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Abstract

Most previous studies on temporal relation ex-
traction focus on extracting temporal relations
among events and suffer from the issue of dif-
ferent forms of events, timexes and Document
Creation Time (DCT) in a document. More-
over, DCT can act as a hub to semantically
connect the other events and timexes. Unfor-
tunately, previous work cannot fully use such
critical and helpful information. To address
the above issues, we propose a unified DCT-
centered Temporal Relation Extraction model
DTRE to identify temporal relations among
events, timexes and DCT. Specifically, we first
introduce sentence-style DCT to unify the ex-
pressions of event, timex and DCT. Then, we
apply a DCT-aware graph to obtain their con-
textual structural representations. Furthermore,
we propose a DCT-anchoring multi-task frame-
work to jointly predict three tasks of temporal
relation extraction in a batch. Finally, we pro-
vide a DCT-guided global inference to further
enhance the global consistency among different
relations. Experimental results on three pop-
ular datasets TBD, TDD-man and TDD-Auto
show that our DTRE outperforms several SOTA
baselines on E-E, E-T and E-D significantly.

1 Introduction

Temporal relation extraction focuses on the occur-
rence order (TLINK) of event mentions, time ex-
pressions (timexes) and Document Creation Time
(DCT). Most previous studies only focus on the
event-centered tasks and consider three TLINKs:
event-event (E-E), event-timex (E-T), and event-
DCT (E-D). As a crucial component of relation
extraction, temporal relation extraction can help
many downstream NLP tasks, such as question an-
swering (Ning et al., 2020), summarization (Noh
et al., 2020) and timeline construction (Li et al.,
2021).
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Figure 1: Examples of temporal relations among events,
timex and DCT.

Most previous studies (Mathur et al., 2021; Liu
et al., 2021) only focus on the single E-E task, ig-
noring the other E-T and E-D tasks. The main
barricade is the hardness of combining the E-T or
E-D task with the E-E task due to their different
expression forms. Since most event mentions 1

are sentences or clauses, their rich information is
helpful for a neural network model to identify the
specific relation between two event mentions. How-
ever, timex and DCT (especially DCT) are only
word-level or phrase-level tokens, and the informa-
tion imbalance between events and timexes/DCT
will lead to the issue that it is difficult for a neu-
ral network model to extract their correct temporal
relation by a unified model.

As shown in Figure 1, identifying the temporal
relation between the two long-distance event men-
tions e2 and e9 is challenging, even for humans.
However, if we first recognize the Is Included and
Before links of (e2, DCT) and (e9, DCT), then the
After link of (e2, e9) will be much easier to obtain.
Fortunately, identifying the temporal relation be-
tween event (or timex) and DCT is relatively simple
for humans and pre-trained language models.

Since event, timex and DCT have different forms
of expressions, most previous studies (Cheng and
Miyao, 2017; Meng and Rumshisky, 2018) only
focus on E-E or regarded E-E, E-T and E-D as
three independent tasks, as we mentioned above.
They often suffer from the issues of data scarcity

1An event mention refers to a phrase, clause or sentence
within which an event is described.
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and overfitting due to the small size of available
datasets. Cheng et al. (2020) propose a model to
fuse E-E, E-T and E-D into a unified model by
introducing a learnable parameter-based DCT rep-
resentation. However, they still suffer from two
issues: 1) the different expressions of event, timex
and DCT harm the information interaction among
different tasks; 2) they ignore the importance of
DCT to connect the events and timexes in a docu-
ment.

To address the above issues, we propose a uni-
fied DCT-centered Temporal Relation Extraction
(DTRE) model to discover the temporal relations
among events, timexes and DCT in a document.
Specifically, we first introduce a sentence-style
DCT representation to unify the expressive forms
of event, timex, and DCT. Then, we generate a
DCT-aware graph to obtain their contextual struc-
tural representations. Furthermore, we propose a
DCT-anchoring multi-task learning framework to
jointly predict three temporal relations (i.e., E-E,
E-T and E-D). Finally, we provide a DCT-guided
global inference mechanism to benefit from the
high accuracies of the E-D and T-D tasks. Ex-
perimental results on three popular datasets TBD,
TDD-man and TDD-Auto show that our DTRE out-
performs several SOTA baselines on all three tasks
E-E, E-T and E-D significantly. In summary, our
contributions are as follows:

• We introduce a sentence-style DCT represen-
tation to unify the expressive forms of events,
timexes and DCT;

• We propose a DCT-aware graph to obtain the
contextual structural representations;

• We construct a DCT-anchoring multi-task
learning framework to jointly predict three
different temporal relations in one batch;

• We provide a DCT-guided global inference
mechanism to further enhance the global con-
sistency among different relations. In our fu-
ture work, we will focus on constructing more
effective DCT representation.

