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Abstract

This paper studies event causality identification,
which aims at predicting the causality relation
for a pair of events in a sentence. Regarding
event causality identification as a supervised
classification task, most existing methods suf-
fer from the problem of insufficient annotated
data. In this paper, we propose a new derivative
prompt joint learning model for event causality
identification, which leverages potential causal
knowledge in the pre-trained language model
to tackle the data scarcity problem. Specifi-
cally, rather than external data or knowledge
augmentation, we derive two relevant prompt
tasks from event causality identification to en-
hance the model’s ability to identify explicit
and implicit causality. We evaluate our model
on two benchmark datasets and the results show
that our model has great advantages over previ-
ous methods.

1 Introduction

Event causality identification (ECI) is an impor-
tant natural language processing (NLP) task, which
aims at identifying causality between events in sen-
tences. Event causality identification supports a
variety of NLP applications, e.g., machine read-
ing comprehension (Berant et al., 2014) and event
prediction (Radinsky et al., 2012). (Berant et al.,
2014; Radinsky et al., 2012). As shown in Fig-
ure 1, an ECI model identifies the causalities in
sentences S1 and S2: (i) practice cause−→ won in
S1; (ii) attack cause−→ killed in S2. The causality
between events in a sentence mainly contains two
types: explicit causality and implicit causality. For
instance, the causality practice cause−→ won in S1

is an explicit causality, which is triggered by the
explicit cue words in the sentence. ECI models can
take causal cue words as the shortcut for explicit
causality identification. As a contrast, the causality
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Figure 1: Examples of different causalities. S1 contains
explicit causality between practice and won. S2 con-
tains implicit causality between killed and attack. S3

has the same patterns with S2, but it does not contain
any causality.

attack cause−→ killed in S2 is an implicit causality,
because none of explicit cue words is mentioned
in S2. And as shown in Figure 1, comparing S2

and S3, we may not always derive the existence
of causality from two highly similar expressions
without explicit cue words. In other words, Implicit
causality must be inferred from the semantics and
contexts of events.

Most existing methods regard ECI as a classi-
fication task, and train customized ECI models
on annotated data by supervised learning (Cheng
and Miyao, 2017; Choubey and Huang, 2017).
However, the large-scale annotated datasets of
ECI are relatively hard to collect, referring to that
the so far largest dataset EventStoryLine (Caselli
and Vossen, 2017) only contains 258 documents
and 4316 sentences. Therefore, ECI models are
challenged by the data scarcity problem in su-
pervised learning. To address this problem, var-
ious methods have been proposed to leverage ei-
ther the augmented dataset (Hashimoto, 2019) or
external knowledge (Liu et al., 2020; Zuo et al.,
2021b,a). Hashimoto (2019) exploit weakly su-
pervised method to construct ECI datasets. Liu
et al. (2020) and Zuo et al. (2021a) attempt to in-
troduce external structure knowledge to identify
causality. However, the model may fail to capture
the differences between the explicit causality and
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Figure 2: ECI can be converted into the form of predict-
ing [MASK] by PLM.

implicit causality without modelling these different
types respectively, especially when the ECI model
is trained with only insufficient annotated dataset.

In this paper, we propose a new Drivative Prompt
Joint Learning (DPJL) method for ECI, which
identifies different causalities effectively without
incorporating either more annotated instances or ex-
ternal knowledge. Firstly, as shown in Figure 2, we
introduce a new prompt-based learning paradigm
to ECI, i.e. converting ECI into a language mod-
elling format and using pre-trained language model
(PLM) to identity causalities. Since PLMs accu-
mulated abundant knowledge (Jawahar et al., 2019;
Yenicelik et al., 2020; Brown et al., 2020) through
the self-supervised training on large-scale corpora,
such a prompt-based paradigm may elicit the po-
tential ECI ability of PLM to remedy the scarcity
of annotated data. Then, we design two derivative
prompt tasks for ECI to identify the explicit causal-
ity and implicit causality: (i) Causal cue Word De-
tection (CWD), which aims to detect the causal cue
word of event pairs in a sentence; and (ii) Causal
Event Detection (CED), which aims to detect the
cause or effect of an event in a sentence. Intu-
itively, CWD is a straightforward way to identify
explicit causality, and CED is helpful to identify im-
plicit causality by capturing the semantic relevancy
between the contextual events. Finally, given the
above intuitions, we further propose a joint learning
method for event causality identification enhanced
by the tasks of CWD and CED. Note that the train-
ing data of derivative tasks are generated from ECI,
without the cost of additional human annotation.
Our contributions are summarized as following:

• We introduce a new prompt-based paradigm
to ECI, and we propose a new derivative
prompt joint learning method which remedies
the problem caused by the scarcity of anno-
tated data. As far as we know, this is the first
time to use prompt-based method for ECI.

