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Abstract

Few-shot relation classification aims to classify
the relation type between two given entities in
a sentence by training with a few labeled in-
stances for each relation. However, most of
existing models fail to distinguish multiple re-
lations that co-exist in one sentence. This pa-
per presents a novel dependency-aware proto-
type learning (DAPL) method for few-shot re-
lation classification. Concretely, we utilize de-
pendency trees and shortest dependency paths
(SDP) as structural information to complement
the contextualized representations of input sen-
tences by using the dependency-aware embed-
ding as attention inputs to learn attentive sen-
tence representations. In addition, we introduce
a gate controlled update mechanism to update
the dependency-aware representations accord-
ing to the output of each network layer. Exten-
sive experiments on the FewRel dataset show
that DAPL achieves substantially better perfor-
mance than strong baselines. For reproducibil-
ity, we will release our code and data upon
the publication of this paper at https://
github.com/publicstaticvo/DAPL.

1 Introduction

Relation classification, which aims to classify the
relation between two entities in a sentence, is a
fundamental task for information retrieval (Kadry
and Dietz, 2017), knowledge graph construction
(Shen et al., 2020; Ji et al., 2021) and question
answering (Luo et al., 2018). Most of existing
relation classification methods (Wang et al., 2016;
Guo et al., 2019; Shen et al., 2020; Tian et al., 2021;
Zhao et al., 2022a) focus on the supervised scenario
where sufficient labeled training data is available.
However, it is time-consuming and labor-intensive
to collect large-scale labeled data in many real-
world applications, especially in the low-resource
settings (Geng et al., 2019, 2020; Fan et al., 2021;
Zhao et al., 2022b).

*Min Yang is corresponding author.

Recently, few-shot relation classification
(FSRC), which explores relation extraction
methods by training with a few labeled examples
in each relation, has become a hot research topic
(Gao et al., 2019; Qu et al., 2020; Gao et al., 2020;
Wang et al., 2020; Xu and Xiang, 2021; Ding et al.,
2021; Fan et al., 2021). For instance, Han et al.
(2018) introduce a large-scale FSRC dataset and
implement several well-known few-shot learning
techniques (Finn et al., 2017; Snell et al., 2017) for
FSRC. Qu et al. (2020) propose a Bayesian meta
learning approach for FSRC, which learns the
posterior distributions of prototype vectors among
different relations.

Despite the remarkable progress of FSRC meth-
ods, there is still a technical challenge which is not
addressed well in prior work. Specifically, there
can be multiple relations that co-exist in a sentence,
while only one relation corresponds to the given en-
tity pairs. The other existed relations may mislead
the classifier to the wrong relation class, which
is called the misleading relation. Taking Figure
1 as an example, the gold relation between two
target entities “Mitsubishi toppo” and “minica” is
“derivative-model” marked by the term “derived
from”, while most prior FSRC methods incorrectly
predict the misleading relation “products-producer”
marked by the term “produced by”.

One possible solution is to leverage the depen-
dency tree as auxiliary information to facilitate the
representation learning. Recently, several studies
have incorporated dependency tree into supervised
relation classification models and obtained signifi-
cant performance improvement (Sun et al., 2020;
Yu et al., 2020; Pouran Ben Veyseh et al., 2020;
Chen et al., 2021; Fan et al., 2021; Tian et al.,
2021). However, few studies investigate the ef-
fectiveness of dependency trees in FSRC task. In
addition, most existing works either solely focus on
the terms that have direct dependency with target
entities or involve redundant information by using

https://github.com/publicstaticvo/DAPL
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Figure 1: An example from the test set of FewRel. Previous models only focus on the dependency tree in blue color
and ignore the SDP in red color which entails the ground-truth relation.

the entire dependency tree, failing to get other infor-
mation such as shortest dependency paths (SDP) of
two entities thus cannot tackle the misleading rela-
tion problem. For example, as illustrated in Figure
1, the SDP (marked as red lines) of the two entities
can help the relation classification model obtain
the correct relation “derived from”. Therefore, it is
necessary to fully exploit dependency information
as auxiliary structural information, which can help
identify useful terms and misleading terms via their
relative positions to the given entities.