2 Related Work

TimeBank (Pustejovsky et al., 2003) is an early
temporal relation corpus and its extended version
TimeBank-Dense (TBD) (Cassidy et al., 2014)
adopts a dense annotation scheme in a slide win-
dow within adjacent sentences, in which there are

mainly five types of TLINKs: E-E, E-T, T-T, E-D
and T-D. MATRES (Ning et al., 2018) only con-
tains E-E relations and simplifies the relation labels
with a higher inter-annotator agreement. TDDis-
course (Naik et al., 2019) is a discourse-level tem-
poral relation dataset based on TBD, which also
focuses on E-E temporal ordering.

Early work on temporal relation extraction
(Chambers et al., 2007; Chambers and Jurafsky,
2008; Do et al., 2012; D’Souza and Ng, 2013;
Chambers et al., 2014) focused on various linguis-
tic features, including part-of-speech (POS), lexi-
cal and morphological features, dependency pars-
ing information, etc. Recent work mainly focuses
on the E-E task using neural networks. Liu et al.
(2021) and Mathur et al. (2021) show that graph-
based neural networks can help relieve informative
sparsity between long-distance event mentions in
discourse-level temporal relation extraction. Be-
sides, a bunch of efforts focus on incorporating
external resources to deal with the limited train-
ing resource, such as combining the pre-trained
temporal-aware language model (Han et al., 2021),
collecting the distantly-supervised examples (Zhao
et al., 2021), applying the transfer learning methods
to leverage complementary datasets (Ballesteros
et al., 2020). Other methods seek to enhance global
inference with structural constraints, i.e., reliev-
ing the transitive conflicts within temporal graphs
(Ning et al., 2017; Han et al., 2019).

Only a few studies consider all three tasks. Early
methods were mostly rule-based on event attributes
(Chambers et al., 2014; Mirza and Tonelli, 2016),
whose performance are deeply harmed by the vague
relation, or simply transferred the neural archi-
tecture on E-E to E-D and E-T directly via in-
put adjustment (Cheng and Miyao, 2017; Meng
and Rumshisky, 2018). Motivated by the success
of Multi-Task Deep Neural Network (Liu et al.,
2019a) that leverages different supervised learn-
ing tasks with the shared contextual embeddings,
Cheng et al. (2020) proposed a multi-category
learning framework to joint E-E, E-T and E-D. Spe-
cially, they introduce a learnable vector to represent
DCT as it does not explicitly occur in documents.

3 DTRE: DCT-Centered Temporal
Relation Extraction

The temporal relations between event mentions are
determined by their occurrence intervals (i.e., start
and end points). However, in most real-world texts,



2089

events’ intervals are rarely explicitly mentioned,
and then external knowledge or common sense is
required for temporal reasoning. One important
clue is “Had this event happened yet?” or “Is this
a future event?”, i.e., the E-D task, which is easier
and helpful for the E-E and E-T tasks.

To fully exploit the DCT representation and its
bridge function to connect events and timexes, we
propose a DCT-centered Temporal Relation Extrac-
tion model DTRE to discover the temporal rela-
tions among events, timexes and DCT. Figure 2
illustrates the overview of our DTRE framework.
We first combine the sentence-style DCT repre-
sentation with the original document as the input
of the pre-trained model (BERT or RoBERTa) to
obtain the mention embeddings of the different
types. Then, we build a DCT-Aware Graph DAG
for each document to obtain the contextual struc-
tural representations of events, timexes, DCT, etc.
Furthermore, we conduct a DCT-anchoring Multi-
Task Learning framework DAML to jointly predict
the three tasks of temporal relation extraction. Fi-
nally, we introduce a DCT-guided Global Inference
mechanism DGI to our model according to the high
accuracies of the E-D and T-D tasks.

