
Proceedings of the 29th International Conference on Computational Linguistics, pages 1979–1989
October 12–17, 2022.

1979

Event Detection with Dual Relational Graph Attention Networks
Jiaxin Mi 1,2,3, Po Hu 1,2,3∗∗, Peng Li 4

1Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning,
Central China Normal University, Wuhan, Hubei, China

2School of Computer Science, Central China Normal University, Wuhan, Hubei, China
3National Language Resources Monitoring & Research Center for Network Media,

Central China Normal University, Wuhan, Hubei, China
4Institute for AI Industry Research (AIR), Tsinghua University, China

{mjx, phu}@mail.ccnu.edu.cn, lipeng@air.tsinghua.edu.cn

Abstract

Event detection, which aims to identify in-
stances of specific event types from pieces of
text, is a fundamental task in information ex-
traction. Most existing approaches leverage
syntactic knowledge with a set of syntactic re-
lations to enhance event detection. However, a
side effect of these syntactic-based approaches
is that they may confuse different syntactic rela-
tions and tend to introduce redundant or noisy
information, which may lead to performance
degradation. To this end, we propose a sim-
ple yet effective model named DualGAT (Dual
Relational Graph Attention Networks), which
exploits the complementary nature of syntactic
and semantic relations to alleviate the problem.
Specifically, we first construct a dual relational
graph that both aggregates syntactic and se-
mantic relations to the key nodes in the graph,
so that event-relevant information can be com-
prehensively captured from multiple perspec-
tives (i.e., syntactic and semantic views). We
then adopt augmented relational graph atten-
tion networks to encode the graph and optimize
its attention weights by introducing contextual
information, which further improves the per-
formance of event detection. Extensive exper-
iments conducted on the standard ACE2005
benchmark dataset indicate that our method
significantly outperforms the state-of-the-art
methods and verifies the superiority of Dual-
GAT over existing syntactic-based methods.

1 Introduction

Event Detection (ED) aims to identify event trig-
gers from a given text and classify them into pre-
defined event types (Chen et al., 2015), playing
an important role in information extraction. As
shown in Figure 1, an event detection method is
expected to identify the event trigger “thrust” from
the example sentence and classify it into the event
type Transport. Event detection can be used
to facilitate various natural language processing
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(NLP) applications, such as adverse drug event dis-
covery (Wei et al., 2020; Liu et al., 2018a), court
decision event identification (Filtz et al., 2020), fi-
nancial event extraction (Zheng et al., 2019; Liang
et al., 2020) and so on.

Various event detection methods have been ex-
plored, including traditional feature-based (Hong
et al., 2011; Li et al., 2013) and deep learning meth-
ods (Chen et al., 2015; Nguyen et al., 2016). Due to
the powerful feature representation extraction capa-
bility of deep neural networks, deep learning meth-
ods have outperformed traditional feature-based
methods in most cases and have become popular.
Most deep learning methods have recently paid
more attention to exploiting syntactic relations in
event detection. These methods adopt Graph Neu-
ral Networks (GNNs) such as Graph Convolutional
Networks (GCNs) and Graph Attention Networks
(GATs) to encode dependency trees to learn effec-
tive representations for the words. Since depen-
dency trees convey rich linguistic information for
ED, syntactic-based methods usually achieve better
performance (Xie et al., 2021).

However, existing syntactic-based methods still
have two shortcomings to be solved. First, depen-
dency trees cannot always capture trigger-related
salient information concisely, which may contain
noisy dependency relations close to the root node
and mislead event detection (Lai et al., 2020; Liu
et al., 2021). As shown in Figure 1, the depen-
dencies marked in red are incorrectly identified
by the syntactic-based event detection methods as
trigger-related hints for the Attack event. Since
“troops” and the trigger candidate “striking” have
a direct connection with the root node “distance”,
GNN-based methods are prone to pay more atten-
tion to them and predict incorrect triggers (Liu
et al., 2021). It is worth noting that in this case, the
marked blue dependencies that are closely related
to the real trigger “thrust” should be exploited with
more emphasis. Second, relying solely on syntactic
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Figure 1: An event detection example with syntactic dependency relations. The “thrust” is the true trigger of
Transport event. The “striking” is incorrectly identified as the trigger for an Attack event by some existing
methods. The red arrow indicates a noisy dependency relation and blue arrow indicates a trigger-relevant relation.

