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Abstract

Fine-grained entity typing (FET) aims to de-
duce specific semantic types of the entity men-
tions in text. Modern methods for FET mainly
focus on learning what a certain type looks
like. And few works directly model the type
differences, that is, let models know the extent
that one type is different from others. To alle-
viate this problem, we propose a type-enriched
hierarchical contrastive strategy for FET. Our
method can directly model the differences be-
tween hierarchical types and improve the abil-
ity to distinguish multi-grained similar types.
On the one hand, we embed type into entity
contexts to make type information directly per-
ceptible. On the other hand, we design a con-
strained contrastive strategy on the hierarchi-
cal structure to directly model the type dif-
ferences, which can simultaneously perceive
the distinguishability between types at differ-
ent granularity. Experimental results on three
benchmarks, BBN, OntoNotes, and FIGER
show that our method achieves significant per-
formance on FET by effectively modeling type
differences.

1 Introduction

Entity typing is a fundamental research problem in
natural language processing (NLP), which aims to
deduce the semantic types of the entity mentions in
text. With the deepening of text understanding, the
type sets of entities become more refined and rang-
ing in from dozens (Hovy et al., 2006) to hundreds
(Weischedel and Brunstein, 2005; Ling and Weld,
2012) or thousands (Choi et al., 2018). Therefore,
fine-grained entity typing (FET) has gained more
attention, which focuses on assigning more spe-
cific types to entities. For sentence in Figure 1, a
FET system needs to assign a coarse-grained type
"/person" and a fine-grained type "/person/actor"
to the entity "Vivien Leigh". The inferred fine-
grained types could provide more specific prior
knowledge for downstream NLP tasks, such as

He described his portrait of actress Vivien Leigh
as lit by a top spotlight diffused by tracing paper.

root

person location building

actorcoach countycity airport hospital... ...

... ...
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Figure 1: Example of fine-grained entity typing based
on FIGER ontology. Green Box: the scope of visi-
ble types about "person" of the fine-grained contrastive
strategy. Red Box: the scope of visible types of the
coarse-grained contrastive strategy.

question answering (Lee et al., 2006) and entity
linking (Leszczynski et al., 2022).

Considering the partial ontology of the FIGER
dataset (Ling and Weld, 2012) in Figure 1, fine-
grained entity types are often linked together in
a hierarchical taxonomy, which makes the type
boundaries increasingly blurred, especially for sub-
types under the same coarse type. As shown in Fig-
ure 1, the fine-grained types "coach", "athlete" and
"actor", all of which fall into the coarse-grained
type "person", are less differentiated.

In order to identify fine-grained types, prior work
has concentrated on excavating more informative
representations of types or entities, which benefit-
ing from hand-crafted features (Ren et al., 2016),
external resources (Onoe and Durrett, 2020; Li
et al., 2022) or external pre-trained task (Xu et al.,
2020). Most of them focus on learning what a
certain type looks like, but few works have gone
further to directly model the differences between
types, that is, let models know the extent that one
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type is different from others, which is more effective
to distinguish among similar fine-grained types.

How to directly model the type differences? We
argue that there are two key points, Entity Type
Awareness, which refers to directly perceiving what
type of entity is in the sentence, and Type Differ-
ences Measure, which refers to modeling how dif-
ferent the perceived type is from other types. For
the first point, the intuitive idea is to expose the
types directly, leading to a direct focus on what
type the context represents. For the second point,
heuristically, direct is effective, i.e., directly mod-
eling which contexts represent the same types and
which are different is the most efficient way to
measure differences.

To this end, we propose a tyPe-enriched
hIerarchical COntrastive straTey (PICOT) for
fine-grained entity typing. Specifically, for en-
tity type awareness with limited annotated data,
inspired by prompt learning in entity typing (Ding
et al., 2021), PICOT embeds the entity types in
contexts via prompts to build type-rich expressions
that guide the learning of correct types. Addition-
ally, for type differences measure, PICOT takes
a constrained contrastive strategy on hierarchical
taxonomy to directly model the type differences
from type-rich expressions. Concretely, as shown
in Figure 1, PICOT is only concerned with the fine-
grained types under the same coarse-grained type
to learn the differences between fine-grained types.
Similarly, PICOT is not concerned with what the
fine-grained types are when distinguishing dissimi-
larities between coarse-grained types. Methodolog-
ically, PICOT learns the type differences at differ-
ent granularity through type-rich expressions by
limiting the scope of attention to types. Moreover,
to further show models what a particular type is,
we introduce a small number of type descriptions
that directly expose richer type knowledge.

In experiments, we evaluate our model on three
benchmarks. First, we concern with the standard
evaluations and show that our model achieves the
state-of-the-art performance on FET. Then we esti-
mate the main components of PICOT. Finally, we
do a visual analysis of the effectiveness of the type
differentiation of PICOT.