• We propose two new derivative tasks in the
joint learning method, i.e., the causal cue
word detection and causal event detection,
to strengthen the ability of an ECI model in
identifying the explicit causality and implicit
causalities respectively. Note that, rather than
using more human-annotation, the proposed
two derivative tasks leverage the annotated in-
stances modified from the dataset of ECI for
training.

• We conduct extensive experiments on two
benchmark datasets of ECI, in which our pro-
posed method DPJL achieves the state-of-the-
art performance with at least 11 percent F1
improvement on both benchmarks.

2 Related Work

Event Causality Identification Event Causality
Identification (ECI) is a crucial information extrac-
tion task. Early causal identification methods in-
clude rule-based methods (Mirza et al., 2014; Riaz
and Girju, 2013; Do et al., 2011) and statistics-
based methods (Beamer and Girju, 2009). Recently,
some benchmarks on the event causality have been
released, e.g. Causal-TimeBank (Mirza and Tonelli,
2014), EventStoryLine Corpus (Caselli and Vossen,
2017) and BECAUSE (Dunietz et al., 2015). Based
on these annotated datasets, a number of supervised
learning-based methods of ECI have emerged (Kru-
engkrai et al., 2017; Kadowaki et al., 2019). How-
ever, the scale of labeled data in most datasets is
relatively small. To solve this problem, Hashimoto
(2019) exploited weakly supervised method to con-
struct ECI datasets. Some methods introduce addi-
tional knowledge to strengthen the ECI model (Liu
et al., 2020; Zuo et al., 2021b,a). Zuo et al. (2020)
improved the performance of ECI with distantly
supervised labeled training data. These methods in-
troduce the pre-trained language model to generate
the high-quality text coding required by the ECI
model. But these methods ignore the potential abil-
ity of pre-training language model to identify the
causality between events, and may fail to capture
the differences between the explicit and implicit
causalities in a low-resource scenario without mod-
elling these two types of causalities respectively.
Prompt-based learning Recently, pre-trained lan-
guage models like GPT (Radford and Narasimhan,
2018) , BERT (Devlin et al., 2019) , RoBERTa (Liu
et al., 2019) and T5 (Raffel et al., 2020) can cap-
ture rich knowledge (Jawahar et al., 2019; Yenice-
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lik et al., 2020) from massive unlabeled corpora.
But there is a big gap between pre-training ob-
jectives and fine-tuning objectives, that is, down-
stream tasks still need to build task-specific models
after PLMs, and use task-specific annotated data
to fine-tune them. To solve this problem, prompt-
based method (Brown et al., 2020) converts the
downstream task into the same form as pre-training
task. To better build task prompts, automatic search
of discrete prompts (Gao et al., 2021), gradient-
guided search (Shin et al., 2020) and continuous
prompts (Li and Liang, 2021) are successively pro-
posed. To the best of our knowledge, there is no
work that uses prompt-based method for ECI task.
However, only using prompt-based methods lacks
the modeling of different causalities mentioned
above.

3 Methodology

In this section, we first introduce problem definition
of event causality identification. Then we will show
the overview of our proposed model. After that,
we introduce a prompt-based ECI method to elicit
knowledge from PLMs. Then, we describe the
details of two derivative prompt tasks and the joint
learning method of derivative prompts. Finally, we
introduce the training and prediction process of our
model.

3.1 Problem Definition

Given x = (S, (es, et)) as an instance of ECI task,
where S is a sentence and (es, et) is an event pair in
S. Y is the set of causal labels indicating whether
there is a causality between event pairs. For an
instance x, the purpose of an ECI model is to
predict the causal label y ∈ Y between es and
et. The traditional approaches formulate ECI as
a binary classification problem. In order to learn
the feature of different causalities better, we set
Y : {Cause, Causedby,NA}, which respectively
mean that es causes et, es is caused by et and there
is no causality between (es, et). The output of our
ECI model is a ternary vector corresponding to the
probabilities of the three labels. In order to unify
with the previous method, Cause or Causedby both
indicate that there is a causality between events.

