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Abstract

Event detection aims to detect events from the
text by identifying and classifying event trig-
gers (the most representative words). Most of
the existing works rely heavily on complex
downstream networks and require sufficient
training data. Thus, those models may be struc-
turally redundant and perform poorly when
data is scarce. Prompt-based models are easy
to build and are promising for few-shot tasks.
However, current prompt-based methods may
suffer from low precision because they have
not introduced event-related semantic knowl-
edge (e.g., part of speech, semantic correlation,
etc.). To address these problems, this paper
proposes a Knowledge-injected Prompt Tuning
(KiPT) model. Specifically, the event detection
task is formulated into a condition generation
task. Then, knowledge-injected prompts are
constructed using external knowledge bases,
and a prompt tuning strategy is leveraged to op-
timize the prompts. Extensive experiments in-
dicate that KiPT outperforms strong baselines,
especially in few-shot scenarios.

1 Introduction

Events describe state changes of participating enti-
ties. The Event Detection (ED) task is one of the
essential tasks in the Information Extraction field.
Event triggers are the most representative words or
phrases in events, and they are usually composed
of verbs or nouns. There is a one-to-one correspon-
dence between events and event triggers, so the
ED task is equivalent to identifying and classifying
event triggers.

The ED task has a wide range of applications,
providing helpful information for downstream
tasks such as text summarization, auto summa-
rization, machine question and answer (QA), etc.
Meanwhile, with the vigorous development of In-
ternet news and social media, ED has become a

*Weiping Li is the corresponding author.

practical approach for extracting information from
massive texts. Therefore, the ED task has attracted
increasing attention with great academic and ap-
plied value in recent years.

Most current ED models use a pre-trained lan-
guage model to build complex downstream net-
works (including CNN, RNN, GCN, etc.) These
methods perform well on public datasets, but they
rely heavily on the fine-tuning strategy to train their
downstream networks and introduce massive ex-
tra parameters. However, due to the scarcity and
uneven distribution of the annotated data for ED,
these methods may cause severe overfitting prob-
lems. Further, these methods may perform poorly
in data-scarce scenarios because their extra param-
eters cannot be fully optimized.

Recently, prompt-based learning methods is a
new trend in natural language processing. Re-
searchers verified that pre-trained language models
already have enough knowledge, so the complex
downstream networks are unnecessary in many
cases. Prompt-based learning methods make full
use of the information in pre-trained language mod-
els by constructing prompts to guide the language
model to solve NLP tasks. Specifically, prompt-
based methods first transform the original input
into prompt templates containing the initial input,
the prompt tokens, and unfilled slots for output.
Then, a pre-trained language model is employed to
fill the unfilled slots to obtain a final string from
which the final output can be derived.

Prompt learning-based methods eliminate com-
plex downstream networks and massive extra pa-
rameters, so they have advantages in data scarcity
scenarios. Meanwhile, the prompts’ quality di-
rectly affects the models’ performance. However,
manually selecting the optimal prompts is time-
consuming and labor-intensive. Considering this,
prompt tuning strategies have been proposed by
introducing continuous virtual tokens as trainable
prompts that will be optimized through training.
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The threat posed by the Iraqi dictator justifies a war, which is sure to kill thousands of innocent children.

Sequence Tagging
Models

No. Trigger Event Type

1 war Conflict:Attack

2 kill Life:Die

Condition Generation
Models

war triggers Conflict:Attack and
kill triggers Life:Die

Equivalent 
mapping

Event Record:
Event list:

Figure 1: An example of Event Detection (on the left is the event list output by the sequence tagging model; on the
right is the event record output by the condition generation model, where the gray words act as structural tokens)

However, the above prompts may suffer from low
precision because they have not introduced event-
related semantic knowledge.

