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Abstract

Event Causality Identification (ECI) is the task
of detecting causal relations between events
mentioned in the text. Although this task
has been extensively studied for English ma-
terials, it is under-explored for many other
languages. A major reason for this issue is
the lack of multilingual datasets that provide
consistent annotations for event causality rela-
tions in multiple non-English languages. To
address this issue, we introduce a new mul-
tilingual dataset for ECI, called MECI. The
dataset employs consistent annotation guide-
lines for five typologically different languages,
i.e., English, Danish, Spanish, Turkish, and
Urdu. Our dataset thus enable a new research
direction on cross-lingual transfer learning for
ECI. Our extensive experiments demonstrate
high quality for MECI that can provide am-
ple research challenges and directions for fu-
ture research. We will publicly release MECI
to promote research on multilingual ECI. The
dataset is available at https://github.
com/nlp-uoregon/meci-dataset.

1 Introduction

Event Causality Identification (ECI) is an impor-
tant Information Extraction (IE) task that aims to
identify causal relations between event mentions in
text. For example, in the sentence “After inspec-
tion of his computer , officers found that he was
interested...”, a ECI system should detect a causal
relation between two events “inspection” cause−−−→

“found”. ECI can provide valuable information for
various applications such as event timeline con-
struction (Shahaf and Guestrin, 2010), question-
answering (Oh et al., 2016), future event forecast-
ing (Hashimoto, 2019), and machine reading com-
prehension (Berant et al., 2014).

Due to its applications, ECI has been extensively
studied in the natural language processing com-
munity over the past decade. The vast majority
of methods for ECI involve feature engineering

models (Do et al., 2011; Hu and Walker, 2017;
Hashimoto, 2019; Ning et al., 2018; Gao et al.,
2019) and recent deep learning architectures (Kad-
owaki et al., 2019; Zuo et al., 2021b; Liu et al.,
2021; Zuo et al., 2021a; Man et al., 2022a). As
such, the creation of large annotated datasets, e.g.,
EventStoryLine (Caselli and Vossen, 2017), has
been critical to the development of ECI study.
However, existing datasets for ECI only annotate
causal relations between event mentions in data of
a single language, i.e., mainly for English (Caselli
and Vossen, 2017; Cybulska and Vossen, 2014;
O’Gorman et al., 2016). On the one hand, this
leaves many other languages unexplored for ECI,
posing an important question about the generaliza-
tion ability of existing methods to other languages.
For instance, Spanish, Danish, and Turkish are not
covered in those separated datasets for ECI. More-
over, the current single-language datasets for ECI
tend to employ different annotation guidelines that
prevent their combination into a larger corpus and
cross-lingual transfer learning research to train and
evaluate models in different languages. In all, the
annotation discrepancy and limited language cover-
age hinder the research and development of the ECI
in various dimensions, necessitating a new dataset
with broader coverage for ECI.

To address this issue, this paper introduces a
Multilingual Event Causality Identification (MECI)
dataset to standardize and foster future research in
multilingual ECI. Particularly, we present a large-
scale ECI dataset for five languages, i.e., English,
Danish, Spanish, Turkish, and Urdu1 that are anno-
tated with the same annotation guideline to enable
cross-lingual transfer learning evaluation for the
first time. As such, four languages, i.e., Danish,
Spanish, Turkish, and Urdu, are not explored in
any of the existing datasets for ECI. To facilitate
open access to the dataset, we obtain the texts from

1We will maintain the dataset and include more languages
along the way.

https://github.com/nlp-uoregon/meci-dataset
https://github.com/nlp-uoregon/meci-dataset
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Figure 1: Our annotation interface for event causality identification.