3.1 Input Representation and Encoding

Different from most previous studies that only
use event mentions as the input, we input a
document with the annotated event mentions,
timexes and DCT to our DTRE. Formally, the
input is a document D consisting of a sen-
tence set S = {s1, . . . , si, . . . , sk}, a to-
ken set W = {w1, . . . , wi, . . . , wl}, an event
set E = {e1, . . . , ei, . . . , em}, a timex set
T = {t1, . . . , ti, . . . , tn}, an entity set V =
{v1, . . . , vi, . . . , vp} and a representation of the
document creation time DCT = {tdct}, where k, l,
m, n, p represent the total number of sentences, to-
kens, event mentions, timexes and entity mentions
in the document D, respectively. In this paper, we
do not normalize the timexes and use their original
values as the example in Figure 2.

Due to the different expression forms and the dif-
ferent amounts of tokens, it is a challenge to iden-
tify those E-T and E-D relations directly. Moreover,
DCT does not explicitly occur in the document,
making it hard to represent its semantics for tempo-
ral relation extraction. However, DCT is an anchor
to connect those event mentions or timexes in a
document-level temporal ordering graph. Hence,

Type DCT-indicator Sentence

CreatN The document is creating now.
CreatD The document is creating by {date}.
CreatNDThe document is creating now by {date}.

Table 1: Various forms of DCT representation in
sentence-style, where {date} is the specific DCT of
a document.

how to represent DCT is critical for our DTRE.
To address this issue, we propose a novel DCT
representation, which uses a generated sentence to
express the token-level DCT. In detail, a sentence
that contains DCT is used to represent DCT, and
three forms (i.e., CreatN, CreatD, and CreatND)
are shown in Table 1.

The purpose of our sentence-style DCT repre-
sentation is to make DCT have a similar sentence-
based expression as events and timexes. Hence,
DTRE can use a unified framework to extract the
E-E, E-T and E-D relations simultaneously. Specif-
ically, since most event triggers are verbs, we se-
lect “creating” to denote the occurrence of doc-
ument creation. Moreover, timex has two types,
i.e., absolute (e.g., “2022.10.10”) and relative time
(e.g., “yesterday”) that are explicitly annotated in
documents. Therefore, we also utilize date like
“20221010” extracted from the raw corpus as well
as “now” to denote DCT’s value.

Finally, we insert the DCT-indicator sentence
shown in Table 1 at the beginning of each document
to form the input (an example is shown in Figure 2).
Hence, all temporal mentions, i.e., events, timexes
and DCT, explicitly occur in the input document. In
this way we can establish the bridge of information
interaction on DCT. In the input, we also use DCT,
Ei and Ti to represent DCT, the i-th event mention,
and timex, respectively.

Following previous work (Mathur et al., 2021;
Liu et al., 2021) and for fair comparison in our
evaluation, we also use BERT and RoBERTa as
the pre-trained models to encode the input doc-
ument and obtain the embeddings of the token
set HW = {hw1, . . . ,hwi, . . . ,hwl}, the event
set HE = {he1, . . . ,hei, . . . ,hem}, the timex
set HT = {ht1, . . . ,hti, . . . ,htn}, the entity set
HV = {hv1, . . . ,hvi, . . . ,hvp}, the sentence set
HS = {hs1, . . . ,hsi, . . . ,hsk}, the document
HD = {h[CLS]|h<s>}, and the DCT set HDCT =
{hdct}.
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Figure 2: An overview of our proposed DTRE framework.

3.2 DCT-Aware Graph

To capture the structural and interactive informa-
tion between the different types of temporal men-
tions, we introduce a DCT-aware graph DAG =
{N,E} to our model. In this way, we relieve
the difference within three tasks to provide rich
discourse-level temporal clues.

Our DAG is different from previous GCN mod-
els TIMERS (Mathur et al., 2021) and UCGraph
(Liu et al., 2021). Specifically, TIMERS con-
structed three graphs (syntactic, time and rhetorical-
aware graph) on events and timexes, while UC-
Graph built an uncertainty-guided graph on events.
Different from their graph, our DAG is a DCT-
aware fully-connected graph on events, timexes,
and DCT. Moreover, our DAG is simpler than their
graphs, because it does not need the edge prediction
and optimization.