dependency trees may not be sufficient for event
detection. The parsing results of the existing de-
pendency parser may contain incorrect or weakly
correlated information, which will inevitably affect
the performance of syntactic-based event detection
methods due to possible error propagation. More-
over, syntactic dependency trees cannot provide all
the linguistic knowledge needed for event detec-
tion.

To address the above problems, we propose a
novel model named DualGAT, which makes full
use of syntactic and semantic information to im-
prove event detection performance. Inspired by
aspect-based dependency parsing (Wang et al.,
2020a), we construct a dual relational graph that
contains both syntactic and semantic relations to
capture trigger-relevant information. Empirically,
only a small part of dependency relations in a sen-
tence is task-aware (Zhang et al., 2018; He et al.,
2018). Therefore, to reduce the influence of noisy
relations, we prune the original syntactic dependen-
cies that are not directly connected to the trigger
candidates and reconstruct other connections be-
tween the remaining words of the sentence and the
trigger candidates. In addition to syntactic infor-
mation, we also introduce semantic relation infor-
mation and make them rooted in the predicate of
the sentence. Next, we adopt augmented relational
graph attention networks to encode the graph to
learn the root node’s representations from syntactic
and semantic views. Specially, we introduced con-
textual information to adjust the attention weights
to mitigate the possible loss of information due to
the introduction of the dependency parser. The ex-
perimental results on the standard ACE2005 bench-
mark dataset indicate that DualGAT outperforms
the state-of-the-art methods by a large margin.

The main contributions of this work can be sum-
marized as follows:

• We construct a dual relational graph that con-
verges syntactic and semantic relations to the
critical nodes in the graph, which can capture

important event information from different
perspectives and reduce information loss or
noise caused by the syntactic parser.

• We adopt an augmented relational graph atten-
tion network to encode the graph and optimize
its attention weights by introducing contextual
information.

• Experimental results further verify the supe-
riority of DualGAT over existing approaches.
DualGAT achieves the 5% improvements in
F1 score with state-of-the-art syntactic-based
methods.

2 Related Work

Event detection has attracted extensive attention in
recent years. Traditional event detection methods
use hand-crafted linguistic features for event de-
tection, such as lexical features, syntactic features,
or entity features (Hong et al., 2011; Ahn, 2006).
However, it is time-consuming to design these fea-
tures and is not easy to adapt to other tasks or new
domains.

With the rapid development of neural networks,
a series of neural event detection methods have
been proposed. Many researchers applied new
learning strategies to event detection, such as lever-
aging the weakly-supervised learning strategy to
generate more labeled data to improve the per-
formance of event detection (Zeng et al., 2018;
Yang et al., 2018). Wang et al. (2019) applied an
adversarial training mechanism to obtain diverse
and accurate training data. Lu et al. (2019) pro-
posed a method based on knowledge distillation to
achieve better performance on sparsely labeled trig-
gers. Some recently proposed methods introduced
extra knowledge to improve event detection via
open-domain trigger knowledge (Tong et al., 2020),
entity knowledge (Liu et al., 2019) and syntactic
dependency relations (Yan et al., 2019).
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Figure 2: The architecture of our proposed dual relational graph attention networks for event detection. The 5-th
node is the assumed trigger candidate and the 3-th is the predicate verb. rij denotes the relation embedding of eij .

