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Abstract

Due to the lack of labeled data in many real-
istic scenarios, a number of few-shot learning
methods for text classification have been pro-
posed, among which the meta learning based
ones have recently attracted much attention.
Such methods usually consist of a learner as
the classifier and a meta learner for special-
izing the learner to different tasks. For the
learner, learning rate is crucial to its perfor-
mance. However, existing methods treat it as a
hyper parameter and adjust it manually, which
is time-consuming and laborious. Intuitively,
for different tasks and neural network layers,
the learning rates should be different and self-
adaptive. For the meta learner, it requires a
good generalization ability so as to quickly
adapt to new tasks. Motivated by these issues,
we propose a novel meta learning framework,
called MetaSLRCL, for few-shot text classifi-
cation. Specifically, we present a novel meta
learning mechanism to obtain different learning
rates for different tasks and neural network lay-
ers so as to enable the learner to quickly adapt
to new training data. Moreover, we propose a
task-oriented curriculum learning mechanism
to help the meta learner achieve a better gener-
alization ability by learning from different tasks
with increasing difficulties. Extensive experi-
ments on three benchmark datasets demonstrate
the effectiveness of MetaSLRCL.

1 Introduction

Text classification is one of the most concerned
tasks in Natural Language Processing (NLP). At
present, most text classification methods are based
on supervised learning with a large amount of la-
beled data. But there is not so much labeled data,
even source data, in many scenarios (e.g., news
classification in specific domains). Some distant
supervision methods (Mintz et al., 2009) have thus
been proposed to handle this problem. However,
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this kind of methods may add a large proportion of
noisy training data (Zeng et al., 2014). Because of
this, it is a big challenge for traditional supervised
learning methods to work well in the scenarios with
very limited training data. As a result, few-shot text
classification has attracted much attention in recent
years, where there are only a few labeled instances
available for each class.

The concept of few-shot learning was formally
put forward by (Li et al., 2003). They presented
a method for learning from classes with few data,
by incorporating generic knowledge which may
be obtained from previously learned models of
unrelated classes. The existing few-shot learning
methods can be divided into three categories (Gao
et al., 2019), namely, model fine-tuning based
(e.g., (Howard and Ruder, 2018; Nakamura and
Harada, 2019)), metric learning based (e.g., (Snell
et al., 2017; Vinyals et al., 2016)), and meta
learning based methods (e.g., (Finn et al., 2017;
Munkhdalai and Yu, 2017)). In recent years, meta
learning based methods have attracted lots of in-
terests. However, they still suffer from some chal-
lenges.

A meta learning method is composed of a learner
and a meta learner. For the learner, learning rate
is crucial to its performance. Nevertheless, in ex-
isting methods, it is treated as a hyper parameter
and needs to be adjusted manually, which is time-
consuming and laborious. Intuitively, for differ-
ent tasks and different neural network layers, their
learning rates should be different. On the other
hand, the present meta learning methods cannot
be quickly generalized to new tasks (Zheng et al.,
2021) and a good generalization ability to new tasks
is necessary for the meta learner. And curriculum
learning can help models obtain better generaliza-
tion performance by guiding the training process
towards better regions in the parameter space, i.e.,
into local minima of the descent procedure associ-
ated with good generalization (Bengio et al., 2009).
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For the above reasons, we propose a novel meta
learning framework, called MetaSLRCL, for few-
shot text classification, which contains two main
mechanisms, i.e., Self-adaptive Learning Rates for
the learner and a task-oriented Curriculum Learn-
ing mechanism for the meta learner. Our gen-
eral contributions are three-fold. 1) We present a
novel meta learning mechanism with self-adaptive
learning rates, which enables different tasks and
neural network layers to obtain different learning
rates; 2) We introduce curriculum learning for the
first time, to the best of our knowledge, into few-
shot learning. Unlike traditional instance-oriented
curriculum learning, the proposed task-oriented
curriculum learning mechanism gradually learns
from different tasks with increasing difficulties; 3)
MetaSLRCL is evaluated with three typical types
of text classification, i.e., relation classification,
news classification and topic classification, on three
benchmark datasets, namely, FewRel80, 20News-
group and DBPedia Ontology, respectively. Ex-
perimental results demonstrate its superior perfor-
mance on all datasets.