Event triggers are mostly verbs and nouns, and
are usually semantically related to the core concept
words of events. Therefore, semantic knowledge
(such as part of speech, word semantic correlation,
etc.) plays a crucial role in the ED task. To this end,
this paper proposes a Knowledge-injected Prompt
Tuning (KiPT) model to introduce event-related
knowledge using external knowledge bases.

Specifically, we formulate the ED task into a con-
dition generation task. Then, external knowledge
bases and semantic tools are used to obtain the se-
mantic knowledge associated with input sentences
and events. Next, the semantic knowledge is in-
jected into the prompts for ED. Finally, we use the
knowledge-injected prompts to extract event trig-
gers, and the prompts will be optimized through a
prompt tuning strategy. Our method is direct and
effective, and it can be easily transferred to other
tasks.

The main contributions of this paper are summa-
rized as follows:

• We introduce a knowledge injection method to
inject event-related semantic knowledge into
the prompt templates, which is the first in the
ED task to the best of our knowledge;

• We propose a prompt-based learning model
for ED called Knowledge-injected Prompt
Tuning (KiPT), which leverages a prompt tun-
ing strategy to optimize the prompts;

• Extensive experiments show that our model
outperforms current prompt-based ED mod-
els and strong baselines, especially in data
scarcity scenarios.

2 Related Work

Studies related to our work are mainly discussed
from the following three aspects:

2.1 Event Detection Methods

The ED models can be divided into sequence tag-
ging models and condition generation models.

Chen et al. and Nguyen et al. formulated ED as
a sequence tagging task for the first time, and they
used CNN and RNN to model sentence-level fea-
tures; Liu et al. and Yan et al. used GCN to empha-
size the semantic dependency. Nguyen and Nguyen
jointly extracted entities, triggers, and arguments
based on the shared hidden representations; Wad-
den et al. provided a graph propagation method
to capture context relevant for entity, relation, and
event; Lin et al. built an end-to-end information
extraction system which employs global feature
and beam search to extract globally optimal event
structures;

Condition generation methods encode sentences
using generative pre-trained language models such
as BART(Lewis et al., 2019) and T5(Raffel et al.,
2019). Li et al. utilized a conditional generation
model with BART. Paolini et al. regarded event
extraction as a translation task between augmented
natural languages; Lu et al. constructed events as
event trees and used a Seq2Structure model.

2.2 Prompt-based Learning Methods

Prompt-based learning methods use prompts to
guide pre-trained language models to generate re-
sults, so the quality of the prompt templates is crit-
ical. The current prompt-base learning templates
include:

Manually setting discrete prompt templates (ac-
tual words in the template): Schick and Schütze
transferred the text classification task into a cloze-
filling task by using manual prompt templates.
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Petroni et al. converted triple completion tasks into
cloze-filing questions through prompt templates.

Building trainable continuous prompt templates
(virtual tokens in the template): Li and Liang used
trainable prefix tokens as prompts and added soft
tokens in each layer of the language model. Liu
et al. replaced actual words with trainable soft
tokens in the prompt template and introduced an
extra prompt encoder.

However, neither of these methods introduces
task-related knowledge, and they cannot optimize
the prompt along with external knowledge.

2.3 Prompt-based Knowledge Injection

Some works have already attempted to introduce
external knowledge in prompt-based learning. Hu
et al. enhanced the mapping of model outputs and
predefined categories by introducing extra knowl-
edge in verbalizers. Chen et al. introduced virtual
tokens to enhance category features for relation ex-
traction tasks. Li et al. strengthened the model by
introducing ground truths. Although these methods
are instructive, they have strong task dependencies
and are difficult to apply to Event Detection.

Our work aims to perform the ED task using a
prompt-based model with event-related knowledge.
To achieve this, a knowledge-injected prompt tun-
ing method is proposed in this paper.

3 Methodology

This section first describes the definition of the ED
task. Then, the proposed KiPT model is introduced
in detail.