In summary, the contributions are as follows:

• We propose a type-enriched hierarchical con-
trastive strategy (PICOT) for fine-grained en-
tity typing. Our method can directly model the
differences between hierarchical types and im-

prove the ability to distinguish multi-grained
similar types.

• First, we embed types into entity contexts
to make type information directly percepti-
ble. Then we design a constrained contrastive
strategy on hierarchical taxonomy to directly
model type differences at different granulari-
ties simultaneously.

• Experimental results on three benchmarks
show that PICOT can achieve the SOTA per-
formance on FET with limited annotated data.

2 Related Work

Entity Typing Named entity recognition (Tjong
Kim Sang and De Meulder, 2003) and entity typing
(Ling and Weld, 2012; Gillick et al., 2014) are fun-
damental research problems in NLP. Recently re-
searchers pay more attention to fine-grained entity
typing (FET) and ultra-fine entity typing (UFET)
(Choi et al., 2018), which predict specific fine or
ultra-fine types for given entities. To do so, obtain-
ing more labeled data is the first research perspec-
tive, represented by distant supervision (Ling and
Weld, 2012; Chen et al., 2019). With these, some
researchers had focused on how to reduce noises in
automatically labeled data (Gillick et al., 2014; Ren
et al., 2016; Ren, 2020; Wu et al., 2019; Pan et al.,
2022; Zhang et al., 2021b; Pang et al., 2022). Addi-
tionally, another key challenge is how to deal with
hierarchical ontology. Most prior works regarded
the hierarchical typing problem as a multi-label
classification task and incorporated the hierarchical
structure in different ways (Ren et al., 2016; Shi-
maoka et al., 2017; Xu and Barbosa, 2018; Murty
et al., 2018; Chen et al., 2020b, 2022).

Some works attempted to mine more label infor-
mation or better label representation. Abhishek
et al. (2017) enhanced the label representation
by sharing parameters; López and Strube (2020)
embed types into a high-dimension; Xiong et al.
(2019) introduced associated labels to enhance the
label representation; Rabinovich and Klein (2017);
Lin and Ji (2019) exploited co-occurrence struc-
tures and latent label representation; Additionally,
several novel textual representations were applied
to obtain richer entity contextual information, such
as prompt based architecture (Ding et al., 2021) and
box embeddings framework (Onoe et al., 2021).

Moreover, FET and UFET suffer from an obvi-
ous issue of the unseen types due to the lack of
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annotated data. Therefore, a variety of paradigms
were be studied to alleviate this issue (Huang et al.,
2016; Ma et al., 2016; Obeidat et al., 2019; Zhou
et al., 2018; Zhang et al., 2020; Chen et al., 2021).
Moreover, some works further drew on different
large-scale external data or knowledge to under-
stand entity types (Onoe and Durrett, 2020; Xu
et al., 2021; Dai et al., 2021; Li et al., 2022).

In summary, few prior works focus on directly
modeling type differences. Therefore, this paper
tries to let models know that one type is different
from others without large-scale external resources.
See Appendix B for more details.

Contrastive Learning Contrastive learning
aims to further improve the model’s ability to
distinguish positive and negative examples, and has
been a popular method for representation learning
on computer vision tasks (Hjelm et al., 2018; Chen
et al., 2020a; He et al., 2020). Recently, some
researches have applied contrastive learning to
natural language understanding tasks, aiming to
obtain better text representations or to distinguish
similar labels, such as the event causality identifier
(Zuo et al., 2021), the contrastive self-supervised
encoder (Fang and Xie, 2020), the supporting
clustering framework (Zhang et al., 2021a), the
abstractive summarization framework (Liu and
Liu, 2021), the contrastive fine-tuning paradigm
of pre-trained language for fine-grained text
classification (Suresh and Ong, 2021), and so on.
In this paper, we propose a constrained contrastive
framework to directly model the hierarchical type
differences.

Prompt Learning Prompt learning aims to lever-
age language prompts as contexts, and downstream
tasks can be expressed as some cloze-style objec-
tives similar to those pre-training objectives. Re-
cently, a series of hand-crafted prompts have been
widely used in natural language understanding (Liu
et al., 2021b; Schick and Schütze, 2021; Feldman
et al., 2019; Petroni et al., 2019; Trinh and Le, 2018;
Ding et al., 2021). Moreover, to avoid expensive
prompt design, automatic prompt has also been ex-
plored (Ren et al., 2016; Shin et al., 2020; Schick
and Schütze, 2021), and some continuous prompts
have also been proposed (Lester et al., 2021; Li and
Liang, 2021). In this paper, we embed prompts to
directly expose types in the entity contexts.
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Figure 2: The framework of PICOT for FET (Sec. 4).