2 Related Works

2.1 Few-shot Learning

Few-shot learning is to learn how to solve problems
from few data. As aforesaid, the existing main-
stream methods can be divided into three categories.
The model fine-tuning based mbethods learn how
to fine-tune general-purpose models to specialized
tasks (Howard and Ruder, 2018; Nakamura and
Harada, 2019). The metric learning based methods
learn a semantic embedding space upon a distance
function (Snell et al., 2017; Vinyals et al., 2016).
The meta learning based methods learn a learning
strategy to make them well adapt to new tasks (Finn
et al., 2017; Munkhdalai and Yu, 2017). Further-
more, according to the different kinds of meta
knowledge the meta learner learns, the meta learn-
ing based methods can be further divided into three
sub-categories, i.e., initial parameter (Finn et al.,
2017; Raghu et al., 2019; Jamal and Qi, 2019), hy-
per parameter (Wu et al., 2019) and optimizer based
methods (Santoro et al., 2016; Munkhdalai and Yu,
2017). The initial parameter based methods learn
parameter initialization for fast adaptation; The hy-
per parameter based methods learn a good hyper
parameter setting for the learner; And, the opti-
mizer based methods learn a meta-policy to update
the parameters of the learner. Some methods of the

hyper parameter based category in Computer Vi-
sion (CV) (e.g., MAML++ (Antoniou et al., 2019)
and ALFA (Baik et al., 2020)) have explored to
learn the learning rate. However, these methods
usually consider from a single perspective, e.g.,
the network layer or loop perspective. Specifically,
MAML++ learns the learning rate from the network
layer perspective, while ALFA learns it from the
loop perspective. Unlike them, this paper proposes
a novel meta learning mechanism to self-adaptively
obtain the learning rates of the learner, which allo-
cates different learning rates for different tasks and
neural network layers.

2.2 Curriculum Learning

Compared with the general paradigm of machine
learning without distinction, curriculum learning
is proposed to imitate the process of human learn-
ing (Bengio et al., 2009). It advocates that the
model should start learning from easy instances and
gradually advance to hard instances. Curriculum
learning has been widely applied in many fields,
e.g., CV (Guo et al., 2018; Jiang et al., 2014) and
NLP (Platanios et al., 2019; Tay et al., 2019). Fur-
thermore, curriculum learning can also be applied
in other technical frameworks, e.g., reinforcement
learning (Florensa et al., 2017; Narvekar et al.,
2017; Ren et al., 2018), graph learning (Gong et al.,
2019; Qu et al., 2018) and continual learning (Wu
et al., 2021). In this paper, we extend the tradi-
tional instance-oriented curriculum learning to a
task-oriented one, which gradually learns from dif-
ferent tasks with increasing difficulties.

3 Notations

In meta learning based few-shot text classification,
two datasets are given: Dtrain and Dtest, which
have disjoint label sets. T tasks are sampled from
Dtrain and the t-th task (t ∈ [1, T ]), Taskt, con-
sists of a support set St and a query set Qt. Fol-
lowing the setting (Gao et al., 2019), we adopt
C-way K-shot (hereinafter denoted as CwKs) for
few-shot text classification, meaning St contains
C classes and each class has K labeled instances.
Thus, St can be formulated as St = {(xit, yit)}C×K

i=1 ,
where xit denotes the i-th piece of text in Taskt and
yit is its class label. Furthermore, xit contains M i

t

words (hereinafter simplified as M if not causing
any confusion) and the m-th word (m ∈ [1,M ])
in xit denotes as wi

t,m. Thus, xit = {wi
t,m}Mm=1.

xit additionally includes a head entity hit and a tail
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Figure 1: The diagram of the MetaSLRCL framework.

entity oit in relation classification. Moreover, the
query set Qt contains Ut unlabeled instances for
each class in St, where the i-th instance denotes qit.
Qt can thus be formulated as Qt = {qit}C×U

i=1 .