In this paper, we propose a novel dependency-
aware prototype learning (DAPL) method for
FSRC. DAPL is based on the framework of proto-
typical networks (Snell et al., 2017) with the BERT
(Devlin et al., 2018) encoder, motivated by the ef-
fectiveness of prototypical networks in few-shot
classification tasks. In our method, we leverage
dependency trees as structural information to com-
plement the contextualized representations of input
sentences. Specifically, we assign each input to-
ken with a dependency label, according to whether
the token is adjacent to the target entities or on
the SDP between the two target entities. We high-
light the tokens on the SDP by assigning a unified
sdp dependency label for each token. Then, we
convert these dependency labels into dependency
embeddings, which are used as attention inputs of
the contextualized sentence representations to learn
dependency-aware sentence representations. Fur-
thermore, we introduce a gate-controlled update
mechanism to update the dependency-aware repre-
sentations based on the output of each BERT layer,
inspired by the effectiveness of the gate update
functions in GRU (Cho et al., 2014). This mech-
anism provides a feedback to dependency states
about whether they are reflecting the importance of
each token and related to the ground truth labels.

The main contributions of this work are three-
fold:

• We propose a novel dependency-aware proto-
type learning method for FSRC, which fully
exploit the dependency and contextualized in-

formation to alleviate the misleading relation
problem and improve the overall performance
of FSRC.

• We present a gate-controlled update mech-
anism to adaptively adjust the dependency-
aware representations according to the output
of each network layer.

• Experiments on a benchmark FSRC dataset
(i.e., FewRel) show that our method outper-
forms the strong baselines by a noticeable mar-
gin.

2 Methodology

Problem Definition In the RC task, each in-
stance consists of an input sequence x (including
a input sentence z, a head entity e1, a tail entity
e2) and a relation label y for the two entities. We
adopt a typical N -way-K-shot setting for FSRC
(Qu et al., 2020). Under N -way-K-shot configura-
tion, the training data is further split into a support
set S and a query set Q which have disjoint labels,
where S contains N relation classes and each with
K labeled examples. The goal of FSRC is to learn
a model using Dtrain, which is then used to predict
the relation y for each input x in testing set.

2.1 Dependency Labels

Given an input example x ∈ Dtrain, we denote its
dependency tree as G = (V,E), where V contains
the tokens in the sentence and E contains the set
of edges (dependencies) of tokens. Each triplet
(wi, wj , d) ∈ E denotes that there is a dependency
of type d between tokens wi and wj in x. Note that
G is an undirected graph. Given the head entity e1
and the tail entity e2, we denote the set of all tokens
on the SDP between e1 and e2 except themselves
as P . We assign two dependency labels l

(1)
i and

l
(2)
i to each token wi of the sentence x, where l

(1)
i

and l
(2)
i denote the dependency relations between

the token wi to the head entity and the tail entity
respectively by the following four steps:
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1. We initialize the l
(1)
i and l

(2)
i labels of each

token as none.

2. The l(1)i label of e1 and the l(2)i label of e2 are
set to self .

3. For each token wi ∈ P on SDP except e1 and
e2, we set its l(1)i and l

(2)
i labels as sdp.

4. For each token wi /∈ P that is not on SDP,
we set l(1)i to the corresponding dependency
parsing type if l(1)i is none and wi has an edge
connected to e1 on the dependency tree. We
can get the l

(2)
i label for e2 in a similar way.

To better illustrate the above process, we take the
sentence “[CLS] the school <e1> master </e1>
teaches the lesson with a <e2> steak </e2> [SEP]”
as an example. We show how the two labels of
each token are obtained as follows:

1. We initialize the l
(1)
i and l

(2)
i labels of each

token as none.

2. The l
(1)
i labels of “<e1>”, “master”, “</e1>”

and the l(2)i labels of “<e2>”, “steak”, “</e2>”
are assigned with self .

3. The dependency path between the two entities
(i.e., “master” and “steak”) is “master-teaches-
steak”, so both l

(1)
i and l

(2)
i labels of “teaches”

are set as sdp.

4. For the remaining tokens, “the” and “school”
are adjacent to “master” on the dependency
tree, so the l

(1)
i label of “the” is det, and the

l
(1)
i label of “school” is compound. Mean-

while, “with” and “a” are adjacent to “steak”,
so the l(2)i label of “with” is case, and the l(2)i

label of “a” is det.

Afterwards, we use an embedding layer to con-
vert the dependency labels l(1)i and l

(2)
i into depen-

dency embeddings d
(1)
i and d

(2)
i with an embed-

ding dimension of dh/2, where dh is the hidden
vector size of the encoder. The dependency embed-
ding di of each token wi is formed by concatenat-
ing d

(1)
i and d

(2)
i together, whose length is dh.