3 Problem Formulation

The input of fine-grained entity typing (FET) is
a dataset D = {x1, x2, ..., xn} with n sentences,
a pre-defined hierarchical type ontology Y , and
each sentence x contains a marked entity e. A FET
system is required to assign corresponding types
to the given marked entity. Methodologically, for
each input sequence wn = {w1

n, w
2
n, ..., w

t
n} of the

sentence xn, FET aims to predict the correct multi-
grained types Yn = {y1n, y2n, ..., ymn } ∈ Y of the
marked entity en = {wln, ..., wrn}. For example
in Figure 1, the correct type set of "Vivien Leigh"
is {/person, /person/actor}, which contains a
coarse-grained type "/person" and a fine-grained
type "/person/actor".

4 Methodology

As shown in Figure 2, there are two key stages of
PICOT for fine-grained entity typing.

• Prompt-guided expression construction
(ProExp, Sec. 4.1). For entity type awareness,
we construct two kinds of prompt-guided ex-
pressions, the type-scarce expression and the
type-rich expression, which perceive the type
patterns in context and expose type informa-
tion directly, respectively.

• Contrastive type knowledge transfer
(ConTKT, Sec. 4.2). For type differ-
ences measure, we propose a constrained
contrastive strategy to directly model the
differences among hierarchical types, and
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Fine-grained label：/person/actor

He described his portrait of actress Vivien Leigh as
lit by a top spotlight diffused by tracing paper.

[CLS] ...Vivien Leigh...[ENT] Vivien Leigh is a [MASK] [SEP]

[CLS] ...Vivien Leigh...[ENT] Vivien Leigh is an actor [SEP]

Coarse-grained label：/person

Original Expression and Labels

Type-Scarce Expression

Type-Rich Expression

[CLS] evir person who can perform 
[ENT] evir is an actor [SEP]actor's description:  

person who can perform

ConceptNet

Original  
Expression 
& Labels

 Labels

Figure 3: The illustration of prompt-guided expression
construction (ProExp, Sec. 4.1).

impart the type knowledge from type-rich
expressions to predictor.

4.1 Prompt-guided Expression Construction
(ProExp)

ProExp aims to convert the input sentences into
type-scarce expressions and type-rich expressions
based on entity-oriented prompts (Ding et al.,
2021). The former could make models sensitive
to type patterns in context, and the latter can be
taken as the type knowledge resources based on
type exposure.

Type-scarce Expression For each input sen-
tence xn, we construct type-scarce expression xtsn
to guide the pre-trained language model (PLM, e.g.
BERT (Devlin et al., 2019) used in this paper) en-
coder to efficiently exploit the entity contextual
information, especially the type information. For
simplicity, we choose declarative entity-oriented
prompts to avoid grammatical errors.

Specifically, we first copy the marked entity en
in xn, then add a few conjunctions following the
entity. Next, we add two specific words. One of
them is "[MASK]" at the end of the expression, as
a dummy for non-specific type. The other one is
"[ENT]", which bridges the original entity expres-
sion and prompt, and serves as an entry point for
receiving type knowledge from type-rich expres-
sions in ConTKT. The form of xtsn is as follows:

xtsn = xn [ENT] en is a [MASK].

Type-rich Expression For each input sentence
xn, we also construct two kinds of type-rich expres-
sion xtrn as type knowledge resources for transfer in

Constrained Contrastive Strategy
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Library, ...
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Country, City, 
County ,...

Building, Person,  
Location, ... Fine-grained Contrastive Space

Coarse-grained Contrastive Space

Act

Act

Ath
Ath

Coa

Coa

Ath

Person 
Actor, Coach, Athlete, ...

Figure 4: The illustration of constrained contrastive
strategy in ConTKT (Sec. 4.2).

ConTKT when training. Intuitively, exposing the
types directly to the context makes the expressions
of entities type-aware.

Heuristically, fine-grained types contain both
coarse- and fine- grained type properties. There-
fore, we construct the type-rich expression xtrn of
entity en by replacing the dummy type placeholder
"[MASK]" in its type-scarce expression xtsn with its
fine-grained types in Yn1. Taking the entity in Fig-
ure 3 as an example, the form of xtrn is as follows:

xtrn = xn [ENT] en is an actor.

Moreover, to better show what a particular type
is, we introduce several descriptions (2 or 3) of
each type from ConceptNet (Speer et al., 2017).
Then we use them to directly expose richer type
knowledge to construct extra type-rich expression
xtrtype. Specifically, for each fine-grained type, we
replace xn in xtrn with the combination of a virtual
entity evir and one of descriptions. Taking the
actor as an example:

xtractor = evir person who can perform [ENT]
evir is an actor.

4.2 Contrastive Type Knowledge Transfer
(ConTKT)

ConTKT aims to directly model the differences
among hierarchical types, and impart the type
knowledge from type-rich expressions to predic-
tor when training.