Wikipedia for annotation in all examined languages.
To make it consistent with prior research and bene-
fit from the well-designed annotation guidelines of
previous datasets, we inherit the event schema from
the ACE 2005 dataset (Walker et al., 2006), and the
causal event relation guideline from EventStory-
Line (Caselli and Vossen, 2017) (with both explicit
and implicit causal relations) during the annota-
tion process. In total, our MECI dataset involves
46K events and 11K relations that are substantially
larger than those in existing ECI datasets. Figure 1
illustrates our annotation interface in this work.

In addition, we evaluate the proposed MECI
dataset using the state-of-the-art models for ECI.
We investigate the challenges of MECI over all ex-
amined languages through the monolingual setting
where the models are trained and evaluated in the
same language. The experiments show that the per-
formance of existing ECI models, even with large
pre-trained language models (PLMs), is far from
satisfactory; models for non-English languages
generally perform poorer than their English coun-
terparts. We also observe the importance of choos-
ing language-specific or multilingual PLMs for ECI
models as their effectiveness varies for different lan-
guages. Moreover, we evaluate the models in the
zero-shot cross-lingual setting, where the models
are trained on English data and tested on the data of
the other languages. The experiment suggests trans-
ferability of ECI knowledge between English and
Urdu while showing a significant performance drop
in other language pairs. These results can serve as
baselines for future studies on cross-lingual transfer
learning for ECI. Finally, we report the analysis and
challenges of the MECI dataset to provide insights
for future ECI research. We will publicly release
MECI to promote future studies in multilingual

ECI.

2 Data Annotation

2.1 Annotation Scheme

Our goal is to annotate causal relations between
event mentions in text. To this end, we define the
annotation scheme for event mentions following
the guidelines for the ACE 2005 dataset (Walker
et al., 2006) for events, while the annotation guide-
lines for event causality relations are obtained
from those for the EventStoryLine dataset (Caselli
and Vossen, 2017). This allows us to inherit the
well-designed documentation in such benchmark
datasets and achieve consistency with prior re-
search for ECI.

In particular, based on the ACE 2005 annota-
tion guideline, an event in our dataset is either (1)
an occurrence involving some participants, or (2)
something that happens, or (3) a change of state.
Event mentions/triggers are words/phrases in text
that clearly evoke some event. As we are mainly
interested in event causality relations, we only an-
notate event mention spans and do not include event
types. To accommodate different languages, we al-
low event mentions/triggers to span multiple words
in the sentences.

Next, for event causality relations, our annota-
tion guideline follows the EventStoryLine dataset.
In particular, a causal relation represents a direc-
tional relation between two events in which an
event (CAUSE) causes another event (EFFECT)
to happen or hold. This definition covers stan-
dard causal relations: cause, enablement, and pre-
vention (Caselli and Vossen, 2017). In addition,
similar to EventStoryLine, our dataset covers both
explicit and implicit causality. Note that this is
an extension from most prior annotation schema,
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Figure 2: The Wikipedia category page of Natural dis-
asters with its child categories (box 1), associated pages
(2), parent categories (box 3), and interlink to the same
category in other languages (box 4).

i.e., Causal-TimeBank (Mirza and Tonelli, 2014),
RED (O’Gorman et al., 2016), BECauSe (Dunietz
et al., 2017), that have only considered explicit re-
lations covering the three causal concepts: cause,
enable, and prevent through a verb-based lexical-
ization (Wolff, 2007). In our view, causality is a
tool for humans to understand the world, and its
existence is independent of the actual language
for presentation (Neeleman et al., 2012). Hence,
event causality relations might be established with-
out explicit ground in the text. In other words,
there are implicit causal relations between events
that are not covered by the above lexicalization
(Caselli and Vossen, 2017; Webber et al., 2019).
To capture this important type of event causal-
ity relations, our annotation guideline is extended
to cover implicit relations which require back-
ground knowledge, e.g., common-sense, domain-
specific knowledge, for successful identification.
Finally, similar to prior datasets, we annotate both
intra- and inter-sentential causal relations between
two events (Mirza and Tonelli, 2014; Caselli and
Vossen, 2017).

