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Abstract

Transforming the large amounts of unstructured
text on the Internet into structured event knowl-
edge is a critical, yet unsolved goal of NLP, es-
pecially when addressing document-level text.
Existing methods struggle in Document-level
Event Extraction (DEE) due to its two intrin-
sic challenges: (a) Nested arguments, which
means one argument is the substring of another
one. (b) Multiple events, which indicates we
should identify multiple events and assemble
the arguments for them. In this paper, we pro-
pose a role-interactive multi-event head atten-
tion network (CLIO) to solve these two chal-
lenges jointly. The key idea is to map different
events to multiple subspaces (i.e., multi-event
head). In each event subspace, we draw the se-
mantic representation of each role closer to its
corresponding arguments, then we determine
whether the current event exists. To further
optimize event representation, we propose an
event representation enhancing strategy to regu-
larize pre-trained embedding space to be more
isotropic. Our experiments on two widely used
DEE datasets show that CLIO achieves consis-
tent improvements over previous methods.

1 Introduction

Cognitive scientists believe that humans remem-
ber and understand reality primarily in terms of
events (Shipley and Zacks, 2008). Event studies
are justifiably popular in Natural Language Pro-
cessing (NLP), such as Event Coreference Reso-
lution, Event Causality Identification, and Event
Extraction. Event extraction is the process of ex-
tracting structured event knowledge from unstruc-
tured text and can be divided into sentence-level
and document-level. Sentence-level Event Extrac-
tion has demonstrated promising results in empiri-
cal evaluations. However, in real-world scenarios,
a large number of event elements are expressed
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Figure 1: An illustration of DEE task. Different colored
tabels indicate different event types. DEE needs to
detect multiple event types and extract arguments for
the roles of each event type.

across sentences. Document-level Event Extrac-
tion (DEE) is needed when we want to capture
complete event information for the whole docu-
ment. In contrast to SEE, increased text length
brings more challenges, and DEE has still been
underachieving.

Recently, researchers have shown an increased
interest in DEE. Their works can be roughly di-
vided into classification-based models (Zhang et al.,
2020; Xu et al., 2021; Huang and Jia, 2021; Huang
and Peng, 2021), tagging-based models (Yang et al.,
2018; Du and Cardie, 2020), and generation-based
models (Li et al., 2021; Yang et al., 2021; Du et al.,
2021). The state-of-the-art approach (Liu et al.,
2021) frames DEE as a machine reading compre-
hension task, assisted by two data augmentation
regimes. Although scholars have made such valu-
able attempts in DEE, current methods still struggle
in DEE due to the following crucial challenges:

Nested arguments: In a document, there are
many nested arguments (i.e., one argument is the
substring of another one) that belong to different
roles. Figure 1 gives an example. In the “Trans-
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portation” event, “truck” (plays Origin role) and
“Ryder truck” (plays Vehicle role) are nested event
arguments. According to our statistics, 14.23% and
13.94% of documents in the WikiEvents (Li et al.,
2021) and RAMS (Ebner et al., 2020) datasets
have nested arguments, respectively. Unfortunately,
these nested arguments can’t be entirely identified
by traditional tagging-based methods, which can
not assign multiple labels to a token.

Multiple events: As shown in Figure 1, there
are three kinds of events: “Transportation”, “Ex-
changeBuySell”, and “Meet” in a single document,
and DEE should not only identify all events but
also assign arguments to the corresponding events.
The issue of multiple events is common in DEE
(86.88% of documents in the WikiEvents involve
multiple events). What’s more, the arguments of
these events are uniformly scattered across sen-
tences, making it hard to achieve accurate argu-
ments assembling. Previous works usually adopt
a fixed document representation to detect all event
types. However, different event types have different
roles and arguments, and the emphasis of document
representation should also be different.