Expression Encoding We design two BERT en-
coders to encode two kinds of prompt-guided ex-
pressions for each entity en respectively. One is the
encoder BertEncsca−θ for encoding type-scarce

1For entities with multiple fine-grained types, we concate-
nate the fine-grained types into one phrase by "and".



2409

expression xtsn when training and prediction, which
digs out the type information of en in sentence xn.
Another is the encoder BertEncric−θ, which mas-
ters the type knowledge via encoding the type-rich
expression xtrn .

Specifically, we first convert the xtsn and xtrn to
the input sequences of two encoders respectively.
Taking the example in Figure 3 as following:

wtsn =[CLS], w1
n, ..., w

t
n, [ENT ],

wln, ..., w
r
n, is, a, [MASK], ., [SEP ],

(1)

wtrn =[CLS], w1
n, ..., w

t
n, [ENT ],

wln, ..., w
r
n, is, an, actor, ., [SEP ],

(2)

wactortr =[CLS], des1actor, ..., des
t
actor, [ENT ],

wevir , is, an, actor, ., [SEP ].
(3)

where the destactor is the token of type description
and the wevir is the token of virtual entity evir.

After encoding, the representation h
[CLS]ts
n of

wtsn that encodes the contextual information of xtsn
is used by predictor to predict types of entity en.
Additionally, as mentioned above, the representa-
tion h

[ENT ]tr
n of wtrn is used as the exit of type

knowledge contained in xtrn . Accordingly, the rep-
resentation h

[ENT ]ts
n of wtsn is the entrance to re-

ceive the type knowledge from xtrn when training.

Constrained Contrastive Strategy We design a
constrained contrastive strategy to directly model
the hierarchical type differences based on prompt-
guided expressions. Based on this, type knowledge
is transferred to BertEncsca−θ from type-rich ex-
pressions by the contrast interaction between types
at different granularities and the parameters sharing
with BertEncric−θ.

Specifically, we only model the fine-grained type
differences under the same coarse-grained type by
bringing the same types closer while distancing
different types. Likewise, for coarse-grained types,
we do not care what the fine-grained types are in
the same way. In this way, PICOT models the
type differences between different granularities by
limiting the scope of attention to types.

To specific, for one input batch B ⊆ D, there are
two optimization objectivesLfθ andLcθ to model the
differences between fine-grained types and coarse-
grained types respectively. And each optimization

objective consists of two sub-optimization objec-
tives, one for bringing the same types closer (Lf+θ
and Lc+θ ), while another for distancing different
types (Lf−θ and Lc−θ ):

Lf+θ =
1

|YfB|

∑
y∈YfB

1

2|Bf+|

j 6=i∑
xyi ,x

y
j∈Bf+

s(xyi , x
y
j ),

(4)

Lf−θ = − 1

2|Bf−|

j 6=i,yi 6=yj∑
x
yi
i ,x

yj
j ∈Bf−

s(xyii , x
yj
j ), (5)

Lc+θ =
1

|YcB|
∑
y∈YcB

1

2|Bc+|

j 6=i∑
xyi ,x

y
j∈Bc+

s(xyi , x
y
j ),

(6)

Lc−θ = − 1

2|Bc−|

j 6=i,yi 6=yj∑
x
yi
i ,x

yj
j ∈Bc−

s(xyii , x
yj
j ), (7)

s(xi, xj) = lg
e(dis(h

E
i ,h

E
j )/τ)∑j 6=i

x′i,x
′
j∈B∗

edis(h
E′
i ,hE

′
j )/τ)

, (8)

where, take the Lfθ as illustration, YfB is the set of
all fine-grained types in one batch, yfB is one of
them. And Bf+ consists of all xtsn , xtrn and xtrtype
with same fine-grained type y ∈ YfB. Oppositely,
Bf− consists of all xtsn , xtrn and xtrtype with same
coarse-grained type but different fine-grained types
yi, yj ∈ YfB. Moreover, s is the similarity between
xi and xj , hEi and hEj are the h[ENT ]

n of xi and xj
after encoding respectively, dis is the `2-distance
function to measure the distance of two represen-
tation, τ is a temperature that adjusts the concen-
tration level and B∗ is Bf+ or Bf−. Likewise, the
optimization objectives are similar for Lcθ.

