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Abstract

Multi-hop question answering (QA) requires
reasoning over multiple documents to answer
a complex question and provide interpretable
supporting evidence. However, providing sup-
porting evidence is not enough to demonstrate
that a model has performed the desired reason-
ing to reach the correct answer. Most existing
multi-hop QA methods fail to answer a large
fraction of sub-questions, even if their parent
questions are answered correctly. In this pa-
per, we propose the Prompt-based Conserva-
tion Learning (PCL) framework for multi-hop
QA, which acquires new knowledge from multi-
hop QA tasks while conserving old knowledge
learned on single-hop QA tasks, mitigating for-
getting. Specifically, we first train a model on
existing single-hop QA tasks, and then freeze
this model and expand it by allocating addi-
tional sub-networks for the multi-hop QA task.
Moreover, to condition pre-trained language
models to stimulate the kind of reasoning re-
quired for specific multi-hop questions, we
learn soft prompts for the novel sub-networks
to perform type-specific reasoning. Experimen-
tal results on the HotpotQA benchmark show
that PCL is competitive for multi-hop QA and
retains good performance on the corresponding
single-hop sub-questions, demonstrating the ef-
ficacy of PCL in mitigating knowledge loss by
forgetting.

1 Introduction

Multi-hop QA is a challenging task with the goals
of reasoning over multiple scattered documents to
predict an answer, and providing explanatory sup-
porting evidence (Yang et al., 2018). By fine-tuning
pre-trained language models (PLMs) with task-
specific data, most existing multi-hop QA models
have achieved good performance in both goals (Tu
et al., 2020; Fang et al., 2020).

Despite the success of fine-tuned PLMs on the
multi-hop QA task, providing supporting evidence
is not enough to demonstrate that a multi-hop QA

Task1 Task2

Figure 1: An example of conservation learning based on a
continual learning mechanism. The neurons on the left are
devoted to Task1 (single-hop QA), and on the right (green) are
a novel sub-network created for Task2 (multi-hop QA) that
laterally connects to the trained Task1. By adding the sub-
network, the model acquires new knowledge of Task2 while
retaining knowledge learned in Task1, mitigating forgetting.

model has performed the desired multi-hop reason-
ing to reach the correct answer; it may instead have
utilized reasoning shortcuts, having neglected to
acquire and retain the single-hop reasoning knowl-
edge essential to reliable interpretability (Jiang and
Bansal, 2019). Previous work (Tang et al., 2021)
has demonstrated that most existing multi-hop QA
models with good performance fail to answer a
large fraction of the sub-questions whose parent
multi-hop questions can be answered correctly.
Thus, it is necessary to understand the behaviour
on each hop of the reasoning process and mitigate
forgetting of the knowledge required for each hop
in interpretable multi-hop QA. Doing so should
enable humans to better trust the QA mechanism.

In addition, existing QA models integrate all the
knowledge by thoroughly pre-training the PLMs on
all available data (Schwartz et al., 2020), which in-
tegrates the various forms of knowledge from mul-
tiple types of questions. However, a downstream
QA task may only require knowledge of a specific
type. For example, in the multi-hop QA task (Yang
et al., 2018), questions can be roughly divided into
two different types: bridging and comparison, each
of which requires a specific reasoning strategy to
answer. To achieve multi-hop reasoning efficiently,



1792

it may be useful for PLMs to disentangle knowl-
edge from other question types and stimulate the
appropriate reasoning types required for particular
multi-hop questions.