For the nested arguments, which usually belong
to different roles, the intuition is that we should
extract arguments for each role independently. As-
suming there are N roles in an event, we can per-
form N independent extractions by tagging argu-
ments under each role. In this way, the argument
substring “truck” of role “Origin” and the argument
“Ryder truck” of role “Vehicle” can be identified at
the same time. To address the challenge of multiple
events, an intuitive way is to independently detect
each event type and assemble arguments for it. For
one event type, argument extraction can be sim-
pler due to the decrease in roles. On the contrary,
using role information specific to this event type
can better detect the current event type. We argue
that these two challenges can be solved jointly by
mapping each event type to a specific subspace.

Analogy to multi-head attention (Vaswani et al.,
2017), we propose a role-interaCtive muLti-event
head attentIon netwOrk (CLIO) for DEE. The most
critical part in CLIO is Role-interactive Multi-event
Head Attention module, which can solve the afore-
mentioned two challenges jointly. First, our atten-
tion module works in a role-centric way. That is
to say, for each role, we extract all of its corre-
sponding arguments independently. In this way, a
token can be assigned multiple role labels, which

can perfectly solve nested arguments problem. Sec-
ond, our attention module assigns each event type a
subspace by mapping it to each event head. In this
way, we can independently detect each event type
and assemble arguments for it, which can address
the challenge of multiple events. In each event
head, we use role information specific to this event
to represent document. Such event-specific docu-
ment representation eases the difficulty of detecting
multiple events from a single document.

In summary, our contributions are as follows:

• We propose a role-interactive multi-event
head attention network to handle the chal-
lenges of nested arguments and multiple
events simultaneously.

• We conduct experiments on two widely used
DEE datasets. Experimental results demon-
strate that CLIO outperforms previous meth-
ods and has significant improvement when
facing the vital challenges of DEE.

2 Methodology

We first describe the task formalization of DEE.
Formally, given an input document comprised of
m words D = {wi}mi=1, pre-defined event types
T = {ti}li=1, and role categorizies R = {ri}ni=1.
The DEE task aims to extract one or more event
records: {event type : t, r1 : [a11, a

2
1, ...], ..., ri :

[a1i , a
2
i , ...]}, where a1i is the first argument of role

ri, and so on.
Figure 2 illustrates the architecture of CLIO,

which consists of three key components: (1) Role-
interactive Multi-event Head Attention, (2) Multi-
ple Events Extraction, and (3) Event Representa-
tion Enhancing. Role-interactive Multi-event Head
Attention module can solve the challenges of nested
arguments and multiple events simultaneously.

2.1 Encoding

First, we construct an extended sequence S =
[CLS]D[SEP]R[SEP] by concatenating the docu-
ment D and role set R. Next, we use BERT (Devlin
et al., 2019) with hidden size d to encode contex-
tual embeddings of each word in the sequence S:

[Hw,Hr] = BERT(S) (1)

After this stage, we can obtain the word representa-
tion of document Hw ∈ Rm×d and role representa-
tion Hr ∈ Rn×d. This stage makes a deep fusion
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Figure 2: The overall architecture of CLIO. Role-interactive Multi-event Head Attention is designed to map each
event type to a specific subspace. In each subspace, we compare the roles and words to measure the degree of
relevance among them. Event Representation Enhancing is used to further optimize event representation. In Multiple
Events Extraction, we perform the two subtasks of DEE.

between the document and roles by multi-head and
multi-layer attention.

Norm-based Significance Score Intuitively, not
every word in document is significant. So we intro-
duce a norm-based significance score to measure
the ability of words to express essential meaning
based on the L2-Norm of word embedding. This
feature of L2-Norm has already been proven by
some promising works (Luhn, 1958; Chen et al.,
2020; Liu et al., 2020).

We use the L2-Norm of word embeddings as the
weight of them:

H′
w = ∥Hw∥2 ⊙ Hw (2)

where H′
w ∈ Rm×d is the weighted word embed-

ding, ⊙ means element-wise multiplication.

2.2 Role-interactive Multi-event Head
Attention

In this step, the goal is to solve the challenges of
nested arguments and multiple events simultane-
ously. We compare the role embeddings and word
embeddings under each event type and select role-
word pairs that have high semantic overlap as argu-
ment extraction results. We first consider a single
event type, then extend it to all event types.