4 The MetaSLRCL Framework

MetaSLRCL is a generic framework, where few-
shot learning models of different categories (i.e.,
model fine-tuning based, metric learning based,
and meta learning based) can be adopted as the
learner. As shown in Figure 1, MetaSLRCL con-
sists of three modules coupled with a task-oriented
curriculum learning mechanism.

The Encoder Module. This module maps the
instances into the semantic space as embeddings
via the encoder network.

The Task-level Learning Rate Module. This
module calculates the task-level learning rate via
the number of training classes and the distance
between different instances in the support set.

The Layer-level Learning Rate Module. In
this module, the layer-level learning rate is self-
adaptively obtained based on the meta learning
mechanism. This module contains two main parts:
the learner as the classifier and the meta learner
above the learner, which allocates learning rates for
different network layers of the learner.

The Task-oriented Curriculum Learning
Mechanism. It enables MetaSLRCL to gradu-
ally learn from tasks with more and more classes,
thus with increasing difficulties, to make the meta

learner achieve a better generalization ability.

4.1 The Encoder Module

The encoder module encodes each instance xit into
an embedding xi

t. This module consists of two
parts, i.e., the embedding part and the encoding
part.

In the embedding part, the semantic embeddings
wi

t,m for each word wi
t,m in xit is obtained by look-

ing up table. In this paper, we employ GloVe (Pen-
nington et al., 2014) to obtain word embeddings
for its fast training and remarkable performance
even with small corpus. In the encoding part, the
CNN encoder is employed because of its good per-
formance and time efficiency to derive the instance
embedding xi

t of B dimension of xit based on the
word embeddings {wi

t,m}Mm=1. CNN slides a con-
ventional kernel with a window of size k, over the
input embeddings to get the output hidden embed-
dings,

hi
t,m = Con

(
wi

t,m− k−1
2

, ...,wi

t,m+ k−1
2

)
, (1)

where Con (·) is a conventional operation.
A max pooling operation is then applied over

these hidden embeddings to output the final in-
stance embedding xi

t as follows:

[xi
t]b = max

{
[hi

t,1]b, ..., [ht,M ]b
}
, (2)

where [·]b is the b-th value of a vector (b ∈ [1, B]).
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4.2 The Task-level Learning Rate Module
This module is designed to self-adaptively get dif-
ferent learning rates for different tasks. In the con-
text of few-shot learning, it is necessary for a model
to converge within only a few steps (Finn et al.,
2017). Intuitively, for easy tasks, large learning
rates enable the model to converge fast. However,
for hard tasks, relatively small learning rates are
preferred so as to help the model carefully search
for the optimal parameters in the complex search
space. In this module, the difficulty of a task is de-
fined as the learning difficulty, measured in terms
of the number of training classes and the distance
between different instances in the support set.

In more detail, the learning difficulty of a task
is related to the number of classes in meta training.
If the number, C, of training classes, of Taskt is
equal to that of its meta test classes, C

′
, its dif-

ficulty coefficient dift is set to 1. If C is larger
than C

′
, indicating that it is a harder task, dift is

increased. Otherwise, it is reduced. dift can be
formally calculated as follows:

dift = 1 + γ
(
C − C

′)
, (3)

where γ is a coefficient within [0, 1].
The distance between different instances can be

measured from two aspects, namely, the average
intra-class distance dis1t and the average inter-class
distance dis2t . The closer the intra-class distance
and the farther the inter-class distance, the easier
the task. Both of them are measured by the Eu-
clidean distance function d(·, ·). Specifically, dis1t
is calculated by

dis1t =
1

D1
t

D1
t∑

v=1

d
(
xi

t,x
j
t

)
, (4)

where xi
t and xj

t (i ̸= j) belong to the same class;
D1

t = CK(K − 1)/2, denoting the number of
pairs (xi

t,x
j
t ). dis

2
t is calculated as follows:

dis2t =
1

D2
t

D2
t∑

v=1

d
(
xi

t,x
j
t

)
, (5)

where xi
t and xj

t belong to different classes and
D2

t = CK(C − 1)K/2. Therefore, the learning
rate α

′
t of Taskt can be calculated as

α
′
t =

dis2t
dift · dis1t

. (6)