To address these issues, we propose Prompt-
based Conservation Learning (PCL) for multi-hop
QA. Specifically: i) to train a multi-hop QA model
without forgetting, we apply conservation learn-
ing based on a continual learning mechanism to
acquire new knowledge from multi-hop QA tasks
while retaining that previously learned on single-
hop QA tasks. As shown in Figure 1, we first train
a model on the single-hop QA task; when incor-
porating the new multi-hop QA task, we freeze
the model trained on the single-hop task and ex-
pand it by allocating novel sub-networks for new
multi-hop knowledge; ii) to take full advantage
of diverse knowledge in the PLM, we first iden-
tify the reasoning type of the multi-hop question
as a soft prompt via a transformer-based question
classifier, and then transform it into a sub-network
that connects laterally with the previously trained
QA model, to condition the PLM to perform type-
specific reasoning. Since PCL trains the QA model
incrementally based on the conserved previously
learned parameters, it should be able to perform
well on multi-hop QA because it thus retains the
previously learned knowledge (Parisi et al., 2019;
Sun et al., 2020).

Our contributions are summarized as follows:

• We propose conservation learning for multi-
hop QA, which acquires knowledge from the
multi-hop QA task while retaining knowledge
learned on single-hop QA tasks, which may
enable humans to understand the behaviour of
each hop in the reasoning process better.

• We propose using a soft prompt based on the
reasoning type to condition the PLM, stimu-
lating use of the required knowledge for par-
ticular types of multi-hop reasoning.

• Our proposed PCL achieves better perfor-
mance on the HotpotQA leaderboard, while
also retaining good performance on the corre-
sponding single-hop sub-questions.

2 Related Work

Prompt Tuning for PLMs. Prompt tuning is an
effective mechanism for learning prompts to con-
dition PLMs to stimulate and apply the appropri-
ate knowledge for a specific downstream task (Liu

et al., 2021). Gu et al. (2021) propose to initialize
soft prompts by adding them into the pre-training
stage of few-shot learning. Li and Liang (2021)
prepend a series of learnable continuous embed-
dings as soft prompts into the input, achieving bet-
ter performance in text generation tasks. Motivated
by these methods, we use the reasoning types of
multi-hop questions as soft prompts to condition
PLMs to stimulate the knowledge required to an-
swer multi-hop questions.

Continual Learning for PLMs. Continual learn-
ing aims to allow systems to repeatedly acquire new
knowledge while retaining previously learned ex-
perience, mitigating catastrophic forgetting (Parisi
et al., 2019). Conceptually, continual learning can
be divided into three categories of technique: i)
retrain the whole model while imposing additional
constraints to retain the important learned model
parameters from previous tasks (Li et al., 2021a);
ii) perform memory replay to distill the knowledge
from previous model backups (Sun et al., 2019; Rol-
nick et al., 2019); iii) freeze the model trained on
previous tasks and retrain the model by allocating
new neurons or network layers for new tasks (Qin
et al., 2022). In this paper, we propose a learning
mechanism based on continual learning, by freez-
ing the model trained on the single-hop QA, and
retraining the model for the multi-hop QA using
our soft-prompt technique, enables the QA model
to achieve single-hop reasoning and multi-hop rea-
soning simultaneously. Since we only have two
tasks, we call this conservation learning. It aims to
conserve previously learned knowledge while per-
forming well on a second task; it does not continue
for a large number of tasks as in continual learning.

End-to-end Multi-hop QA. Existing end-to-end
multi-hop QA systems predict the answer and cor-
responding supporting facts based on the given
question and retrieved relevant paragraphs. Qiu
et al. (2019), Fang et al. (2020), and Tu et al. (2020)
extract information at different levels of granularity
as nodes in a graph, and then apply GNN-based
methods to answer the question and provide sup-
porting sentences. Shao et al. (2020a), Beltagy
et al. (2020) and Wu et al. (2021) argue that graph
structures may not be necessary for multi-hop QA,
and propose graph-free reasoning models. Unlike
these methods, where there is no training require-
ment for the models to follow the desired reasoning
steps to predict the answer, we propose a multi-hop
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Figure 2: An overview of our proposed PCL framework for multi-hop QA. Specifically, it involves three key steps, (a) train a QA
model to acquire knowledge from single-hop QA tasks; (b) identify reasoning types of multi-hop questions as soft prompts, and
transform soft prompts into a sequence of continuous type-specific vectors; (c) retrain the QA model to acquire new knowledge
from multi-hop QA tasks by freezing the trained network in single-hop QA task and prepending soft prompt vectors to the input.