Role-interactive Event Attention
In each event type, we measure the degree of rele-
vance between each role-word pair. We first project
the original d-dimensional features of words and
roles into a smaller dimension d′ through two fully
connected layers:

H̃w = H′
wWw + bw

H̃r = HrWr + br
(3)

where Ww ∈ Rd×d′ , bw ∈ Rd′ ,Wr ∈ Rd×d′ , br ∈
Rd′ are learnable parameters, H̃w ∈ Rm×d′ , H̃r ∈
Rn×d′ .

Then we apply concat attention (Luong et al.,
2015) to measure the degree of relevance between
word representation H̃w and role representation H̃r.
We indicate St(H̃w, H̃r) as the correlation intensity
matrix of role-word pairs under the event type t:

SCOREt(H̃w, H̃r) = tanh([H̃w; H̃r]Wa) · va
St(H̃w, H̃r) = sigmoid(SCOREt(H̃w, H̃r))

(4)

where [H̃w; H̃r] ∈ Rm×n×2d′ , Wa ∈ R2d′×d′ and
va ∈ Rd′ are learnable parameters, SCOREt ∈
Rm×n,St ∈ Rm×n, t ∈ T .
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Figure 3: Event schema mask M. t and r denote event
type and role type, respectively. In each event type, we
mask those roles not in the pre-defined role set.

Multi-event Head Attention
We perform the above role-interactive event at-
tention on all event heads in parallel, which can
extract multiple events simultaneously. Formally,
we stack the role-interactive event attentions un-
der all event types to a multi-event head atten-
tion ST (H̃w, H̃r) ∈ Rl×m×n, where the number
of heads l is the size of event types.

For the DEE dataset, each event type ti has a
pre-defined role set Rti

1. We formalize it as the
event schema mask M (see Figure 3):

Mti,rj =

{
1, role rj in Rti

0, role rj not in Rti

(5)

Through the event schema mask M, we decrease
the number of roles to predict under each event
type, leave each event type a unique role candi-
date set and make a difference among event heads.
The final multi-event correlation intensity matrix
Smulti(H̃w, H̃r) is caculated as:

Smulti(H̃w, H̃r) = ST (H̃w, H̃r)⊙ M (6)

where ST ∈ Rl×m×n,M ∈ Rl×n,Smulti ∈
Rl×m×n.

2.3 Multiple Events Extraction
Event Argument Extraction
The final multi-event correlation intensity matrix
Smulti(H̃w, H̃r) (Eq. 6) contains probabilities for
each role-word pair. We take those role-word pairs
whose probabilities are higher than threshold δEAE
as the argument extraction results under the current
role.

We use cross-entropy between the predictions
and golden labels to optimize our model:

LEAE = CE(Smulti,Ymulti) (7)
1The pre-defined role sets are provided by DEE dataset.

where Ymulti ∈ Rl×m×n is the ground truth label
for the correlation matrix between a document and
roles under the multi-event head.

Event-specific Document Representation
To better detect which event type is contained in the
document, we construct event-specific document
representation for each event head.

Given the role-interactive event attention
SCOREt(H̃w, H̃r) (Eq. 4) under event type t, we
first normalize SCOREt with respect to role, re-
ferred to as A. We obtain word representation H′′

w

specific to event type t by using A to weighted sum
the roles H̃r. Through the mean pooling operation
we obtain document representation HD specific to
event type t:

A = softmaxr(SCOREt(H̃w, H̃r)⊙ Mt,:)

H′′
w = AH̃r

HD =
1

m

wm∑
w=w1

H′′
w

(8)

where SCOREt ∈ Rm×n, Mt,: ∈ Rn, A ∈ Rm×n,∑
Ai,: = 1, H′′

w ∈ Rm×d′ , HD ∈ Rd′ .

Event Type Detection
We detect each event type based on the correspond-
ing event-specific document representation. Con-
cretely, we perform binary classification on HD for
event type t to get the probability Pt:

Pt = softmax(HDWe) (9)

where We ∈ Rd′×2 is learnable parameters, Pt ∈
R2.