3.2 Overview

The overview of our approach is shown in Fig. 3.
We convert the ECI task into a mask language
prediction task, and use an excellent pre-trained

masked language model (MLM) named RoBERTa
(Liu et al., 2019) to encoder the input sequence
and output prediction results. The reason we use
MLM is that MLM can make good use of context
information and we can flexibly design prompt tem-
plates for it. We design two derivative prompt tasks
to make our model capture the different abilities
of identifying different kinds of causalities. The
prompts for all tasks are spliced after the input
sentence as the input of RoBERTa. Finally, we
use RoBERTa’s MLM head to make predictions
through a joint learning method.

3.3 Prompt-based Event Causality
Identification

For a given instance x = {S, (es, et)}, the key to
converting ECI task into MLM task is to construct
an appropriate prompt template TECI(x) and de-
termine the label words V . TECI(x) spliced after
the input sentence S is used to prompt the PLM to
predict the causality between event pair (es, et). V
refers to a set of words in the vocabulary of PLM
that corresponds to the labels of the ECI task. A
[MASK] token is placed into TECI(x) for PLM to
fill the label words. There may be many kinds of
templates as shown in Figure 2 for ECI, it is not
sure which one is most suitable for ECI task. So
we add some new learnable tokens to one template
to make it dynamically adapt to the task during the
model’s training process. Since the words in PLM
vocabulary may fail to represent the abundant se-
mantic knowledge in causal labels, so we use three
virtual words corresponding to three labels form
V as in the previous work (Li and Liang, 2021).
Finally, the prompt template and label words for
ECI is formalized as follows:

TECI(x) :In this sentence, ‘es’ <c> [MASK]

</c> ‘et’. [SEP]

V :{Cause,Causedby,NA}

where <c>, </c> and virtual words in V are the
new learnable tokens added into the vocabulary
of PLM, [SEP] is the token indicating the end
of the sentence. Each new token has an embed-
ding with the same size as the embeddings of orig-
inal word in the dictionary. Using Cause and
Causedby allows the model to learn the direc-
tional features of the causality. We use an injective
mapping M : Y → V to connect causal labels
to label words, each causal label is mapped to a
label word with the same name. Then we expand
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Figure 3: Overview of our derivative prompt joint learning (DPJL). The dashed box above shows the prompt
template for each task. The dashed box in the middle shows the correspondence between different token and color
blocks. The dashed box below shows the overall framework of DPJL.

the MLM head layer of PLM with the V and use
the probability distribution over V at the [MASK]
position as the probabilities of causal labels. For-
mally, for an instance x, we first splice [CLS] and
[SEP] on both sides of S to fit the input form
of RoBERTa. The probability of its causal label
p(y|x) is:

pMLM_head([MASK] = M(y|S′+TECI(x)) (1)

where pMLM_head represents the probability dis-
tribution predicted by MLM head layer, ‘+’ means
sequence splicing, S′ = [CLS]S[SEP].

3.4 Derivative Prompt Tasks
We design two derivative prompt tasks for ECI to
elicit the abilities to identify explicit causality and
implicit causality from PLM. For explicit causal-
ity, ECI model need the ability to detect causal
cue words of given event pair. For implicit causal-
ity, ECI model need the ability to comprehensively
analyze event semantics and context. So we de-
sign the following two derivative tasks, that is: (i)
Causal cue word detection (CWD): Given an in-
stance x = (S, (es, et)), CWD aims to detect the
cue word in S which triggers the causality between
(es, et); (ii) Causal event detection (CED): Given
an instance x = (S, es) where es is an event within
sentence S, CED aims to detect the event in S
which has a causality with es.

To elicit the corresponding abilities from PLM,
we also set prompts for the two derivative prompt

tasks as follows:

TCWD(x) : The cue word of ‘es’ Cause ‘et’

or ‘es’Causedby ‘et’ is [MASK].

[SEP]

TCED(x) : According the [CLS], ‘es’ Cause

[MASK], ‘es’ Causedby [MASK].