Learning of FET After transferring, the
h
[CLS]ts
n of xtsn output by BertEncsca−θ, which

has learned types knowledge, is fed to the predictor
to identify the types of the input en as following:

y∗n ←MLP (h[CLS]ts
n ), (9)

where y∗n is the predicted types of en in xn.
For training of two encoders and predictor, we

add the constrained contrastive losses Lfθ and Lcθ
to the classification loss Lδ. Finally, we minimize
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Algorithm 1 Learning of PICOT for FET.
Require: type-scarce expression xts, type-rich expression

xtr , extra type-rich expression xtrtype.
Training:
1: Stage: PROMPT-GUIDED EXPRESSION CONSTRUCTION
2: for each batch B ∈ D do
3: for input entity en with its sentence xn ∈ B do
4: Construct type-scarce expression xtsn ;
5: Construct type-rich expression xtrn ;
6: end for
7:
8: for each fine-grained type ∈ YB do
9: Construct extra type-rich expression xtrtype;

10: end for
11: end for
12: end Stage:
13:
14: Stage: CONTRASTIVE TYPE KNOWLEDGE TRANSFER
15: for each batch B ∈ D do
16: for each fine-grained type yf in YB do
17: Compute Lfθ in equation (4) and (5);
18: end for
19:
20: for each coarse-grained type yc in YB do
21: Compute Lcθ in equation (6) and (7);
22: end for
23:
24: Compute batch classification loss Lδ in (10);
25: Compute L in equation (11);
26: Stochastic gradient update θ and δ in (12);
27: end for
28: end Stage:

the L and stochastic gradient update the θ and δ as
Algorithm 1:

Lδ = BCEWithLogits(y∗n, yn), (10)

L = Lδ + λf (Lf+θ + Lf−θ ) (11)

+ λc(Lc+θ + Lc−θ ),

θ, δ ← η∇L, (12)

where, λf and λc are the weights of Lfθ and Lcθ
respectively, η is the learning rate.

5 Experiments

5.1 Experimental Setup
Datasets and Evaluation Metrics We conduct
experiments on three standard FET datasets and
follow the version processed and split by Onoe
et al. (2021). (1) BBN (Weischedel and Brunstein,
2005), which contains 56 types and each type has a
maximum type hierarchy level of 2; (2) OntoNotes
(Gillick et al., 2014), which is sampled from the
OntoNotes (Weischedel et al., 2013) corpus and
re-annotated with 89 types in 3-level hierarchy. Ad-
ditionally, we ignore the other type, which has no

Datasets #Coarse #Fine #Fine/Coarse
BBN 17 39 2.3
OntoNotes 20 68 3.4
FIGER 47 66 1.4

Table 1: Statistics on the coarse-grained and fine-
grained types of three datasets.

obvious meaning, and categorize it into two-level
types; (3) FIGER (Ling and Weld, 2012), which
contains 113 types and each type also has a max-
imum type hierarchy level of 2. Table 1 is the
statistics on the coarse-grained and fine-grained
types of three datasets. Moreover, we evaluate
three datasets using the standard metrics: Macro
F1 (Ma-F1) and Micro F1 (Mi-F1).

Parameters Settings For a fair comparison, sim-
ilar to Onoe et al. (2021), the BERT encoders are
BERT-Large architecture2, which has 24-layers,
1024-hiddens, and 16-heads. For parameters, we
set the learning rate of η as 8e-6, and set the temper-
ature τ of the contrastive loss as 0.1 tuned on the
development set. Moreover, we also tune the batch
size to 96 on the development set. The λf and
λc are setted as 0.1/0.1/0.1 and 0.1/0.1/0.01/ for
three datasets respectively. And we apply the early
stop and AdamW gradient strategy to optimize all
models. Additionally, to simulate constraints like
the previous work (Chen et al., 2020b; Onoe et al.,
2021), we use the same three simple rules to mod-
ify the model’s predictions or training data on BBN
datasets: (1) dropping "person" if "organization"
exists, (2) dropping "location" if "gpe" exists, and
(3) replacing "facility" by "fac", since both the two
tags appear in the training set but only "fac" in the
test set. See Appendix C for more detailed settings.

Compared Methods Same as previous methods,
we prefer the following models which use the
same versions of three datasets and do not rely
on large-scale external knowledge or resources as
our compared methods3. (1) Ren et al. (2016), a
embedding method which separately models clean
and noisy data with type hierarchy; (2) Abhishek
et al. (2017), a neural network model that jointly
learns entities and their contexts representation; (3)
Zhang et al. (2018), a neural architecture which
leverages both document and sentence level infor-

2https://github.com/google-research/
bert

3There are different versions of three datasets exist.

https://github.com/google-research/bert
https://github.com/google-research/bert
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Methods BBN OntoNotes FIGER
Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1

Ren et al. (2016) 74.1 75.7 71.1 64.7 69.3 66.4
Abhishek et al. (2017) 74.1 75.7 68.5 63.3 78.0 74.9
Zhang et al. (2018) 75.7 75.1 72.1 66.5 78.7 75.5
Chen et al. (2020b) (exclusive) 63.2 61.0 72.4 67.2 82.6 80.8
Chen et al. (2020b) (undefined) 79.7 80.5 73.0 68.1 80.5 78.1
Lin and Ji (2019) 79.3 78.1 82.9* 77.3* 83.0 79.8
Onoe et al. (2021) (vector) 78.3 78.0 76.2 68.9 81.6 77.0
Onoe et al. (2021) (box) 78.7 78.0 77.3 70.9 79.4 75.0
Liu et al. (2021a) - - 77.6 71.8 - -
PICOT 81.8 82.2 78.7 72.1 84.7 79.6

Table 2: Results on fine-grained entity typing. *: Not directly comparable since large-scale augmentated data is
used. The results are tested for significance at the 0.05 level.