The node set N can be divided into three lev-
els: token, mention, and discourse, i.e., the token
wi ∈ W , the entity mention vj ∈ V , the event
mention ek ∈ E, the timex tl ∈ T , the DCT tdct,
the sentence sr ∈ S, and the document D. We
use the embeddings hwi,hei,hti and hdct to rep-

resent the nodes wi, ei, ti, and DCT, respectively.
For nodes consisting of multiple tokens (e.g., entity
mentions and sentences), a self-attention mecha-
nism is applied over RoBERTa/BERT embeddings
to obtain node representations following (Lee et al.,
2017). For the document D, we take h[cls] (BERT)
or h<s> (RoBERTa) as its representation. In ad-
dition, DAG is composed of six types of edges,
i.e., the relations of the affiliation, sentence bound-
ary, word dependency, sentence adjacency, entity
coreference, and semantic similarity. We initial-
ize six adjacency matrices (Aaf , Abd, Adp, Aad,
Acf , Asm) to represent them in our graph DAG
as follows, where Ay = {ay1,1, ..., a

y
i,j , ..., a

y
|N |,|N |}

(y ∈ {af, bd, dp, ad, cf, sm}).

Affiliation. A token node wi connects to its
subordinate event/entity/timex node oj ∈ V ∪E ∪
T,and oj connects to its respective sentence node
sq ∈ S. Each sentence node sq connects to the
document node D. Besides, if the i-th node in DAG
connects to the j-th node, then we set aafi,j = 1;

otherwise, aafi,j = 0, where aafi,j ∈ Aaf . In this way,
we can capture structural information on the word,
sentence and document levels.
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Sentence Boundary. Entity and event mention
pairs that occur in the same sentence usually own a
strong relevance. If an event/entity/timex mention
pair (oi, oj) occur in the same sentence, we set
abdi,j = 1; otherwise, abdi,j = 0, where abdi,j ∈ Abd.

Word Dependency. To encode the syntactic
structure, two token nodes wi and wj are connected
if they share a parent-child relation in a dependency
tree, namely we set adpi,j = 1; otherwise, adpi,j = 0,

where adpi,j ∈ Adp.
Sentence Adjacency. If two sentence nodes si

and sj are adjacent, then we set aadi,j = 1; other-
wise, aadi,j = 0, where aadi,j ∈ Aad. In this way, the
sentence ordering is retained in our DAG.

Entity Coreference. If two entity mention
nodes vi and vj refer to the same real-world entity,
then we set acfi,j = 1; otherwise, acfi,j = 0, where

acfi,j ∈ Acf . This type of edge can help identify
the temporal relations between those long-distance
event mention pairs.

Semantic Similarity. We compute the cosine
similarity ci,j(0 < ci,j ≤ 1) between any two
nodes ni and nj . We set asmi,j = ci,j , where asmi,j ∈
Asm. In this way, we can capture the rich semantic
information among events, timexes and DCT.

The above six matrices are sparse matrices and
have the same dimensions. We apply an edge nor-
malization step for the imputation of Graph Convo-
lutional Network (GCN) after generating the above
adjacency matrices as follows.

A = sigmoid(Aaf + Abd + Adp+

Aad + Acf + Asm)
(1)

Then the GCN model encodes the original node
representations H0 = HW ∪HV ∪HE∪HT ∪HS∪
HD ∪ HDCT and the adjacency matrix A through
G layers as follows.

HI = ReLU(A · HI−1 · WI) (2)

where WI is the weight matrix for the I-th (0 <
I ≤ G) layer. We denote the GCN out HG =
{m1, . . . ,m|N |}.

3.3 DCT-Anchoring Multi-Task Learning
Most previous studies often suffer from data
scarcity and overfitting due to the small size of the
available datasets and the single E-E task. Cheng
et al. (2020) proposed a multi-task learning model
SEC that puts three tasks E-E, E-T and E-D into a
batch to train, which addresses the issues. However,

SEC still suffered from two other issues. The first
is the different expressive forms of event, timex
and DCT, making it difficult for a unified model to
reveal the different types of temporal relations. The
second is that they ignore the importance of DCT
to connect the events and timexes in a document.

To address the above issues, we propose
an efficient DCT-Anchoring Multi-task Learning
(DAML) framework to unify the E-E, E-T and E-D
tasks, which can enforce the events and timexes to
pay more attention to their temporal order related
to DCT, considering the highly credible E-D and
T-D relations and their transitivity.