Then we expand Pt to the prediction of multiple
events Pevent ∈ Rl×2, which can identify multiple
events simultaneously. We apply cross-entropy loss
to update the model paremeters:

LED = CE(Pevent,Yevent) (10)

where Yevent ∈ Rl×2 is the ground truth label for
the event type.

2.4 Event Representation Enhancing
We find the language modeling of the above stages
produces anisotropic word embeddings. So we
apply intra-event contrastive learning to enhance
event representation by regularizing pre-trained em-
bedding space to be more isotropic. In DEE, we
need to pull each role closer to its arguments (pos-
itives) while pushing each role away from other
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words (negatives). Given a role, there are multiple
arguments, i.e., there is more than one positive.

We apply an approach, proposed by (Hoffmann
et al., 2022) based on InfoNCE, to include multiple
positives. More specifically, for a role hr ∈ H̃r,
words that are the arguments of role r form the set
of positives P , and words that are not the arguments
of role r form the set of negatives N , P∪N = H̃w.
To measure the similarity between a pair of features,
we use the cosine similarity:

sim(x, y) =
x⊤y

∥x∥ · ∥y∥
(11)

The training objective becomes:

LCL = −log

∑
p∈P

exp( sim(hr,p)
τ )∑

p∈P
exp( sim(hr,p)

τ ) +
∑

n∈N
exp( sim(hr,n)

τ )

(12)
where hr ∈ Rd′ is the embedding of role r, p ∈ Rd′

is the argument embedding, and n ∈ Rd′ is the
word embedding of the input document other than
arguments , τ is a temperature hyperparameter.

2.5 Joint Learning

The overall loss function is divided into three parts:
an event argument extraction loss LEAE, an event
type detection loss LED, and a contrastive loss LCL.
We let these three objectives learn jointly at the
same speed and update model parameters together.
We have the following training loss:

L = λ1LEAE + λ2LED + λ3LCL (13)

and λ1, λ2 are the weight dynamically adjusted
with the training steps, where λ1 = 1

LEAE
, λ2 =

1
LED

2, λ3 is hyperparameter.

3 Experiments

We evaluate our model’s performance on the two
commonly used DEE benchmarks and compare to
prior work. Then we conduct an ablation study on
how modules of our CLIO affect its performance on
DEE task. We also conduct case study to analyze
qualitatively the advantages and disadvantages of
our model.

2λ1 and λ2 only take the value of LEAE and LED, which
contain no gradient information.

3.1 Experimental Setup

Datasets. We conduct our experiments on
two widely used document-level event extrac-
tion datasets: RAMS (Ebner et al., 2020) and
WikiEvents (Li et al., 2021). RAMS provides 9,124
annotated examples from news based on 139 event
types and 65 roles. WikiEvents provides 246 an-
notated documents from news based on 50 event
types and 59 roles. According to our statistics,
13.94% of documents in the RAMS have nested ar-
guments. 14.23% and 86.99% of documents in the
WikiEvents involve nested arguments and multiple
events, respectively.

Evaluation Metrics. Our results are reported as
Precision (P), Recall (R) and F-measure (F-1) score.
Our argument extraction results are based on the
Exact Match criterion: the predicted argument span
should match exactly the gold one. As an event
type often includes multiple roles, we use micro-
averaged role-level scores as the final DEE metric.

Baselines. For strictly consistent comparison, we
involve the following strong baselines:

• BERT-CRF (Loshchilov and Hutter, 2018),
which combines BERT with Condition Ran-
dom Field (Lafferty et al., 2001), is the most
popular method in tagging-based event extrac-
tion.

• SpanSel (Ebner et al., 2020), which is based
on span ranking, enumerates each possible
span in a document to identify the most likely
event arguments.

• Head-Expand (Zhang et al., 2020), which
achieves state-of-the-art performance on the
RAMS. It first identifies the head of an argu-
ment and then expands its region.

• BART-Gen (Li et al., 2021), which bases
on the unfilled template and a given context,
frames the implicit EAE as conditional gener-
ation.