Methods BBN
Ma-F1 Mi-F1 ∇

PICOT (our) 81.8 82.8 -
w/o Exp.trdes 81.6 82.2 -0.2/-0.6
w/o Exp.tr 81.4 81.7 -0.4/-1.1
w/o Exp.ts&tr 81.1 81.5 -0.7/-1.3
Previous SOTA 79.7 80.5 -

Table 3: Ablation results of the prompt-guided expres-
sion (ProExp, Sec. 4.1) of FET on BBN. w/o Exp.trdes
denotes a varietal PICOT that without extra type-rich
expression when training; w/o Exp.tr denotes a vari-
etal PICOT that without all type-rich expressions when
training; w/o Exp.ts&tr denotes a varietal PICOT that
without all prompt-guided expressions when training.

mation; (4) Chen et al. (2020b) (exclusive), a clas-
sifier for hierarchical FET that embraces ontolog-
ical structure with exclusive interpretations; (5)
Chen et al. (2020b) (undefined), a same classifier
as (4) but with different undefined interpretations;
(6) Lin and Ji (2019), a FET model with a novel at-
tention mechanism and a hybrid type classifier; (7)
Onoe et al. (2021) (vector), a vector-based model
for FET; (8) Onoe et al. (2021) (box), a box-based
model for FET; (9) Liu et al. (2021a), a FET model
with extrinsic and intrinsic dependencies between
labels. Moreover, all results of compared methods
are directly copied from the previous papers.

5.2 Our Method vs. State-of-the-art Methods

Table 2 shows the results of FET on BBN,
OntoNotes, and FIGER. From the results, we can
observe that (see Appendix A for more results):

(1) On BBN, our PICOT outperforms all base-
lines and achieves the best performance on Macro

Methods BBN
Ma-F1 Mi-F1 ∇

PICOT (our) 81.8 82.8 -
w/o ConTKTcoar 80.0 80.4 -1.8/-2.4
w/o ConTKTfine 80.5 81.0 -1.3/-1.8
w/o ConTKT 80.2 80.7 -1.6/-2.1

Table 4: Ablation results of the contrastive type knowl-
edge transfer (ConTKT, Sec. 4.2) of FET on BBN. w/o
ConTKTcoar denotes a varietal PICOT that removes
coarse-grained contrastive loss; w/o ConTKTfine de-
notes a varietal PICOT that removes fine-grained con-
trastive loss; w/o ConTKT denotes a varietal PICOT
that removes the whole ConTKT.

F1 and Micro F1 values, which are 81.8% and
82.2%, outperforming the state-of-the-art by a mar-
gin of 2.1% and 1.7% respectively, which justi-
fies its effectiveness. Moreover, among the three
datasets, the BBN dataset has the least training data
but the largest boost. This indicates that PICOT
can effectively mine type information in limited la-
beled data by sensing type knowledge and directly
modeling the differences between types.

(2) On OntoNotes, compared with the meth-
ods without large external data, our PICOT also
achieves the best performance on Macro F1 and
Micro F1 values, which are 78.7% and 72.1%, out-
performing by a margin of 1.1% and 0.3% respec-
tively. Although OntoNotes has three times more
training data than BBN and can provide more type
information to compared models, the proposed PI-
COT can still further improve the performance,
which demonstrates the effectiveness of directly
modeling type differences.

(3) On FIGER, the largest one in three datasets,
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Figure 5: The visualization of type representation clus-
tering without- (left) and with- (right) PICOT on devel-
opment dataset. Specifically, top row is coarse-grained
type clustering and bottom row is fine-grained type
clustering. Each color represents a kind of type

our PICOT outperforms the best compared method
on Macro-F1 value by a margin of 1.7%, which fur-
ther proves the effectiveness of PICOT in mining
type differences with labeled data. It is worth not-
ing that FIGER has a slightly lower performance
on the Micro-F1 value due to the inconsistent of
some test samples, in which only have fine-grained
types (e.g., "/organization/sports_team" is present,
but "/organization" is missing).