2.2 Data Collection & Preparation

The documents for our MECI dataset are collected
from Wikipedia for five topologically different lan-
guages, i.e., English, Danish, Spanish, Turkish, and

Urdu. In particular, we focus on 5 topics: aviation
accidents, railway accidents, natural disasters, con-
flicts, and economic crisis, to expect a high yield
of events and event causality relations. Wikipedia
organizes articles into a hierarchical graph of cat-
egories. A category is a group of articles sharing
a topic that might be further split into finer sub-
categories as shown in Figure 2. Furthermore, the
hierarchical category systems in Wikipedia for dif-
ferent languages are interconnected through inter-
links between identical categories. Therefore, by
exploiting the category systems and language inter-
links, we are able to obtain Wikipedia articles of
the same topics across many languages.

Given the list of five categories for the exam-
ined languages, we crawl all the articles associated
with their category descendants (i.e., subcategories,
subsubcategories) in the hierarchy up to the depth
of 6. After this step, we obtain at least 1,000 arti-
cles per category for each language. The obtained
articles are cleaned by removing format elements
(i.e., lists, images, URLs, and markups) to retain
only textual data. Afterward, the articles are split
into sentences and tokenized into words by Trankit
(Nguyen et al., 2021), a multilingual text process-
ing tool with state-of-the-art performance. The
detailed list of subcategory URLs will be included
in the final dataset package.

Given an article, a direct method for data annota-
tion for ECI is to ask the annotators to label all the
event mention spans and event mention pairs with
causal relations. However, as the number of event
mention pairs in a document grows quadratically
with respect to the number of event mentions, a
long Wikipedia article can easily overwhelm the an-
notators, thus affecting the quality of the annotated
data. To address the issue, we split the Wikipedia
articles into smaller chunks that span five consec-
utive sentences for separate annotation, following
prior practices (Mostafazadeh et al., 2016; Ebner
et al., 2020). These chunks are called documents in
our dataset. In this way, the annotators only need
to consider a shorter context at a time to enhance
the attention and quality of annotated data.

2.3 Human Annotation

To annotate the obtained documents, we hire anno-
tators from upwork.com, a crow-sourcing plat-
form with freelancers from all around the globe.
We only consider candidates that are (1) native
to the target language, (2) fluent in English, and

upwork.com
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Language Event Relation
Danish 0.68 0.58
English 0.92 0.80
Spanish 0.84 0.66
Turkish 0.69 0.61
Urdu 0.65 0.75

Table 1: Kappa scores for the MECI dataset.

(3) highly approved among the Upwork employers.
We can access this information from the annota-
tors’ profiles on the platform. The candidates are
then given annotation guidelines and a test for per-
forming both event annotation and event causality
relation extraction tasks. The top two candidates
are hired for each language. We use BRAT annota-
tion tool for our annotation (Stenetorp et al., 2012)
and illustrated in Figure 1.

Our annotation consists of two tasks, i.e., event
mention annotation and event causal relation anno-
tation. For each language, we annotate event causal-
ity relations over the outputs from event mention
annotation (i.e., after event mention annotation has
been completed and finalized for all documents).
Given a sample of selected documents for a lan-
guage, for each task, the two annotators for that lan-
guage independently annotate event mentions/event
causal relations for the documents. Afterward, the
annotation conflicts will be presented to the annota-
tors for further discussion and revision to produce
the final version of annotated documents for the cur-
rent task. This will help to ensure high agreement
and consistency for our dataset.

2.4 Data Analysis

Table 1 presents our Kappa scores for annotation
agreements of event mentions and event causality
relations over different languages. Note that these
scores are computed by comparing the independent
annotations of the annotators over the documents
before engaging in discussion to resolve conflicts.
As can be seen, the scores are very close to either
substantial or almost perfect agreement for all the
tasks and languages, thus demonstrating the high
quality of our created MECI dataset. We also find
that non-English languages tend to have lower an-
notation agreement scores for both event mention
and causality relation extraction tasks, thus high-
lighting the challenges of ECI for non-English lan-
guages and showing the importance of additional
research for multilingual ECI.
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Figure 3: Distributions of distances between two event
mentions with causal relations in MECI. Distances are
measured via the number of words.