• DocMRC (Liu et al., 2021), which frames
DEE as Machine Reading Comprehension
task, assisted by two data augmentation
regimes.

Experimental Settings. We adopt pretrained
BERT (Devlin et al., 2019) (bert-base-cased for
English dataset), which has 12 hidden layers, each
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Methods RAMS WikiEvents

ED-F1 EAE-P EAE-R EAE-F1 ED-F1 EAE-P EAE-R EAE-F1

BERT-CRF (Loshchilov and Hutter, 2018)† - 36.7 41.1 38.8 - 54.4 23.8 33.1
SpanSel (Ebner et al., 2020)† - 38.0 38.4 38.2 - 56.2 26.2 35.7
Head-Expand (Zhang et al., 2020)† - - - 40.1 - 55.4 25.4 34.8
BART-Gen (Li et al., 2021)† - 20.7 30.3 24.6 - 14.2 7.8 10.1
DocMRC (Liu et al., 2021) - 41.2 45.2 43.1 - 58.5 30.5 40.1

CLIO 44.5 47.6 45.5 46.5 52.4 48.7 29.5 36.8
w/o LCL 43.4 46.9 44.5 45.7 52.5 51.8 25.6 34.3
w/o norm 43.3 47.1 45.3 46.2 50 50.2 24.0 32.5

Table 1: The ED (Event Type Detection) and EAE (Event Argument Extraction) results of all models on the RAMS
and WikiEvents datasets. Results marked † are from (Liu et al., 2021). DocMRC uses the expanded training data, 5
times and 30 times larger than RAMS and WikiEvents, to train its model. w/o LCL and w/o norm denote we remove
contrastive loss and norm-based significance weight respectively.

layer has 768 hidden units, and 12 attention heads.
During training, we adopt mini-batch mechanism
to train our model with batch size of 16, and the
maximum training epoch is set to 100. We regu-
larize our network using dropout, the dropout ratio
of linear is 0.3. The initial learning rate is 2e-5 for
BERT parameters and 2e-3 for other parameters.
We trained all models with the AdamW optimizer
(Loshchilov and Hutter, 2018). The warming up
proportion for learning rate is 10%. Besides, the
threshold δEAE for RAMS and WikiEvents is 0.6
and 0.65, respectively. We set temperature hyper-
parameter τ as 0.07. The weight of contrastive
loss for RAMS and WikiEvents is 0.5 and 0.05,
respectively.

In addition, the implementation of baselines does
not consider gold event types. The experiments on
RAMS consider event trigger information. We ap-
ply dot attention to measure the degree of relevance
between role and trigger, and then we use the prob-
ability as the weight of role embedding.

3.2 Main Results

Table 1 presents our main results. Since the base-
lines do not have the capability for event type de-
tection, the value of ED-F1 is replaced by ‘-’. We
think event type detection is an integral part of
DEE, while previous methods did not consider
it. From Table 1, we can see that CLIO has the
capability for event type detection. Our model
surpasses all previous methods with 46.5 EAE-F1
score on the RAMS benchmark. Compared with
the DocMRC, which uses 5 times more training
data, our approach on the RAMS benchmark can
bring substantial improvements in EAE, 3.4 F1
points. In the WikiEvents benchmark, our CLIO

RAMS WikiEvents

Subset-N Subset-O Subset-N Subset-O

DocMRC 40.6 43.4 39.9 41.3
CLIO 47.1↑6.5 44.0↑0.6 46.2↑6.3 32.6

Table 2: Overall EAE-F1 with nested argument han-
dling. Subset-N is a nested subset, while Subset-O is a
non-nested subset.

shows 3.0% drop in EAE-F1 scores compared to
DocMRC. The reason is that DocMRC applies data
augmentation, which expands training data to 30
times larger than WikiEvents. So it shows great
advantages on small-scale dataset WikiEvents (ex-
panding the original 246 documents to 7,491). Our
CLIO reaches competitive results using only 1/30
data compared with DocMRC. Compared with the
SpanSel, our approach on the WikiEvents bench-
mark can bring 1.1 points of improvement in EAE-
F1.