The effectiveness of dependency relations has
been verified in many natural language process-
ing (NLP) tasks, such as sentiment analysis (Wang
et al., 2020a) and relation extraction (He et al.,
2018). Due to the rich syntactic and structure in-
formation, syntactic dependency relations also play
an important role in event detection (Liu et al.,
2018b). For example, Yan et al. (2019) exploited
multi-order syntactic relations in sentences to ob-
tain better representations of trigger words. Lv et al.
(2021) integrated syntax and document information
for better event detection. Cui et al. (2020) pro-
posed a model to explore further the type informa-
tion of dependency relations to capture task-aware
knowledge. Since existing graph-based models
introduced many trigger-agnostic representations,
Lai et al. (2020) proposed to filter noisy informa-
tion via a gating mechanism. Due to the effective
combination of GNNs and syntactic dependency
trees, these syntactic-based event detection meth-
ods achieved overall better performance than ordi-
nary deep learning methods.

Although these works use similar syntactic in-
formation, few of them take a new perspective to
reshape the original graph to facilitate the capture
of event-relevant salient information. The original
dependency tree contains rich structural and lin-
guistic knowledge, but it may be inaccurate and
contains event-irrelevant information. Besides, as
far as we know, there are no syntactic-based ap-
proaches that explicitly use semantic information
to complement syntactic information for event de-
tection. To this end, we propose DualGAT, which
takes into account both syntactic and semantic re-
lations as well as contextual information for event
detection.

3 Methodology

3.1 Model Overview
The overall architecture of DualGAT is shown in
Figure 2, which consists of three major compo-

nents: (1) Relational Graph Constructor (§3.2),
which constructs the dual relational graph by de-
pendency parsing and semantic role labeling; (2)
Augmented Relational Graph Attention Networks
(§3.3), which introduces additional contextual in-
formation into the adaptation of attention weight
and encodes the dual relational graph to get the root
node’s representations from syntactic and semantic
views; (3) Event detector (§3.4), which leverages
the Biaffine module to exchange relevant features
between syntactic and semantic representations and
performs event detection.

3.2 Relational Graph Constructor

3.2.1 Dual Relational Graph
Existing methods are interfered with by noisy
dependency relations and tend to learn trigger-
agnostic representations (Lai et al., 2020). Since
the trigger candidates are the focus of the event de-
tection task, this noisy information irrelevant to the
trigger words inevitably hurts the performance. Be-
sides, the parsing results of the existing dependency
parser may contain incorrect or weakly correlated
information, which limits the performance of event
detection.

Many works have proven that only a small part
of the syntactic relations is task-aware (Zhang et al.,
2018; He et al., 2018) and identifying trigger words
is the core of event detection tasks. Thus, we be-
lieve that paying more attention to syntactic re-
lations directly linked to trigger candidates can
reduce the effect of erroneous syntactic relations.
Besides, the complementary nature of semantic and
syntactic knowledge has been exploited and vali-
dated in related NLP tasks, such as relations extrac-
tion (Bovi et al., 2015) and entity extraction (Chan
and Roth, 2011). We believe that semantic relations
can make up for the inadequacy of syntactic rela-
tions and reduce reliance on dependency parsers.

Motivated by the above idea, we first construct
a dual relational graph structure that aggregates
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Figure 3: Three event detection examples to illustrate the advantages of the proposed dual relational graph. The
correct trigger is marked blue and the incorrect one is marked red. Example (a) and example (b) are two dual
relational graphs of one sentence that omit semantic relations. In example (c), the purple arrow is the original
syntactic relation, and the orange arrow is the additional semantic relation of the dual relational graph.

Algorithm 1 The Construction Process of Dual
Relational Graph.

Input:
The sentence X = {xi | i ∈ [1, L]} with a trig-
ger candidate xt and a predicate verb xv.