As aforesaid, larger learning rates are preferred
for easier tasks. Therefore, Equation (6) means a
larger α

′
t is obtained with dis2t increasing, as well

as dift and dis1t decreasing, which indicates an
easier task. Otherwise, a smaller α

′
t represents a

harder task.
As the task-level learning rate is required to mul-

tiply the layer-level one in Equation (12), it should
be larger than 1 for easier tasks and smaller than
1 for harder tasks. Therefore, we formulate the
task-level learning rate αt∈[β, 1 + β] by function
g (·) as

αt = g
(
α

′
t

)
= nor

(
α

′
t

)
+ β, (7)

where nor (·) is the min-max normalization func-
tion to normalize α

′
t between 0 and 1. In this paper,

the bias β is set to 0.5.

4.3 The Layer-level Learning Rate Module
As aforementioned, this module contains a learner
and a meta learner.

4.3.1 The Learner
In text classification, the learner is actually a classi-
fier. Existing models of different categories can be
employed as the learner, e.g., BERT (Kenton and
Toutanova, 2019), PN (Snell et al., 2017) and ML-
MAN (Ye and Ling, 2019), which are pre-trained.
By inputting the embedding xi

t , the learner with
the learning rate lrt , which is obtained by Equa-
tion (12), outputs the predicted probability distri-
bution, pi

t, to different classes. Formally, pi
t is

calculated as follows:

pi
t = Learner

(
xi

t, lrt

)
. (8)

The loss of the learner is defined as lt, which is
calculated by the cross entropy function H(·, ·) as

lt =

C×K∑
i=1

H
(
pi
t,y

i
t

)
, (9)

where yi
t is the ground truth distribution of xi

t to
different classes.

4.3.2 The Meta Learner
The meta learner allocates different learning rates
for different network layers. Let θ be its parameters.
Given the layer-level learning rate lr

′
t−1 of N di-

mension corresponding to Taskt−1 of the learner,
the hidden state hst of the meta learner to Taskt
is calculated upon lr

′
t−1 and its last hidden state

hst−1 as

hst = MetaLearnerθ
(
hst−1, lr

′
t−1

)
. (10)

Then, the layer-level learning rate lr
′
t of Taskt

is obtained upon the state hst as
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Algorithm 1 The Training Pro. of Meta Learning.
1 Given a set of labeled training data Dtrain

2 Init parameters of the meta leaner as θ
3 Given the initial learning rate lr

′
0

4 For e→1 to E do:
5 Given a pre-trained learner with lr

′
0

6 For t→1 to T do:
7 Given a task Taskt sampled from Dtrain

8 hst←MetaLearnerθ
(
hst−1, lr

′
t−1

)
9 lr

′
t←σ (Whst + b)

10 lrt←αtlr
′
t

11 Train the learner with lrt on Taskt in one step
12 Compute the loss lt
13 If t = T , calculate the loss Losse by summing up lt
14 Update θ using Losse−1- Losse

lr
′
t = σ (Whst + b) , (11)

where W and b are parameters of a fully-connected
layer and σ(·) is the Sigmoid activation function.

By multiplying the task-level learning rate αt,
the final learning rate is obtained as

lrt = αtlr
′
t. (12)

The loss of the meta learner in the e-th iteration
(e ∈ [1, E]), Losse is calculated by summing up
the losses lt of all tasks from the learner as

Losse =

T∑
t=1

lt. (13)

Finally, θ is updated by minimizing the differ-
ence between the loss in the last iteration and the
current loss, which makes the meta learner con-
verge faster, through applying gradient-based opti-
mization. The training process of meta learning is
shown in Algorithm 1.

