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Abstract
Named Entity Recognition is the task to locate
and classify the entities in the text. However,
Unlabeled Entity Problem in NER datasets se-
riously hinders the improvement of NER per-
formance. This paper proposes SCL-RAI to
cope with this problem. Firstly, we decrease the
distance of span representations with the same
label while increasing it for different ones via
span-based contrastive learning, which relieves
the ambiguity among entities and improves the
robustness of the model over unlabeled entities.
Then we propose retrieval augmented inference
to mitigate the decision boundary shifting prob-
lem. Our method significantly outperforms the
previous SOTA method by 4.21% and 8.64%
F1-score on two real-world datasets.

1 Introduction

As a fundamental task in NLP, Named Entity
Recognition aims to locate and classify named
entities in the text. Due to the large-scale well-
annotated datasets, deep-learning based methods
(Li et al., 2022b; Devlin et al., 2019) have achieved
great success. However, in real-world datasets,
such as Ling and Weld (2012) with 112 fine-grained
named entity tags, a large set of entity classes may
cause inevitable missing annotations. Moreover,
to obtain large NER datasets in practical scenar-
ios, the distant supervision approach (Ren et al.,
2015; Fries et al., 2017) may make this problem
even worse, since the entity dictionary cannot cover
all entities. Previous work (Li et al., 2021; Shang
et al., 2018) find that this problem seriously hinders
the performance of the NER model and name this
problem as Unlabeled Entity Problem. As shown
in Figure 1, the unlabeled second “NBA” may con-
fuse model and introduce unnecessary noise.

To cope with this problem, several attempts from
different perspectives have been proposed. Inspired
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Figure 1: A toy case to show Unlabeled Entity Problem.
The labeled entities are underlined with red lines while
the unlabeled entities are underlined with dashed lines.

by positive-unlabeled (PU) learning (Li and Liu,
2005), Peng et al. (2019) use a weighted loss to
assign low weights to false negative words and
build distinct binary classifiers for different entity
types. However, they require prior information
or heuristics (Li et al., 2022c) and the unlabeled
entities still misguide the classifiers, bringing ambi-
guity among neighboring entities (Li et al., 2021).
Yang et al. (2018); Jie et al. (2019) introduce the
Partial CRF (Lafferty et al., 2001) to marginalize
the instances that are consistent with the incom-
plete annotation. However, they require additional
well-annotated corpus to get ground truth negative
instances, which are usually unavailable in practice.
Recently, Li et al. (2021) perform down-sampling
among non-entity instances within annotation when
computing loss function, in order to mitigate the
misguidance from possible unlabeled entities. Li
et al. (2022c) further propose a weighted and adap-
tive sampling distribution to introduce direction to
real unlabeled entities when down-sampling. How-
ever, the inherent randomness of sampling strategy
may still keep some unlabeled entities when com-
puting loss then make the decision boundary biased
(Li et al., 2022a). As shown in Figure 2, the learned
decision boundary for training example containing
unlabeled entity instances tends to shift from the
expected boundary towards the entity side. The
previous works do not consider this problem.

To deal with these challenges, this paper pro-
poses the Span-based Contrastive Learning with
Retrieval Augmented Inference (SCL-RAI) to
tackle Unlabeled Entity Problem, which mitigates
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Figure 2: Illustration for decision boundary shifting
phenomenon. The solid line is the learned boundary
from datasets with unlabeled entities, the dashed line
represents the expected boundary.

the limitations mentioned above, i.e., demanding
additional corpus, ambiguity among neighboring
entities and decision boundary shifting problem.
Firstly, SCL-RAI tries to decrease the distance
among span representations with the same labels
while increasing it for different ones. Benefit-
ing from our well-designed span-based contrastive
learning, the ambiguity between entities is miti-
gated by the increased representation distance, so
the model can capture the differences among differ-
ent entity labels. We show in experiment that this
contrastive learning objective also improves the
model robustness under unlabeled entities. Further-
more, we propose Retrieval Augmented Inference
to relieve decision boundary shifting phenomenon.
It caches the center point representation for each
entity type from the training set. Then, it computes
a label distribution via cached representation and
interpolates it with the distribution from the back-
bone NER model. Experiments on two real-world
datasets show that SCL-RAI significantly outper-
forms previous SOTA methods.