Output:
Dual relational graph G;

1: Getting syntactic, semantic edge set D, A.
2: Construct initial dual relational graph G with

L nodes.
3: for i = 1 to L do
4: if eit or eti in D then
5: add eti in G.
6: else
7: d = t− i+ 1, eti = vir : d.
8: add eti in G
9: end if

10: if eiv or evi in A then
11: add evi in G.
12: else
13: d = v − i+ 1, evi = vir : d.
14: add evi in G
15: end if
16: end for
17: return G;

syntactic relations to trigger candidates and addi-
tionally aggregates semantic relations to predicate
verbs to improve the robustness of the graph. Al-
gorithm 1 describes the construction process of
the dual relational graph. We first leverage a de-
pendency parser to obtain the original syntactic
relations of a given sentence. Then we retain the
syntactic relations directly connected to the trigger
candidates and prune the remaining relations. To
improve the robustness of the graph, we further

replace the pruned relations with a virtual one clas-
sified by distance with trigger candidates. Specif-
ically, the type of virtual relations is defined as
vir : d, where d represents the distance between a
word and the trigger candidate. Finally, we perform
semantic role labeling to append semantic relations
between other words and predicate verbs and do
the same process as above.

The graph obtained after the above processing
is the dual relational graph. It has two same lev-
els of subgraphs: the syntactic relational subgraph,
which converges syntactic information to the trig-
ger candidates, and the semantic relational sub-
graph, which converges semantic information to
the predicate verbs. Formally, we define the dual
relational graph as G = (V,E) associated with a
edge type mapping function τ : E → TE . V rep-
resents the set of word nodes in a sentence, and E
represents the set of relational edges. TE represents
all types of relations including syntactic relations,
semantic relations and virtual relations. The rela-
tional edge between word node i and word node j
is defined as eij .

3.2.2 The Advantages of Dual Relational
Graph

The dual relational graph has proprietary advan-
tages in event detection. First, the dual relational
graph is customized for every trigger candidate,
which can reduce the introduction of noisy trigger-
agnostic information. Second, the semantic rela-
tions rooted in predicate verbs can improve the
robustness of the dual relational graph. Third, the
dual relational graph structure facilitates the event
detection model to capture task-aware informa-
tion. We use three simple examples to illustrate
the above advantages, as shown in Figure 3.
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First, example (a) and example (b) are two cus-
tomized dual relational graphs for different trigger
candidates in the same sentence. The existing meth-
ods tend to identify “striking” as a trigger evoking
an Attack event, since the strong bonding be-
tween “striking”, “enemy”, and “troops” in the orig-
inal dependency tree. However, the dual relational
graph of “striking” prunes the trigger-agnostic rela-
tions and clearly illustrates that “striking” is only
an adjectival modifier (amod) of “distance”. More-
over, the dual relational graph of “thrust” can fa-
cilitate ED models to capture its connections with
“through” and “make” without the interference of
noisy dependency relations in the original depen-
dency tree. Thus, ED methods tend to identify
“thrust” as a trigger evoking a Transport event
rather than “striking”.

Besides, example (c) can illustrate the impor-
tance of semantic relations. In example (c), the
purple arrow is the original syntactic relation, and
the orange arrow is the additional semantic relation
of the dual relational graph. Based on original syn-
tactic relations, ED methods tend to identify “War”
as a trigger of an Attack event, since the strong
bonding between “War” and “Win”. Even pruning
the trigger-agnostic syntactic relations, the correct
trigger “Former” still cannot obtain much atten-
tion. However, the semantic relations can make
the deep semantic information flow from “now” to
“Former”. The “ARGM-TMP” relation introduces
timing information to help identify “Former” as a
trigger for an End-position event.

Finally, as shown in examples (a) and (b), the
dual relational graph does not have complex mutual
interactions. The structure of the dual relational
graph is clear and aggregated. It can reduce the in-
terference of noisy interactions and the ED model’s
difficulty in capturing trigger-relevant information.

3.3 Augmented Relational Graph Attention
Networks

To more effectively encode the dual relational
graph for event detection, we propose an aug-
mented relational graph attention network (AR-
GAT) by introducing additional contextual infor-
mation to encode graphs constructed from words
in a sentence.

3.3.1 Graph Attention Network
Graph neural networks (Scarselli et al., 2009) have
been widely used to encode dependency trees for
event detection, as they can effectively capture

relevant information based on an information ag-
gregation scheme (Cao et al., 2021). In addition,
much work has shown that graph convolutional
networks (Schlichtkrull et al., 2018) cannot ef-
fectively leverage multi-hop relational informa-
tion (Yan et al., 2019). Intuitively, the heart of
the event detection task is to capture the relevant
words with the trigger candidates. Thus, we apply
graph attention networks (Velickovic et al., 2018)
which can more efficiently leverage the relations
between words to encode the dual relational graph.