Firstly, our sentence-style DCT representation
can not only make DCT occur in the document,
but also erase the differences in expression among
events, timexes and DCT. In this way, DAML can
minimize the task distinction of E-E, E-T and E-
D, and make them relatively close to each other.
Hence, we train a single general classifier for all
three tasks. Specifically, not like SEC that takes
a fixed batch size, we organize all mention pairs
in the same document into a single batch, which
helps maintain global consistency in those densely
annotated corpora for each prediction via the global
relation anchored to DCT.

Thus, we represent each mention ni ∈ N by
concatenating its original BERT or RoBERTa em-
bedding hi ∈ H0 and GCN out mi ∈ HG, then
the pair representation di,j for ni, nj ∈ N is as
follows.

di,j = concat([hi;mi;hj ;mj ]) (3)

Secondly, since DCT is the anchor to connect the
relative events and timexes in a document, we incor-
porate the DCT representation hdct ∈ H0 into the
classifier to enforce the E-E and E-T pairs noticing
their temporal orders with DCT as follows.

P (r | ni, nj) = softmax(MLP([di,j ;hdct])) (4)

where MLP is the single Multi-layer Perceptron
classifier for all tasks. Then we calculate the cross-
entropy loss for each task as follows.

LT = −
∑

ni,nj∈T
logP (r = r(ni,nj) | ni, nj) (5)

where T ∈ {EE,ET,ED} refers to one of the
E-E, E-T and E-D tasks, and r(ni,nj) is the golden
label for the mention pair (ni, nj). Finally, we
combine the three task losses as follows, where α
and β are trade-off parameters.

L = LEE + α · LET + β · LED (6)
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Dataset E-E E-T E-D

TBD 6088 2001 1737
TDD-Man 6150 - 1221
TDD-Auto 38302 - 1221

Table 2: Statistics of the three datasets.

3.4 DCT-Guided Global Inference

Previous work applied different strategies for
global consistent predictions, such as ILP con-
straints (Ning et al., 2017). Recent studies found
that ILP constraints can improve consistency, while
they maybe generally harm the F1 score (Liu et al.,
2021).

In our multi-task framework DTRE, since the
performance of E-D are high reliable (e.g., F1 >
80 on TBD and F1 > 90 on TDD), we propose
a DCT-Guided Global Inference mechanism DGI
to treat all of the E-D predictions as golden labels
and use them to check whether those E-E and E-T
instances obey transitivity in document-level. For
example, if an event mention e1 is before DCT, and
DCT is before e2, then the label of (e1, e2) should
be before. Specially, if the predicted label of (e1,
e2) is vague, then we do not change it through DGI.

4 Experimentation

In this section, we first introduce the datasets and
the experimental settings, and then report results
on our proposed DTRE and baselines.

4.1 Datasets and Experimental Settings

We evaluate our DTRE on two popular datasets
TimeBank-Dense (TBD) (Cassidy et al., 2014) and
TDDiscourse (TDD) (Naik et al., 2019). TBD
densely annotated 4 TLINKs (E-E, E-D, E-T and
T-D) within an adjacent sentence slide window (as
DCT does not explicitly occur in texts, each event
or Timex has a temporal relation annotation with
DCT). TBD has six types of labels, i.e. before, af-
ter, include, is included, simultaneous, and vague.
There are 243 T-D instances (2%) in TBD, we do
not distinguish T-D with E-D for simplicity in this
paper. TDD is a discourse-level temporal ordering
corpus and has five types of event temporal rela-
tions except for the vague relation in TBD, which
makes the class distribution more balanced. TDD
consists of two subsets: TDD-Man and TDD-Auto,
which are manual and auto annotated, respectively.
Since TDD does not annotate E-D relation, we ad-

ditionally take the E-D examples in TBD (except
those vague samples) into the training step, as TDD
shares the same documents and event annotations
with TBD. Table 2 shows the statistics of the three
datasets.

We split the standard train/dev/test sets on TBD
and TDD datasets following (Mathur et al., 2021)
and report Precision (P), Recall (R), and micro-F1
scores. Since previous studies on TBD treat vague
as none type (Liu et al., 2021) or positive type
(Cheng et al., 2020) when calculating F1 scores,
we report both (five types/six types) for fair com-
parison.

