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Abstract

Entity linking, which aims at aligning ambigu-
ous entity mentions to their referent entities in
a knowledge base, plays a key role in multiple
natural language processing tasks. Recently,
zero-shot entity linking task has become a re-
search hotspot, which links mentions to unseen
entities to challenge the generalization ability.
For this task, the training set and test set are
from different domains, and thus entity linking
models tend to be overfitting due to the ten-
dency of memorizing the properties of entities
that appear frequently in the training set. We
argue that general ultra-fine-grained type infor-
mation can help the linking models to learn
contextual commonality and improve their gen-
eralization ability to tackle the overfitting prob-
lem. However, in the zero-shot entity linking
setting, any type information is not available
and entities are only identified by textual de-
scriptions. Thus, we first extract the ultra-fine
type information from the entity textual descrip-
tions. Then, we propose a hierarchical multi-
task model to improve the high-level zero-shot
entity linking candidate generation task by uti-
lizing the entity typing task as an auxiliary low-
level task, which introduces extracted ultra-fine
type information into the candidate generation
task. Experimental results demonstrate the ef-
fectiveness of utilizing the ultra-fine entity type
information and our proposed method achieves
state-of-the-art performance.

1 Introduction

Entity linking (EL) is the task of assigning entity
mentions in a text to corresponding entity records
in a reference knowledge base. EL plays a key role
in the language understanding pipeline, underlying
a variety of downstream applications, such as in-
formation extraction (Hoffmann et al., 2011; Ji and
Nothman, 2016), semantic search (Blanco et al.,
2015) and question answering (Berant et al., 2013;
Yih et al., 2015; Welbl et al., 2018). In general, EL
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Figure 1: Examples of entity linking with general ultra-
fine-grained entity type information. Different ultra-
fine-grained types of the two entities are denoted in red.

consists of two phases: candidate generation which
generates a set of candidates for each mention from
millions of entities, and candidate ranking which
retrieves the matched entity for each mention from
the set of candidates. As the final results in EL are
only generated from candidta sets, the accuracy of
the whole EL task is limited by the candidate gen-
eration phase. Therefore, in this paper, we focus
on the candidate generation phase to set a higher
upper bound on EL accuracy.

Traditional EL approaches usually train models
under the setting that linked entities in the test set
are available in the training set. However, in many
real-world scenarios, labeled data are not easily
obtained in multiple domains. Thus, there is a need
for EL models to have the capability of generaliz-
ing to new domains and new entities. To challenge
the generalization ability, a zero-shot entity linking
task (Logeswaran et al., 2019) has been proposed,
where mentions need to be linked to unseen enti-
ties and only the textual information is available.
For this task, the training and test sets share differ-
ent distributions of entities, and thus entity linking
models tend to be overfitting due to the tendency
of memorizing the properties of entities that appear
frequently in the training set.
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We argue that general ultra-fine-grained type in-
formation can help the linking models learn contex-
tual commonality and improve their generalization
ability to tackle the overfitting problem. If a linking
model learns the contextual commonality of athlete
related entities, it can use similar contextual infor-
mation to correctly select entities of the same type.
Examples of entity linking with general ultra-fine-
grained entity type information are shown in Figure
1. A key observation is that the given ultra-fine en-
tity types could have positive effect on the entity
linking task. In this example, the type information
can help the linking model link the Michael in the
text to Michael Jordan [actor, athlete, player, bas-
ketball player] instead of Michael Jackson [artist,
musician, professional, singer].

Therefore, in this paper, we try to introduce ultra-
fine entity type information into the zero-shot entity
linking candidate generation. However, in the zero-
shot entity linking setting, any type information is
not available and entities are only identified by tex-
tual descriptions. Thus, we first extract ultra-fine
types from textual descriptions of each entity. In
general, more fine-grained entity type information
can better help the linking models learn contex-
tual commonality and improve their generalization
ability. Thus, we train an entity typing model by
utilizing the Ultra-fine Entity Typing dataset (Choi
et al., 2018) whose types are more fine-grained
rather than other fine-grained entity typing datasets
(e.g. FIGER (Ling and Weld, 2012) and OntoNotes
(Gillick et al., 2014)), and use the model to extract
ultra-fine types from each entity textual descrip-
tion. Then, we propose a hierarchical multi-task
model, which jointly models the candidate genera-
tion task and ultra-fine entity typing task to intro-
duce the type information extracted by the trained
typing model into the candidate generation phase.
The ultra-fine entity typing task is utilized as an
auxiliary low-level task, providing corresponding
type features for the high-level candidate genera-
tion task. Our primary motivation is to discover
helpful training signals from ultra-fine-grained type
information to ensure a more robust zero-shot en-
tity linking candidate generation model.