Formally, given a dual relational graph G with
L word nodes, and the set of neighborhood nodes
of node i is defined as Ni. The feature vector of
node i at layer l is denoted as hl

i

(
hl
i ∈ RF

)
, F is

the dim of node features. For the node i at the layer
l+1, the computation of multi-head graph attention
networks can be defined as follows:

hl+1
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= ∥Kk=1σ

∑
j∈Ni

αlk
ijW

l
kh

l
j

 (1)

αlk
ij =

exp(f1(a
T [Wl

kh
l
i∥Wl

kh
l
j ]))∑

t∈Ni
exp(f1(aT [Wl

kh
l
i∥Wl

kh
l
t]))

(2)

where hl+1
atti

is the attention head of node i at the
layer l+1, Wl

k is a transformation matrix, f1(·) is
the function of LeakyReLU, a is a weight vector,
K is the number of heads and ∥Kk=1hk represents
concatenation of vectors from h1 to hK .

3.3.2 AR-GAT
The relational graph attention networks (Wang
et al., 2020a) extended original graph attention net-
works with additional heads to leverage the type
information of edges. However, relational graph
attention networks are not sufficiently compatible
with encoding the dual relational graph. On the
one hand, original syntactic and semantic relations
that are initially generated may be wrong. On the
other hand, in the construction process of the dual
relational graph, reshaping and pruning may fur-
ther lead to the propagation of errors originating
from the parser. Thus, the relation heads are not
sufficient to accurately control information flow
from neighborhood nodes.

To overcome the above problems, we propose
introducing additional contextual information from
word nodes to control information flow more accu-
rately. The performance of factorization machines
has been proven in many tasks (Guo et al., 2017).
Inspired by factorization machines, we employ an
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inner product unit to combine contextual and type
information.

Formally, the initial relation embedding matrix
is defined as Wt ∈ RNt×F , Nt is the number of
relation type. For the node i at the layer l+1, the
computation of multi-head augmented relational
graph attention networks can be defined as follows:

hl+1
reli

= ∥Mm=1σ

∑
j∈Ni

βlm
ij Wl

mhl
j

 (3)

Rm
ij = (Wm1f2(τ(eij),Wt) + bm1)⊙

(Wm2(hi∥hj) + bm2)
(4)

glmij = σ(relu(Rm
ijWm3+bm3)Wm4+bm4) (5)

βlm
ij =

exp
(
glmij

)
∑

j∈Ni
exp

(
glmij

) (6)

where hl+1
reli

represents the augmented relational
attention head of node i at layer l+1, M is the num-
ber of heads, f2(τ(eij),Wt) is a mapping function
mapping edge eij into the corresponding relation
embedding according to relation embedding matrix
Wt. The final representation of node i is computed
by:

ol+1
i = hl+1

atti
∥hl+1

reli
(7)

hl+1
i = relu

(
Wl+1o

l+1
i + bl+1

)
(8)

3.4 Event Detector

We use BERT (Devlin et al., 2019) to obtain the
word embedding of graph nodes, and the embed-
ding of word xi is defined as h0

i . We use h0
t and h0

v

to denote the initial embedding of the trigger candi-
date node and the predicate verb node, respectively.
Then we apply AR-GAT to encode two subgraphs
of dual relational graph respectively and obtain
their root representation hl

t and hl
v. The hl

t and hl
v

aggregate the syntactic and semantic information
respectively.

To effectively exchange relevant features be-
tween these two types of information, we employ
a mutual Biaffine transformation (Li et al., 2021b).
The interaction process is:

hl′
t = softmax(hl

tW1(h
l
v)

T)hl
v (9)

hl′
v = softmax(hl

vW2(h
l
t)
T)hl

t (10)

where W1 and W2 are parameters.