3.1 Task Description

Following the task description of Automatic Con-
tent Extraction 1, the standard task of ED includes
event Trigger Identification (Trig-I) and Trigger
Classification (Trig-C). Consider the example in
Figure 1. After obtaining the input sentence, ED
methods should first identify the triggers "war"
and "kill" and then classify them into event types
"Conflict:Attack" and "Life:Die".

This paper formulates the standard ED task into
a condition generation task to simplify the output.
First, the structural word "triggers" is used to com-
bine a trigger and its corresponding type like "war
triggers Conflict:Attack". Then, if a sentence con-
tains more than one event, the events are concate-

1https://www.ldc.upenn.edu/collaborations/past-
projects/ace/annotation-tasks-and-specifications

nated with another structural word "and". Consider-
ing the example in Figure 1, our constructed event
record is “war triggers Conflict:Attack and kill
triggers Life:Die”. Therefore, given the input sen-
tence, our model generates the above event record
as output. It is worth mentioning that the output
of our method is equivalent to the original ED task
since event records can be easily split into event
triggers and event types.

3.2 The Overall Structure of KiPT
The overall structure of KiPT is shown in Figure
2. First, given the input sentence x, the knowledge-
injected prompt Prompt(x) is constructed. Then,
prompt template input T is built and fed into the
pre-trained language model LM to obtain the out-
put event record y.

We propose a trainable knowledge-injected
prompt Prompt(x) in KiPT. Prompt(x) includes
two parts: input-related knowledge injection K(x)
and input-irrelated soft tokens S. K(x) and S are
both trainable and will be optimized during the
training process.

In the following subsections, the construction
and tuning of the knowledge-injected prompt will
be explained in detail.

3.3 Knowledge-injected Prompt Construction
In this section, the definitions of the knowledge
injection K(x) and the soft tokens S are introduced
first. Then, the combination of K(x) and S into
the prompt Prompt(x) is described.

Knowledge Injection K(x): Given each
input sentence x, the token sequence x1:n =
{x1, x2, ..., xn} can be obtained by using a tok-
enizer. Then, a knowledge extractor is used to
extract event-related knowledge K(x) for x, and
the knowledge extractor is constructed by using
NLP analysis tools and external knowledge bases.

First, since event triggers are mostly verbs and
nouns, each token’s part of speech (POS) is es-
sential. Thus, POS analysis is performed on each
token xi using a semantic analysis tool (Stanford’s
Stanza(Qi et al., 2020)). Then, Stanza’s lemmati-
zation module is employed to recover the lemma
form x̂i of each input token (for example, "died"
-> "die"). After the POS and the lemma form of
each token are obtained, the verbs and nouns are
selected as a list of potential triggers PT1:|PT | =
{pt1, pt2, ..., pt|PT |}.

Semantic correlations in knowledge bases also
provide vital information for ED. Each type of
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Pretrained Language Model LM

Knowledge
Injection 𝐾(𝑥)

Soft 
Tokens 𝑆

The threat posed by the Iraqi dictator justifies a war, 
which is sure to kill thousands of innocent children.

war triggers Conflict:Attack and kill triggers Life:Die

Input Sentence x

Knowledge
Extractor

Prompt Tuning

Output Events Recode y

WordNet，POS，
lemma, … Prompt(x)

MLP

Figure 2: The overall architecture of KiPT. Given the input sentence x, external knowledge are used to construct
input-related prompt Prompt(x). Then, the language model LM is used to generate output event record y.

event has some core concepts, e.g., the event type
"Conflict: Attack" has concepts like "attack, fight,
bomb, etc.", and the event type "Life: Die" has con-
cepts like "kill, suicide, murder, etc." To exploit the
semantic relevance of the core concepts of words
and events, we make the following assumption:

Assumption 3.1 If a word has strong semantic
correlations with the core concepts of a specific
event type, then the word is likely to trigger an
event of that type.

