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Abstract

Cross-domain named entity recognition aims to
improve performance in a target domain with
shared knowledge from a well-studied source
domain. The previous sequence-labeling based
method focuses on promoting model parame-
ter sharing among domains. However, such
a paradigm essentially ignores the domain-
specific information and suffers from entity
type conflicts. To address these issues, we
propose a novel machine reading comprehen-
sion based framework, named DoSEA, which
can identify domain-specific semantic differ-
ences and mitigate the subtype conflicts be-
tween domains. Concretely, we introduce an
entity existence discrimination task and an
entity-aware training setting, to recognize in-
consistent entity annotations in the source do-
main and bring additional reference to bet-
ter share information across domains. Experi-
ments on six datasets prove the effectiveness of
our DoSEA. Our source code can be obtained
from https://github.com/mhtang1995/DoSEA.

1 Introduction

Named entity recognition(NER) is a fundamental
task in natural language processing and has been
extensively studied in various domains. However,
acquiring a high performance NER model heav-
ily relies on labor-intensive annotated data (Huang
et al., 2015; Devlin et al., 2019). Thus, there is a
growing interest in cross-domain NER, which aims
to exploit the information on a well-studied source
domain to improve the performance in a target do-
main (Pan and Yang, 2010). Following Daumé III
(2007), we focus on the supervised cross-domain
NER setting, which utilizes abundant annotated
samples from the source domain and small anno-
tated samples from the target domain.

Previous studies (Kim et al., 2015; Lin and Lu,
2018; Wang et al., 2018b; Jia and Zhang, 2020) typ-
ically treat cross-domain NER task as a sequence
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Figure 1: Examples from CoNLL-2003 and CrossNER
Politics dataset.

labeling problem, classifying each word as a type
of entity. However, cross-domain NER is chal-
lenging due to the entity type difference between
domains, since the target domain contains specific
entity types. As Figure 1 shows, CrossNER Politics
dataset (Liu et al., 2021) contains specific entity
types(e.g., Event, Politician, Country and Politi-
cal Party), which are not labeled in the CoNLL-
2003 dataset (Sang and Meulder, 2003). Thus, the
sequence-labeling based method commonly adopts
separate model structures(CRF or softmax layer)
for each domain, which primarily limits the param-
eter sharing across domains.

A series of fine-tune methods (Lee et al., 2017;
Lin and Lu, 2018) and multi-task learning meth-
ods (Wang et al., 2018b; Jia and Zhang, 2020) have
been proposed for promoting parameter sharing.
The fine-tune method first trains a model using
source domain samples, then fine-tunes the model
using target domain samples with an initialized la-
bel decoder. However, it depends on the sizes of
target domain samples to learn a strong label de-
coder. Conversely, the multi-task learning method
simultaneously trains a model for both domains
under the jointly training strategy, and it essen-
tially adds auxiliary tasks to facilitate parameter
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sharing. Specifically, Wang et al. (2018b) adds
KL-divergence in the features of identical entity
types between each domain’s CRF layer. Jia and
Zhang (2020) models entity type features as sepa-
rate cell states in a multi-cell compositional LSTM
structure, then shares the same entity type’s fea-
tures across domains. However, they ignore the
domain-specific information and suffer from en-
tity type conflicts. For example, CoNLL-2003 and
CrossNER Politics both contain "Location" enti-
ties, but the latter requires a distinction between
"Location" and "Country", which is not considered
in the former. In this case, previous work (Liu
et al., 2021) indicates the subtype conflicts, since
the cross-domain NER model may tend to classify
"Country" as “Location” entities.

To this end, we propose a novel framework
named Domain-specific Entity-aware(DoSEA) net-
work for cross-domain NER, which aims to mit-
igate the negative impacts raised by the domain-
specific entity types. Specifically, instead of assign-
ing a separate model structure for each domain, our
DoSEA formalizes NER as a machine reading com-
prehension (MRC) task (Li et al., 2020), which can
naturally combine domain-related questions with
annotated samples, to share all model parameters
across domains. Moreover, we propose an entity
existence discrimination (EED) task and an entity-
aware training setting to recognize inconsistent en-
tity annotations and handle the subtype conflicts.
The EED task is designed to determine whether
each type of entity exists in a sentence. As for the
entity-aware training setting, we utilize the EED
task to aware the presence of inconsistent annotated
entities in source domain samples, then transform
these entities to the target domain-specific entities
by leveraging the explicit hierarchical relationship.
The above procedures not only alleviate the sub-
type conflicts but also bring additional reference
to better share information across domains. The
main contributions of this paper are summarized as
follows:

• We propose a novel framework named DoSEA
for cross-domain NER, to handle the issues
raised by the specific entity types from the
target domain.