QA framework with separated learning of the in-
tended behaviour of QA models on each hop of the
reasoning process and in the final answer.

3 Methodology

3.1 Overview
This section, we describe prompt-based conserva-
tion learning for multi-hop QA. As illustrated in
Figure 2, our PCL consists of three components: i)
we first acquire single-hop QA knowledge by ex-
plicitly training on these tasks; ii) we then acquire
knowledge for the new multi-hop QA task while
retaining the learned knowledge using conservation
learning; iii) we perform type-specific reasoning,
identifying the reasoning type of the question via
the soft prompt to stimulate application of the ap-
propriate knowledge.

3.2 Single-hop QA
To understand the behaviour of existing QA models
on each hop of the reasoning process, we train a QA
model based on the PLM, ELECTRA (Clark et al.,
2020) on a single-hop QA task, SQuAD (Rajpurkar
et al., 2016). This QA model contains two modules:
context encoding and a transformer-based reader.

Context Encoding. Given a question Q and n rel-
evant sentences, we concatenate the question and
sentences into an input sequence for the pre-trained
ELECTRA encoder to obtain a context representa-
tion. Specifically, we formulate the input sequence
as “[CLS] Q [SEP] yes no [SEP] [SE] s1 [SEP]
[SE] s2 [SEP] ... [SE] si [SEP]... [SE] sn [SEP]”,
where [SE] is a special token delineating support-
ing evidence, and yes no indicates a yes/no answer,
which are prepended to the context, subsequently
encoded by ELECTRA into the context representa-
tion. Consequently, each context sentence si in the

input sequence can interact with other sentences
across the concatenated sequence by using a self-
attention mechanism; such interactions are crucial
for multi-hop QA (Zhu et al., 2021).

Transformer-based Reader. After context en-
coding, the context representations are passed
through a bi-attention layer to enhance interactions
between the question and the context (Qiu et al.,
2019). On top of the updated context representa-
tion, we have followed (Fang et al., 2020) to design
a multi-task prediction module to jointly perform
answer and supporting evidence prediction. For
answer span prediction, we use two linear layers
applied to the context representation to predict the
start and end position of the answer. For supporting
evidence prediction, we use a binary linear layer
to predict a binary relevance label at each sentence
start [SE]. The final objective is defined as:

LJoint = Lstart + Lend + λ1LSE

where λ1 is a hyper-parameter and each loss func-
tion L is the cross-entropy loss between the predic-
tion and ground truth.

3.3 Multi-hop QA with Conservation
Learning

Origins in Continual Learning. In one form of
Continual Learning, given N existing tasks Tseq =
{T0, T1, ..., TN}, when a new task TN+1 comes, an
additional network is created and the lateral connec-
tions with the trained model are learned. To avoid
knowledge forgetting, the parameters θN learned
by the existing tasks Tseq remain unchanged while
the new parameter set θN+1 is learned for the addi-
tional network in Task TN+1 (Parisi et al., 2019).

Conservation Learning for Multi-hop QA. To
enable a trained single-hop QA model to learn the
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new knowledge required for a subsequent multi-
hop QA task without forgetting previously learned
knowledge, we propose a truncated-continual-
learning-like method that freezes the learned model
and allocates additional sub-networks for the new
multi-hop QA tasks. In principle this process could
be iterated in continual learning, but here we ap-
ply one such step, and coin the term “conservation
learning” to describe it. PCL’s multi-hop QA after
conservation learning consists of three components:
i) question classification: identifying the reasoning
type of the multi-hop question; ii) paragraph selec-
tion: retrieving paragraphs related to the multi-hop
question; iii) pre-trained soft prompt: condition-
ing a PLM to perform the type-specific reasoning
required for a multi-hop question.