In addition, Table 2 show other statistics for our
MECI dataset. Across five languages, each doc-
ument contains an average of 13.0 event triggers,
which account for 2.6 event triggers per sentence.
This reveals a challenge of MECI for ECI models
that might need to handle the ambiguity due to the
overlap of the context of event mention pairs in
both sentence and document levels. Furthermore,
each document contains approximately 3.1 rela-
tions on average; however, there is a discrepancy
in event causality relation density in documents
among languages. In particular, English and Turk-
ish represent a much denser level of event causal-
ity relations per document than other languages,
especially Spanish and Urdu. As such, the diver-
gences in the density of event causality relations
(and event mentions) pose another robustness chal-
lenge for ECI models that should be able to bridge
the gaps and transfer event causal knowledge across
languages.

Finally, Figure 3 presents the distributions of
distances between two event mentions with causal
relations for five examined languages in MECI (the
distances are counted via the number of words in
between). There are several observations from the
figure. First, for all the languages, a majority of
event mentions are 10 to 50 words away from each
other in the documents. This suggests diverse lev-
els of context information between event mentions
that an ECI model needs to capture to perform well
for the languages in MECI. Second, there are clear
divergences between the distance distributions of
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causal event mention pairs over languages. For in-
stance, the distances between event mentions for
Danish and Urdu seem to be more distributed in the
shorter ranges than those of English and Spanish.
Such distribution differences require ECI models to
introduce robust mechanisms to induce language-
transferable representations for diverse causal con-
texts in cross-lingual learning for ECI.
Dataset Comparison: Table 2 also compares our
MECI dataset with previous public datasets for
ECI. Note that we focus on the datasets that explic-
itly consider causal relations between event men-
tions/triggers to make them comparable. It is clear
from the table that our MECI dataset has a much
larger scale with more event mentions, causal rela-
tions, and languages than all previous datasets for
ECI. This will enable the training of larger models
and a more comprehensive evaluation for ECI.

2.5 Challenges

Unlike most prior ECI datasets, our MECI dataset
includes implicit causal relations, which allow
causal relations to be derived from various implicit
reasoning sources such as common-sense knowl-
edge. This section illustrates some types of implicit
reasoning for causal relations between events dis-
covered in our dataset.

Implicit inference of causal cues: In the fol-
lowing example, considering two event mentions:

“derailed” and “running into”, there is no triggering
verb-based expression to signal the causal relation-
ship between the two events. However, with the
presence of the trailing comma between the two
event mentions, our annotators can easily realize
that the “derail” event is the cause of the “run-
ning into” event. As such, the annotators might
have implicitly inferred the reduced relative clause
“which makes the train” (presented in the brackets)
between the two event mentions to make the causal
decision. To this end, a model will also need to
recognize such implicit reasoning cues based on
the context to successfully perform ECI.

The Granville rail disaster ... when
a crowded commuter train derailed,
[which makes the train] running into
the supports of a road bridge that ...

Implicit transitivity: Consider three event men-
tions “trouble”, “bail out”, and “killed” in the
following example. The ground text explicitly
expresses the causal relation “bail out” cause−−−→

“killed” via the adverb “consequently”. How-
ever, there is no clear signal of the causality be-
tween “trouble” and “bail out”, which requires
common-sense knowledge to successfully recog-
nize for the causal order of such events, i.e.,

“trouble” cause−−−→ “bail out”. This increases the diffi-
culty for identifying the causality “trouble” cause−−−→

“killed”, which might entail transitivity reasoning be-
tween implicit and/or explicit causal relations, i.e.,

“trouble” cause−−−→ “bail out” and “bail out” cause−−−→
“killed”.