• In our method, we design an entity existence
discrimination task and an entity-aware train-
ing setting to alleviate the subtype conflicts,
which can identify the presence of each type

of entity and transform the inconsistent anno-
tated entities into hierarchical target domain-
specific entities in source domain samples.

• Experimental results on six datasets show the
superiority of our DoSEA over the state-of-
the-art methods.

2 Related Work

MRC for NER Task. The goal of the machine
reading comprehension(MRC) task is extracting
answer spans from a sentence through a given ques-
tion. There have been successful attempts to for-
malize other task as MRC task, such as NER (Li
et al., 2020), relation extraction (Li et al., 2019) and
event extraction (Liu et al., 2020a). As for the NER
task, Li et al. (2020) first formulate NER as MRC
to handle both flat and nested NER tasks. Xue
et al. (2020) proposed a coarse-to-fine pre-training
framework for NER task based on the MRC frame-
work. Zhang et al. (2021) add MRC task in the
training process of zero-resource NER task.

Cross-domain NER. Multi-task learning meth-
ods (Yang et al., 2017; Wang et al., 2018b; Jia
et al., 2019; Jia and Zhang, 2020) have been popu-
lar in cross-domain NER, which is used to add the
auxiliary task to improve performance. Jia et al.
(2019) jointly trains the NER and LM tasks in a pa-
rameter generator network. Jia and Zhang (2020)
proposed a multi-cell compositional LSTM struc-
ture for cross-domain NER, which models each
entity type as a separate cell state. Fine-tune meth-
ods (Lee et al., 2017; Rodríguez et al., 2018; Cui
et al., 2021) also show strong performance, which
pre-trained a model in a source domain and then
fine-tune the model in a target domain.

Some works try to achieve accurate transfer
learning for cross-domain NER (Ruder and Plank,
2017; Wang et al., 2018a; Chen et al., 2021). Wang
et al. (2018a) classifies source domain samples by
similarity metrics and assigns different weights for
training. Chen et al. (2021) proposes a data aug-
mentation approach to transform the data repre-
sentation across domains. A few works consider
the relationship between entity types (Kim et al.,
2015; Qu et al., 2016). Qu et al. (2016) considers
the mentioned relationship between the source and
target entity types, such as "Professor" and "Stu-
dent". Compared with them, our proposed DoSEA
is built on the MRC model, which aims to handle
the issues raised by the specific entity types from
the target domain.
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3 Methodology

Figure 2 shows that DoSEA has three components,
including a context encoder, a multi-task layer and
an entity-aware training setting. The multi-task
layer contains entity existence discrimination(EED)
task and entity span prediction(ESP) task. In the
entity-aware training setting, we adopt different
training processes for source and target domains.

3.1 Problem formulation

Given a sentence x = (x1, x2, · · · , xn), where n
denotes the word length of sentence x. An entity
ett = (xtstart, · · · , xtend) is a substring of x satisfy-
ing start≤end, where t represents the entity type.
Besides, we define yt ∈ {0, 1} as the ground-truth
of whether the t type of entity exists in sentence x.

Combining with Questions. Given sentence xr
from domain r ∈ {S, T }, we need to combine ev-
ery entity query questions Qr = {qr

1,qr
2, ...,qr

m}
with sentence xr, where m denotes the number
of entity types of domain r. The entity annota-
tion guidelines are used as references to construct
questions. In particular, we use questions from the
target domain for common entity types between
domains. Therefore, we obtain a set of quadru-
ples (qr

t , y
r
t , [ett,r1 , · · · , ett,rl ], xr) in each domain

r ∈ {S, T }, where l denotes the number of t type
of entities in sentence xr.

Meanwhile, if source domain S contains the en-
tity type which has a hierarchical relationship with
the entity type specific to target domain T , the
questions of these entity subtypes are also com-
bined with source domain sentence xS for entity-
aware training. Thus, we obtain a set of quadru-
ples (qT

subt
, unknow, unknow, xS) in domain S,

where qT
subt
∈ QT denotes the question of entity

subtype subt.