Based on the above assumption, a dictionary
Concept1:e containing the core concepts of each
event type (e represents the total number of event
types) is manually constructed, and conceptk rep-
resents the concept of the kth type of event. Then,
WordNet(Fellbaum and Miller, 1998) is intro-
duced to obtain the semantic correlation between
the input tokens and the core concepts, and whether
they have a strong semantic correlation is judged
by calculating the semantic similarity of two words
in WordNet. For each word ptj in the list of poten-
tial triggers PT and the core concept conceptk
for each event type, their semantic correlation
Sc(ptj , conceptk) is calculated by using the Wu-
Palmer Similarity Algorithm(Wei et al., 2015).
If the semantic correlation Sc(ptj , conceptk) is
above the similarity threshold θsim, the potential
trigger word ptj and the corresponding event type
eventk are both added to K(x).

To sum up, the process of the knowledge extrac-
tor is as follows:

The final extracted knowledge injection K(x)
is a text sequence composed of potential triggers
and their potential event types. It is denoted as
K(x)1:|K| = {k1, k2, ..., k|K|}, where |K| stands
for the length of K. Further, the similarity thresh-
old θsim may affect the performance of our model,

Algorithm 1 Knowledge Extractor

Input: Sentence: x1:n, Concept dict: Concept1:e
Output: Knowledge Injection: K(x)

for xi ∈ x do
if POS(xi) ∈ [verb, noun] then

Add lemma(xi) to potential triggers PT
end if

end for
for ptj ∈ PT do

for conceptk ∈ Concept do
if Sc(ptj , conceptk) > θsim then

Add [ptj , eventk] to K(x)
end if

end for
end for

which will be discussed in the Appendix.

Soft Tokens S: Besides using knowledge in-
jection K(x), this paper also adds some trainable
soft tokens to the prompts. Soft tokens are vir-
tual tokens sharing the same dimension as actual
words (e.g, 768 for T5-base) but without real mean-
ings. Previous works have proved that trainable
soft prompts are more flexible and effective than
actual words (Liu et al., 2021; Li and Liang, 2021).

In our method, randomly initialized tensors are
used as the soft prompt tokens, which will be op-
timized during the training of the language model.
The soft tokens used in this paper are denoted as
S1:p = {s1, s2, ..., sp}. The selection of p may
slightly affect the performance of our model, and
this will be discussed in Appendix.

Prompt Templates Construction: After
knowledge injection K(x) and soft tokens S are
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obtained, they are concatenated as Prompt(x):

Prompt(x) = [K(x);S]

= {k1, ..., k|K|, s1, ..., sp}
(1)

For each input x, Prompt(x) is constructed as
the knowledge-injected prompt. Then, a prompt
template is built, which contains the input x,
Prompt(x), and the target event record y.

Template : Prompt(x) [x], Events : [y] (2)

Where [x] represents the slot for the input sentence,
[y] represents the slot for the target event records,
and ”Events : ” is a fixed anchor token. Anchor
tokens have been proved useful by previous works
(Li and Liang, 2021; Han et al., 2021).

3.4 Knowledge-injected Prompt Tuning
The knowledge-injected prompt Prompt(x) needs
to be optimized through training mainly for the
following two reasons:

(1) Some rule-based algorithms are used during
the construction of the knowledge injection K(x).
However, these rules may be ineffective or even
wrong in some cases, so these rules need to be
softened through training;

(2) Soft tokens S are virtual tensors that are ran-
domly initialized and have no original semantics.
They need to be trained to approximate the distribu-
tion of actual words to achieve the role of prompts
for language models.

To this end, we propose knowledge-injected
prompt tuning to optimize Prompt(x). Given a
pre-trained language model LM and its vocabulary
V , the prompt template’s input T is:

T = [Hk;Hs; e(x)]

= {hk1, ..., hk|K|, h
s
1, ..., h

s
p, e(x1), ..., e(xn)}

(3)
where e(xi) indicates the embeddings for the input
tokens; hsi and hki stand for embedded prompts
for the knowledge injection and the soft tokens,
respectively. Note that e(xi) and hki are initialized
using the embeddings of the actual tokens from the
LM’s vocabulary V , and hsi indicates randomly
initialized tensors. The conditional probability of
the event record output can be obtained by using
the generative language model LM.