... when his Spitfire developed engine
trouble between the islands of Skiathos
and Skópelos over the Aegean Sea . He
attempted to bail out of the aircraft, but
his altitude was too low for his parachute
to open, and he was consequently killed.

3 Experiments

We randomly split the documents for each language
in MECI into three separate parts with a ratio of
3/1/1 to serve as training, development, and test
data respectively for experiments. To study the
challenges of ECI presented in MECI, we evaluate
the performance of the state-of-the-art models for
ECI on this dataset. Each model will be compre-
hensively evaluated in the monolingual learning
(i.e., trained and tested on data of the same lan-
guage) and multilingual learning (i.e., trained and
tested on the data of different language) settings
with MECI.

3.1 ECI Models
We explore the following representative models for
ECI in the literature:

PLM: This model is inherited from the BERT
baseline in (Tran Phu and Nguyen, 2021). Given
an input document D, this model concatenates
the words from all sentences and sends it into
a pre-trained language model, e.g., BERT (De-
vlin et al., 2019), to obtain representation vec-
tors for each word-piece using the hidden vectors
in the last transformer layer. Afterward, given
the spans A and B for two event mentions eA
and eB of interest in D, we compute the repre-
sentations rA, rB for the two event mentions by
averaging the representation vectors of the word
pieces within the corresponding spans A and B.
Finally, we form an overall representation vec-
tor rA→B = [rA, rB, rA − rB, rA ∗ rB] (∗ is the
element-wise multiplication operation) for ECI.
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Dataset Lang #Documents #Relations #Events Relation Type
Causal-TimeBank (Mirza et al., 2014)

English

100 318 11,000 Explicit
RED (O’Gorman et al., 2016) 95 ∗4,969 8,731 Explicit
BECauSE-2.0 (Dunietz et al., 2017) 118 1,803 - Explicit
CaTeRS (Mostafazadeh et al., 2016) 320 488 2,708 Explicit, Implicit
EventStoryline (Caselli and Vossen, 2017) 258 5,519 7,275 Explicit, Implicit

Danish 519 1,377 6,909
English 438 2,050 8,732

MECI Spanish 746 1,312 11,839 Explicit, Implicit
Turkish 1,357 5,337 14,179

Urdu 531 979 4,975
MECI (total) Various 3591 11,055 46,634 Explicit, Implicit

Table 2: Comparison of public ECI datasets. #Relations indicates the number of causal relations in the datasets. *
designates the numbers that include other event-event relations, i.e., temporal and hierarchical relations.

Model MECI English EventStoryLine
P R F P R F

B
E

R
T PLM 35.6 44.9 39.7 27.3 35.3 30.8

RichGCN 48.1 69.5 56.8 42.6 51.3 46.6

Table 3: Performance of models on MECI (English) and
EventStoryLine datasets.

This vector will be fed into a feed-forward net-
work with a sigmoid function in the end to predict
the causal relationship between eA and eB in D.

RichGCN (Tran Phu and Nguyen, 2021): Sim-
ilar to PLM, RichGCN employs a PLM to en-
code the entire input document and compute an
overall representation vector rA→B for identifying
the causal relationship between two given event
mentions. To enhance representation learning,
RichGCN also introduce several interaction graphs
(with words and event mentions in the input doc-
ument as the nodes) to capture relevant context
information/interactions for the causal relationship
between two event mentions. In particular, to adapt
RichGCN to MECI with multiple languages, we
implement four interaction graphs to represent an
input document: (1) Sentence Boundary Graph
where words or event mentions within each sen-
tence in the document are connected to each other;
(2) Event Mention Span Graph where words within
each event mention span are connected to the event
mention; (3) Syntax-based Graph where words
within each sentence are connected to each other
following the dependency tree structure of the sen-
tence; and (4) Semantic-based Graph where words
across the document are connected to each other;
the weights for the connections are measured via
the similarity between the word representations
(computed from PLM). In RichGCN, each interac-

tion graph is represented by an adjacency matrix.
A final graph V to capture relevant connections
for the two event mentions is formed by learning a
linear combination of the adjacency matrices of the
four graphs. Finally, the graph V is then sent into
a Graph Convolutional Network (GCN) (Kipf and
Welling, 2017; Nguyen and Grishman, 2018) to
compute a richer representation for the two event
mentions with more relevant context to perform
ECI.