[SEP]

The targets of the two tasks are the specific words in
the input sentence. If a [MASK] has no correspond-
ing answer in the S, its target word is nothing,
and if the answer word is longer than one word,
the target is the first token of answer. The train-
ing data of derivative tasks are generated from the
original dataset annotated for ECI, please refer to
Section 4.2 for more details. We can splice the
prompts of derivative task behind the input sen-
tence and use the MLM head layer to predict the
probability distribution over PLM’s vocabulary at
different masked positions as the results of these
tasks. Because of the huge vocabulary space, it is
possible for PLM to generate words that are not
included in sentences. So that, we constrain the
candidate vocabulary to the VS by setting logits
of extraneous words to -inf, where VS contains
nothing and the tokens in S.

3.5 Joint Learning
In this section, we will introduce the joint learn-
ing method for derivative tasks and ECI. Firstly,
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as shown in Figure 3, we reuse the label words
Cause and Causedby in the prompts of deriva-
tive tasks and we concatenate all prompts after S′

as the input of RoBERTa (i.e. S′ + TECI(x) +
TCED(x) + TCWD(x)), all tasks will be predicted
and trained simultaneously. On the one hand, the
three tasks can share semantics with each other by
PLM. On the other hand, learnable label word em-
bedding can be trained during the training of the
derivative tasks. Secondly, we set up two gate units
as the highway for building the association ECI
and derivative tasks. Although the language model
can share contextual information, due to the large
parameter scale of it, the annotated samples of ECI
may not be enough to build the association between
ECI and derivative tasks. Specifically, we use the
[SEP] tokens in TCED(x) and TCED(x) to rep-
resent the overall semantics of the two derivative
prompts. Then we use a gate unit to integrate the
semantic information of CWD and CED, and tune
the hidden features of the [MASK] corresponding
to ECI through another gate unit as follows.

g1 = σ(W 1
g [h

CWD
[SEP ];h

CED
[SEP ])

h̃CED
[SEP ] = (1− g1)h

CWD
[SEP ] + g1h

CED
[SEP ]

g2 = σ(W 2
g [h

ECI
[MASK]; h̃

CED
[SEP ]])

h̃ECI
[MASK] = (1− g1)h

ECI
[MASK] + g1h̃

CED
[SEP ]

(2)

where hCWD
[SEP ] and hCED

[SEP ] means the hidden fea-
tures of [SEP] in CWD prompts and CED
prompts, hECI

[MASK] is the hidden feature of the
[MASK] corresponding to ECI, each hidden fea-
ture is generated by RoBERTa. W 1

g and W 2
g are

trainable parameters for gate units, σ is the sigmoid
activation function maps variables between (0, 1).
h̃ECI
[MASK] will replace hECI

[MASK] as input to MLM
head and predict the probability of label words via
equation (1). This method effectively builds the
link between ECI and derivative tasks without af-
fecting the encoding process of PLM.

3.6 Training and Prediction
We perform supervised training on three tasks si-
multaneously. We use the cross entropy function to
calculate the losses of all tasks, multiply the losses
of derived tasks by 0.1, and add them to the losses
of ECI as the objective function. In CED task,
given a sample may have multiple golden answers,
we calculate the averaged cross-entropy loss for
each predicted answer. In addition, for each input
instance, we have a 10% probability of filling the

corresponding [MASK] positions with the correct
answers of the derivative tasks to speed up the train-
ing process. In prediction stage, the target positions
in the derivative tasks are all [MASK] tokens, and
we only predict the probability distribution of the
label words of the ECI task by Eq (1).

4 Experiments

Our experiments aim to verify (1) whether the
prompt-based method can improve the generaliza-
tion of the ECI model, and (2) whether the joint
learning of derivative prompts can enhance the
model’s ability to identify different causalities. Our
source code is available on Github1

4.1 Dataset and Metrics
We perform our method on two main benchmarks,
including: EventStoryLine v0.9 (ESC) (Caselli
and Vossen, 2017), which contains 258 docu-
ments, 4316 sentences, and 1770 causal event pairs;
Causal-TimeBank (CTB) (Mirza and Tonelli, 2014)
which contains 184 documents, 6813 events, and
318 causal event pairs. Same as previous meth-
ods (Gao et al., 2019; Zuo et al., 2021b,a), we use
the last two topics of ESC as the development set
for two datasets, and conduct 5-fold and 10-fold
cross-validation on ESC and CTB respectively. For
evaluation, we adopt Precision (P), Recall (R), and
F1-score (F1) as evaluation metrics. All the results
are the average of three independent experiments.

