@inproceedings{yu-etal-2022-dependency,
title = "Dependency-aware Prototype Learning for Few-shot Relation Classification",
author = "Yu, Tianshu and
Yang, Min and
Zhao, Xiaoyan",
editor = "Calzolari, Nicoletta and
Huang, Chu-Ren and
Kim, Hansaem and
Pustejovsky, James and
Wanner, Leo and
Choi, Key-Sun and
Ryu, Pum-Mo and
Chen, Hsin-Hsi and
Donatelli, Lucia and
Ji, Heng and
Kurohashi, Sadao and
Paggio, Patrizia and
Xue, Nianwen and
Kim, Seokhwan and
Hahm, Younggyun and
He, Zhong and
Lee, Tony Kyungil and
Santus, Enrico and
Bond, Francis and
Na, Seung-Hoon",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://preview.aclanthology.org/fix-sig-urls/2022.coling-1.205/",
pages = "2339--2345",
abstract = "Few-shot relation classification aims to classify the relation type between two given entities in a sentence by training with a few labeled instances for each relation. However, most of existing models fail to distinguish multiple relations that co-exist in one sentence. This paper presents a novel dependency-aware prototype learning (DAPL) method for few-shot relation classification. Concretely, we utilize dependency trees and shortest dependency paths (SDP) as structural information to complement the contextualized representations of input sentences by using the dependency-aware embedding as attention inputs to learn attentive sentence representations. In addition, we introduce a gate controlled update mechanism to update the dependency-aware representations according to the output of each network layer. Extensive experiments on the FewRel dataset show that DAPL achieves substantially better performance than strong baselines. For reproducibility, we will release our code and data upon the publication of this paper at \url{https://github.com/publicstaticvo/DAPL}."
}
Markdown (Informal)
[Dependency-aware Prototype Learning for Few-shot Relation Classification](https://preview.aclanthology.org/fix-sig-urls/2022.coling-1.205/) (Yu et al., COLING 2022)
ACL