3.2 Context Encoder

Normally, we combine question qr
t and sentence

xr as a string {[CLS],qr
t ,[SEP], xr}, where

[CLS] and [SEP] are special tokens. Then, the
combined string is sent into the input embedding
layer. We use BERT (Devlin et al., 2019) as the
input embedding layer to generate the contextu-
alized word embeddings. Since question qr

t is a
natural language sequence that may contain en-
tity examples and disturb accurate entity span pre-
diction, we only retain the sentence embeddings
V = [vd1, vd2, ..., vdn] for the next steps, where d is

the output dimension of BERT. To encode sentence-
level features, the retained embeddings are fed into
a standard bi-directional LSTM layer (Graves and
Schmidhuber, 2005). The hidden output of BiL-
STM can be expressed as follows:

−→
h i = LSTM(

−→
h i−1, v

d
i )

←−
h i = LSTM(

←−
h i+1, v

d
i )

(1)

where
−→
h i and

←−
h i denote the forward and backward

output of BiLSTM. The final representation of a
word is hi = [

−→
h i;
←−
h i]

3.3 Multi-task Layer
Given the sentence-level features, the purpose of
the multi-task layer is to distinguish the existence
of each type of entity and predict entity spans.

Entity Existence Discrimination. To model the
relationship between sentence and various entity
types, we introduce an entity existence discrimina-
tion task to identify whether a sentence contains
each type of entity. Logically, this task is sensitive
to the semantic feature and certain keywords of the
sentence, then aggregates this information to make
a particular prediction.

In general, the special characters [CLS] with-
out semantic property is often used to represent
the semantic features of the whole sentence. How-
ever, using the semantic feature alone to predict
the existence of entities is not enough, because it
lacks connections to the entity types. Therefore, we
first use an entity type embedding layer to generate
entity type features E = [e1, ..., em]. Then, to cap-
ture the relationship between sentence and entity
types, the sentence features and entity type features
are incorporated by leveraging the attention mech-
anism (Vaswani et al., 2017). Given sentence-level
features H = [h1,h2, ...,hn], hENT

j represents the
incorporated feature associating with entity type t
as follow:

hENT
t =

n∑
i

αi,tWvhi (2)

αi,t =
1

zt
(Wqet)TWkhi (3)

where Wq∈Rd×d, Wk∈Rd×d, Wv∈Rd×d are pa-
rameter matrices and zt is the normalized factor:

zt =
n∑
i

(Wqet)TWkhi (4)
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Figure 2: The Domain-specific entity-aware framework(DoSEA) for cross-domain NER. DoSEA has three com-
ponents: a context encoder, a multi-task layer and an entity-aware training setting. There are different training
processes for source and target domains.

The weight αi,t reflects the degree of relevance
between word xi and entity type t. Finally, a con-
tacted feature ĥ = [hCLS ;hENT ] is fed into a soft-
max layer to predict the probability of the existence
of entities queried by question qj :

ŷt = softmax(Wcĥ + bc) (5)

where Wc∈Rd×2, bc∈R2 are parameter matrices.
Therefore, the cross-entropy loss for entity ex-

istence discrimination task is denoted as follows:

LEED = − 1

m

m∑
t

ytlog(p(ŷt)) (6)

Entity Span Prediction. The classical MRC-
NER model directly uses word embeddings to pre-
dict the start and end positions of entities. How-
ever, to enhance the task relationship between the
EED and ESP tasks, the entity type embeddings
E = [e1, ..., em] are shared in both tasks.

Specifically, we improve the entity prediction
task in that the start and end positions of entities are
predicted by the absolute distance between word
embeddings and entity type embeddings. The en-
tity type embedding et is shared as follows:

h
′
i = |norm(hi)− et| (7)

where norm(·) is instance normalization func-
tion (Ulyanov et al., 2016), and | · | means the
absolute value. Therefore, h

′
i represents the abso-

lute distance between word and entity type repre-

sentations. To extract entity spans, h
′
i is fed into

two softmax layers to predict the probability of
each token being a start or end position of entities
queried by question qt:

Ps(y
s
i,t|xi) = softmax(Wsĥ′

i + bs) (8)

Pe(y
e
i,t|xi) = softmax(Weĥ′

i + be) (9)

where Ws,We∈Rd×2, bs,be∈R2 are parameter
matrices.