4.2 Experimental Settings
Training Details. In implementations, we use
the RoBERTa2 with an open pre-trained param-
eters3 for our method, which has 12-layers, 768-
hiddens, and 12-heads. Each of new tokens added
in RoBERTa have 768-dimensional embedding.
The size of W 1

g and W 2
g are 1536× 1. We set the

learning-rate of pre-trained parameters and new pa-
rameters as 1e-5 and 1e-4 respectively. We use the
causal signal given in the annotated datasets
of ECI as the cue word to construct the training
data of CWD, and use the causal event pairs in the
annotated datasets of ECI to construct the training
data of CED. We adopt a negative sampling rate
of 0.5 for training our model, and the batch size
for training is 16. And we apply the early stop and
AdamW gradient strategy to optimize all models.

1If the paper is accepted, a link to the code repository will
be published.

2https://pytorch.org/hub/pytorch_fairseq_roberta/
3https://huggingface.co/roberta-base/tree/main
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Compared Methods. We compare our methods
with previous state-of-the-art works. For ESC, we
prefer the following methods: LSTM (Cheng and
Miyao, 2017), a dependency path based sequential
model. Seq (Choubey and Huang, 2017), a se-
quence model with human designed feaures. LR+
and ILP (Gao et al., 2019), ECI models adopt
document structure. For CTB, we prefer the fol-
lowing methods: RB (Mirza and Tonelli, 2014), a
rule-based system for ECI. DD (Mirza and Tonelli,
2014), a data driven machine learning based system.
VR-C (Mirza, 2014), a verb rule based model with
data filtering and gold causal signals enhancement.

In addition, we also compare SOTA methods
based on pre-trained language models and intro-
ducing external knowledge: MM (Liu et al., 2020),
the BERT-based SOTA method with mention mask-
ing generalization. KnowDis (Zuo et al., 2020),
a distantly supervised method for ECI. LearnDA
(Zuo et al., 2021b), a learnable knowledge-guided
data augmentation method for ECI. CauSeRL
(Zuo et al., 2021a), a self-supervised representa-
tion learning enhanced ECI method. For a fair
comparison, we set up two baseline models based
on RoBERTa: RoBERTa-base, a RoBERTa-base
baseline, we use a linear classifier after RoBERTa
for ECI, the input of the classifier is the hidden
feature of target events. Prompt-base, a prompt-
based baseline, our basic proposed ECI method
mentioned in Section 3.3.

4.3 Main Results

Table 1 and Table 2 show the experimental results
on ESC and CTB respectively. From these results:

Methods P R F1
LSTM(Cheng and Miyao, 2017) 34.0 41.5 37.4
Seq(Choubey and Huang, 2017) 32.7 44.9 37.8
LR+(Gao et al., 2019) 37.0 45.2 40.7
ILP(Gao et al., 2019) 37.4 55.8 44.7
MM(Liu et al., 2020) 41.9 62.5 50.1
KnowDis(Zuo et al., 2020) 39.7 66.5 49.7
LearnDA(Zuo et al., 2021b) 42.2 69.8 52.6
CauSeRL(Zuo et al., 2021a) 41.9 69.0 52.1
RoBERTa-base(ours) 40.8 64.7 50.0*
Prompt-base(ours) 53.6 68.3 60.0*
DPJL(ours) 65.3 70.8 67.9*

Table 1: Main results on ESC. * denotes a significant
test at the level of 0.05.

(1) Our DPJL method outperforms all other ECI
methods, and achieves the best F1 on both datasets,
67.9% on ESC and 64.6% on CTB respectively.

Methods P R F1
RB(Mirza and Tonelli, 2014) 36.8 12.3 18.4
DD(Mirza and Tonelli, 2014) 67.3 22.6 33.9
VR-C(Mirza, 2014) 69.0 31.5 43.2
MM(Liu et al., 2020) 36.6 55.6 44.1
KnowDis(Zuo et al., 2020) 42.3 60.5 49.8
LearnDA(Zuo et al., 2021b) 41.9 68.0 51.9
CauSeRL(Zuo et al., 2021a) 43.6 68.1 53.2
RoBERTa-base(ours) 40.3 58.2 47.6*
Prompt-base(ours) 49.7 69.4 57.9*
DPJL(ours) 63.6 66.7 64.6*

Table 2: Main results on CTB. * denotes a significant
test at the level of 0.05.