In DAG, we utilize SpaCy2 to extract the entities
and word dependency trees. Entity coreference res-
olution is obtained by neuralcoref3 toolkit. We use
cosine_similarity()4 to obtain the cosine similarity
between mentions. We tune all the hyperparame-
ters on the development set. For the pre-trained en-
coder, we choose BERT-base and RoBERTa-large
architecture following previous work for fair com-
parison. The number of MLP layer is set to 2, and
the number of GCN layer is set to 2. The hidden
dimension of GCN is set to 768 and 1024 for BERT
and RoBERTa, respectively. The trade-off parame-
ters α and β in Eq.6 are both set to 1.0.

4.2 Experimental Results

To evaluate the performance of our model DTRE,
we conduct seven strong baselines for comparison
as follows:

• DP-RNN (Cheng and Miyao, 2017): a model
applied event pair’s shortest dependency path
(SDP) into Bi-LSTM, while it utilizes single
event’s DP branch for the E-D task;

• GCL (Meng and Rumshisky, 2018): a
context-aware neural network with a uniform
architecture for E-E, E-T and E-D;

• SEC (Cheng et al., 2020): a multi-task source
event centric model that dynamically managed
event representations across three TLINK
types;

• Rand (Cheng et al., 2020): a multi-task model
that RNN module is removed in SEC, which

2https://spacy.io/
3https://github.com/huggingface/

neuralcoref/
4https://pytorch.org/docs/stable/nn.

functional.html

https://spacy.io/
https://github.com/huggingface/neuralcoref/
https://github.com/huggingface/neuralcoref/
https://pytorch.org/docs/stable/nn.functional.html
https://pytorch.org/docs/stable/nn.functional.html
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Method E-E E-T E-D

DP-RNN -/52.9 -/47.1 -/54.6
GCL -/57.0 -/48.7 -/48.9
SEC∗ -/65.0 -/55.8 -/65.9
Rand∗ 63.0/61.4 60.2/54.8 75.9/65.2
ECONET† 66.8/- -/- -/-
TIMERS∗ 67.8/- -/- -/-

BERT∗ 62.2/59.7 49.4/49.0 73.8/69.4
RoBERTa† 62.4/59.8 51.5/49.8 76.3/72.1

DTRE∗ 69.2/68.4 64.9/62.1 77.7/73.6
DTRE† 72.3/70.2 70.6/67.5 81.9/75.8

Table 3: F1-score comparison of E-E, E-T and E-D on
TBD. The figures before and after “/” refer to the results
on five and six types, where “*” and “†” refer to the
encoder BERT and RoBERTa, respectively.

uses randomly initialized learnable embed-
dings to represent DCT.

• BERT-based (Devlin et al., 2019) and
RoBERTa-based (Liu et al., 2019b) Trans-
former: the models follow (Zhao et al., 2021)
to conduct a pair-wise classification in which
the E-D task utilizes our DCT representation;

• UCGraph (Liu et al., 2021): the first work
introducing graph representation learning and
uncertainty modeling to temporal relation ex-
traction;

• TIMERS (Mathur et al., 2021): a graph-based
method on the E-E task that merges syntactic,
temporal, and rhetorical information;

• ECONET (Han et al., 2021): a pre-trained
method on the E-E task using millions of raw
temporal relative data.

Table 3 and Table 4 show the performance com-
parison of our model DTRE and the baselines on
the datasets TBD, TDD-Man and TDD-Auto, re-
spectively. It can be observed that our model DTRE
outperforms all baselines on the three datasets sig-
nificantly (significance test with p < 0.05).

Compared with the SOTA models TIMERS (E-
E) and SEC (E-T and E-D) on TBD, DTRE im-
proves the F1-score by 4.5, 11.7, and 9.9 on the
three tasks E-E, E-T and E-D, respectively. Com-
pared with the SOTA model TIMERS on TDD-
Auto and TDD-Man, DTRE gains improvements
(E-E) of 10.7 and 10.8 on F1 score, respectively.

TDD-Man TDD-Auto

Method P R F1 P R F1

UCGraph∗ 44.5 42.3 43.4 66.1 56.9 61.2
TIMERS∗ 43.7 46.7 45.5 64.3 72.7 71.1

BERT∗ 39.9 39.9 39.9 62.3 62.3 62.3
RoBERTa† 44.8 44.8 44.8 76.7 76.7 76.7

DTRE∗ 50.0 50.0 50.0 70.2 70.2 70.2
DTRE† 56.3 56.3 56.3 81.8 81.8 81.8

Table 4: Performance comparison of E-E on TDD-Man
and TDD-Auto, where “*” and “†” refer to the encoder
BERT and RoBERTa, respectively.