To summarize, our major contributions are
shown as follows:

• To the best of our knowledge, this work is the
first to introduce fine-grained type informa-
tion into zero-shot entity linking task. The
fine-grained type information can help the

linking models learn contextual commonal-
ity and improve their ability to generalize to
new domains and unseen entities.

• We first extract ultra-fine entity types for each
entity, without depending on additional manu-
ally annotated data. Then to take full advan-
tage of extracted type information, we present
a hierarchical multi-task model to improve the
high-level zero-shot entity linking candidate
generation task by utilizing the entity typing
task as an auxiliary low-level task.

• Experimental results demonstrate the effec-
tiveness of utilizing the ultra-fine entity
type information and our proposed method
achieves state-of-the-art performance.

2 Related Work

2.1 Zero-shot Entity Linking
Zero-shot entity linking (Logeswaran et al., 2019)
has attracted significant interest from researchers in
recent years. In this task, no mentions or entities in
the test set have been observed during training and
only descriptions of each entity are provided. It
consists of two phases: candidate generation (Wu
et al., 2020; Ristoski et al., 2021) and candidate
ranking (Yao et al., 2020; Tang et al., 2021). In
this paper, we focus on the candidate generation
phase. (Logeswaran et al., 2019) is the first to
formally propose the zero-shot entity linking task
and use a traditional IR approach BM25 to gen-
erate candidates. BLINK (Wu et al., 2020) uses
a bi-encoder architecture to encode mentions and
descriptions of entities into dense space to gener-
ate candidates, which achieves state-of-the-art re-
sults. KG-ZESHEL (Ristoski et al., 2021) utilizes a
knowledge graph to extend BLINK. Our work also
extends BLINK by introducing auxiliary ultra-fine
type information without depending on additional
manually annotated data to improve the candidate
generation task in zero-shot entity linking.

2.2 Entity Linking with Type Information
Entity typing refers to the act of assigning seman-
tic types to mentions in the text. Fine-grained en-
tity type information has been proven effective in
the entity linking process. (Gupta et al., 2017) ex-
plores fine-grained entity typing for cross-domain
entity linking. (Raiman and Raiman, 2018) pro-
poses a type system to constrain the space in which
mentions can be linked. (Onoe and Durrett, 2020)



2431

[CLS] mention [SEP] context [SEP]
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Figure 2: The overall architecture of our proposed model. It consists of two parts: an entity typing model to extract
ultra-fine entity types for each entity and a hierarchical multi-task candidate generation model to generate candidate
entities with the extracted type information.

converts the cross-domain entity linking task to
a very fine-grained entity typing task to general-
ize across domains effectively. (Hou et al., 2020;
Chen et al., 2020) create the semantic embedding
for each entity by aggregating entity type embed-
dings. Inspired by these previous works, to the best
of our knowledge, our work is the first to intro-
duce fine-grained type information into zero-shot
entity linking task. Also, considering the gener-
alization ability challenge of the zero-shot entity
linking task, inspired by (Sanh et al., 2019; Wiatrak
and Iso-Sipilä, 2020), our proposed method intro-
duces fine-grained type information in a hierarchi-
cal multi-task way to learn contextual commonality
and improve the generalization ability.

3 Model

Figure 2 shows our proposed two-stage model,
which consists of two parts: the entity typing model
and the candidate generation model. In this section,
we describe these two models in detail.