2 Methodology

Our SCL-RAI consists of three modules: Span-
based NER Model, Span-based Contrastive Learn-
ing, and Retrieval Augmented Inference.

2.1 Span-based NER Model

Span-based NER models have shown a strong abil-
ity to solve NER task, especially in flat NER and
nested NER problem (Yu et al., 2020). For fair
comparison, we follow Li et al. (2021, 2022c) on
the design of Span-based NER model. Firstly, we
use BERT (Devlin et al., 2019) as the text encoder
to get the representations for words in sentence x:

[h1,h2, ...,hn] = BERT (x) (1)

where hi is the representation for word xi. For each
text span si,j ranging from i-th word and j-th word
in x, we get the span representation si,j as:

si,j = hi ⊕ hj ⊕ (hi − hj)⊕ (hi ⊙ hj) (2)

where ⊕ is the concatenation operation and ⊙ is
the element-wise product operation. Finally, we
use a two-layer non-linear projection to obtain the
entity label distribution for every span si,j :

ri,j = tanh(W si,j) (3)

oi,j = softmax(V ri,j) (4)

where W and V are trainable parameter matrices.
And the probability of l-th gold entity label for

span instance si,j is oi,j,l:

oi,j,l = vTl ri,j (5)

We use cross entropy (CE) loss as our training
objective:

lossce =
∑

si,j∈D
−log(oi,j,l) (6)

where D is the collection of all training instances.

2.2 Span-based Contrastive Learning
To mitigate the ambiguity among entities, SCL-
RAI tries to pull span belonging to the same class
together in embedding space, while simultane-
ously pushing apart clusters of span from different
classes.

This way, the clusters in entity representation
space could better distinguish different types of
entities. To this end, we propose a novel span-
based contrastive learning objective to mitigate the
ambiguity problem among entities. Meanwhile, we
find in our experiment that this contrastive learning
objective could also improve the robustness of SCL-
RAI under unlabeled entity noises.

For span-based NER model, we conduct con-
trastive learning within a batch of span instances
D; We use the cosine similarity to represent the
distance between the span representations of two
instances si,j and sî,ĵ :

dsi,j ,sî,ĵ =
ri,j · rî,ĵ
|ri,j ||rî,ĵ |

(7)

Then the span-based supervised contrastive
learning loss function lossscl is defined as:

lossscl = −
∑
l∈L

∑
si,j∈Dl

1

Nl − 1

∑
sî,ĵ∈Dl

F (ri,j , r̂i,ĵ)

(8)
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Figure 3: General architecture of SCL-RAI.

where L is the size of the entity label set; (i, j) ̸=
(̂i, ĵ); Nl is the total number of span instances with
the same entity label l in the batch; Dl is the col-
lection of all training span instance with l-th entity
label. F (ri,j , rî,ĵ) is:

F (ri,j , rî,ĵ) = log
exp(dsi,j ,sî,ĵ/τ)∑

sm,n∈Dl̄
exp(dsi,j ,sm,n/τ)

(9)

where τ is the temperature. Dl̄ is the collection of
span instances not with l-th entity label.

This span-based supervised contrastive learning
loss pushes the span representations of instances
with the same entity labels closer and pushes the
span representations of instances with the different
entity labels farther. We confirm in our experi-
ment that this contrastive learning objective indeed
improves the model robustness under unlabeled
entities, compared with previous works.

Then we combine the cross entropy loss and
span-based contrastive learning loss to get our final
loss function:

lossfinal = (1− λ) ∗ lossce + λ ∗ lossscl (10)

where λ is a scalar hyperparameter.

2.3 Retrieval Augmented Inference
As we get the discriminative entity span representa-
tions via span-based contrastive Learning, we pro-
pose Retrieval Augmented Inference (RAI) to fa-
cilitate the decoding process at the inference stage.