Finally, we concatenate syntactic root hl′
t and

semantic root hl′
v to obtain final feature representa-

tion:
x = hl′

t ∥hl′
v (11)

Then the final feature representation x is fed into
a fully connected layer and adopt softmax layer to
get a final event type probability distribution:

p(t) = softmax (Wpx+ bp) (12)

4 Experiments

4.1 Datasets and Evaluation Metrics
We evaluate our proposed model on the widely used
standard benchmark dataset ACE2005. ACE2005
consists of 33 event types and contains 599 doc-
uments with 4090 event instances. Following the
previous works (Chen et al., 2015; Wang et al.,
2020b), we use the same data split for train, dev
and test set. We adopt Precision (P), Recall (R)
and micro F1 score (F1), which are the standard
metrics for event detection, as the evaluation crite-
ria for method performance. The three metrics are
defined as follows:

P =
NC

NP
(13)

R =
NC

ND
(14)

F1 =
2PR

P +R
(15)

where NC , NP , and ND are the number of cor-
rectly predicted events, all predicted events, and all
events in the dataset, respectively.

4.2 Parameter Settings
Our implementation 1 is based on the bert-base-
uncased model, whose layer number is 12, hidden
size is 768, and attention head number is 12. For
the “Our w/o BERT” setting, we use Glove (Pen-
nington et al., 2014) and BiLSTM to obtain word
embedding. The dimension of both word embed-
ding and relational embedding is 300. the hidden
state size of AR-GAT and BiLSTM is set to 200.
The number of attention heads is 6. The max sen-
tence length is set to 128 by cutting longer sen-
tences and padding shorter ones. We employ the
Biaffine Parser (Dozat and Manning, 2017) and
SRL BERT (Shi and Lin, 2019) for dependency

1Code is available at https://github.com/
Macvh/DualGAT, which leverage the HuggingFace’s
Transformers library for loading pre-trained models.

https://github.com/Macvh/DualGAT
https://github.com/Macvh/DualGAT
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parsing and semantic role labeling. The Adam al-
gorithm (Kingma and Ba, 2015) is used to optimize
model parameters and the dropout rate is set to 0.3
to avoid over-fitting. The max epoch is 30. In addi-
tion, we report the average performance of 5 trials
with different random seeds for each experiment.

4.3 Baselines
We select various representative methods as base-
lines, including:

Syntactic based Methods: (1) GCN-ED uses
GCN with entity mention based pooling method for
event detection (Nguyen and Grishman, 2018). (2)
SA-GRCN introduces a self-attention mechanism
for better modeling word dependencies (Liu et al.,
2021). (3) EE-GCN introduces additional typed de-
pendency label information into GCNs (Cui et al.,
2020). (4) GatedGCN proposes to filter noisy in-
formation via a gating mechanism (Lai et al., 2020).

External Knowledge based Methods: (1)
PLMEE proposes a method to enlarge the scale of
labeled data by editing prototypes and an evaluation
method to screen out generated data (Yang et al.,
2019). (2) DNR uses additional external knowl-
edge to link predefined event types to each sentence
to improve performance (Liao et al., 2021). (3) SS-
JDN introduces statistical features to cooperate
with the contextual features for event detection (Li
et al., 2021a).

4.4 Overall Results
Experimental results are shown in Table 1, where
“Our w/o BERT” denotes replacing BERT with
BiLSTM in our model. The highest values are
shown in bold. We can observe that our pro-
posed DualGAT outperforms all the baselines on
the ACE2005 dataset in terms of three metrics from
Table 1. Particularly, DualGAT outperforms the
syntactic-based methods by a large margin. It is
worth mentioning that the performance of Our w/o
BERT is even better than that of GatedGCN which
used BERT. Compared with the next best method
among all compared methods, DualGAT improves
the F1, Precision, and Recall by 0.9%, 0.5%, and
1.3%, respectively. It proves the effectiveness of
our proposed model for ED tasks. DualGAT fully
considers the complementary of syntactic and se-
mantic information and effectively captures the
trigger-relevant information. Compared with ex-
isting syntactic-based methods, the advantages of
DualGAT are more apparent. DualGAT is able
to more effectively leverage the internal critical

Type Method P R F1 BERT

Syn.