These results verify the effectiveness of our DTRE
on extracting all kinds of temporal relations. Be-
sides, compared with E-E of our DTRE in Table 3,
E-T and E-D gain much higher improvements. This
result further indicates that timexes and DCT are
the critical clues for temporal relation extraction
and our DCT representation is effective in DTRE.

In Table 3, the pre-trained models BERT and
RoBERTa achieve similar performance on TBD,
while RoBERTa outperforms BERT rapidly on both
TDD-Man and TDD-Auto in Table 4. These re-
sults indicate that RoBERTa is better than BERT
as encoder to extract the temporal relations among
inter-sentence event mentions and RoBERTa works
well on a large-scale training set (e.g., TDD-Auto).

5 Ablation Study

In this section, we conduct the ablation study of
DTRE (RoBERTa-based) on TBD as examples. It
is worth mentioning that BERT-based DTRE on
TBD and TDD also show the similar results and
we do not describe here for simplification.

5.1 Impacts of Different Modules

To verify the effectiveness of each module in
DTRE, we conduct the experiments on the follow-
ing variants and baseline:

• w/o DAG: we remove DAG and only use the
original RoBERTa embeddings in pair repre-
sentation;

• w/o DAML: we remove DAML and separately
train each task;

• w/o DGI: we remove DGI from DTRE. The
results are shown in Table 5.
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Method E-E E-T E-D

DTRE (RoBERTa) 72.3 70.6 81.8

w/o DAG -3.5 -3.6 -1.6
w/o DAML -5.4 -15.8 -2.5
w/o DGI -0.6 -2.0 -

Table 5: F1 scores of DTRE and its variants on TBD.

The results of DTRE and its variants on TBD are
showed in Table 5. When we remove DAG (w/o
DAG), the F1 scores of the E-E, E-T and E-D tasks
decrease by 3.5, 3.6, and 1.6, respectively. This
indicates the importance of the document structure
for temporal reasoning, especially for the E-E and
E-T tasks.

Removing DAML (w/o DAML) leads to the
biggest performance deterioration for E-E, E-T and
E-D by 5.4, 15.8, and 2.5, respectively. This in-
dicates that the three tasks can complement each
other in a unified framework. The significant im-
provements of E-E and E-T also show that utilizing
DCT to anchor events and timexes is an effective
way for temporal relation extraction, which can be
regarded as a bridge to link event pair or event-
timex pair.

Moreover, E-E and E-T tasks benefit from DCT-
guided global inference (w/o DGI) with the gains
of 0.6 and 2.0, although the transitivity is harmed
by vague relation to some extent, which verifies
that the E-D task can provide direct temporal clues
for E-E and E-T.

5.2 Impacts of DCT Representations

Obviously, DCT can often provide explicit tem-
poral information and be a bridge to link those
events without temporal clues. To further analyze
the impacts of the different DCT representations
and our DCT-aware feature hdct in pair representa-
tion (Eq.4), we adopt several DCT representation
strategies in Table 1 and the results are shown in
Table 6. Specifically, to compare with the exist-
ing multi-task learning model Rand (Cheng et al.,
2020), we remove DAG and DGI from our DTRE,
and only conduct the resource-shared multi-task
learning with BERT-base settings for direct com-
parison.

As showed in Table 6, compared with Rand, our
three strategies ( w/o DCTfeat) improve the F1
scores of E-E and E-T significantly. Their ran-
domly initialized learnable embeddings do not ex-

Variant E-E E-T E-D

Rand 63.0∗ 60.2∗ 75.9∗

CreatN ( w/o DCTfeat) 64.2 62.3 74.3
CreatD ( w/o DCTfeat) 66.0 62.4 75.4
CreatND ( w/o DCTfeat) 66.3 63.7 76.8

CreatN + DCTfeat 65.8 64.5 76.3
CreatD + DCTfeat 66.5 65.2 78.1
CreatND+ DCTfeat 67.1 66.0 79.3

Table 6: Effects of different representation of DCT and
the DCT-aware feature, where “+DCTfeat” denotes
that adding hdct in pair representation mentioned in
Eq.4 and “*” denotes our re-implementations on five
temporal types without the vague relation.