4.4 The Task-oriented Curriculum Learning
Mechanism

To get better generalization performance to new
tasks, MetaSLRCL introduces a task-oriented cur-
riculum learning mechanism to the meta training
period. The original curriculum learning mecha-
nism learns from instances with gradually increas-
ing difficulties in a step-by-step manner. How-
ever, in the context of meta learning, we need to
pay more attention to tasks with different difficul-
ties. It is acknowledged that when the number of
classes in a task increases, its difficulty increases
accordingly. For example, a 10w1s task is harder
than a 5w1s one. Therefore, a three-stage process
with increasing difficulties is carried out with the
number of classes increasing from C to C+X and

further to C+2X (hereinafter denoting the process
as C-(C+X)-(C+2X)), making the meta learner
train tasks from easy to hard. Besides, a previous
study (Munkhdalai and Yu, 2017) found that the
models trained on harder tasks, but tested with rela-
tively easier tasks may achieve better performance,
as compared with those models which are trained
and tested on tasks with the same difficulty config-
uration. Thus, in this paper we set that the average
difficulty of tasks in the meta training period is al-
ways higher than that in the meta test period to get
better performance in test tasks.

5 Experiments

5.1 Datasets and Evaluation Metrics

Parameters Value
γ 0.1
β 0.5
k 3
word emb. dim. 50
max sentence length 40
hidden layer dim. 230
LSTM hidden size 100
initial learning rate [7e−3, 6e−3, 5e−3, 4e−3]
batch size 1
T 600
E 50
dropout 0.2

Table 1: The parameter setting in MetaSLRCL.

To verify the effectiveness of the MetaSLRCL
framework, we conduct experiments on three differ-
ent types of text classification, i.e., relation classifi-
cation, news classification, and topic classification
with three representative benchmark datasets. For
relation classification, we choose a typical few-
shot learning dataset, FewRel (Han et al., 2018).
Note that the FewRel dataset used in this paper
has only 80 classes, thus marked as FewRel80, be-
cause 20 classes of the original FewRel dataset for
test are not publicly available. We randomly di-
vide FewRel80 into three subsets containing 50,
10 and 20 classes for training, validation and test,
respectively. For news classification, we choose
the representative dataset, 20Newsgroup (Dadgar
et al., 2016) with 20 news classes. As 20News-
group lacks standard splits in few-shot learning,
we randomly divide it into subsets with 14 and 6
classes for training and test, respectively. For topic
classification, the DBPedia Ontology (Zhang et al.,
2015) dataset is a classic one with 14 topic classes.
Similarly, we randomly partition it into 8 classes
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Dataset: FewRel80
Model 5w1s 5w5s 10w1s 10w5s

model fine-tuning based
BERT 0.5762 0.7109 0.5233 0.5480

MetaSLRCL+BERT 0.6347 0.7601 0.5672 0.5988

metric learning based
PN_HATT 0.7319 0.8703 0.6114 0.7632

MetaSLRCL+PN_HATT 0.7675 0.8929 0.6507 0.8067

meta learning based
MLMAN 0.7957 0.9119 0.6903 0.8516

MetaSLRCL+MLMAN 0.8182 0.9150 0.7084 0.8519
Dataset: 20Newsgroup

Model 3w1s 3w5s 6w1s 6w5s

model fine-tuning based
BERT 0.7417 0.8198 0.5876 0.7107

MetaSLRCL+BERT 0.7689 0.8476 0.6187 0.7426

metric learning based
PN 0.8463 0.9614 0.7052 0.8887

MetaSLRCL+PN 0.8680 0.9843 0.7217 0.9264

meta learning based
MAML 0.7612 0.8405 0.6143 0.7451

MetaSLRCL+MAML 0.7824 0.8599 0.6465 0.7738
Dataset: DBPedia Ontology

Model 3w1s 3w5s 6w1s 6w5s

model fine-tuning based
BERT 0.7609 0.8256 0.6118 0.7589

MetaSLRCL+BERT 0.7928 0.8598 0.6540 0.7990

metric learning based
PN 0.8428 0.9520 0.7070 0.8896

MetaSLRCL+PN 0.8683 0.9799 0.7301 0.9104

meta learning based
MAML 0.7778 0.8571 0.6434 0.8093

MetaSLRCL+MAML 0.8110 0.8911 0.6786 0.8359

Table 2: The overall results on three benchmark datasets: FewRel80, 20Newsgroup and BDPedia Ontology.

and 6 classes for training and test, respectively.
We set up four configurations, namely, 5w1s,

5w5s, 10w1s and 1w5s, on FewRel80. Four set-
tings are considered for the 20Newsgroup and DB-
Pedia Ontology datasets, i.e., 3w1s, 3w5s, 6w1s
and 6w5s. Following the previous study in (Oba-
muyide and Vlachos, 2019), average accuracy upon
5 runs is adopted as the evaluation metric.