2.2 Dependency-aware Attention

Figure 2 shows the structure of our model DAPL.
Our model takes each token representation {wi}
and dependency embedding {di} in the sentence

w
i

A     is   son   of  <e1> B  </e1> and <e2> C  </e2> none none nmod  case  self  self  self   cc    conj conj conj     l
i1

none none  none  none conj conj conj none self  self   self     l
i2

Token Embedding Layer Dependency Embedding Layer

WV WK WQ

Scaled Dot-product Attention
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Linear
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×L
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Update
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Figure 2: The overall structure of our DAPL.

as input. Inspired by the remarkable success of pre-
trained language models (PLMs) on most of NLP
tasks, we employ BERT (Devlin et al., 2018) as the
basic framework of our model. To learn the impor-
tance of each token to the given entities, we modify
the self-attention mechanism in original BERT by
adding together the contextual representation and
dependency representation when generating query
and key matrices at the l-th layer:

Q(l) = (h
(l−1)
i + d

(l−1)
i )W

(l)
Q (1)

K(l) = (h
(l−1)
i + d

(l−1)
i )W

(l)
K (2)

V (l) = h
(l−1)
i W

(l)
V (3)

h̃(l) = softmax

(
Q(l)K(l)T

√
dK

)
V (l) (4)

where W
(l)
Q ,W

(l)
K ,W

(l)
V ∈ Rdh×dh are learnable

attention weights in scaled dot-product attention.
Here, h(0)

i = wi and d
(0)
i = di. Then, a two-

layer feed-forward neural network with a ReLU
activation takes the weighted sum h̃(l) as input to
learn the output hidden states h(l) at the l-th layer:

h(l) = max(0, h̃(l)W
(l)
1 + b

(l)
1 )W

(l)
2 + b

(l)
2 (5)

where W
(l)
1 , W (l)

2 , b(l)
1 , b(l)

2 are learnable parame-
ters in BERT.

2.3 Gate-controlled Update
We propose a gate-controlled update to the depen-
dency states d(l−1)

i at the end of each layer by using
the previous dependency representation d

(l−1)
i and

the output hidden states h(l)
i . Inspired by the Gate

Recurrent Unit (GRU) (Cho et al., 2014), we devise
an update gate and a control gate. Specifically, the
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control gate is a single fully-connected layer with
a sigmoid activate function, which is defined as:

z
(l)
i = sigmoid([h

(l)
i ;d

(l−1)
i ]W

(l)
Z ) (6)

where W
(l)
Z ∈ R2dh×dh is a learnable parameter.

The update gate is a single fully-connected layer
with a tanh activate function, which is defined as:

u
(l)
i = tanh(h

(l)
i W

(l)
U ) (7)

where W
(l)
U ∈ Rdh×dh is a learnable parameter.

Finally, the output dependency representations
are learned by considering the last dependency state
d
(l−1)
i and the update gate output u(l)

i under the
control of z(l)i :

d
(l)
i = (1− zli)⊙ d

(l−1)
i + zli ⊙ u

(l)
i (8)

where ⊙ represents the element-wise product.

2.4 Relation Classification
We apply a max-pooling operation on the position
spans of the head and tail entities, and get the head
entity representation hL

e1 and tail entity represen-
tation hL

e2 , where L denotes the number of layers
in BERT. Then, we concatenate he1 and he2 as the
representation h of each input instance.

Following the prototypical network (Snell et al.,
2017), we compute a prototype for each relation
class c as pc = 1

Kc

∑
(xsi ,ysi )∈Sc

hxsi
, where

Sc = {(xsi , ysi)}
Kc
i=1 denotes the support set that

has class label c, hxsi
is the contextual represen-

tation of xsi , and Kc is the number of instances
in Sc. Given the query set Q = {(xqi , yqi)}

KQ
i=1

and a Euclidean distance function d(·), the pro-
totypical network computes a distribution over
classes for a query instance xqi based on a soft-
max over distances to the prototypes in the embed-
ding space. Formally, we define the prototypical
objective Lproto over the query set Q as follows:

Lproto = − 1

KQ

KQ∑
i=1

log
exp(−d(hxqi

,pyqi
))∑N

c=1 exp(−d(hxqi
,pc))

(9)
where KQ denotes the number of instances in Q.

Inference Stage In inference phase, we compute
the relation ŷi of each input xi in testing set as:

ŷi = argmin
c

d(hxi ,pc), c ∈ [1, . . . , N ] (10)

3 Experiments

3.1 Experimental Setup
Dataset We use the benchmark FSRC dataset
FewRel (Han et al., 2018) to evaluate the effective-
ness of our model. FewRel contains 100 different
relations, with 64 relations in training set, 16 rela-
tions in validation set and 20 relations in testing
set. For each type of relation, there are 700 dif-
ferent examples. Since the 20 testing relations are
unpublished, we re-split the published 64 training
relations into 50 relations and 14 relations for train-
ing and validation respectively, and employ the
original validation set with 16 relations for testing,
following previous studies (Yang et al., 2020).