Resource E-E E-T E-D

Single task 66.9 54.8 79.3

E-E&E-T 68.4 66.8 -
E-E&E-D 70.8 - 80.4
E-E&E-T&E-D 71.7 68.6 81.9

Table 7: Effect of training resources on TBD, where
DGI is removed for fair comparison.

plicitly contain any DCT information, while our
representation uses a sentence to let DCT explic-
itly occur in the document. This result indicates
that DCT is an important hub to connect the events
and timexes scattered in a document. Although our
DCT-indicator sentences are simple, it also shows
that all three strategies are effective, especially Cre-
atND with the highest improvement.

We also introduce our DCT-aware feature hdct

to our model and the results in Table 6 indicate
that it can boost all three tasks, especially E-D and
E-T. In this way, we enforce the classifier to pay
more attention to the related E-D relations when
predicting E-E and E-T pairs and then can gain the
improvement for all tasks.

5.3 Impacts of DAML

We also evaluate the impacts of DAML on differ-
ent tasks. Intuitively, we remove one task from
our DTRE (RoBERTa) and the results on TBD are
shown in Table 7. It shows that the E-T and E-D
tasks play an important role in our DTRE frame-
work, which contributes the performance gains of
1.5 and 3.9 for E-E. Moreover, although the sam-
ple size of E-T is larger than that of E-D (2001
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Figure 3: Error analysis on manually annotated phe-
nomena in the test set of TDD-Man. SS: SingleSent,
CR: Chain Reasoning, TI: Tense Indicator, FE: Future
Events, HN: Hypothetical/ Negated, EC: Event Coref-
erence, CP: Causal/ Prereq, WK: World Knowledge
(detail definitions please refer to Naik et al. (2019))

vs 1494), E-D is better than E-T as the auxiliary
task of E-E. This result indicates that E-D is more
effective than E-T for this multi-task framework
and verifies the core role of DCT in temporal rela-
tion extraction. Besides, with the help of E-E, E-T
can significantly improve the F1-score by 12.0 and
the reason is that the number of E-E instances are
larger than that of E-T.

5.4 Error Analysis

To analyze the errors in our DTRE, we use the
annotated cues (Naik et al., 2019) between events in
TDD-Man and compare them with the SOTA model
TIMERS (Mathur et al., 2021). Figure 3 shows the
error percentages of eight cue types on TDD-Man.
We can find out that our DTRE deals well with HN
(Hypothetical/Negated), WK (World Knowledge)
and CR (Chain Reasoning), while it suffers from SS
(SingleSent) and FE (Future Events). The reason
behind this is that SS and FE need more event-
level semantics to predict temporal relation while
our DTRE only focuses on using the novel DCT
representation and the intrinsic relations among
event, timex and DCT to boost all three temporal
relation extraction tasks.

TIMERS suffers from TLINK pairs which de-
pend on CR, HN, EC (Event Coreference) and WK,
while our DTRE achieves significant progress on
them. This result indicates that the document-level
knowledge (e.g., DCT) is a core clue for temporal
relation extraction and our DCT-anchoring multi-
task framework regards the whole document as
the input and can incorporate the document-level
knowledge. However, TIMERS is better to deal
with TI (Tense Indicator) and CP (Causal / Pre-
req), because it focuses on mining more semantic
information inside E-E relations.

As for the errors in E-T and E-D, most of them
come from two aspects: 1) there are no explicit
temporal words or clues in events, and 2) some
timexes do not express a specific duration or time
point (e.g., “recently” and “a few years ago”).

6 Conclusion

In this paper, we proposed a unified DCT-centered
temporal relation extraction model DTRE to dis-
cover the relations among events, timexes and DCT.
Specifically, we first introduce sentence-style DCT
to unify the expressions of event, timex and DCT.
Then, we apply a DCT-aware graph to obtain their
contextual structural representations. Furthermore,
we propose a DCT-anchoring multi-task frame-
work to jointly predict three tasks of temporal re-
lation extraction in a batch. Finally, we provide a
DCT-guided global inference to further enhance the
global consistency among different relations. Ex-
perimental results on three popular datasets show
that our DTRE outperforms several SOTA base-
lines on E-E, E-T and E-D significantly. Our fu-
ture work will focus on discovering effective graph
structure and inference mechanism for temporal
relation extraction.
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