Know (Liu et al., 2021): By treating the event
mentions as concepts in ConceptNet (Speer et al.,
2017), Know retrieves related concepts and rela-
tions for the two input event mentions in our ECI
problem from ConceptNet. The retrieved informa-
tion is then used to augment the input text. As
such, Know also utilizes a PLM to encode the aug-
mented text to compute prediction representation
for ECI. In addition, this model employs a masking
mechanism to obtain event-agnostic context from
input text, serving as another source of information
to be encoded by the PLM and incorporated into
representation learning for our task.

3.2 Experiment Setups

In the monolingual learning settings, for each lan-
guage in MECI, we train the ECI models on the
training data and evaluate model performance on
the test data of the same language. We explore
both multilingual PLMs, i.e., mBERT (Devlin
et al., 2019) and XLMR (Conneau et al., 2020),
and language-specific PLMs for the languages in
MECI as the encoder for the ECI models in the
experiments. In particular, we utilize the follow-
ing language-specific PLMs that are available for
MECI languages, i.e., BERT (Devlin et al., 2019)
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Model English Danish Spanish Turkish Urdu
P R F P R F P R F P R F P R F

m
B

E
R

T PLM 38.4 46.0 41.9 25.2 26.6 25.9 43.9 41.5 42.7 36.2 48.7 41.6 31.9 34.3 33.0
Know 35.8 56.7 43.9 25.8 36.0 30.1 39.7 38.3 39.0 39.7 46.9 43.0 36.7 35.3 36.0
RichGCN 48.4 67.1 56.2 29.7 38.0 33.4 51.2 52.0 51.6 50.0 59.9 54.5 40.1 50.0 44.5

X
L

M
R PLM 48.7 59.9 53.7 35.9 36.2 36.0 50.6 49.1 49.9 44.0 59.4 50.5 40.4 43.2 41.8

Know 39.3 42.6 40.9 31.4 11.4 16.7 39.9 28.4 33.2 36.5 46.7 41.0 41.1 22.2 28.9
RichGCN 50.6 68.0 58.1 31.9 50.0 38.9 50.7 55.0 52.8 50.5 64.6 56.7 37.7 56.0 45.1

Table 4: Monolingual learning performance of ECI models on MECI with mBERT and XLMR.

Model English Danish Spanish Turkish Urdu
P R F P R F P R F P R F P R F

* PLM 35.6 44.9 39.7 23.2 23.0 23.1 42.7 44.6 43.6 40.4 56.0 46.9 20.2 33.5 25.2
RichGCN 48.1 69.5 56.8 27.1 35.0 30.6 59.8 48.2 53.4 54.7 62.0 58.1 31.1 47.9 37.7

Table 5: Monolingual learning performance of ECI models on MECI with language-specific PLMs.

for English; BotXO2 for Danish, BETO (Cañete
et al., 2020) for Spanish, BERTurk (Schweter,
2020) for Turkish, and UrduHack3 for Urdu.