Baselines We compare DAPL with several state-
of-the-art baselines for FSRC, including Proto
(Snell et al., 2017), Proto-GAT (Snell et al., 2017),
BERT-PAIR (Gao et al., 2019), CTEG (Wang
et al., 2020), TD-Proto (Yang et al., 2020), and
a simple version of ConceptFERE (Yang et al.,
2021) that involves an external concept database.

Implementation Details For the PLM, the pro-
posed DAPL is implemented based on BERTbase

for all experiments. We conduct N -way-K-shot
(denoted as N -w-K-s) to study the performance
in different situations. Here, we adopt four dif-
ferent settings, i.e., 5-w-1-s, 5-w-5-s, 10-w-1-s,
and 10-w-5-s. We tune the entire model and select
the checkpoint with best validation performance.
The maximum length of the sentence is 90. We
follow Soares et al. (2019) to insert four special
tokens <e1>, </e1>, <e2> and </e2> to mark the
boundaries of the entities. The dependency trees
are obtained using the external Standard CoreNLP
Toolkit proposed by StanfordNLP. The size of the
dependency embedding is 384. DAPL is optimized
with AdamW (Loshchilov and Hutter, 2018) and
warmup mechanism (Popel and Bojar, 2018).

3.2 Experimental Results
Overall Results We adopt classification accu-
racy as the evaluation metric. Table 1 reports the
experimental results of our model and four base-
lines in four few-shot settings. Our DAPL model
achieves significantly better performance than the
baselines in all settings. Specifically, our method
improves the best performance of baselines by
0.28%/1.76%/0.75%/3.34% under the four settings
respectively. The performance gain of our method
comes from the auxiliary dependency information.
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Model 5 way 1 shot 5 way 5 shot 10 way 1 shot 10 way 5 shot
Proto 72.65 86.15 60.13 76.20
Proto-GAT 79.14 88.46 68.87 79.45
BERT-PAIR 85.66 89.48 76.84 81.76
ConceptFERE 84.28 90.34 74.00 81.82
CTEG 84.72 92.52 76.01 84.89
TD-Proto 84.76 92.38 74.32 85.92
DAPL (Ours) 85.94 94.28 77.59 89.26
DAPL w/o Gate 85.44 93.68 76.29 88.27
DAPL w/o SDP 85.30 93.10 76.04 87.43
DAPL w/o DT 85.06 92.46 75.13 86.54

Table 1: The main evaluation results and the ablation results on the test set.

Ground-truth By DAPL By CTEG Input Example
Husband-Wife Husband-Wife Children-

Parent
He was born in Kristiania as a son of Gerda Ring and
Halfdan Christensen and brother of Bab Christensen.

Parent-Children Parent-
Children

Husband-Wife On March 8,1852 he married Kapi’olani, daughter of Kūhiō
Kalaniana’ole and Kinoiki Kekaulike.

Table 2: Prediction results on the test samples. We use the red and blue colors to indicate the head and tail entities.

Ablation Study To analyze the impact of differ-
ent components in DAPL, we also conduct ablation
test in terms of discarding the dependency tree (de-
noted as w/o DT), the SDP dependency label (de-
noted as w/o SDP) and the gate-controlled update
mechanism (denoted as w/o Gate). The ablation
test results are reported in Table 1. The accuracy
scores decrease sharply when removing the depen-
dency tree. This is within our expectation since
the dependency tree provides rich information of
entities and relations between them. Not surpris-
ingly, combining all the factors achieves the best
performance over the four experimental settings.

Case Study In Table 2, we provide a case study
to illustrate the effectiveness of our model for allevi-
ating the misleading relation problem qualitatively.
Specifically, we provide two examples from the test
set that are incorrectly predicted by CTEG while
being correctly predicted by our method. By fully
exploiting the auxiliary dependency information,
our DAPL can correctly predict the correct relation
even being disturbed by the misleading relation
“Husband-wife”. However, CTEG has a propensity
to confuse the co-exist relations in a sentence, since
the misleading terms are close to the given entities.

4 Conclusion

In this paper, we proposed a dependency-aware pro-
totype learning method for FSRC, which leveraged

dependency trees and shortest dependency paths as
structural information to complement the contextu-
alized representations of input sentences. A gate-
controlled update mechanism was further devised
to adaptively update the dependency-aware repre-
sentations according to the output of each network
layer. Experimental results showed that DAPL out-
performed strong baselines for FSRC.
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