5.3 Effect of Prompt-guided Expression

We analyze the effect of the prompt-guided expres-
sion (ProExp, Sec. 4.1) on BBN dataset. As shown
in Table 3, from the results, we can observe that:
(1) after removing the type-rich expressions (w/o
Exp.trdes and w/o Exp.tr), the performance of FET
significantly decreases. This proves that expos-
ing the type information directly to the model can
bring great help to determine entity types. (2) Com-
paring the w/o Exp.trdes with the previous SOTA,
we find that without introducing any external type
descriptions, PICOT could also effectively mine
type knowledge within the limited labeled data
and improve the performance of FET. (3) Com-
paring the w/o Exp.trdes with w/o Exp.tr, just with
a small amount of external types descriptions, our
PICOT’s type knowledge exposure and transfer
framework also enhance the performance. (4) w/o
Exp.ts&tr also achieves good results without any
prompt-guided expressions, which also shows the
effectiveness of the contrastive transfer strategy.
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Figure 6: The visualization of type representation clus-
tering of type-scarce (left) and type-rich (right) expres-
sions on development dataset. Specifically, top row
is coarse-grained type and bottom row is fine-grained
type. Each color represents a kind of type

5.4 Effect of Contrastive Type Knowledge
Transfer

We analyze the effect of the contrastive type knowl-
edge transfer (ConTKT, Sec. 4.2) on the BBN
dataset. As shown in Table 4, from the results,
we can observe that: (1) after removing the Con-
TKT (w/o ConTKT), the performance of FET sig-
nificantly decreases. This illustrates that the con-
trastive strategy can effectively improve the dis-
crimination of similar types, which is important
for FET. (2) Comparing w/o ConTKTcoar, w/o
ConTKTfine and PICOT, we find that both coarse-
grained and fine-grained contrastive training play a
key role in the measurement of type differences. (3)
It is worth noting that, comparing w/o ConTKTcoar
with w/o ConTKT, we find that training with
type-scarce expression without contrastive strat-
egy works better than only using fine-grained type
contrastive strategy. Meanwhile, coarse-grained
contrastive training alone (w/o ConTKTfine) only
give a small boost for FET. These indicate that only
the combination of coarse-grained and fine-grained
contrastive strategies can achieve the desired re-
sults. Specifically, coarse-grained contrast ensures
the base performance while fine-grained contrast
further improves the ability to discriminate types.

5.5 Visualization of the Effect of Type
Distinguishing

To further illustrate the effect of PICOT, in Fig-
ure 5, we cluster the representations of "[ENT]" in
the type-scarce expressions before and after train-
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ing by UMAP downscaling (McInnes et al., 2018).
The comparisons of the left and right subgraphs
show that the differentiation of “[ENT]” represen-
tations, which is the entrance for type knowledge, is
both greatly improved by PICOT among the coarse-
grained and fine-grained types. This illustrates that
PICOT can effectively improve the model’s ability
to discriminate against similar types.

As shown in Figure 6, to elucidate the effect of
direct type exposure for type differentiation, we
cluster the "[CLS]" representations of type-scarce
and type-rich expressions, respectively. The com-
parisons show that the representation of type-rich
expressions is more discriminative, especially for
fine-grained types, which can effectively guide the
model to identify types with high similarity.

6 Conclusion

We propose a type-enriched hierarchical contrastive
strategy for fine-grained entity typing. Our method
can directly model the differences between hierar-
chical types and improve the ability to distinguish
multi-grained similar types. First, we embed types
into entity contexts to make type information di-
rectly perceptible. Then we design a constrained
contrastive strategy on hierarchical taxonomy to
directly model type differences at different gran-
ularities simultaneously. Experimental results on
three benchmarks show that PICOT can achieve
state-of-the-art performance on FET with limited
annotated data.
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A Supplementary Experiment Results

A.1 Effect of the Weights of Different
Contrastive Loss

Coarse
———

Fine
0.01 0.1 0.5

0.01 - 81.6 -
0.1 81.4 81.8 81.3
0.5 - 78.5 -

Table 5: Macro F1 of PICOT on BBN with different
coarse- (λc) and fine-grained (λf ) contrastive weights.

Coarse
———

Fine
0.01 0.1 0.5

0.01 - 82.1 -
0.1 82.0 82.8 81.8
0.5 - 79.9 -

Table 6: Micro F1 of PICOT on BBN with different
coarse- (λc) and fine-grained (λf ) contrastive weights.

To further explore the effect of contrastive loss of
different granularities, we vary the weights of fine-
and coarse-grained contrastive loss to observe the
performance of PICOT on the BBN test set, respec-
tively. As shown in Table 5 and 6, we can notice
that the type knowledge is not fully migrated when
the coarse-grained and fine-grained contrastive loss
weights are too small, and overly affects the clas-
sification performance when the weights are too
large. It is worth noting that excessive fine-grained
contrastive loss weights significantly degrade the
performance because many fine-grained types are
not completely distinct, and some types could occur
simultaneously. Therefore, excessive differentia-
tion of fine-grained types will confuse models.