As mentioned above, the training samples are
a set of quadruples (qt, yt, [ett1, · · · , ettl ], x)) for
DoSEA. Meanwhile, entities [ett1, · · · , ettl ] can
be paired with two label sequences [ys1,t, ..., y

s
n,t],

[ye1,t, ..., y
e
n,t], which represent the ground-truth la-

bel of each token xi being the start position or end
position of the entities queried by question qt. The
cross-entropy losses of start and end positions pre-
diction are denoted as follows:

Ls = −
1

mn

m∑
t

n∑
i

ysi,tlog(Ps(ŷ
s
i,t|xi)) (10)

Le = −
1

mn

m∑
t

n∑
i

yei,tlog(Pe(ŷ
e
i,t|xi)) (11)

The total loss of entity span prediction task is de-
noted as follows:

LESP = Ls + Le (12)
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3.4 Entity-aware Training Setting
As Figure 2 shows, considering the domain-specific
entity types, we design different training processes
for {S, T } domains.

Target Domain Training. We adopt normally
jointly training process for target domain T , in
which the EED task and the ESP task are training
together. Therefore, the training loss for target
domain T is defined as follows:

LT = LTESP + γLTEED (13)

where γ is auxiliary task weight.

Source Domain Training. In order to avoid
learning inaccurate information, we don’t train the
EED task with samples from source domain S.
In contrast, given the source domain samples, the
EED task is utilized to recognize the entities with
inconsistent annotations between domains. Then
we transform these inconsistent entities into hierar-
chical entities specific to target domain.

Specifically, we can obtian a set of supertype-
subtype pair samples as discussed in the previous
Section 3.1, in which a pair of the sample con-
sists of (qS

supt , y
S
supt , [etsupt,S1 , · · · , etsupt,Sl ], xS)

and (qT
subt

, unknow, unknow, xS). In the begin-
ning, we send the subtype sample into the EED task
for acquiring the existence prediction result ŷSsubt .
Then, we presume that if the sentence xS contains
supertype entities and the hierarchical subtype enti-
ties are predicted to exist, these supertype entities
can be transformed into subtype entities. Finally,
we obtain the transformed samples to train the ESP
task together, which consists of (qS

supt , None, xS)
and (qT

subt
, [etsubt,S1 , · · · , etsubt,Sl ], xS). The train-

ing loss for source domain S is defined as follows:

LS = LSuntrans
ESP + δLStrans

ESP (14)

where δ is the data weight, and the source domain
samples are divided into untransformed and trans-
formed parts.

4 Experimental Settings

4.1 Datasets.
We take CoNLL-2003 dataset (Sang and Meulder,
2003) as the source domain for all experiments.
We use CrossNER datasets (Liu et al., 2021) and
MIT Movie Review dataset (Liu et al., 2013) as the
target domain datasets. Statistics of these datasets
are shown in Table 1.

Domain Entity Type Train. Dev. Test.

CoNLL-2003 Dataset

Newswire 4 15.0K 3.5K 3.7K

CrossNER Datasets

Politics 9 0.2K 0.5K 0.6K
Science 17 0.2K 0.5K 0.5K
Music 13 0.1K 0.4K 0.5K
Literature 11 0.1K 0.4K 0.4K
Artificial
Intelligence

12 0.1K 0.4K 0.4K

MIT Movie Review Dataset

Movie 12 9.7K - 2.3K

Table 1: Statistics of datasets.

Hierarchical Entity Pairs. CoNLL-2003 is an-
notated with "Person", "Location", "Organization"
and "Miscellaneous" entities. CrossNER datasets
consist of five different domains: Politics, Science,
Music, Literature and Artificial Intelligence(AI).
Moreover, they all contain four overlapped en-
tity types and hierarchical entity subtypes with
CoNLL-2003. Especially, Politics domain contains
"Politician", "Political Party" and "Country" enti-
ties. Science domain contains "Scientist", "Uni-
versity" and "Country" entities. Music domain
contains "Artist", "Band" and "Country" entities.
Literature domain contains "Writer" and "Coun-
try" entities. AI domain contains "Researcher",
"University" and "Country" entities. Entity types
in MIT Movie Review and CoNLL-2003 are non-
overlapping, but MIT Movie Review contains "Ac-
tor", "Character" and "Director" entities which are
subtypes of "Person" entities.