Finally, given the golden event record y, gradient
updates are performed by using the following log-
likelihood loss function:

L = −
∑

(x,y)∈D

log(y|Hk, Hs, e(x), θLM) (4)

where D stands for the whole training dataset, and
θLM stands for the LM’s parameters.

Previous research (Liu et al., 2021) has shown
that there are semantic gaps between the embed-
dings of actual tokens and virtual tokens. Because
the embeddings of actual words are highly discrete
through pre-training, trainable soft prompt tokens
are randomly distributed. They will only change
in a small neighborhood during stochastic gradient
descent.

Thus, following Liu et al.’s work, we use a lite
muti-layer linear network (MLP) as a prompt en-
coder to narrow the semantic distance between the
embedding of actual words and prompt tokens:

ĥsi = MLP(hsi ), i ∈ [1, p] (5)

The loss function is improved as follows:

L = −
∑

(x,y)∈D

log(y|Hk, Hs, e(x), θLM, θMLP)

(6)
where θMLP stands for the parameters of the muti-
layer linear network MLP .

4 Experiments

This section describes our experimental settings
and detailed experimental analysis.

First, we conduct overall experiments to verify
the performance of KiPE with sufficient training
data. Next, we conduct few-shot and zero-shot
experiments to verify the performance of KiPT
in data-scarce scenarios. Finally we perform an
ablation analysis to explore the influence of each
part in our prompts.

4.1 Experiment Setup
Datasets. Our work is evaluated on the most widely
used datasets ACE 2005 (Automatic Content Ex-
traction program of 2005)2 and TAC 2015 (Event
Nugget data of TAC 2015)3. The detailed descrip-
tions of the datasets are presented in Table 1:

As for ACE 2005, following the previous works
(Yan et al., 2019; Nguyen and Nguyen, 2019), the
599 documents are divided into 529 training doc-
uments, 30 development documents, and 40 test
documents. And for TAC 2015,following Lu et al.,
the 458 documents are divided into 396 training
documents, 31 development documents, and 31 test
documents.

2https://catalog.ldc.upenn.edu/LDC2006T06
3https://catalog.ldc.upenn.edu/LDC2020T13
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Datasets ACE 2005 TAC 2015
Event Type 33 38
Total Documents 599 458
Total Events 5,055 7,530
Train/Dev/Test Split 529/30/40 396/31/31

Table 1: Statistics of ACE 2005 and TAC 2015

Metrics. The ED task has two subtasks: Trigger
Identification (Trig-I) and Trigger Classification
(Trig-C). Their standard evaluation criteria are as
follows:

• Trig-I: An event trigger is identified correctly
if its span matches the gold trigger;

• Trig-C: An event trigger is classified correctly
if both its span and event type match the gold
trigger.

We use micro-averaged Precision (P), Recall (R),
and F1 score (F1) in all the following evaluations.

Settings. In this paper, T5 (Yang et al., 2019) is
utilized as the pre-trained language model LM in
KiPT. Both T5-Base and T5-Large are used in the
overall results, while only T5-Base is used in the
rest of the experiments. Our model is optimized
with AdamW for 30 epochs with a learning rate
of 1e-4 and a weight decay of 1e-5 for T5, and a
learning rate of 1e-3 and a weight decay of 1e-4
for other parameters. The batch size is set to 16 for
T5-base and 8 for T5-large.

In our main KiPT model, the number of soft
tokens p is set to 40, and the similarity threshold
θsim is set to 0.8. The performance of the other
options will be discussed in Appendix.