Question Classification. Instead of training a
separate QA model for each reasoning type, our de-
sign uses a single PLM to integrate the knowledge
from all reasoning types. To inform this use, we
first need to identify the reasoning type of the multi-
hop question. Thus, we train a question classifier,
also based on ELECTRA, followed by a binary
classification layer, to predict the reasoning type
for each multi-hop question. The question classifier
only takes the question as its input and outputs a
relevance score for different reasoning types. The
reasoning type with the highest score is selected as
the type of multi-hop question.

Iterative Paragraph Selection. Since not ev-
ery given paragraph contains relevant information,
multi-hop QA models must filter out irrelevant para-
graphs. In addition, multi-hop questions also often
permit reasoning shortcuts through which QA mod-
els can directly locate the final answer by word-
matching the question to a single sentence in the
paragraph (Qi et al., 2019, 2020). To discourage
this kind of direct but unjustified leap to the answer,
we propose to retrieve paragraphs related to the
question in an iterative fashion, which encodes the
question and previously retrieved paragraphs as a
new question vector to retrieve the next relevant
paragraph. For simplicity, we use the same model
encoder as the question classifier to select relevant
paragraphs, except that we take the question q and
the paragraph p as the input and output a relevance
score for each paragraph. We calculate the score
for each paragraph at each retrieval step as follows:

P(Pseq|q) =
n∏

t=1

P(pt|q, p1, p2, ..., pt−1)

where for t = 1 (i.e., the first hop), we only use the
original question q for paragraph retrieval. At each
subsequent retrieval step, we encode the question q
and the most relevant paragraph pt−1 in the previ-
ous step t as a new question vector to predict the
next relevant paragraph. In this way, each subse-
quent retrieved paragraph is not only related to the
question, but also related to the previous retrieved
paragraphs, which discourages producing an an-
swer using “reasoning” shortcuts and provides a
solid basis for multi-hop reasoning in the next step.

Pre-training Soft Prompt. To enable the PLM
to integrate knowledge from multiple reasoning
types, we introduce a soft prompt based on the
reasoning type to condition the PLM to perform
type-specific reasoning, which is connected lat-
erally to the trained QA model during training.
Specifically, we first formulate the input sequence
as “[CLS] Q [SEP] yes no [SEP] [SE] s11 [SEP]

[SE] s21 [SEP] ... [SE] s
j
i [SEP]... [SE] s

m
n [SEP]”,

where sji indicates the j-th sentence in the relevant
paragraph i; we then utilize the previously trained
model to initialize the input sequence to obtain the
context representation C = {c0, c1, ..., cn−1} ∈
Rn×d, where n, d are the length and the dimension
of the context, respectively; we finally transform
the reasoning type obtained in the question classifi-
cation into a continuous trainable vector p ∈ Rm×d

and prepend it onto C, resulting in the new input
C′ = {pi; c0, c1, ..., cn−1}, where m is the length
of the soft prompt and pi is the soft prompt vector
of reasoning type i.

Once the new context representation is obtained,
it is then processed by the transformer-based reader
module. Notably, we optimize pi along with other
parameters of the PLM during pre-training. Dur-
ing fine-tuning, we prepend the trained soft prompt
vector into the input sequence, guiding the model
to perform type-specific reasoning. In this way, we
condition the PLM to stimulate the proper knowl-
edge required for multi-hop reasoning.

4 Experiments

4.1 Dataset and Metrics

We evaluate our model primarily on three datasets:
HotpotQA (Yang et al., 2018), adversarial Hot-
potQA (Jiang and Bansal, 2019) and a manually
verified sub-question QA dataset generated from
HotpotQA (Tang et al., 2021). To verify whether
our PCL can be generalized to other multi-hop QA
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Model Ans Sup Joint