As shown in Figure 3, RAI can be split into two
parts: (i) Firstly, it generates a central point repre-
sentation for each entity type from the training set
and stores them in a dictionary Dict. (ii) It calcu-
lates the similarity between the representation of
span to be predicted and each entity type represen-
tation in Dict to get the retrieval augmented label
distribution oRA, then interpolates the distribution
oi,j,l from span-based NER model with oRA to get
the final label distribution. For example, the second
“NBA” in Figure 1 will get high similarity value
with the the central point representation of the en-
tity type “ORG”, due to the similar context with
other “ORG” entities in training set. So it could
decrease the possible high probability of non-entity
label from Span-based NER model and increase
it of “ORG” entity label. This way, we can shift
the learned decision boundary toward the expected
boundary in Figure 2.
Dictionary Construction: The dictionary Dict
used in SCL-RAI consists of a set of key-value
pairs. Each key is an entity type and the corre-
sponding value is the calculated central point rep-
resentation from the training set. After training
the model, we could get the dictionary for storing
representations of all entity tags:

Dict = {K,V } = {(l, rl)|∀l ∈ L} (11)

rl =
∑

sm,n∈Tl

1

Nl
rm,n (12)

where Tl is the collection of all training span in-
stances with l-th entity label; Nl is the total number
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of span instances with the label l in the training set.
Label Distribution Interpolation: At the same
time, Span-based NER model outputs representa-
tion ri,j for the span to be predicted and its label
distribution oi,j . Then we calculate the cosine simi-
larity between ri,j each cached representation from
Dict to obtain a new label distribution, i.e., re-
trieval augmented label distribution oRA:

sim(i,j) = concat(
ri,j · rl1
|ri,j ||rl1 |

, ...,
ri,j · rlL
|ri,j ||rlL |

) (13)

oRA = softmax(sim(i,j)) (14)

where L is the number of entity labels.
We then set the value of non-entity label in oRA

to 0:

oRA[v] = 0 (15)

where v is the index for the non-entity. This en-
sures the similarity of non-entity label does not
participate in interpolation.

Finally, we interpolate the distribution oi,j,l from
span-based NER model with oRA to get the final
label distribution pfinal:

pfinal = (1− α) ∗ oi,j + α ∗ oRA (16)

where α is a hyperparameter to makes a balance
between two distributions.

3 Experiments

3.1 Experimental Settings

Following (Yang et al., 2018; Li et al., 2021,
2022c), we adopt EC and NEWS as our datasets.
The training set of EC and NEWS both consist
of two parts: (1) the well-annotated set A; (2)
the distantly supervised set DS, which contains a
large amount of incompletely annotated sentences.
Therefore, NER models trained on EC or NEWS
suffer from Unlabeled Entity Problem. The dev/test
set used in two datasets are well-annotated to eval-
uate the performance of model trained on datasets
containing label noise.
EC In the e-commerce domain (EC), there are
five types of entities: Brand, Product, Model, Mate-
rial, and Specification. It contains 2,400 sentences
labeled by annotators. The well-annotated set A is
split into three sets: 1,200 sentences for training,
400 for dev, and 800 for testing. Then Yang et al.
(2018) collect a list of entities to construct a dic-
tionary from the training data and perform distant

Models EC NEWS
BERT-MRC 55.72 74.55
BERT-Biaffine Model 55.99 74.57
PU Learning 61.22 77.98
Partial CRF 60.08 78.38
Weighted Partial CRF 61.75 78.64
Vanilla Negative Sampling 66.17 85.39
Variant Negative Sampling 67.03 86.15
SCL-RAI 69.70 94.11
SCL-RAI+Vanilla Neg. Sampl. 71.24 94.79

- RAI 70.65 (-0.59) 93.71 (-1.08)
- SCL & RAI 66.17 (-5.07) 85.39 (-9.40)

Table 1: The F1-score results on two real-world datasets.
“SCL” denotes Span-based Contrastive Learning and
“RAI” denotes Retrieval Augmented Inference.

Models A A+DS ∆

Vanilla Negative Sampling 94.38 85.39 -8.99
SCL-RAI+Vanilla Neg. Sampl. 95.33 94.79 -0.54

Table 2: The robustness of SCL-RAI over unlabeled
entities with different training set on NEWS dataset.

supervision on raw data to get the distantly super-
vised set DS, which contains 2,500 sentences.
NEWS For news domain, Yang et al. (2018) use
a NER data from MSRA (Levow, 2006). Yang
et al. (2018) only keep entity type PERSON to
get NEWS. Then (Yang et al., 2018) randomly se-
lect 3,000 sentences as training dataset, 3,328 as
dev data, and 3,186 as testing data to get the well-
annotated set A. The rest set of MSRA is used
as raw data, having 36,602 sentences. Yang et al.
(2018) collect a list of person names from the train-
ing data. Then Yang et al. (2018) add additional
names to the list. Finally, the list has 71,664 en-
tries. Yang et al. (2018) perform distant supervision
on raw data to obtain extra 3,722 sentences as the
distantly supervised set DS.