3.1 Entity Typing Model

The Entity Typing Model in Figure 2 presents the
first part of our proposed model. The goal of this
model is to extract ultra-fine entity types from tex-
tual description for each entity. Considering off-
the-shelf entity typing models (e.g. (Onoe and
Durrett, 2019; Onoe et al., 2021)) do not signifi-
cantly outperform the BERT-based model (Onoe
and Durrett, 2019), we simply modify the BERT-
based model as our entity typing model.1 In gen-

1We leave the construction of a more effective entity typing
model to future work.

eral, more fine-grained entity type information can
better help the linking models learn contextual com-
monality and improve their generalization ability.
Thus, we train the model by utilizing the Ultra-fine
Entity Typing dataset (Choi et al., 2018). Then we
use the model to extract ultra-fine type information
for zero-shot entity linking dataset (Logeswaran
et al., 2019). This process does not require any
additional manually annotated data.

3.1.1 Label-wise Feature Extraction
Given a mention and its context, we input them
to BERT (Devlin et al., 2019) as a sequence pair
together with special start and separator tokens
([CLS] mention [SEP] context [SEP]) to extract
features. It produces a matrix representation X =
[x1, x2, ..., xn] to represent the mention-context
pair, where xi ∈ Rd is the word embedding vector
for the i-th word, n is the length of the input pair
and d is the dimension of hidden states of BERT.

Each entity type has a textual description. Con-
sidering that the model training and inference pro-
cess are on different datasets, we make full use
of the type descriptions to improve the general-
ization ability of the model. To utilize the type
description, we input the type and its description
to BERT in the form of [CLS] type [SEP] de-
scription [SEP]. The embeddings of all the pos-
sible labels C = {c1, c2, ..., cL} are represented
to V = [v1, v2, ..., vL], where vi ∈ Rd is the last
hidden layer corresponding to the position of the
[CLS] token for the i-th type. Note that the weights
of the label embeddings V are fixed after being
extracted.

A label-wise attention is utilized to learn individ-
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ual representation for each label. The compatibility
of label-word pairs is measured as follows:

G = V XT

where G ∈ RL×n. The attention scores for all the
words of mention-context pair with regard to the
l-th label are computed via the SoftMax function:

al = SoftMax(Gl)

where Gl ∈ Rn is the compatibility vector of each
word and the l-th label. Intuitively, al extracts the
most relevant information in X about the label l by
using attention. Eventually, the label-wise repre-
sentation is obtained by the weighted aggregation
with the attention scores:

zl =

n∑
i=1

alixi

3.1.2 Multi-label Classification

For the l-th type, the binary prediction ŷl is com-
puted by: ŷl = FFNN(zl; θF1). Each mention is
usually associated with a set of types, and a multi-
label training objective is required. Thus, the loss
is a sum of binary cross-entropy losses over all
types over all examples. Finally, we optimize a
multi-label binary cross entropy objective:

Ltype = −
L∑
l=1

yllogŷl + (1− yl)log(1− ŷl)

where yl takes the value 1 if the l-th type applies to
the current mention.

3.2 Candidate Generation Model

After training the Entity Typing Model, we use
the model to extract ultra-fine entity types for each
entity in the zero-shot entity linking dataset. Our
candidate generation model extends BLINK (Wu
et al., 2020) bi-encoder by introducing the ultra-
fine type information and is shown in Figure 2
Candidate Generation Model, which utilizes a hier-
archical multi-task way to jointly learn candidate
generation task and ultra-fine entity typing task.
The ultra-fine entity typing task is utilized as an
auxiliary low-level task at the bottom layer, provid-
ing corresponding type features for the high-level
candidate generation task at the top layer.

3.2.1 Feature Extraction
Followed (Wu et al., 2020), we use BERT (Devlin
et al., 2019) to encode textual input of mentions
and entities. The input of each mention Tm is con-
structed as follows:

[CLS] ctxtl [Ms] mention [Me] ctxtr [SEP]

where mention, ctxtl, ctxtr are the word-pieces to-
kens of the mention, context before and after the
mention respectively, and [Ms], [Me] are special
tokens to tag the mention. The input of each entity
Te is construct as follows:

[CLS] title [ENT] description [SEP]

where title, description are word-pieces tokens of
entity title and description, and [ENT] is a special
token to separate the entity title and its description.