EM F1 EM F1 EM F1
Baseline Model (Yang et al., 2018) 45.60 59.02 20.32 64.49 10.83 40.16
DecompRC (Min et al., 2019) 55.20 69.63 - - - -
OUNS (Perez et al., 2020) 66.33 79.34 - - - -
QFE (Nishida et al., 2019) 53.86 68.06 57.75 84.49 34.63 59.61
DFGN (Qiu et al., 2019) 56.31 69.69 51.50 81.62 33.62 59.82
SAE-large (Tu et al., 2020) 66.92 79.62 61.53 86.86 45.36 71.45
C2F Reader (Shao et al., 2020b) 67.98 81.24 60.81 87.63 44.67 72.73
Longformer (Beltagy et al., 2020) 68.00 81.25 63.09 88.34 45.91 73.16
HGN-large (Fang et al., 2020) 69.22 82.19 62.76 88.47 47.11 74.21
AMGN (Li et al., 2021b) 70.53 83.37 63.57 88.83 47.77 75.24
S2G (Wu et al., 2021) 70.72 83.53 64.30 88.72 48.60 75.45
PCL (Ours) 71.76 84.39 64.61 89.20 49.27 76.56

Table 1: Results on the blind test set of HotpotQA in the distractor setting. Our PCL achieves the best performance on the
HotpotQA leaderboard. “-” denotes the case where no results are available. Leaderboard: https://hotpotqa.github.io/.

datasets, we also conduct experiments on two sim-
ilar datasets: 2WikiMultihopQA (Ho et al., 2020)
and MuSiQue (Trivedi et al., 2021). Unlike other
knowledge-based multi-hop QA datasets (Welbl
et al., 2018; Talmor and Berant, 2018; Saxena et al.,
2020) that restrict the final answer to the content
of explicit knowledge bases, all QA pairs in the
HotpotQA are collected from Wikipedia.

HotpotQA. Each multi-hop question is provided
with ground truth answers and supporting sen-
tences, which enables us to evaluate the perfor-
mance and interpretability of multi-hop reasoning.
There are two reasoning types of questions: bridg-
ing and comparison, each of which requires a spe-
cific reasoning strategy to answer.

Sub-question QA dataset. To analyze whether
the multi-hop QA models really perform each hop
of the reasoning process, Tang et al. (2021) gen-
erate a single-hop sub-question dataset with 1000
manually verified samples for the dev set of Hot-
potQA for evaluation.

Adversarial HotpotQA. Multi-hop questions in
the HotpotQA often contain reasoning shortcuts
through which models can directly find the answer
by word-matching the question to a sentence. To
avoid this, Jiang and Bansal (2019) construct adver-
sarial samples by creating contradicting answers to
reasoning shortcuts without affecting the validity
of the original answers.

Multi-hop QA Dataset. Unlike HotpotQA,
2WikiMultihopQA evaluates the interpretability of
the multi-hop QA model not only with support-
ing evidence, but also with entity-relation tuples.
However, for a fair comparison, we do not use the
entity-relation tuples in our training. MuSiQue has

richer multi-hop questions with 2-4 hops.

Metrics. We use Exact Match (EM) and Partial
Match (F1) to evaluate the model performance on
answer and supporting facts prediction, and a joint
EM and F1 score to evaluate the final performance.

4.2 Implementation Details

We adopt ELECTRA-large (Clark et al., 2020) as
the skeleton for each module. Our released imple-
mentation is based on Huggingface (Wolf et al.,
2020). For question classification and paragraph
selection, we train the models for 5 epochs using
Adam optimizer, with a batch size of 12, a learn-
ing rate of 2 × 10−5, a warm-up rate of 0.1 and
ℓ2 weight decay of 0.01. For question answering,
we use the same setting as stated above, except
for a learning rate of 3 × 10−5 and an additional
prompt length of 2 tokens. The hyper-parameter
of λ1 is set to 2. Only the context encoding mod-
ule is frozen during Conservation Learning and
additional weights are added to connect the soft
prompts.