Specifically, DPJL outperforms the previous SOTA
method by at least 10 percentage points. It illus-
trated that prompt-based methods with derivative
prompts joint learning can effectively elicit causal
knowledge in PLMs, thus greatly improve the per-
formance of the ECI model.

(2) The experimental results of KnowDis,
LearnDA, and CauSeRL show that the introduction
of different external knowledge and the method of
introducing external knowledge can affect the per-
formance of the ECI model. We note that the perfor-
mance of Prompt-base and DPJL is higher than that
of other knowledge-enhanced methods. It shows
that eliciting causal knowledge from PLMs is more
beneficial to ECI than the previous approach of in-
troducing external knowledge. The reason may be
that previous methods do not fill the gap between
external knowledge and true causal representation
well, and prompt-based method can directly con-
vert the underlying causal knowledge of PLMs into
the ability of causal identification.

(3) RoBERTa-base outperforms the methods
without RoBERTa, which illustrates the superior-
ity of RoBERTa. RoBERTa-base is not as good
as LearnDA and CauSeRL, which illustrates that
simply fine-tuning PLMs cannot completely cover
the knowledge required for ECI. Prompt-base and
DPJL outperform RoBERTa-base, indicating that
prompt-based methods can elicit the potential of
PLM to solve ECI better than fine-tuning.

(4) Comparing DPJL and Prompt-base, we no-
tice that DPJL is significantly better than Prompt-
base. It is illustrated that joint derivative prompts
can elicit more useful knowledge from PLMs for
ECI. In addition, the improvement of DPJL of ESC
is more obvious than that of CTB. The reason is
that ESC has more labeled data, which is beneficial
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for training the label word embeddings in derivative
prompts joint learning.

4.4 Ablation Experiment

To illustrate the effect of label words reuse and
gate units in DPJL, we set up ablation experiments.
Different experimental settings are indicated with
subscripts, where Full represents the full method
of DPJL, w/o. and w/. in subscript mean with
and without respectively, reuse and gate mean
label words reuse and gate units of this paper. The
ablation results are shown in Table 3 and Table 4.
In addition, to verify the generalizability of each
derivative prompt task in our method, we adopt two
more additional datasets for further ablation studies,
i.e., EventStoryLine v1.5 (ESC v1.5) (Caselli and
Inel, 2018) 4 and BECAUSE (Dunietz et al., 2017)
5. The specific experimental results are shown in
the Appendix A.

Methods P R F1 ∆

Prompt-base 53.6 68.3 60.0* -
DPJLw/o.reuse−w/o.gate 55.5 68.9 61.4* +1.4
DPJLw/.reuse−w/o.gate 59.9 69.3 64.5* +4.5
DPJLw/o.reuse−w/.gate 62.2 68.8 65.3* +5.3
DPJLFull 65.3 70.8 67.9* +7.9

Table 3: Ablation results on ESC. * denotes a significant
test at the level of 0.05. ∆ means the points higher than
Prompt-base.

Methods P R F1 ∆

Prompt-base 49.7 69.4 57.9* -
DPJLw.o./reuse−w/o.gate 50.2 70.4 58.6* +0.7
DPJLw./reuse−w/o.gate 52.1 71.2 60.1* +2.2
DPJLw.o./reuse−w/.gate 62.5 63.6 63.0* +5.1
DPJLFull 63.6 66.7 64.6* +6.7

Table 4: Ablation results on CTB. * denotes a significant
test at the level of 0.05. ∆ means the points higher than
Prompt-base.

Effect of Derivative Prompts. Comparing Prompt-
base with DPJLw/o.reuse−w/o.gate, despite simply
splicing the derivative prompt after the sentence,
the model performance has improved. It illustrates
that the derivative prompts contain the knowledge
for identifying causality and this knowledge can
assist Prompt-based ECI through context. In the
same way, all the methods using derivative prompts
are better than Prompt-base, indicating that adding

4http://github.com/tommasoc80/EventStoryLine
5http://github.com/duncanka/BECAUSE

derivative prompts is an effective method to im-
prove prompt-based ECI model.

Figure 4: The accuracy of explicit set.