Both the context and candidate entity are input
to two independent BERT models and are encoded
into vectors:

um = BERT(Tm; θBERT1), ue = BERT(Te; θBERT2)

3.2.2 Low-level Entity Typing
The low-level task in our candidate generation
model is the ultra-fine entity typing task. We follow
(Zhu et al., 2020) to use a binary pairwise relation
constraint between mention and each candidate
entity. Briefly, a mention and its corresponding en-
tity should share the same type distribution. Thus,
the corresponding entity’s ground truth types can
also be the ground truth types of the mention. We
utilize the extracted ultra-fine types from entity de-
scriptions as the target labels of both mention type
prediction and entity type prediction tasks. We use
two independent transformer layers T as task spe-
cific encoders, which takes the extracted features
um and ue as input and outputs representations
denoted as tm and te:

tm = T (um; θT1), te = T (ue; θT2)

Our mention and entity type prediction are sim-
ilar to the Multi-label Classification in section
3.1.2. For each training pair (mi, ei), to predict
the l-th type, the binary prediction ŷlmi

of the
mention and ŷlei of the entity are computed re-
spectively by: ŷlmi

= FFNN(tm_clsi ; θF2), ŷ
l
ei =

FFNN(te_clsi ; θF3), where tm_clsi and te_clsi are
the representations corresponding to the position
of the [CLS] token of tmi and tei respectively. The
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losses of mention type prediction and entity type
prediction are calculated as follows:

Ltype_m = −
L∑
l=1

yllogŷlmi
+ (1− yl)log(1− ŷlmi

)

Ltype_e = −
L∑
l=1

yllogŷlei + (1− yl)log(1− ŷlei)

where yl takes the value 1 if the l-th type is ex-
tracted from the description of the entity ei, and ei
is the corresponding entity of the mention mi.

3.2.3 High-level Candidate Generation
The high-level task in our candidate generation
model is the zero-shot entity linking candidate gen-
eration task. It takes the average of the extracted
features by BERT um, ue and the low-level task
encoder specific output tm, te as the input. We uti-
lizes another two independent transformer layers
T as the task-specific encoders:

fm = T (
1

2
(um+tm); θT3), fe = T (

1

2
(ue+te); θT4)

Finally, the score for a given mention mi and a
candidate entity ei is calculated as the dot product
of the corresponding vectors:

s(mi, ei) = fm_clsi · fe_clsi + um_clsi · ue_clsi

where fm_clsi , fe_clsi , um_clsi and ue_clsi are the
representations corresponding to the position of the
[CLS] token of fmi , fei , umi and uei respectively.

Following (Wu et al., 2020), our model is trained
on in-batch negatives. Within a batch, the corre-
sponding entity of the mention is the positive sam-
ple while other entities in the batch are all negative
samples of the mention. Thus, for the candidate
scoring, the loss needs to maximize the score of the
corresponding entity of the mention in the batch
with respect to the other entities of the same batch.
To achieve this, for each training pair (mi, ei) in a
batch of B pairs, the loss is computed as:

L(mi,ei) = −s(mi, ei) + log
B∑
j=1

exp(s(mi, ej))

where ei is the gold entity of the mention mi.

3.2.4 Hierarchical Multi-task Training
Our model incorporates three objectives, one for
candidate scoring and the others for the mention

Set World Entities Mentions

Training American Football 31929 3898
Doctor Who 40281 8334
Fallout 16992 3286
Final Fantasy 14044 6041
Military 104520 13063
Pro Wrestling 10133 1392
StarWars 87056 11824
World of Warcraft 27677 1437

Validation Coronation Street 17809 1464
Muppets 21344 2028
Ice Hockey 28684 2233
Elder Scrolls 21712 4275

Test Forgotten Realms 15603 1200
Lego 10076 1199
Star Trek 34430 4227
YuGiOh 10031 3374

Table 1: Overall statistics of the zero-shot entity linking
dataset.

type prediction and the candidate entity type pre-
diction. We jointly optimize these three objectives
during our training process. The final loss of the
candidate generation model is calculated as follows:

L = L(mi,ei) + Ltype_m + Ltype_e

4 Experiments

In this section, we compare our proposed method
to other state-of-the-art methods to demonstrate the
effectiveness of our model. We first introduce the
datasets we used and the implementation details of
our model. Then we briefly introduce the baselines
and present the overall performance of our model
in comparison with others.