5.2 Implementation Details and Parameters
Setting

Table 1 presents the parameter setting of
MetaSLRCL. For the encoder module, CNN is em-
ployed as the encoder and the word embeddings
pre-trained in GloVe (Pennington et al., 2014) are
adopted as the initial embeddings. More specif-
ically, we choose the embedding set of GloVe
trained on Wikipedia 2014 + Gigaword 5, which
contains 6B tokens and 400K words. The word em-
beddings are of 50 dimensions. For the parameters
of CNN, we follow the settings used in (Zeng et al.,
2014). For the layer-level learning rate module,
LSTM is selected as the meta learner, because of
its simple implementation, fast training speed and
remarkable performance. Furthermore, for the cur-
riculum learning, we choose one setting with best
performance on each dataset, specifically, 10-15-20
on FewRel80, 7-9-11 on 20Newsgroup and 5-6-7

on DBPedia Ontology.

5.3 Baseline Models

As MetaSLRCL is a generic framework, it can
employ different few-shot learning models as its
learner. Therefore, in the experiments, we adopt the
representative and state-of-the-art (SOTA) models
of the aforesaid different categories as the learner
of MetaSLRCL in order to verify its effective-
ness on different tasks. These models are also
adopted as the baselines for performance com-
parison. It should be particularly mentioned that
for the sake of space limitation, for each type of
text classification and each category of the few-
shot learning models, the experimental results of
only the baseline models (e.g., MAML) with the
best performance and their MetaSLRCL coun-
terparts (e.g., MetaSLRCL+MAML) will be pre-
sented. More specifically, for relation classifica-
tion, the baseline models include: 1) BERT-base-
uncased (Kenton and Toutanova, 2019), a widely
adopted model of model fine-tuning based cate-
gory; 2) PN_HATT (Gao et al., 2019), the SOTA
metric learning based model especially for relation
classification; 3) MLMAN (Ye and Ling, 2019),
the SOTA model in few-shot relation classifica-
tion. For news classification and topic classifica-
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Model 5w1s 5w5s 10w1s 10w5s

model fine-tuning based
MetaSLRCL+BERT 0.6347 0.7601 0.5672 0.5988

SLR+BERT 0.6174 0.7456 0.5532 0.5851
CL+BERT 0.5904 0.7263 0.5370 0.5615

metric learning based
MetaSLRCL+PN_HATT 0.7675 0.8929 0.6507 0.8067

SLR+PN_HATT 0.7592 0.8831 0.6435 0.7982
CL+PN_HATT 0.7380 0.8719 0.6152 0.7792

meta learning based
MetaSLRCL+MLMAN 0.8182 0.9150 0.7084 0.8519

SLR+MLMAN 0.8103 0.9145 0.7059 0.8541
CL+MLMAN 0.8167 0.9136 0.7042 0.8507

Table 3: The results of the ablation study on SLR and CL on FewRel80.

Model 5w1s 5w5s 10w1s 10w5s

model fine-tuning based
SLR+BERT 0.6174 0.7456 0.5532 0.5851

SLRL+BERT 0.6145 0.7412 0.5509 0.5823
SLRT+BERT 0.5771 0.7148 0.5261 0.5502

metric learning based
SLR+PN_HATT 0.7592 0.8831 0.6435 0.7982

SLRL+PN_HATT 0.7578 0.8811 0.6414 0.7956
SLRT+PN_HATT 0.7354 0.8723 0.6137 0.7648

meta learning based
SLR+MLMAN 0.8103 0.9145 0.7059 0.8541

SLRL+MLMAN 0.8095 0.9139 0.7051 0.8537
SLRT+MLMAN 0.7982 0.9125 0.6931 0.8522

Table 4: The results of the ablation study on SLRs on FewRel80.

tion, the baseline models are the same, including:
1) BERT-base-uncased, for the same reason; 2)
PN (Snell et al., 2017), a widely adopted metric
learning based model; 3) MAML (Finn et al., 2017),
a widely adopted meta learning based model.

