scarce. A number of works introducing prompt
learning to few-shot classification tasks have been
proposed (Mao et al., 2018; Ding et al., 2021a;
Chen et al., 2021; Madotto et al., 2021) in succes-
sion.

Few-shot NER. Generally, few-shot NER ap-
proaches can be categorized as metric-based and
prompt-based. The former aims to calculate the
similarity between test data and referents. Fritzler
et al. (2019) applied the prototype network (Snell
et al., 2017) to few-shot NER tasks. Inspired by the
nearest neighbor inference (Wiseman and Stratos,
2019), Yang and Katiyar (2020) proposed Struct-
shot, which used the Viterbi Decoder to capture la-
bel dependencies. Das et al. (2021) proposed CON-
TaiNER, which adopts Gaussian embeddings of
tokens for the metric. Prompt-based methods lever-
age prompt learning to exploit the prior knowledge
of pre-trained language models. Cui et al. (2021)
proposed a time-consuming template-based BART
for few-shot NER. Inspired by prompt tuning, Ma
et al. (2021) proposed an entity-oriented method

that fine-tuned the language model to predict class-
related label words rather than the original words.

7 Conclusion

In this paper, we propose COPNER, a novel few-
shot NER approach taking the advantage of con-
trastive learning and prompt guiding. COPNER
achieves SOTA performance in few-shot NER set-
tings by constructing prompts with CWs and ex-
ploiting the ability of contrastive learning to obtain
enhanced representations and stable metric refer-
ents. COPNER can also handle zero-shot NER
tasks. In the future, we will extend COPNER to
more token-level few-shot classification tasks and
further exploit its ability to handle zero-shot tasks.
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A Data statistics

In our experiments, we utilize a variety of different
NER datasets to fully validate the capability of our
proposed approach. A summary of these datasets
is given in Table 6.

Table 6: Data statistics

Datasets Domain #Class #Sent #Entity

OntoNotes General 18 76.7k 104.2k
WNUT’17 Social 6 5.7k 3.9k
I2B2’14 Medical 23 140.8k 29.2k
CoNLL’03 News 4 20.7k 35.1k
MIT-Movie Review 12 12.2k 26.6k
Few-NERD General 66 188.2k 491.7k

B Implementation Details

We use the "bert-base-uncased" pre-trained model
as the word encoder in all of our experiments. For
model training, the AdamW optimizer is employed
with learning rate of 1e-4. We set batch size=16 and
the loss temperature τ=0.05. As for prompt con-
struction, we adopt Partition Prompt in our main
experiments. The micro-F1 score is selected as the
standard evaluation metric in all experiments.

Tagging Scheme For fair comparison, we adopt
the IO tagging scheme following previous works,
where I-type represents that all of the tokens are
inside an entity, and O-type denotes all the other
tokens.

C Effect of Prompts

In order to explore the effect of prompts, we add a
baseline: Fixed embedding Guiding (FG). Specifi-
cally, we first obtain the embedding of each class-
specific word from the last layer output of the "bert-
base-uncased" pre-trained model. We then let these
embeddings guide entity representations by con-
trastive learning. No prompt is expanded after the
input text in FG and the embeddings of CWs are
fixed during training. We conduct experiments on
FG and the other three different prompts introduced
in Section 3.5. The experimental results are shown
in Table 7.

All the three prompt-based models outperform
FG, indicating that prompts are effective in pro-
viding category-related information when models
perform entity representation calculations. Despite
their excellent results, three prompts have some dif-
ferent effects. The best model is Continual Prompt.

Table 7: F1 Scores(%) in Few-NERD (INTRA) with
different prompts: QP, PP and CP mean to use Queue
Prompt, Partition Prompt and Continual Prompt, re-
spectively. And FG means to use the fixed embed-
ding guiding. We color code each column as best
and second best .

Model
5-way 10-way

Avg.
1∼2 shot 5∼10 shot 1∼2 shot 5∼10 shot

FG 43.55 51.85 37.49 48.79 45.42
QP 52.15 57.34 42.79 50.99 50.82
PP 53.52 58.74 44.13 51.55 51.99
CP 53.38 58.81 44.40 51.63 52.06

Whereas, it employs an extra Prompt Encoder to
generate semantic linkage representations, which
introduces additional training parameters. Parti-
tion Prompt achieves comparable performance to
Continual Prompt, while introducing no additional
parameters. This is the reason that we adopt it
in our main experiments. The relatively poor per-
formance of Queue Prompt indicates that putting
the CWs together instead of separating them with
some tokens has negative impacts on the model
performance.