4.3 Main Results

We compare our PCL model with other published
baselines on the test set of HotpotQA in the distrac-
tor setting. As shown in Table 1, we observe that
our PCL QA-system outperforms all comparison
baselines on every metric and achieves the best per-
formance on the HotpoQA dataset, demonstrating
the progress made by PCL in multi-hop QA. Specif-
ically, under the same setting, using a transformer-
based ELECTRA model, PCL achieves a 1.12/0.91
improvement on the Joint EM/F1 score, compared
with the best graph-free model S2G. This indicates
that the effectiveness of the proposed conservation
learning and soft prompts. For the best graph-based
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q qsub1 qsub2 DFGN DecompRC HGN PCL
c c c 23 31.3 39.5 43.6
c c w 9.7 7.2 5.1 6.8
c w c 17.9 19.1 19.6 21.3
c w w 7.5 5.5 3.8 2.1
w c c 4.9 3 2.8 1.7
w c w 17 18.6 16.7 16.3
w w c 3.5 3.4 2.6 1.1
w w w 16.5 11.9 9.9 7.1

Table 2: (Left) Categorical EM statistics (%) of sub-question evaluation for four multi-hop QA models. c/w denotes that the
question is answered correctly/wrongly. For example, the first four rows show the percentage of multi-hop questions that can be
correctly answered. (Right) The success rate of four multi-hop QA models.

Model Ans F1 Sup F1 Joint F1
ELECTRA 81.05 89.97 73.89
- Prompt 82.06 90.36 75.02
- CL 82.99 90.97 76.39
PCL 84.42 91.15 77.76

Table 3: Ablation Study of PCL on the dev set of HotpotQA.
Prompt denotes that a soft prompt is used to condition PLM
ELECTRA to stimulate the reasoning required for the multi-
hop question. CL denotes that conservation learning is used
to perform multi-hop reasoning. PCL used both soft prompts
and conservation learning.

model AMGN, PCL improves the Joint EM/F1
score by 1.5/1.32, which shows that good per-
formance can be achieved without constructing a
graph. In the next section, we provide a detailed
analysis to evaluate the performance of conserva-
tion learning and soft prompts in our PCL model.

4.4 Ablation Studies

To verify the effect of the components in our PCL
model, we perform the following ablation studies
on the dev set of HotpotQA.

Effect of Conservation Learning (CL). To ver-
ify the effect of conservation learning on multi-
hop QA, we compare performance with the PLM
ELECTRA with and without conservation learn-
ing. For conservation learning, we first trained an
ELECTRA-based QA model on the single-hop QA
dataset SQuAD (Rajpurkar et al., 2016), and then
retrained it on the HotpotQA dataset with conser-
vation learning. As shown in Table 3, we observe
that the overall performance (F1 score) increased
from 73.89 to 76.39 after using conservation learn-
ing, which shows that our model performs well on
multi-hop reasoning when the previously learned
knowledge is retained. In the following Section 4.6,
we provide an in-depth analysis on the performance
of our model on the sub-questions, to compare the
ability of models to mitigate forgetting.

Model Accuracy
DecompRC 70.40
QC(ELECTRA-large) 98.97

Table 4: The performance of question classification by dif-
ferent models. QC(ELECTRA-large) is a question classifier
based on ELECTRA-large.

Effect of Soft Prompts. To verify the effect
of the soft prompt and perform type-specific rea-
soning, we first identified the reasoning type of
the multi-hop question using a classifier based on
ELECTRA. In Table 4, our classifier QCELECTRA

achieves good accuracy compared to DecompRC,
providing a solid basis for type-specific multi-hop
reasoning. Then, we transform the identified rea-
soning type into a soft prompt to stimulate the PLM
to perform the corresponding type of multi-hop rea-
soning. In Table 3, we implant the soft prompt both
into the baseline ELECTRA and the ELECTRA
based on conservation learning (PCL), the Joint F1
score improved by 1.23 and 1.37, respectively. This
suggests that the soft prompt based on the reason-
ing type can stimulate the question-type-specific
reasoning knowledge required for multi-hop QA.