Figure 5: The accuracy of implicit set.

Effect of Gate Units. On both datasets, the meth-
ods with gate units outperform the methods with-
out gate units whether the label words are reused
in derivative prompts or not. This proves that gate
units can provide a highway linking the ECI model
and derivative prompts, which can better utilize the
information in derivative prompts to improve the
performance of causality identification in the case
of a small number of training samples.

Effect of Label Word Reuse. On both ESC and
CTB, the methods with label words reuse out-
perform the methods without label words reuse
whether with or without gate units. It illustrates
that reuse label words in derivative prompts can use
the encoding process of the RoBERTa to strengthen
the learning of the label word embeddings, and at
the same time, the label words can obtain the se-
mantic features of implicit and explicit causalities
through derivative prompts. It is worth noting that
the effect of label word reuse on CTB is not as
obvious as that on ESC, which may be due to the
fact that there are fewer training samples in CTB
which cannot fully train the word embeddings of
label words.
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Samples Characteristics Prompt-base & CED & CWD DPJL

1 Iraq said it invaded Kuwait because of disputes over oil and money. Simple  causality P P P P

2 Fans and family mourn her passing , but Williams had a long , full life Implicit  causality O P O P

3
The general strike was staged as a protest against a new round of draconian 

austerity measures. 

New cue 

word/Semantic 

association
O P P P

4

Mr. Potach notes older , more traditional groups like the Ku Klux Klan are 

also opening new chapters , thanks in part to their ability to use new 

technologies like the Internet .

New cue word O O P P

Figure 6: Case study. Bold words are target events, and underlined words indicate causal cue words. & CED and &
CWD represent CED and CWD used in training, respectively.

4.5 Effect of Derivative Tasks on Implicit and
Explicit Causalities

To illustrate the effect of derivative tasks on implicit
and explicit causalities respectively, we divide the
test data into implicit set and explicit set accord-
ing to whether the test data contains causal cue
words. The samples in implicit set contain implicit
causalities and the samples in explicit set contain
explicit causalities. Then we limit the kinds of
derivative prompts in the model, where Prompt-
base+CWD means we only use the prompts of
CWD, Prompt-base+CED represents our method
only using the prompts of CED. All methods with
derivative prompts are consistent with DPJL except
for the different types of derived tasks. We report
the accuracy of these methods on both test sets.

As shown in Figure 4, joint CWD can signifi-
cantly improve the accuracy of the model on ex-
plicit set, which proves that CWD can effectively
elicit the ability of PLM to detect causal cue words,
thereby improving the performance of the model
in identifying explicit causalities. A similar phe-
nomenon also occurs in Figure 5, the CED can
effectively improve the performance of prompt-
based ECI model on implicit set. It can also be
found that, joint CED also helps to identify ex-
plicit causality to a certain extent, because CED
not only enhances the understanding of event se-
mantics, but also enhances the understanding of
underlying causal expressions in context.

4.6 Case Study
In order to visually demonstrate the effectiveness of
each of our derivative prompt joint learning method
and the effect of each derivative task, we conducted
a case study. As shown in Figure 6, case 1 is a sim-
ple sample of causality with a causal cue word.
All methods can correctly identify the causality be-
tween target event pair. Case 2 and case 3 show
that the CED task can effectively elicit the causal

semantic knowledge of events in PLM, thus im-
proving the effect of ECI between related events.
However, in case 4, there is no strong semantic rela-
tionship between opening and use, and the causal
cue words thanks did not appear in the training
set, so the method only using CED can’t correctly
identify the causality between the event pairs. Case
3 and case 4 shows that CWD can elicit PLM’s
ability to identify causal cues, and then make the
model show good generalization ability when new
cue words appear. However, the method only with
CWD can’t correctly identify the causality in case
2, which shows that only using CWD cannot ex-
tract implicit causality well. DPJL can correctly
extract all causality, which shows that our proposed
method can strengthen the effect of ECI model ex-
traction to identify explicit causality and implicit
causality at same time by joint two derivative cue
learning tasks.

Finally, the experiments verify that (1) the
prompt-based method can effectively improve the
generalization ability of the ECI model by elicit-
ing causal knowledge in PLMs, and (2) the joint
learning of derivative prompts can strengthen the
model’s ability to identify different causalities.