D t-SNE Visualization

From the Few-NERD (INTRA) test set, we ran-
domly sample 100 examples from each of six fine-
grained classes in the location category. Then,
t-SNE is employed to project the entity represen-
tations obtained by the word encoder into two-
dimensional and one-dimensional spaces. It is clear
that the way of guiding entity representations by
COPNER is more effective.

Figure 4 shows the two-dimensional visual-
ization results of ProtoBERT, StructShot, CON-
TaiNER and COPNER, respectively. We can ob-
serve that: ProtoBERT has the weakest representa-
tion ability and fails to distinguish the entity repre-
sentations of different classes; StructShot improves
but tends to distribute the entity representations of
the same class to multiple clusters; CONTaiNER
further enhances entity representations, while it
is still weak in some classes, such as location-
bodiesofwater and location-island. COPNER per-
forms the best and brings similar entities together
as much as possible.

Figure 6 shows the one-dimensional visualiza-
tion results of different entity classes. The higher
aggregation of similar entity representations ob-
tained from COPNER further visualizes the superi-
ority of the way CWs guiding entity encoding.



2527

ProtoBERT StructShot CONTaiNER COPNER

40

20

0

20

40

60
Y 

ax
is

(a) location-mountain
ProtoBERT StructShot CONTaiNER COPNER

60

40

20

0

20

40

60

(b) location-transit
ProtoBERT StructShot CONTaiNER COPNER

60

40

20

0

20

40

(c) location-park

ProtoBERT StructShot CONTaiNER COPNER

40

20

0

20

40

60

(d) location-bodiesofwater
ProtoBERT StructShot CONTaiNER COPNER

60

40

20

0

20

40

60

(e) location-GPE
ProtoBERT StructShot CONTaiNER COPNER

40

20

0

20

40

60

(f) location-island

Figure 6: One-dimensional t-SNE visualizations of
the sampled 6 fine-grained classes’ examples from the
location category. The 6 different classes are visual-
ized separately.

E Effect of Metric Inference

In this sub-section, we investigate the effect of met-
ric referents for different models during inference.
We investigate the following two aspects: category
discrimination ability and metric stability.

Category Discrimination Ability: In the
distance-based inference, test examples are easily
and correctly distinguished when they are closer
to the positive metric referent and further away
from the negative metric referents. We randomly
sample a 1-shot support set containing six fine-
grained classes of the location category from the
Few-NERD (INTRA) test set, and then make pre-
dictions on the test examples sampled in Appendix
D. Each test example forms a positive pair with the
corresponding gold CW, and negative pairs with
other CWs. We calculate the ratio of the positive-
pair distance to the mean distance of negative pairs.
As shown in Figure 5(a), COPNER is more capable
of distinguishing the positive pair from the negative
pairs with lower positive-negative distance ratios,
which demonstrates that the nearest class-specific
word inference in COPNER is more appropriate.

Metric Stability: In the distance-based metric
approaches, the inference results of a good metric
should be insensitive to different support sets. We
randomly sampled 10 different 1-shot support sets
from the Few-NERD (INTRA) test set. Each con-
tains 6 fine-grained classes of the location category.

Figure 5(b) demonstrates the prediction results of
different models. The nearest class-specific word
inference in COPNER is the most stable, while
the nearest neighbor inference is sensitive to sup-
port set differences leading to large differences in
prediction results.

F Class-specific Word Examples

Table 8 illustrates several CWs selected by COP-
NER, which are usually class names with class-
specific semantics. For the classes with complex
class names, we choose concise words with similar
semantics.

Table 8: Several class-specific words selected by COP-
NER.

Few-NERD OntoNotes
#Class #Class-specific word #Class #Class-specific word

location-bodiesofwater water ORG organization
location-island island NORP country
person-athlete athlete ORDINAL number
person-director director WORK_OF_ART art

organization-show show QUANTITY quantity
organization-company company LAW law

building-airport airport EVENT event
building-hospital hospital CARDINAL cardinal

art-painting painting LOC location
art-film film FAC facility

... ... ... ...

I2B2 MIT-Movie
#Class #Class-specific Word #Class #Class-specific Word

DATE date CHARACTER character
PATIENT patient GENRE genre
DOCTOR doctor TITLE title

MEDICALRECORD record REVIEW review
HOSPITAL hospital RATING rating

IDNUM id YEAR year
FAX ip ACTOR actor

HEALTHPLAN plan DIRECTOR director
ZIP zip SONG song

STATE state RATINGS_AVG score
... ... ... ...

WNUT CoNLL
#Class #Class-specific Word #Class #Class-specific Word

location location ORG organization
group group PER person

corporation company LOC location
person person MISC miscellaneous

creative-work creativity
product product