GCN-ED 77.9 68.8 73.1 -
EE-GCN 76.7 78.6 77.6 -
SA-GRCN 78.6 77.4 78.0 -
GatedGCN 78.8 76.3 77.6

√

Exter.
SS-JDN 80.3 78.8 79.5

√

PLMEE 81.0 80.4 80.7
√

DNR 81.2 82.4 81.8
√

Ours
Our w/o BERT 79.1 80.8 80.0 -
DualGAT 81.7 83.7 82.7

√

Table 1: Overall performance on ACE2005 dataset (%).
“Syn.” indicates syntactic dependency relations are used,
“Exter.” indicates external knowledge and resources are
used.

Method P R F1
DualGAT w/o reshape 78.1 75.3 76.7
DualGAT w/o syntactic 76.2 79.3 77.7
DualGAT w/o semantic 78.9 81.3 80.1
DualGAT w/o AR-GAT 80.3 82.1 81.2
DualGAT 81.7 83.7 82.7

Table 2: Experimental results of ablation study on
ACE2005 dataset (%).

information of sentences for ED tasks. Besides,
DualGAT is even better than three methods that
use external knowledge. It indicates that existing
ED methods do not fully exploit the internal infor-
mation of sentences of original data that are worth
further exploiting.

4.5 Ablation Study

To assess the effect of the dual relational graph and
augmented relational graph attention networks, we
further conduct several ablation studies. We design
four variants of the proposed model:
DualGAT w/o reshape: to study whether the dual
relational graph contributes to the performance im-
provement, we use the ordinary syntactic depen-
dency tree to replace the dual relational graph.
DualGAT w/o syntactic: to prove the effectiveness
of the syntactic relational subgraph, we remove
the syntactic relational subgraph and only use the
semantic relational subgraph.
DualGAT w/o semantic: to prove the effectiveness
of the semantic relational subgraph, we remove
the semantic relational subgraph and only use the
syntactic relational subgraph.
DualGAT w/o AR-GAT: to prove the effective-
ness of the augmented relational graph attention
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networks, we use relational graph attention net-
works to encode the dual relational graph.

The results of the ablation study are shown in
Table 2. From the results, we can observe that:

(1) DualGAT w/o semantic outperforms Dual-
GAT w/o reshape by a large margin. It indicates
that pruning and reshaping original syntactic rela-
tions are useful for event detection. The syntactic
relational subgraph converges all trigger-relevant
relations to the trigger candidates, which reduces
the interference of noisy relations. It also indicates
that a small part of dependency is task-aware, and
encoding the entire dependency tree is unnecessary
for event detection.

(2) In terms of performance degradation com-
pared to DualGAT, the F1 score of DualGAT with-
out syntactic relational subgraph drops more seri-
ously than that without semantic relational sub-
graph. It indicates that syntactic relations con-
verged on trigger candidates are more necessary
in DualGAT. The reason may be that the syntactic
relational subgraph establishes more effective cor-
relations among trigger candidates and other words
in a sentence.

(3) The DualGAT is improved by using the aug-
mented relational graph attention networks and
achieves 1.5% improvements in the F1 score. It in-
dicates that the introduction of contextual informa-
tion effectively captures key information between
words. The dependency parsers do not always parse
sentences correctly, which causes much loss of in-
formation. Thus, we use additional contextual in-
formation to get more accurate attention weights.

4.6 The Effect of Multiple Event Recognition

To verify the effectiveness of the dual relational
graph customized for every trigger candidate, we
study the performance of the proposed DualGAT
for multiple event recognition. Following (Xie
et al., 2021), we divide the test set into the “1/1”
and “1/N” subsets and perform evaluation on the
two subsets separately, where one sentence has
only one event in the 1/1 subset but has multiple
events in the 1/N subset. Moreover, one sentence
may contain multiple event types in the 1/N subset.
Figure 4 illustrates the performance (F1 score) of
DualGAT w/o reshape and DualGAT.