4.2 Baseline Methods

In the beginning, we consider a classical method,
BiLSTM-CRF (Huang et al., 2015), which com-
bined the bi-directional LSTM network and con-
ditional random fields(CRF) for sequence label-
ing task. Based on this, there are two improved
methods Coach (Liu et al., 2020b) and Multi-
Cell LSTM (Jia and Zhang, 2020). Coach pro-
posed a two-step approach for cross-domain NER,
it first detects whether the tokens are entities or
not, then predicts the specific entity types. Multi-
Cell LSTM investigated a multi-cell compositional
LSTM model structure, which models each entity
type using a separate cell state.
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Models Pol. Sci. Mus. Lite. AI. Mov. Avg.

BiLSTM-CRF 53.89 49.12 43.65 41.87 43.18 77.52 51.54
BiLSTM-CRF-joint† 56.60 49.97 44.79 43.03 43.56 78.11 52.68
Coach† 61.50 52.09 51.66 48.35 45.15 78.59 56.22
BERT-Tagger† 66.56 63.73 66.59 59.95 50.37 79.37 64.43
BERT-Tagger-joint† 68.85 65.03 67.59 62.57 58.57 80.04 67.11
Multi-Cell LSTM(BERT)† 70.56 66.42 70.52 66.96 58.28 82.22 69.16

TemplateNER 65.41 62.93 64.67 64.55 57.64 78.56 65.62
MRC-NER 70.23 67.25 70.64 62.53 62.77 83.28 69.45
MRC-NER-joint 72.37 67.70 71.87 66.67 64.65 85.87 71.52

DoSEA w/o LEED+LStrans
ESP 72.41 68.20 71.93 66.74 64.77 86.19 71.71

DoSEA w/o LEED 73.31 70.61 72.55 67.35 65.23 86.74 72.63
DoSEA w/o LStrans

ESP 73.46 70.13 72.39 67.89 65.24 86.91 72.67
DoSEA(Ours) 75.52∗ 71.69∗ 73.10∗ 68.59∗ 66.03∗ 87.31∗ 73.71∗

Table 2: Cross-domain experiment results on six domain datasets compared to the baseline methods. † indicates the
results on CrossNER datasets are from Liu et al. (2021). "joint" postfix means the model jointly trains on both
domains. "w/o" is a abbreviation of "without".

We also compare BERT-based methods, includ-
ing BERT-Tagger (Devlin et al., 2019) and Multi-
Cell LSTM(BERT) method that leverages the out-
puts of BERT as contextualized word embeddings.
As the basic model for our proposed framework,
MRC-NER (Li et al., 2020) is considered as a
baseline method too. In addition, we compare a
fine-tune method named TemplateNER (Cui et al.,
2021), which is a template-based method by us-
ing BART (Lewis et al., 2020) and also shows ef-
fectiveness in cross-domain NER. However, we
don’t compare our method with Liu et al. (2021),
because they continue pre-training the language
model BERT with abundant domain-related corpus,
which is unfair to compare with each other.

4.3 Implementation details

For all methods, word embeddings are fine-tuned
in the training process. When training BiLSTM-
CRF and Coach, we use the word-level embedding
from Pennington et al. (2014) and char-level em-
bedding from Hashimoto et al. (2017) as the input
layer. For BERT-based methods, we use the base-
sized BERT pre-trained on the Wikipedia corpus to
output contextualized word embeddings.

Since the size of training samples in CrossNER
is far smaller than CoNLL-2003, we upsample the
training samples in the target domain to keep the
balance between domains. In the training step, we
set the learning rate as 5e-5, entity type embedding
dimension dh as 768, task weight γ as 0.1 and data
weight δ as 0.2.

Domain
Separately Jointly

P R F1 P R F1

Pol. 83.16 77.82 80.40 85.44 80.31 82.79
Sci. 83.84 74.92 79.13 86.39 76.10 80.92
Mus. 75.86 71.56 73.65 78.71 75.79 77.22
Lite. 80.69 69.35 74.59 84.18 72.15 77.71
AI. 78.29 67.99 72.74 80.93 70.03 75.09
Mov. 90.87 88.21 89.52 92.56 89.66 91.09

Table 3: The entity existence discrimination task results
on six domain datasets. "Separately" means the EED
task is trained alone. "Jointly" means the EED task is
jointly training with the ESP task.