CLIO can extract nested arguments accu-
rately. We conduct additional experiments to eval-
uate the capability of CLIO to extract nested argu-
ments. The idea is to split the test data into two
portions: documents with and without nested ar-
guments (Subset-N and Subset-O). Table 2 shows
the results. On the Subset-N, CLIO significantly
outperforms DocMRC by 6.5 F1 and 6.3 F1 on
the RAMS and WikiEvents, respectively. We con-
clude that CLIO achieves superior performance in
both datasets largely because it solves the nested
argument issue.

CLIO can handle complex multi-event scenar-
ios. Figure 4 presents the additional experiment
results. From (a), we can observe that as the num-
ber of event types increases, the performance of
CLIO increases instead of decreases while the per-
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contrastive learning). (b). Word embeddings trained by
CLIO.

formance of DocMRC decreases, which indicates
CLIO can handle complex multi-event scenarios.
In (b), we randomly choose a document from the
test set of WikiEvents and calculate the EAE-F1
under each event type. We find the EAE-F1 values
evenly distributed on all event types, which indi-
cates CLIO has the capability to handle multiple
events.

3.3 Ablation Study
We perform an ablation study to test how useful
our event representation enhancing and norm-based
significance weight. The results are shown in Ta-
ble 1. Specifically, “w/o LCL” denotes contrastive
loss is not considered in the joint learning, “w/o
norm” means word embeddings are not weighted
with norm significance score. In Figure 5, we com-
pare the 2D visualization of word embeddings with
or without contrastive learning. We can see that the
event representation enhancing strategy can alle-
viate the representation degeneration problem and
improve the isotropic properties of these represen-

3Note that we project the original word embeddings to a 2-
dimensional vector space using principal component analysis
(PCA) for the purpose of visualization.

tations.

3.4 Case Study
We present two examples from both datasets to
illustrate the capability of CLIO. The examples are
presented in Table 3, including input document and
event extraction results. From Table 3, we find that
CLIO can help DEE in two ways:

Handling nested arguments accurately In the
first example, “U.S.” and “U.S. officials” are nested
arguments, belonging to the role “place” and the
role “communicator” respectively. CLIO works in
a role-centric way, which can extract both of them
together and assign them to corresponding roles.
This case demonstrates how role-interactive event
attention can assign multiple role labels to each
token and solve the challenges of nested arguments.

Handling complex multi-event scenarios In
the second example, “E1”, “E2”, and “E3” indicate
three different event types. In multi-event scenario,
CLIO can not only identify all events but also as-
sign arguments to the corresponding events. CLIO
assigns each event type a subspace by mapping it to
each event head, where the event-specific document
representation eases the difficulty of detecting mul-
tiple events. This implies that CLIO is particularly
helpful for the extraction of multi-event scenarios.

4 Related Work

Sentence-level Event Extraction SEE extracts
the event trigger and its arguments from a single
sentence. Researchers have made a lot of progress
in this field. Li et al. (2013, 2015) employ various
hand-designed features to extract event; (Nguyen
and Grishman, 2015; Nguyen et al., 2016; Chen
et al., 2015; Liu et al., 2017, 2018) use neural based
models such as recurrent neural networks (Zaremba
et al., 2014) and convolutional neural network (Le-
Cun et al., 1998) to extract event. With the recent
success of BERT (Devlin et al., 2019), pretrained
language models have also been used for SEE
(Wang et al., 2019b,c; Yang et al., 2019; Wadden
et al., 2019; Tong et al., 2020; Wang et al., 2021;
Lu et al., 2021; Liu et al., 2022). These approaches
achieve remarkable performance in benchmarks
such as ACE 2005 (Walker et al., 2005) and similar
datasets (Ellis et al., 2015; Ji et al., 2016; Getman
et al., 2017).