The support of multiple languages with the same
annotation guideline for event causality relations in
MECI allows us to perform cross-lingual transfer
learning evaluation for ECI models. In particular,
for cross-lingual settings, ECI models are trained
on the training data of one language (the source lan-
guage); however, they are evaluated on test data of
new target languages. In the experiments, we treat
English as the source language and other languages
in MECI as the target languages for cross-lingual
evaluation. To facilitate the prediction over multi-
ple languages, we leverage the multilingual PLMs
mBERT and XLMR in cross-lingual experiments.
Hyper-parameters: We employ the same hyper-
parameters from the original works for the ECI
models: RichGCN (Tran Phu and Nguyen, 2021),
and Know (Liu et al., 2021) in the experiments.
The multilingual NLP toolkit Trankit (Nguyen
et al., 2021) is leveraged to obtain dependency
trees for sentences in multiple languages for the
RichGCN model. Also, we utilize the multilingual
version of ConceptNet (Speer et al., 2017) to re-
trieve augmented information for Know. Finally,
we employ the base versions for all the multilingual
and monolingual PLMs considered in this work.

3.3 Results
Monolingual Performance: Table 4 shows the
performance of the three ECI models on the mono-
lingual learning settings across all the languages
with the multilingual PLMs: mBERT and XLMR.

2https://huggingface.co/Maltehb/danish-bert-botxo
3https://github.com/urduhack/urduhack

Among the ECI models, we find that RichGCN
maintains its top performance across all the lan-
guages and multilingual PLMs, thus demonstrating
the effectiveness of its language-agnostic document
structure to represent documents for ECI. Nonethe-
less, the best performance by RichGCN for En-
glish, Danish, Spanish, Turkish, and Urdu is 58.1,
38.9, 52.8, 56.7, and 45.1. These performance is
far from being perfect, thus suggesting the chal-
lenges for ECI across languages and presenting
ample research opportunities to improve the per-
formance in the future. In addition, among the
models, Know exhibits mixed performance with
mBERT and worst performance with XLMR across
languages. We attribute this phenomenon to the un-
stable quality of the concept retrieval with Concept-
Net and context modification in Know that might
exclude important causal context from the input
texts to cause poor performance in different lan-
guages. Finally, comparing the multilingual PLMs,
we find that XLMR performs significantly better
than mBERT over all the languages with the PLM
and RichGCN models, thus suggesting the benefits
of XLMR for future ECI research.
Effects of language-specific PLMs: To better un-
derstand the effectiveness of PLMs for ECI, Table 5
reports the performance of PLM and RichGCN in
the monolingual learning settings where language-
specific PLMs for each language are employed as
the encoder for the models. As can be seen, using
the best model RichGCN and the best multilingual
PLM XLMR as the anchors, ECI performance for
English, Spanish and Turkish is very close with
monolingual and multilingual PLMs (i.e., less than
2% difference in F1 scores). However, multilingual
PLMs are substantially better than monolingual
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Model English → Danish English → Spanish English → Turkish English → Urdu
P R F P R F P R F P R F

m
B

E
R

T PLMd 12.4 35.4 18.4 11.4 63.3 19.3 21.5 47.6 29.6 17.0 44.2 24.6
Know 7.8 62.0 13.8 7.2 69.4 13.0 20.4 55.5 29.9 14.2 61.5 23.0
RichGCN 23.7 45.3 31.1 20.6 58.6 30.5 44.5 52.0 48.0 35.0 56.8 43.3

X
L

M
R PLM 20.1 59.2 30.1 16.0 66.4 25.8 36.1 60.5 45.2 25.7 62.0 36.3

Know 13.3 42.1 20.3 10.4 47.3 17.1 25.8 57.6 35.7 19.3 54.5 28.5
RichGCN 28.5 43.7 34.5 22.7 62.4 33.3 46.4 55.0 50.3 38.6 55.2 45.5

Table 6: Zero-shot cross-lingual learning performance on MECI using English as source language.