5 Results and Discussion

5.1 Main Results

Cross-domain NER. Table 2 shows the overall
performances of the proposed DoSEA against base-
line methods on six domain datasets. Our proposed
DoSEA significantly outperforms prior state-of-the-
art methods on all target domains. To be specific,
the F1 scores of DoSEA advance the previous best
method by +3.15, +3.99, +1.23, +1.92 and +1.38
pp.(e.g., percentage points.) on Politics, Science,
Music, Literature, Artificial Intelligence and Movie
domains, respectively.

Compared to the sequence-labeling based meth-
ods(e.g., BiLSTM-CRF, Coach, Multi-Cell LSTM
and BERT-Tagger), results on the MRC-NER
method show the best performance while jointly
training across domains. We speculate the main
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Model ELE. COU. POLP. POL. EVE. ORG. LOC. PER. MISC.

BERT-Tagger-joint 92.07 69.46 78.09 67.75 45.64 63.12 68.55 13.37 47.11
MRC-NER-joint 92.43 70.46 81.48 69.49 55.59 69.49 72.55 49.67 50.03

DoSEA(Ours) 92.61 72.00 81.51 74.66 45.97 72.92 81.26 58.90 50.13

Table 4: Fine-grained comparisons on the Politics domain dataset. "ELE.", "COU.", "POLP.", "POL.", "EVE.",
"ORG.", "LOC.”, “PER.” and “MISC.” denote "Election", "Country", "Political Party", "Politician", "Event",
"Organization", “Location”, “Person” and “Miscellaneous”, respectively.

reason is that the MRC-NER model parameters
are all shared across domains, while the sequence-
labeling based methods use an independent CRF
layer for each domain. However, our method shows
further performance improvement compared with
the MRC-NER method. It demonstrates the ef-
fectiveness of our proposed DoSEA, which depth
alleviates the subtype conflicts between each entity
supertype-subtype pair among domains.

Auxiliary Task. We additionally analyze the per-
formance on the entity existence discrimination
task, which plays a crucial role in the entity-aware
training setting. As shown in Table 3, the F1 scores
of the EED task are 82.79, 80.92, 77.22, 77.71,
75.09 and 91.09 in Politics, Science, Music, Liter-
ature, Artificial Intelligence and Movie domains,
respectively.

Although we only use annotated samples from
the target domain to directly train the EED task,
this task still achieves quite good performance com-
pared to the results on cross-domain NER. Mean-
while, we also study the task relationship between
the EED and ESP tasks, in which we don’t share
the entity type features and separately train the
EED task. However, the performance suffers a sig-
nificant decline in all target domains in that case.
Therefore, the experimental results indicate the pos-
itive effect of the jointly training strategy and pro-
vide support for the entity-aware training setting.

5.2 Ablation Study

We conduct ablation studies to explore the effec-
tiveness of each component in the DoSEA frame-
work. To be specific, we consider three settings in
the ablation study. (1) We first consider eliminat-
ing LStrans

ESP from Eq.14 when using source domain
samples to train the DoSEA model. In this case,
F1-scores overall target domains suffer a signifi-
cant decline. (2) To explore the interaction between
tasks, LEED is removed from Eq.13 when using
target domain samples to train the DoSEA model.

In particular, we use the separate EED model to
generate the prediction results about whether the
domain-specific subtype entities exist in the source
domain samples. Furthermore, the cross-domain
NER results suffer a severe drop of about an aver-
age of 0.98 pp on the target domains. (3) When
we both remove the LStrans

ESP and LEED, DoSEA
obtains a similar performance as the MRC-NER
method. Eventually, these empirical results suggest
that each component in DoSEA is beneficial for
cross-domain NER.

5.3 Fined-grained comparisons

To understand the performance of DoSEA at the
entity type level, we make fine-grained compar-
isons on the Politics domain dataset. As mentioned
above, we consider three hierarchical entity type
pairs in the Politics domain. "Event" to "Elec-
tion" entity type pair is not considered, because
the source domain does not contain the "Event"
entity type.