We adopt the same hyperparameter configura-
tions for two datasets. We use Adam (Kingma
and Ba, 2015) as optimizer with learning rate as
10−5 and bert-base as our encoder following Li
et al. (2021, 2022c). The dimension of scoring
layers W is set as 256. The scalar weighting hy-
perparameters λ and α are set as 0.1 and 0.5. The
temperature parameter τ is set to 0.1. Since the la-
bel distribution is very unbalanced (most instances
are non-entity), we also apply negative sampling
and the same sampling rate as Li et al. (2021).

For evaluation, we use conlleval script1 to com-
pute the F1-score.

1https://www.clips.uantwerpen.be/conll2000/chunking
/conlleval.txt.
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Figure 4: t-SNE plots of the representations on NEWS
test set. CE+Span-based CL (left), CE only (right). Red
dot denote entities and blue dot denote the non-entities.

3.2 Results and Analysis

We report the results from: (1) Traditional NER
methods: BERT-MRC (Yu et al., 2020) and BERT-
Biaffine (Yu et al., 2020) ; (2) Recent Attempts on
Unlabeled Entity Problem: PU Learning (Peng
et al., 2019), Partial CRF (Yang et al., 2018),
Weighted Partial CRF (Jie et al., 2019), Vanilla
Negative Sampling (Li et al., 2021), Variant Neg-
ative Sampling (Li et al., 2022c) and our SCL-
RAI. Since our method is orthogonal to that of
(Li et al., 2021), we also report the results of SCL-
RAI with their negative sampling strategy “SCL-
RAI+Vanilla Neg. Sampl.” to get better results.

We report our results in Table 1. Firstly, tradi-
tional NER models perform poorly on real-world
datasets. So the SOTA NER models on well-
annotated datasets are not robust over the Un-
labeled Entity Problem. Then, our method has
achieved new state-of-the-art results on the two
datasets. Compared with SOTA model (Li et al.,
2022c), we achieve the improvements of 2.67% F1
on EC and 7.96% on NEWS. With the negative
sampling strategy, we further get the improvements
of 4.21% F1 on EC and 8.64% F1 on NEWS. The
improvements shows that our model has a stronger
ability to mitigate the noise from unlabeled entities.

To verify the effectiveness of SCL-RAI, we show
ablation studies in Table 1. It is clear that Span-
based Contrastive Learning and Retrieval Aug-
mented Inference are both important to cope with
Unlabeled Entity Problem. In Table 2 and Table 4,
we show the robustness of our model over unla-
beled entities on NEWS dataset. Our SCL-RAI
can obtain less F1 degradation when introducing
dataset DS with unlabeled entities. In Figure 4, we
show t-SNE plots of the learned representations of
2000 instances on NEWS test set, comparing Cross
Entropy (CE) with and without the Span-based CL
term. We can clearly see that the Span-based CL
term enforces more compact clustering of entities.

For span-based NER model, we also conduct our

Batch Size F1-score
8 70.78

16 71.24
32 70.87
64 70.79

Table 3: The Span-based Contrastive Learning robust-
ness testing results on EC.

Variant A A+DS ∆

Vanilla Negative Sampling 76.82 66.17 -10.65
SCL-RAI 76.44 71.24 -5.2

Table 4: The robustness of SCL-RAI over unlabeled
entities with different training set on EC dataset.

Span-based Contrastive Learning within a batch of
span instances. Therefore, we test the robustness
of Span-based Contrastive Learning for different
batch sizes on EC. As shown in Table 3, we can
clearly find that Span-based Contrastive Learning
is robust for different batch sizes.

4 Conclusion

We propose the SCL-RAI to cope with Unlabeled
Entity Problem in NER. Benefiting from our well-
designed Span-based Contrastive Learning and Re-
trieval Augmented Inference, experiments on two
real-world datasets show that SCL-RAI achieves
more promising results than SOTA methods.
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