Baselines. This paper chooses 10 strong base-
lines for comparison: (1) Three sequence tagging
models: Joint3EE jointly extracts entities, triggers,
and arguments based on the shared hidden repre-
sentations; DYGIE++ provides a graph propaga-
tion method to capture relevant context for entity,
relation, and event; OneIE builds an end-to-end
information extraction system that employs global
feature and beam search to extract globally opti-
mal event structures; (2) Two QA-based models:
BERT_QA first formulates ED as a QA task and
generates questions from annotation guidelines;
MQAEE uses multi-turn question strategy to build
questions; (3) Three condition generation models:
BART-Gen utilizes a conditional generation model
with BART. Given the description of events, the cor-
responding triggers in the sentence are generated;

TANL frames ED as a translation task between aug-
mented natural languages; Text2Event constructs
event structure and uses a Seq2Structure model.
(4) Two prompt-based learning models: PoKE
presents various joint prompt methods, which can
elicit more complementary knowledge by modeling
the interactions between different triggers or argu-
ments; GDAP empowers the automatic exploita-
tion of label semantics on prompt templates.

4.2 Overall Results

The overall results of our model on ACE 2005 and
TAC 2015 are presented in Table 2 and Table 3, re-
spectively. For both Trig-I and Trig-C tasks, KiPT
(T5-large) outperforms all strong baselines on ACE
2005, reaching F1 values of 78.6% and 75.3%, re-
spectively. Due to the reduced parameters of the
pre-trained language model, the performance of
KiPT (T5-base) drops slightly (-1.1% in Trig-I and
-0.4% in Trig-C), but it still exceeds most of the
baselines. On TAC 2015, OneIE and Text2Event
are compared because they are the only two base-
lines experimented on TAC 2015. Although our
model is slightly lower than OneIE in Trig-I, it
outperforms all baselines in Trig-C.

From the overall results, it can be seen that:
(1) Our model significantly outperforms other

prompt-based models (PoKE and GDAP) because
of the utilization of event-related knowledge. The
results indicate that prompt-based learning models
tend to achieve higher Recall but lower Precision
in both Trig-I and Trig-C tasks. We believe that
prompt-based learning models only use the knowl-
edge of pre-trained language models, which is more
general but lacks task specificity.

KiPT improves this problem significantly by in-
troducing event-related knowledge through knowl-
edge injection, narrowing the gap between Preci-
sion and Recall. In the Trig-C task, the gap between
Recall and Precision of KiPT (T5-base) is 4.0%,
while that of PoKE and GDAP is 12.1% and 9.2%,
respectively. That is why KiPT outperforms other
prompt-based learning models.

Further, KiPT(T5-base) has better precision than
KiPT(T5-large) but has lower recall and F1. The
possible reason is that T5-large contains more gen-
eral knowledge and reduces the proportion of event-
related knowledge we introduced.

(2) Without introducing complex downstream
networks, KiPT (T5-base) outperforms the best
T5-base model PoKE by 5.3% in F1, and KiPT
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Models Trig-I Trig-C PLMP R F1 P R F1
Sequence Tagging Models

Joint3EE (Nguyen and Nguyen, 2019) 70.5 74.5 72.5 68.0 71.8 69.8 -
DYGIE++ (Wadden et al., 2019) - - 76.5 - - 73.6 BERT-large
OneIE (Lin et al., 2020) - - 78.6 - - 75.2 BERT-large

QA Models
BERT_QA (Du and Cardie, 2020) 74.3 77.4 75.8 71.1 73.7 72.4 2×BERT-base
MQAEE (Li et al., 2020) - - 77.4 - - 73.8 3×BERT-large

Condition Generation Models
BART-Gen (Li et al., 2021b) - - 74.4 - - 71.1 BART-large
TANL (Paolini et al., 2021) - - - - - 68.5 T5-base
Text2Event (Lu et al., 2021) - - - 69.6 74.4 71.9 T5-large

Prompt-based Learning Models
PoKE (Lin et al., 2021) - - - 64.1 76.2 69.6 T5-base
GDAP (Si et al., 2022) - - - 65.6 74.7 69.9 T5-large

Our Model
KiPT (T5-base) 76.0 79.1 77.5 72.9 76.9 74.9 T5-base
KiPT (T5-large) 75.4 82.1 78.6 71.6 79.2 75.3 T5-large

Table 2: Experimental results on ACE 2005. Trig-I indicates trigger identification tasks and Trig-C indicates trigger
classification tasks. The column PLM indicates the pre-trained language models used in each model.