As shown in Table 4, the most interesting result
is that the BERT-Tagger method has difficulty in
identifying "Person" entities, although there are
huge annotated samples for "Person" entities in the
source domain. We speculate that the model struc-
ture with independent CRF layers seriously hinders
the transfer of knowledge from the source domain
to the target domain. However, the MRC-NER
method achieves relatively high performance on
"Person" entity type, which proves the advantages
of MRC-NER which shares all model parameters
across domains.

MRC-NER method achieves relatively higher
performance on "Event" entity type than other
methods. We found that the performance on
"Event" entity fluctuated greatly during the whole
training process. After training data statistic, we
think the reason for the instability performance
may be that the annotated samples for "Event" en-
tity are very small, only 22 samples. However,
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Sentence In India, Prime Ministers Indira Gandhi and her son Rajiv Gandhi (neither of whom were related to
Mahatma Gandhi, who was assassinated in 1948), were assassinated in 1984 and 1991 respectively.

Golden labels India: Country; Indira Gandhi: Politician; Rajiv Gandhi: Politician; Mahatma Gandhi: Politician

BERT-Tagger-joint India:[ B-location]; Indira Gandhi:[ B-person I-politician]; Rajiv Gandhi:[ B-person I-politician];
Mahatma Gandhi: [ B-person I-person]

MRC-NER-joint India:[Location; Country]; Indira Gandhi:[Person; Politician]; Rajiv Gandhi:[Person; Politician]
Mahatma Gandhi: Person

DoSEA(Ours) India: Country; Indira Gandhi: Politician; Rajiv Gandhi: Politician; Mahatma Gandhi: Politician

Table 5: The results of an example from Politics domain test dataset.
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Figure 3: The impact of weight parameters γ and δ on
the performance of Politics domain dataset.

our DoSEA accomplishes significant F1-score im-
provements over all the three hierarchical entity
type pairs, demonstrating the effectiveness in re-
ducing the subtype conflicts between domains and
providing additional reference about the entity sub-
types which are specific to the target domain.

5.4 Case study

Table 5 shows a case study comparing DoSEA with
two baseline methods, which is more representa-
tive than the others. As we can observe, BERT-
Tagger misidentifies India as a "Location" entity
and also fails to recognize all "Politician" entities.
These prediction results hurt the performance of
both entity supertype and subtype, which shows
a phenomenon of subtype conflict. Meanwhile,
the results of the BERT-Tagger method also show
label-level mistakes, which presents a challenge
to completely identify the correct entities. Since
the MRC-NER method can handle the nested enti-
ties, it identifies India as both a "Location" and
"Country" entity, which causes performance degra-
dation on "Location" entity. However, DoSEA cor-
rectly identifies all entities in the sentence, which
well demonstrates how it can mitigate the subtype
conflicts between entity types among different do-
mains.

5.5 Hyperparameter Sensibility

We explore the impact of weight parameter γ in
Eq.13 and δ in Eq.14 on Politics domain dataset.

Auxiliary Task Weight. Task weight γ affects
the training process for the multi-task inference
layer. From Figure 3, we can see that DoSEA
keeps a stable F1-scores performance on both en-
tity existence discrimination task and entity span
prediction task when γ > 0.01 and γ < 0.2, sug-
gesting the stability of the DoSEA. As γ continues
to increase, the performance of entity prediction
task began to decline, and the best γ parameter is
0.1.

Data Weight. Data weight δ controls how much
transfer knowledge the DoSEA model should learn
from the transformed subtype entities in the source
domain. As we observed, δ have a relatively higher
influence on F1 scores of the entity prediction task
when δ ≤ 0.2 and δ ≥ 0.6. Therefore, the reason-
able value range for the δ parameter is δ ≥ 0.2 and
δ ≤ 0.6.

6 Conclusion

In this paper, we propose a novel framework named
Domain-specific Entity-aware(DoSEA) for cross-
domain NER and focus on the issues raised by
the domain-specific entity types. Our framework
is built on the MRC-NER task, which shares all
model parameters across domains. Then, we intro-
duce an entity existence discrimination task and
an entity-aware training setting to alleviate the
subtypes conflicts, which learns to transform the
entities with inconsistent annotations into target
domain-specific entities in source domain sam-
ples. Experiments show that DoSEA achieves new
state-of-the-art performance over six cross-domain
benchmarks under the jointly training strategy.
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