Document-level Event Extraction Different
from SEE, DEE does not need to explicitly recog-
nize event triggers. The goal of DEE is to iden-
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Category Example

Nested arguments Ex1. From the media we discovered that some local authorities we approached
coordinated their negative decision with the federal government...Reporters at the State
Department ’s daily press briefing on Friday asked if [[U.S.]placeofficials]communicator
had advised [individual states]recipient not to allow in Russian observers. (Event type:
contact.requestadvise.correspondence)

Multiple events Ex2. Japanese [police]E1-Jailer have arrested a [man]E1-Detainee who admitted to
landing a drone with low-level radioactive sand on the roof of the prime min-
ister’s office...Tokyo metropolitan police said [Yasuo Yamamoto]E1-Detainee, 40,
turned himself in to authorities late Friday in Fukui in western Japan...The small
[drone]E2-IdentifiedObject found Wednesday had traces of radiation and triggered fears
of potential terrorist attacks using [unmanned aerial devices]E3-Instrument...

Table 3: Case study on the RAMS (Ex1) and WikiEvents (Ex2) test sets. The bold text indicates the argument word.
Predicted arguments are marked with [square brackets] span indicator. Ex2 includes multiple events, where E1:
Justice.ArrestJailDetain, E2: Cognitive.IdentifyCategorize, E3: Conflict.Attack.

tify event types and extract arguments of roles
from the whole document. On the task level,
most of these works fall into three categories: (1)
classification-based models (2) tagging-based mod-
els (3) generation-based models. Zhang et al.
(2020); Xu et al. (2021); Huang and Jia (2021);
Huang and Peng (2021) employ traditional clas-
sification paradigm to determine the event type,
then they identify the arguments and classify the
roles they play in an event; Yang et al. (2018);
Du and Cardie (2020) use the sequence labeling
model BiLSTM (Zhang et al., 2015) -CRF (Laf-
ferty et al., 2001) to automatically extract events;
Li et al. (2021) frame the problem as conditional
generation. Yang et al. (2021) apply cross attention
mechanism to extract structured events in a paral-
lel manner. Above methods conduct experiments
on MUC-4 (McLean, 1992), WikiEvents (Li et al.,
2021), RAMS (Ebner et al., 2020), and Chinese
financial dataset (Zheng et al., 2019).

Contrastive Learning In NLP, contrastive self-
supervised learning has been widely used for learn-
ing better representations by contrasting positive
pairs and negative pairs. The core idea is to con-
centrate positive samples while pushing apart neg-
ative samples. InfoNCE (Oord et al., 2018) is a
frequently used objective function in contrastive
learning. It maximizes the similarity of positive
pairs and minimizes the similarity of negative pairs.
More specifically, for a query q, a single positive
p and a set of negatives N = {n1, ..., nk} is given.
To measure the similarity between a pair of fea-
tures, it uses the cosine similarity as the training

objective:

LInfoNCE = −log
exp( sim(q,p)

τ )

exp( sim(q,p)
τ ) +

∑
n∈N

exp( sim(q,n)
τ )

(14)

Anisotropy Gao et al. (2019); Wang et al.
(2019a) have pointed out that language modeling
usually produces an anisotropic word embedding
space. This phenomenon is also observed in the
pretrained Transformers like BERT, GPT-2, etc
(Ethayarajh, 2019). Li et al. (2020) thinks that
“anisotropic” means word embeddings occupy anar-
row cone in the vector space. Through empirical
analysis, we find that the word representations in
documents have high cosine similarity between
each other, which is known as anisotropic word
embeddings. In a document, some words are event
arguments while others are event-irrelevant, which
means they should not learn similar word represen-
tations.

5 Conclusion

In this paper, we propose a role-interactive multi-
event head attention network (CLIO) for DEE. By
mapping different events to multiple subspaces, we
decomposed DEE into multiple substeps to handle
nested arguments and multiple events. To further
optimize event representation, we apply an event
representation enhancing strategy to regularize pre-
trained embedding space to be more isotropic. Ex-
perimental results show that CLIO can significantly
outperform previous methods, especially when fac-
ing the specific challenges of DEE. In future work,
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we would like to explore superior word representa-
tion specific to events.
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