Model Trig-I Trig-C
OneIE 68.4 57.0

Text2Event - 57.8
KiPT (T5-base) 66.3 58.1
KiPT (T5-large) 67.0 58.3

Table 3: Experimental results on TAC 2015. The F1
score is recorded for each model.

(T5-large) outperforms the best T5-large model
Text2Event by 3.4%. This proves the effectiveness
of our prompt tuning strategy.

(3) Our model has a relatively small F1 drop
from Trig-I to Trig-C: -2.6% for KiPT (T5-base)
and -2.3% for KiPT (T5-large). As a comparison,
the average drop of the QA model is -3.5% and that
of the condition generation model is -3.3%. This
indicates that KiPT binds potential triggers and
their corresponding event types together through
knowledge injection, so it is easier for it to classify
trigger words correctly after identifying them.

Among all the baselines, OneIE has a close per-
formance to KiPT, indicating that sequence tagging
models still have competitive performance with
enough training data. However, the introduction of
complex downstream networks and massive param-
eters may face struggles when data is insufficient.

k − shot OneIE Text2Event PoKE KiPT
k = 4 22.8 39.6 44.2 45.5
k = 8 25.2 51.2 53.1 50.1
k = 16 28.6 52.1 53.8 54.2
k = 32 39.7 53.7 55.3 56.4
k = 64 48.6 57.8 59.1 63.6

All Data 75.2 71.9 69.6 74.9

Table 4: Experiment with few-shot settings. The average
F1 scores of 10 experiments are used for each model.

Next, we will perform data-scarce experiments.

4.3 Few-shot and Zero-shot Scenarios
To verify the advantages of KiPT in low-resource
settings, we conduct few-shot and zero-shot exper-
iments on ACE 2005. Three strong baselines are
compared: sequence tagging model OneIE, con-
dition generation model Text2Event, and prompt-
based learning model PoKE.

Few-shot experiments: Referring to the few-
shot settings of previous works (Gao et al., 2020;
Lin et al., 2021), 4, 8, 16, 32, and 64 shot experi-
ments are conducted to compare the performance
of KiPT and baselines under scenarios with small
data resources. Specifically, for each type of event,
k samples are randomly selected from the initial
training set. Then, after training, the models’ per-
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Models Trig-I Trig-C
OneIE 37.6 34.7
Text2Event 45.1 38.4
Poke 44.7 39.3
KiPT 44.9 42.3

Table 5: Experiment with zero-shot settings. The F1
scores for Trig-I and Tri-C are on 23 unseen event types.

formance is tested on the standard test set. Each
k − shot experiment is repeated 10 times, and the
average results are recorded finally.

The results are shown in Table 4. It can be seen
that KiPT outperforms all the strong baselines in
most few-shot settings. Further analysis indicates
that:

(1) Our model is still effective when the data is
particularly sparse. For example, in the setting of
k = 4, KiPT reaches 45.5% in F1 score, signifi-
cantly surpassing all baselines;

(2) The lead of current prompted-based models
will gradually shrink as the training data increase.
For example, PoKE outperforms Text2Event by
4.6% and 1.3% when k = 4 and k = 64, re-
spectively. However, benefiting from the train-
able knowledge-injected prompts, KiPT’s perfor-
mance grows uniformly as the data increase. In
detail, KiPT surpasses Text2Event by 5.9% and
5.8% when k = 4 and k = 64, respectively.