5.4 Main Results

Table 2 presents the main results, where we can see
that all of the MetaSLRCL models with BERT,
PN_HATT, MLMAN, PN and MAML as their
learners consistently outperform those correspond-
ing baselines on all datasets. The accuracy of
the model fine-tuning based and metric learning
based MetaSLRCL models increases by 4-6% and
2-4% on FewRel80, respectively. However, for
MetaSLRCL+MLMAN, its performance is im-
proved less than those of the former two categories;
But it still achieves the best results. Moreover, all
kinds of MetaSLRCL models are observed accu-
racy promotion by 2-4% compared to the baselines
on the majority of few-shot tasks on 20Newsgroup
and DBPedia Ontology. In short, these experimen-
tal results convincingly suggest that MetaSLRCL
is effective for different tasks on different datasets
and with different models.

5.5 Ablation Studies

5.5.1 SLR and CL in MetaSLRCL
In this subsection, we conduct ablation studies to
investigate the effectiveness of both Self-adaptive

Learning Rate (SLR) and Curriculum Learning
(CL), as well as their impacts on the performance
of MetaSLRCL. For the sake of space limitation,
only the results on FewRel80 are presented. As
shown in Table 3, the performance of all ablated
models without SLR and CL consistently falls, ex-
cept MLMAN on the 10w5s task. For each type of
the models in this table, we adopt the same CL set-
ting on different tasks, with which the MetaSLRCL
enhanced model exhibits best performance on most
of them. Therefore, for the MLMAN models,
the 10-15-20 CL setting is selected, because un-
der this CL setting the MetaSLRCL+MLMAN
model achieves the best results on the 5w1s, 5w5s
and 10w1s tasks. Nevertheless, on the 10w5s
task, MetaSLRCL+MLMAN obtains its best per-
formance with the CL setting of 15-20-25. For
this reason, SLR+MLMAN exceptionally outper-
forms MetaSLRCL+MLMAN on the 10w5s task.
The general results in Table 3 indicate that both
SLR and CL contribute to the effectiveness of
MetaSLRCL. Besides, it can be observed that SLR
is more important to MetaSLRCL than CL, because
of the larger performance improvement. Similar
phenomena can be observed on the other datasets,
20Newsgroup and DBPedia Ontology.

5.5.2 SLRs for Tasks and Network Layers

In MetaSLRCL, SLR consists of two subsets,
the Self-adaptive Learning Rates for different
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Model 5w1s 5w5s
Adadelta+BERT 0.5825 0.7232
RMSProp+BERT 0.5887 0.7203

Adam+BERT 0.5943 0.7261
SLR+BERT 0.6174 0.7456

Adadelta+PN_HATT 0.7386 0.8612
RMSProp+PN_HATT 0.7327 0.8446

Adam+PN_HATT 0.7101 0.8300
SLR+PN_HATT 0.7592 0.8831

Adadelta+MLMAN 0.7995 0.9063
RMSProp+MLMAN 0.8007 0.9087

Adam+MLMAN 0.8027 0.9108
SLR+MLMAN 0.8103 0.9145

Table 5: The results of different models with SLR
and other self-adaptive learning rate mechanisms on
FewRel80.

Tasks (SLRT) and different neural network Lay-
ers (SLRL). As shown in Table 4, the performance
of all models without SLRT and SLRL consistently
decreases, indicating that both SLRT and SLRL are
important to the effectiveness of SLR. However, the
models with SLRL outperform those with SLRT.
That means, although both task-level and layer-
level learning rates work, the layer-level ones are
more important and effective to the performance of
models than their counterparts.