5 Conclusion and Future Work

In this paper, we first introduced a new prompt-
based paradigm to event causality identification and
proposed a new derivative prompt joint learning
method, i.e, DPJL. The proposed method adopts
two new derivative tasks, i.e., the causal cue word
detection and causal event detection, to strengthen
the ability of an ECI model in identifying the ex-
plicit causality and implicit causality respectively.
The experimental results demonstrate that the pro-
posed method achieves the state-of-the-art perfor-
mance with at least 11 percent F1 improvement on
both of two well-known benchmarks, i.e., EventSto-
ryLine and Causal-TimeBank. Additionally, the
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detailed analysis suggests the effectiveness of joint-
learned prompt-based derivative tasks on perfor-
mance improvement in downstream tasks. In the
future, we will try knowledge-enhanced methods
to construct both of derivative tasks and data for
an ECI model, which may fill the gap between
knowledge and samples.
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A Appendix

We set up external ablation experiments to test the
effect of different derivative tasks on EventStory-
Line v1.5 (ESC v1.5) (Caselli and Inel, 2018) and
BECAUSE (Dunietz et al., 2017). ESC v1.5 is
an updated version of ESC v0.9, which contains
1,204 sentences and 7,778 event pairs, covering 22
news topics. The corpus is annotated by experts
and crowd (Caselli and Inel, 2018). BECAUSE
contains a total of 5380 sentences, and 1803 causal
event pairs. The experimental setting is the same
as that in Section 4.

We compare our proposed DPJL with the fol-
lowing methods: RoBERTa-base, a RoBERTa-
base baseline which uses a linear classifier af-
ter RoBERTa for ECI. The input of the classifier
is the hidden feature of target events; Prompt-
base, a prompt-based baseline, which is our ba-
sic proposed ECI method mentioned in section
3.3; Prompt-base+CED, the method of joint learn-
ing with prompt-base method and CED; Prompt-
base+CWD, the method of joint learning with
prompt-base method and CWD. To show the real
effect of CWD and CED, we use the label words
reuse and gate units of this paper in Prompt-
base+CED and Prompt-base+CWD. The exper-
imental results on ESC v1.5 and BECAUSE are
shown in Table 5 and Table 6.

Methods P R F1 ∆

RoBERTa-base 53.6 64.3 59.3* -
Prompt-base 64.0 64.6 64.3* +5
Prompt-base+CWD 66.5 67.9 67.2* +7.9
Prompt-base+CED 64.4 70.4 67.3* +8.0
DPJLFull 76.9 67.5 71.9* +12.6

Table 5: Experimental results on ESC v1.5. * denotes a
significant test at the level of 0.05. ∆ means the points
higher than RoBERTa-base.

Methods P R F1 ∆

RoBERTa-base 50.0 52.6 51.3* -
Prompt-base 53.7 52.9 53.3* +2
Prompt-base+CWD 52.9 56.2 54.5* +3.2
Prompt-base+CED 61.5 52.6 56.7 * +5.4
DPJLFull 58.8 55.6 57.1* +5.8

Table 6: Experimental results on BECAUSE. * denotes
a significant test at the level of 0.05. ∆ means the points
higher than RoBERTa-base.

DPJL achieves the highest F1 score on both
datasets, which demonstrates the consistent effec-

tiveness of our method. Prompt-based is superior
to RoBERTa-base, which shows that prompt learn-
ing can better elicit causal knowledge in PLM
than simple fine-tunig method in ECI task. The
performance of Prompt-base+CWD and Prompt-
base+CED is better than that of Prompt-based,
which shows that joint both derivative tasks im-
prove the model’s ability to elicit the ability of
ECI from PLM. Prompt-base+CED outperforms
Prompt-base+CWD on BECAUSE, this may be be-
cause BECAUSE pays more attention to evaluating
the ability of the model to identify implicit causal-
ity, while CED can help the ECI model to enhance
the ability to identify the causal semantic associa-
tion between events in PLM by predicting causal
events. DPJL combines two kinds of derivative
tasks, and the performance exceeds that of using
only one kind of derivative task, which shows that
both derivative tasks are meaningful to ECI and
can complement each other.

The experimental results on these two datasets
are consistent with the experimental results in the
main paper. The results show that our method can
adapt to more datasets, and further verifies the ef-
fectiveness of DPJL on ECI task.
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