4.1 Datasets

We train the entity typing model on the Ultra-Fine
Entity Typing dataset (Choi et al., 2018), which
has 10331 labels and most of them are defined as
free-form text phrases. Each type is marked as
one of the three classes: coarse, fine, and ultra-
fine. Note that this classification does not provide
explicit hierarchies in the types, and all classes are
treated equally during training.

We conduct our experiments mainly on the zero-
shot entity linking dataset 2, which is proposed
by (Logeswaran et al., 2019) and built using the
documents on Wikia 3. Table 1 shows the overall
statistics of the dataset. In this dataset, the entities
in the validation and test sets are from different

2https://github.com/lajanugen/zeshel
3https://www.wikia.com

https://github.com/lajanugen/zeshel
https://www.wikia.com
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Model Forgotten Realms Lego Star Trek YuGiOh Macro Recall@64 Micro Recall@64

BM25 83.33 81.23 65.89 60.85 72.83 69.13
BLINK (base)∗ 90.67 89.99 82.45 71.40 83.63 80.61
BLINK (large) – – – – – 82.06
BLINK (large)∗ 90.92 90.58 84.03 73.30 84.71 82.02
KG-ZESHEL – – – – – 82.44
KG-ZESHEL∗ 91.25 90.40 84.43 73.77 84.96 82.35

Ours (base) 92.08 90.74 83.94 72.00 84.69 81.90
Ours (large) 92.83 91.66 85.38 74.78 86.16 83.45

Table 2: Recall@64 results on the test domains of the zero-shot entity linking dataset. Macro Recall@64 represents
the average Recall@64 score of these four test domains. Micro Recall@64 represents the weighted average
Recall@64 score of these four domains. * indicates the models are reproduced according to the implementation
details in their papers and released codes for a more detailed analysis. We use (base) and (large) to indicate the
version of the underlying pre-trained BERT model is BERT-base and BERT-large, respectively. All scores are
averaged 5 runs using different random seeds, and our results over all baselines are statistically significant with
p < 0.05 with the t-test. In the results, the highest values are in bold and the underlined ones are the second highest.

domains compared to the training set, allowing the
performance evaluation on entire unseen entities.
It uses 8 domains for training, 4 for validation,
and 4 for test. The training set has 49,275 labeled
mentions while the validation and test sets both
have 10,000 unseen mentions.

The samples of this dataset are categorized into
4 categories by (Logeswaran et al., 2019), which
are High Overlap (HO) whose mention string is
identical to its gold entity title, Multiple Categories
(MC) whose gold entity title is followed by a disam-
biguation phrase, Ambiguous substring (AS) whose
mention string is a substring of its gold entity title,
and Low Overlap (LO) are other mentions. Accord-
ing to the statistics of (Logeswaran et al., 2019),
5% of mentions are categorized as HO, 28% of
mentions are MC, 8% of mentions belong to AS,
and 59% of mentions are categorized as LO.

4.2 Implementation Details

In our experiments, we use BERT (Devlin et al.,
2019) as our base model. The evaluation metric
is the recall. We perform our experiments with 5
random seeds and report the average results. And
we perform the t-test to demonstrate the statistical
significance of our results.

For the entity typing model, the BERT we used
to extract mention-context and type description is
both the bert-base-uncased (Devlin et al., 2019).
We set the maximum sequence length of the input
text of mention-context and type description to be
128 and 80, respectively. In this setting, all tokens
are covered. The batch size is 32, and the learn-
ing rate is 2e-5 with a linear learning rate decay
schedule. We use ADAM (Kingma and Ba, 2015)

optimization algorithm to optimize our model.
For the candidate generation model, followed

(Wu et al., 2020), we use the bert-base-uncased and
the bert-large-uncased (Devlin et al., 2019) models
respectively. The maximum sequence length of the
mention and entity is set to 128. The learning rate
is 1e-5 and the batch size is 128. We also train the
model by utilizing the ADAM. Our experimental
code is available here 4.