5.6 SLR Comparing with Other Self-Adaptive
Learning Rate Methods

We also conduct some experiments to compare
our SLR with other self-adaptive learning rate
mechanisms, i.e., Adadelta (Zeiler, 2012), RM-
SProp (Hinton et al., 2012) and Adam (Kingma
and Ba, 2014), on FewRel80. The parameters of
these methods are tuned on our dataset. The experi-
mental results are shown in Table 5. It can be noted
that, the models with our SLR outperform all the
others, which indicates that our SLR is more effec-
tive than the others. Moreover, as compared with
Adadelta, the performance of RMSProp and Adam
are unstable when coupled with different models,
i.e., BERT, PN_HATT, and MLMAN. Differently,
our SLR exhibits consistently the best performance
in all cases, indicating that our SLR is more robust
than the others when applied to different models.

As mentioned in Section 2, there have al-
ready been some models in CV, which explore
self-adaptive learning rates, e.g., MAML++ and
ALFA. We experimentally compare our SLR in the
MetaSLRCL framework with them at the method
level. The experimental results are shown in Ta-
ble 6. Note that for fair comparison, the same initial

Model 5w1s 5w5s

CV
MAML++ 0.5823 0.6954

ALFA 0.6009 0.7137

Ours
SLR+BERT 0.6174 0.7456

SLR+PN_HATT 0.7592 0.8831
SLR+MLMAN 0.8103 0.9145

Table 6: The results of self-adaptive learning rate mod-
els in CV and our SLR on FewRel80.

Model 5w1s 5w5s
SLR+5-10-15+BERT 0.6285 0.7498

SLR+10-15-20+BERT 0.6347 0.7601
SLR+15-20-25+BERT 0.6315 0.7581
SLR+20-25-30+BERT 0.6239 0.7475

SLR+5-10-15+PN_HATT 0.7562 0.8836
SLR+10-15-20+PN_HATT 0.7565 0.8929
SLR+15-20-25+PN_HATT 0.7675 0.8877
SLR+20-25-30+PN_HATT 0.7645 0.8926
SLR+5-10-15+MLMAN 0.8102 0.9135

SLR+10-15-20+MLMAN 0.8182 0.9150
SLR+15-20-25+MLMAN 0.8133 0.9161
SLR+20-25-30+MLMAN 0.8046 0.9146

Table 7: The results of different CL settings on
FewRel80.

learning rate as ours is adopted. As we can see, the
accuracy of MAML++ and ALFA is lower than all
of the MetaSLRCL models with our SLR. It sug-
gests that although MAML++ and ALFA achieve
superior performance in CV, our SLR outperforms
them on text classification.

5.7 Different CL Settings

We also conduct experiments to evaluate the im-
pact of the CL mechanism. Specifically, we set up
four training settings for each task on FewRel80,
namely, 5-10-15, 10-15-20, 15-20-25 and 20-25-
30. For the sake of space limitation, only results
on 5w1s and 5w5s are shown in Table 7, which
demonstrate that all the best results are obtained at
two settings, 10-15-20 and 15-20-25. This may be
due to the following reason: the 5-10-15 configura-
tion is the simplest one, which does not reach the
difficulty to get the best performance of a model,
whilst the 20-25-30 configuration is too hard and
the learner cannot be well trained at the training
period and thus cannot work well at the test period.

Furthermore, four training settings, namely, 3-
5-7, 5-7-9, 7-9-11 and 9-11-13 are examined on
20Newsgroup. Four training settings, i.e., 3-4-5,
4-5-6, 5-6-7 and 6-7-8 are also studied on DBPedia
Ontology. Similar phenomena can be observed on
these datasets. The results are not presented due to
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space limitation.

6 Conclusion and Future Work

In this paper, we proposed a novel meta learning
framework, called MetaSLRCL, for few-shot text
classification. MetaSLRCL can self-adaptively ob-
tain different learning rates for different tasks and
different network layers. Moreover, a task-oriented
curriculum learning mechanism is introduced into
few-shot learning to achieve a better generalization
ability for the meta learner. MetaSLRCL is evalu-
ated with three typical types of text classification,
relation classification, news classification and topic
classification, on three benchmark datasets, namely,
FewRel80, 20Newsgroup and DBPedia Ontology,
respectively. Experimental results demonstrate su-
perior performance of MetaSLRCL on all datasets.
In the future, we will explore few-shot learning un-
der the unbalance learning scenarios because they
are ubiquitous in the real world.
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