(3) OneIE perform poorly in all few-shot scenar-
ios. This indicates that the models using complex
downstream networks and extra parameters require
sufficient training data to achieve their protential.

Zero-shot experiments: Following the settings
of Lu et al., we selected the top 10 most popular
event types as seen types and tested the zero-shot
classification performance for the remaining 23
unseen types. The results are shown in Table 5,
where KiPT overpasses all baselines, especially in
the Trig-C task. This indicates that even for a new
unseen event type, we can also obtain its event-
related knowledge through our prompts, proving
the transfer potential of our model.

4.4 Ablation Study

An ablation study is conducted to verify the ef-
fectiveness of each component of KiPT. Specifi-
cally, four groups of controlled experiments are
designed: "−MLP" means removing the prompt
encoder proposed in equation 5; "−S" means only
using knowledge injection in prompt construction;

Models F1 score for Trig-C
KiPT (T5-base) 74.9

- MLP 73.0 (-1.9)
- S 73.6 (-1.3)
- K(x) 72.2 (-2.7)
- K(x) and S 71.0 (-3.9)

Table 6: Ablation study results on ACE 2005. ’-’ means
the removal of the corresponding component.

"−K(s)" means only using soft tokens as prompts;
”−K(x) and S” means removing all the prompts.
The results of the ablation study are presented in
Table 6. It can be seen that:

(1) When MLP is removed, the model’s perfor-
mance drops slightly (-1.9%). This indicates that
although soft tokens can be optimized by training,
the gap between virtual tensors and actual words
may still cause an adverse effect, showing the ne-
cessity of our prompt encoder.

(2) Knowledge injection plays a more signifi-
cant role than soft tokens within prompts. The
removal of K(x) caused a performance drop of
2.7%, over twice the removal of S (1.3%). This in-
dicates that introducing additional semantic knowl-
edge for prompt-based models is better than adding
randomly initialized tokens.

(3) After all the prompts are removed, our model
downgrades into a simple condition generation
model, which causes a significant performance
drop (-3.9%). Because we does not design down-
stream networks, the performance of the down-
graded model is lower than that of condition gen-
eration baselines (Text2Event and BART-Gen).
This validates the effectiveness of our knowledge-
injected prompt tuning strategy.

5 Conclusion

This paper proposes a prompt-based learning
method for ED by introducing knowledge-injected
prompt tuning. External knowledge and soft tokens
are used to construct knowledge-injected prompts,
which can be optimized through training. Compre-
hensive experiments demonstrate that KiPT out-
performs current prompt-based ED models and
strong baselines, especially in data-scarce scenar-
ios. Through our method, prompt-based models
can introduce task-related knowledge more con-
veniently and effectively. In the future, we will
explore more knowledge injection approaches and
their applications in other tasks.
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A Appendix

In the appendix, we discuss the influence of the
soft prompt tokens’ number p and the similarity
threshold θsim on KiPT.

A.1 The selection of soft tokens’ number p

We set up experiments for different numbers of soft
tokens for detailed analysis. We set up experiments
with soft tokens’ number as 0, 10, 20, 40, 80, and
160 on both ACE 2005 and TAC 2015 datasets. The
results are shown in Figure 3.
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Figure 3: KiPT’s performance with different p selection

We can observe that p and the KiPT’s perfor-
mance are not entirely positively correlated, and
the model performance peaks when p is around 40.
We believe that the small number of soft tokens
will make the semantic information captured by the
model insufficient, and it is challenging to classify
events accurately. On the contrary, introducing too
many soft tokens will dilute the original semantic
information of the sentence, which will also lead
to a decline in the model’s performance.

A.2 The selection of similarity threshold θsim
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Figure 4: KiPT’s performance with different θsim

The selection of similarity threshold θsim will
directly influence the knowledge injection K(s).
Lower θsim will introduce more knowledge along
with more noise, while higher θsim will inject
knowledge more precisely but less broadly. KiPT
performs best when θsim equals 0.8.