PLMs for Danish and Urdu (up to 7% difference in
performance). This can be attributed to the lower
resources in Danish and Urdu that hinder effective
training for language-specific PLMs. With multi-
lingual PLMs, such low-resource languages can
benefit more from data in other languages to train
multilingual PLMs.
Cross-lingual Performance: To investigate the
transferability of ECI knowledge across languages,
Table 6 presents the performance of the ECI models
in the cross-lingual learning settings. Note that in
these experiments English is the source languages
while other languages are the targets. Among the
three models, RichGCN is still the best performer
across all target languages. However, the model’s
performance drops significantly for the three target
languages Danish (by 4.4%), Spanish (by 19.5%),
and Turkish (by 6.4%) compared to their mono-
lingual performance with XLMR. This illustrates
the challenges and necessity of further research on
cross-lingual transfer learning for ECI that can now
be enabled with our multilingual dataset.

Interestingly, compared to the monolingual set-
tings, the performance on Urdu of RichGCN is
slightly improved (by 0.4%) in the cross-lingual
setting. One potential reason is due to the smallest
size of the training data for Urdu in MECI that al-
lows the larger English training data to train better
models for Urdu test data. In addition, among the
four target languages, we observe a wide range of
cross-lingual performance from the model trained
on English data, thus showing the diverse nature of
data and languages in MECI for future research.

4 Related Work

As an important task in IE, ECI has attracted ex-
tensive research effort to develop effective mod-
els (Do et al., 2011; Hashimoto et al., 2014;
Hidey and McKeown, 2016; Hu and Walker, 2017;
Kadowaki et al., 2019; Zuo et al., 2020; Liu
et al., 2021; Tran Phu and Nguyen, 2021; Man

et al., 2022b). To support model development
for ECI, several datasets have been introduced for
this task, including PDTB (Prasad et al., 2008),
Causal-TimeBank (Mirza, 2014), ECB (Cybul-
ska and Vossen, 2014), Richer Event Description
(O’Gorman et al., 2016), BeCause (Dunietz et al.,
2017), and EventStoryLine (Caselli and Vossen,
2017), CaTeRS (Mostafazadeh et al., 2016). How-
ever, these previous work and datasets only focus
on English data, presenting a strong demand for
new research and datasets on other languages for
ECI.

To this end, there are a few efforts on creat-
ing causality corpora for other languages, such as
German (Rehbein and Ruppenhofer, 2020), Ara-
bic (Sadek et al., 2018) and Persian (Rahimi and
Shamsfard, 2021). However, these corpus consider
not only event mentions, but also entities, clauses,
and sentences, thus, not directly solving ECI as
we do. In addition, most existing annotation ef-
forts for ECI focus on explicit event causality re-
lationships. EventStoryLine (Caselli and Vossen,
2017) and CaTerRS (Mostafazadeh et al., 2016)
are the only two prior datasets that also explore
implicit causal relationships between events. How-
ever, they do not provide annotation for multiple
languages as we do in MECI. Finally, we also note
recent efforts on creating multilingual datasets for
other NLP tasks, including event detection (Pouran
Ben Veyseh et al., 2022), natural language under-
standing (e.g., slot filling) (FitzGerald et al., 2022),
and acronym extraction (Veyseh et al., 2022).

5 Conclusion

We present a new dataset for event causality identi-
fication in five different languages across diverse
typologies. The dataset is annotated consistently
for all languages, offering a large number of event
mentions/causal relations and covering four lan-
guages that have not been explored in the prior ECI
resources. Our extensive experiments and analysis
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reveal the quality and challenges of our dataset for
ECI. In addition, our dataset enables cross-lingual
transfer learning research that is not possible with
current resources for ECI. In the future, we plan to
extend the dataset to include more languages such
as Arabic and Hindi to broaden its coverage.

Ethical Considerations

In this work we present a dataset annotated over the
publicly accessible articles of wikipedia.org.
Complying with the discussion presented by Ben-
ton et al. (2017), research with human subject in-
formation is exempted from the required full In-
stitutional Review Board (IRB) review if the data
is already available from public sources (as with
Wikipedia) or if the identity of the subjects cannot
be recovered.
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