4.3 Baselines

For the quantitative evaluation of our proposed
model, we use the following state-of-the-art base-
line methods for comparison. The first method is
BM25 (Robertson and Zaragoza, 2009), which is a
traditional IR approach and used by (Logeswaran
et al., 2019). The second method is BLINK (Wu
et al., 2020), which uses a bi-encoder architecture
to encode mentions and entity descriptions into
dense space to generate candidates. Our proposed
model extends BLINK bi-encoder by introducing
ultra-fine entity typing. Comparison results to
BLINK could also be regarded as the ablation study
to justify the advantage of our proposed model. The
last method is KG-ZESHEL (Ristoski et al., 2021),
which extends BLINK bi-encoder by utilizing a
knowledge graph. Note that we reproduced the
BLINK model and the KG-ZESHEL model for a
more detailed analysis according to the implemen-
tation details in their papers and released codes.

4.4 Overall Performance

The recall@64 results for the candidate generation
on the test domains of the zero-shot entity link-

4https://github.com/suixuhui/ETZEL

https://github.com/suixuhui/ETZEL
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ing dataset are shown in Table 2. We can observe
that our proposed model outperforms all baseline
models in all test domains and on average. This is
consistent with our main claim that our model can
improve the performance of the zero-shot entity
linking candidate generation task by utilizing the
extracted ultra-fine entity type information. Our
proposed method utilizes a hierarchical multi-task
way to fully mine useful training signals from the
low-level ultra-fine entity typing task to help the
entity linking candidate generation models learn
contextual commonality and improve their general-
ization ability. This is significant for the zero-shot
entity linking setting to generalize the models to
new domains and link unseen entities.

We observe that the bi-encoder-based methods
perform better than the traditional IR approach
BM25, which indicates the effectiveness of our cho-
sen base model. The bi-encoder method achieves
state-of-the-art results in the candidate generation
task. This approach also allows fast, real-time in-
ference, as the candidate representations can be
cached. It can be expected that the BERT-large-
based models work better than the BERT-base-
based models, due to the larger pre-trained model
which encodes more general knowledge. Despite
this, we still find that our proposed model with
the BERT-base version performs better than the
baselines with the BERT-large version in some test
domains (e.g., Forgotten Realms and Lego), which
further indicates the effectiveness of our proposed
method. In general, our proposed method outper-
forms the baseline approaches for 1.20% and 1.01%
on Macro Recall@64 and Micro Recall@64 on the
test set, respectively.

5 Analysis

5.1 Top-k Results

The micro recall@k results of the bi-encoder-based
models (BLINK, KG-ZESHEL and our proposed
model) for the candidate generation task on the
test set are shown in Figure 3. We can find that
our proposed model consistently outperforms the
baseline methods for all k values. The improve-
ment of our model compared to BLINK is pro-
nounced, while the KG-ZESHEL slightly improves
the performance of BLINK. This demonstrates the
effectiveness of our proposed method. It can also
be observed that our proposed model has a rela-
tively significant improvement in the first few can-
didates (e.g., recall@1, recall@4) over BLINK, al-
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Figure 3: Top-k entity linking recall on test set of zero-
shot entity linking dataset. Dashed lines indicate the
recall of the three methods and solid lines indicate the
relative improvement of our model and KG-ZESHEL
compared to the BLINK. The results we choose to report
are micro recall@1, recall@4, recall@8, recall@16,
recall@32 and recall@64.

.

Model HO MC AS LO

BM25 99.28 72.54 88.03 54.37
BLINK 98.92 91.04 97.06 74.24
KG-ZESHEL 99.04 91.41 97.69 74.52

Ours 99.04 93.69 97.27 75.42

Table 3: Micro recall@64 scores on the category-
specific test subsets including High Overlap (HO), Mul-
tiple Categories (MC), Ambiguous Substring (AS) and
Low Overlap (LO).

lowing for an improvement of more than 3%. This
indicates the effectiveness of utilizing extracted
ultra-fine entity type information and shows that
the ultra-fine entity typing task has strong positive
effect on the candidate generation task of zero-shot
entity linking. However, as the number of candi-
dates increases, the improvement becomes less and
this phenomenon is foreseeable, because there is a
tendency for all models to saturate as the number
of candidates continues to increase.