As shown in Figure 4, our proposed DualGAT
significantly outperforms DualGAT w/o reshape in
three situations. DualGAT improves upon the Du-
alGAT w/o reshape by 6.1% and 9.9% in 1/1 data

split and 1/N data split, respectively. The multi-
event scenario in a sentence confuses the event
detection methods, resulting in poor performance.
However, DualGAT improves the performance by
using the dual relational graph. Since each trigger
candidate has its particular dual relational graph,
the dual relational graph can reduce the interference
of irrelevant nodes and relations. The additional
semantic relations further capture sentence-level
information. Thus, our proposed DualGAT can al-
leviate the multi-event problem to a certain extent.
The experimental results demonstrate that the dual
relational graph is effective for the task of multiple
event recognition.

Figure 4: Performance of our method with ordinary
syntactic dependency tree (“DualGAT w/o reshape”)
and the proposed dual relational graph (“DualGAT”).

4.7 Semantic Relations Improve Robustness

We further study whether semantic relations can
make the dual relational graphs less vulnerable to
dependency parsing errors. Therefore, we conduct
experiments based on two widely used dependency
parsers: Stanford Parser (Chen and Manning, 2014)
and Biaffine Parser (Dozat and Manning, 2017).
The performance of the two parsers is shown in
Table 3, measured by two widely used metrics UAS
and LAS, of which higher is better. We use each of
these two dependency parsers to construct the dual
relational graph and evaluate the final performance
of the proposed method.

The experimental results of DualGAT with differ-
ent dependency parsers are shown in Table 4. From
Table 4, we can find that the DualGAT with Biaffine
parser achieves better performance in event detec-
tion since the dependency parsing performance of
the Biaffine parser is better than Stanford Parser.



1987

Parser UAS LAS
Stanford 94.10 91.49
Biaffine 95.74 94.08

Table 3: The performance of two dependency parsers.
The results are from (Chen and Manning, 2014)
and (Dozat and Manning, 2017) respectively.

Method P R F1
DualGAT (Sta) w/o sem 76.1 78.6 77.3
DualGAT (Bia) w/o sem 78.9 81.3 80.1
DualGAT (Sta) 81.5 82.3 81.9
DualGAT (Bia) 81.7 83.7 82.7

Table 4: The performance of DualGAT using different
parsers on ACE2005 dataset (%).

In the case of only syntactic relations, DualGAT
with Biaffine parser improves upon the DualGAT
with Stanford parser by 2.8%, 2.8% and 2.7% in
terms of F1 score, Precision and Recall. However,
compared with DualGAT (Bia), DualGAT (Sta) de-
clines by only 0.8%, 0.2% and 1.4% in F1 score,
Precision and Recall. It illustrates that semantic re-
lations can resist interference with syntactic parser
performance and improve the robustness of the dual
relational graph. Semantic relations have comple-
mentarity with syntactic relations and sustain the
performance of DualGAT in the case of syntactic
relationship failure. Besides, it also implies that
our proposed DualGAT can benefit from the ad-
vances in syntactic parsing and semantic parsing
techniques.

5 Conclusion and Future Work

In this paper, we propose a simple yet effective
model named DualGAT (Dual Relational Graph At-
tention Networks) to address the disadvantages of
syntactic-based methods for event detection tasks.
To facilitate the accurate capture of key informa-
tion from different perspectives in a sentence, we
devise a dual relational graph that aggregates syn-
tactic and semantic relations to key nodes in the
graph. To efficiently encode the dual relational
graph, we propose augmented relational graph at-
tention networks that introduce contextual informa-
tion to compute more robust attention weights. Ex-
perimental results show that our proposed method
achieves state-of-the-art performance.

We intend to explore several aspects of our work
further in the future. First, we would improve the
way semantic information is introduced. Second,

we would develop a more effective method for fus-
ing syntactic and semantic information. Third, we
would explore the effect of augmented relational
graph attention networks in other tasks.
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