A.2 Effect of the "[ENT]" Position

Pos. Ma-F1 Mi-F1
After "[CLS]" 80.7 81.2
Before prompt 81.8 82.8

Table 7: Performance of PICOT with different "[ENT]"
positions.

As shown in Table 7, we further explore the
effect of the position of "[ENT]" as type knowledge
exit and entry in the input sequence on the PICOT
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performance. From the results, we can see that
placing "[ENT]" between the entity context and
the type prompt allows for more efficient migration
and reception of type knowledge.

B Supplementary Related Work

Named entity recognition (Tjong Kim Sang and
De Meulder, 2003) and entity typing (Ling and
Weld, 2012; Gillick et al., 2014) are fundamental re-
search problems in NLP. Recently researchers pay
more attention on fine-grained entity typing (FET)
and ultra-fine entity typing (UFET) (Choi et al.,
2018), which predicts specific fine or ultra-fine
types for given entities. To do so, obtaining more
labeled data is the first research perspective for FET,
represented by the distant supervision annotation
method (Ling and Weld, 2012). With these, some
researches had focused on how to reduce noises
in automatically labeled data, such as a heuristic
constraint pruning approach (Gillick et al., 2014),
a partial-label loss (Ren et al., 2016), a penalty op-
timization term (Ren, 2020), and a novel content-
sensitive weighting schema (Wu et al., 2019).

Additionally, one key challenge is how to deal
with hierarchical type ontology. Most prior works
regarded the hierarchical typing problem as a multi-
label classification task and incorporated the hierar-
chical structure in different ways. Ren et al. (2016)
used a predefined label hierarchy to reduce noises;
Shimaoka et al. (2017) proposed a hierarchical la-
bel encoding method; Xu and Barbosa (2018) em-
ployed a normalized hierarchical loss; Murty et al.
(2018) learned a subtyping relation to constrain the
type embedding; Chen et al. (2020b) designed a
novel loss function to exploit label hierarchies.

Some work attempted to mine more label infor-
mation or better label representation. Abhishek
et al. (2017) enhanced the label representation
by sharing parameters; López and Strube (2020)
embed types into a high-dimension; Xiong et al.
(2019) introduced associated labels to enhance the
label representation; Rabinovich and Klein (2017)
exploited co-occurrence structures during label set
prediction; (Lin and Ji, 2019) reconstructed the co-
occurrence structure via latent label representation;
Liu et al. (2021a) reasoned fine-grained types by
discovering label dependencies knowledge. Addi-
tionally, several novel textual representations were
applied to obtain richer entity contextual informa-
tion. Ding et al. (2021) investigated the application
of prompt-learning to predict fine-grained entity

types. Onoe et al. (2021) studied the box embed-
dings to capture hierarchies of types.

Moreover, FET and UFET suffer from an obvi-
ous issue of the unseen types due to the lack of
annotated data. Therefore, a variety of paradigms
were being studied to alleviate this issue, such as a
hierarchical clustering model (Huang et al., 2016),
a prototypical embedding method (Ma et al., 2016),
a context-description matching model based on
type descriptions from Wikipedia (Obeidat et al.,
2019), a classifier based on Freebase types of its
type-compatible, (Zhou et al., 2018), a novel frame-
work which transfers the knowledge from seen
types to the unseen ones (Zhang et al., 2020), and
an empirical study on multiple auxiliary informa-
tion (Chen et al., 2021). To further alleviate the
lack of annotated data, some work draws on dif-
ferent large-scale external data or knowledge to
understand the types of entities in the sentences.
Onoe and Durrett (2020) used hyperlinked men-
tions in Wikipedia to distantly label large scale
data and train an entity typing model; Xu et al.
(2021) introduced a new pre-training task of pre-
dicting the syntactic distance in dependency tree
based on large scale texts; Dai et al. (2021) au-
tomatically generated new ultra-fine entity typing
data with labels; Li et al. (2022) presented LITE, a
new approach that formulates entity typing as an
NLI problem based on external data.

In summary, few prior works focus on directly
modeling the differences between types. Therefore,
this paper tries to let models know that one type is
different from others without large-scale external
resources.

C Main Experimental Environments and
Other Parameters Settings

C.1 Experimental Environments
We deploy all models on a server with Tesla P40
GPU. Specifically, the configuration environment
of the server is ubuntu 16.04, and our framework
mainly depends on python 3.8.8 and Torch 1.11.

C.2 Other Parameters Settings
All the final hyper-parameters for evaluation are
averaged after 3 independent tunings on the de-
velopment set. Moreover, the three datasets BBN,
OntoNotes, and FIGER achieve optimal results at
the 20th/10th/5th epochs, which take half a day,
one day, and two days, respectively.

This is an appendix.