5.2 Results on Category-specific

In addition, we analyze the results of zero-shot
entity linking candidate generation models on dif-
ferent categories. There are four categories, and the
details about these categories have been described
in section 4.1. Table 3 shows the micro recall@64
scores on the category-specific test subsets of the
zero-shot entity linking dataset. We find that BM25
outperforms all other methods including our pro-
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Ours

Entity: Akiza Izinski

Types: person, character, leader, adult, garment, 

friend, female, politician, woman 

Mention with 

Context

Candidates 

with Type

… gets busy writing an article of team 5d ' s , 

with the help of Akiza leo, luna and mina …

Case 1

… other games have been based on, including a 

version of Prime Directive by amarillo design …

Case 2

BLINK

Entity: Arisa Kiyoto

Types: person, artist, musician, performer, singer

Gold Entity Akiza Izinski Prime Directive ( game )

Ours

Entity: Prime Directive ( game )

Types: object, idea, software, application, 

program, record

BLINK

Entity: Prime Directive

Types: object, idea, policy, aim, statement, law, 

position, writing, document

Figure 4: Examples of the compared candidate generation results of our proposed model and the baseline model
(BLINK), which are selected from the test set of the zero-shot entity linking dataset. The mentions are denoted
in yellow, the text in blue boxes are ground truth entities of the mentions, the candidate entity along with its type
extracted by our model and BLINK under the setting of Recall@1 are highlighted in green and pink, respectively.

posed method in HO. This demonstrates the superi-
ority of this traditional IR technique in dealing with
cases where the words of the mention string and the
entity title are highly overlapping. It can also be ob-
served that KG-ZESHEL performs better than our
model in AS, which suggests that using the knowl-
edge graph can be a better choice in some cases.
However, the performance of KG-ZESHEL in AS
is only slightly higher than our model. Finally, we
find that our proposed model improves more in
MC and LO. We conjecture that these two cate-
gories require more complex reasoning according
to the performance of candidate generation models
in these two categories is much lower than in the
other two categories. This indicates that our pro-
posed model learns more contextual knowledge and
has a more powerful reasoning ability to deal with
the zero-shot entity linking candidate generation
task by utilizing ultra-fine entity type information.

5.3 Case Study

To conduct qualitative analysis, Figure 4 shows two
cases from the test set of the zero-shot entity linking
dataset. In the case 1, the mention belongs to AS
category, whose mention string is a substring of its
gold entity title. The BLINK model will point to
the entity Arisa Kiyoto, while our proposed model
will point to the gold entity Akiza Izinski. Our
model learns the contextual commonality of each
type related entities during training by utilizing the
ultra-fine entity typing task in a hierarchical multi-
task way. At inference time, our model leverages
the learned contextual commonality to improve the
generalization ability. It will infer that there is some

information of gold entity types in the mention
with context in case 1 (e.g., character, leader, etc.
instead of artist, musician, singer, etc.). This helps
our model point to Akiza Izinski instead of Arisa
Kiyoto. The same is true for case 2, whose gold
entity title is followed by a disambiguation phrase
and belongs to MC. Our model also infers that there
is some information of some types(e.g., software,
application, program, etc. instead of policy, law,
writing, document, etc.), which helps our model
point to Prime Directive (game) instead of Prime
Directive like BLINK.

6 Conclusion

In this paper, we focus on the zero-shot entity link-
ing task, which links mentions to unseen entities
and only the textual information is available. This
task challenges the generalization ability and often
leads to a tendency of overfitting for entity linking
models. To tackle the problem, we introduce the
ultra-fine entity type information into the candidate
generation phase of this task. Considering only en-
tity description is available, we propose a two-stage
model. We first extract ultra-fine entity types from
each entity description, without depending on addi-
tional manually annotated data. Then we present a
hierarchical multi-task model for jointly modeling
candidate generation and ultra-fine entity typing,
which can help the model to learn contextual com-
monality of types about the gold entity to improve
the generalization ability. The experimental re-
sults demonstrate the effectiveness of utilizing the
ultra-fine entity type information and our proposed
method achieves state-of-the-art performance.
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