Effect of Pre-trained Language Model. To ver-
ify the effects of PLMs, we compare PCL with
HGN based on the same data and backbone. As
shown in Table 5, PCL outperforms HGN on all
metrics. This indicates the effectiveness and robust-
ness of PCL across PLMs.

4.5 Evaluation across Reasoning Types
We evaluate the performance of PCL for multi-hop
questions with multiple reasoning types. Specif-
ically, we follow HGN in splitting the multi-hop
questions into three categories: bridge, comparison-
yes/no and comparison-span. “Bridge” questions
require identifying a bridge entity to infer the an-
swer, “comparison-yes/no” and “comparison-span”
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Model Ans F1 Sup F1 Joint F1
HGN(RoBERTa) 82.22 88.58 74.37
HGN(ELECTRA) 82.24 88.63 74.51
HGN(ALBERT) 83.46 89.2 75.79
PCL(RoBERTa) 84.33 90.75 77.12
PCL(ELECTRA) 84.42 91.15 77.76
PCL(ALBERT) 85.47 91.28 78.76

Table 5: Results with different PLMs on the dev set of Hot-
potQA. RoBERTa, ELECTRA and ALBERT denote that we
use RoBERTa-large, ELECTRA-large and ALBERT-xxlarge-
v2 as the PLM respectively.

Model Question Ans F1 Sup F1 Joint F1
bridge 81.90 87.60 73.31

HGN comp-yn 93.45 94.22 88.5
comp-span 79.06 91.72 74.17

bridge 85.36 90.77 78.17
PCL comp-yn 93.67 94.73 88.93

comp-span 82.42 92.65 77.57

Table 6: Results with different reasoning types on the dev set
of HotpotQA. PCL outperforms HGN in all reasoning types.

require comparing two entities to infer the answer
that could be yes/no or a span of text. As shown
in Table 6, our PCL performs better than HGN for
all reasoning types, indicating that the performance
of the model can be effectively improved by using
soft prompts for type-specific reasoning.

4.6 Evaluation of Robustness
In this section, we evaluate the robustness and gen-
eralization of PCL on three different datasets.

Evaluation on Sub-question Dataset. To ana-
lyze whether existing multi-hop QA models could
at least in principle perform the multi-hop reason-
ing process by composing an answer out of solved
sub-questions, we perform an evaluation on 1000
human-verified examples (Tang et al., 2021). These
data consist of 1000 multi-hop questions q, and
the corresponding 1000 sub-questions qsub1, qsub2.
EM and F1 are used in each case to evaluate per-
formance on answer prediction. As shown in Table
7, PCL achieves the best performance on the 1000
human-verified examples. Compared to DFGN
and DecompRC, whose performance significantly
drops on sub-questions, especially on the second
sub-questions. PCL dropped by only 2.4 on aver-
age, which demonstrates that PCL can in principle
support the expected behaviour on each hop of the
reasoning process better than other multi-hop QA
models by mitigating knowledge forgetting.

To further analyze whether models effectively
mitigate knowledge forgetting, we collect the cor-
rectness statistics on each example in the sub-
question dataset. As shown in Table 2 (Left), PCL

Model q qsub1 qsub2

EM F1 EM F1 EM F1
DFGN 58.1 71.96 54.6 68.54 49.3 60.83
DecRC 63.1 77.61 61.0 75.21 56.8 70.77
HGN 71.0 84.25 66.1 81.72 66.7 78.24
PCL 73.8 87.15 68.4 83.62 68.5 81.07

Table 7: Results on the sub-question dataset with different
multi-hop QA models. q denotes the multi-hop question, qsub1
and qsub2 denote the corresponding sub-questions of q.

Train Reg Reg
Eval Reg Adv
Model EM F1 EM F1
HGN 47.31 74.37 41.56 69.81
PCL 49.59 77.76 47.87 74.24

Table 8: EM and F1 scores after evaluating on the adversarial
dataset designed to probe for the use of unsound reasoning
shortcuts. Reg or Adv denotes training or evaluating the model
on the standard or adversarial HotpotQA dataset.

has a 96.25% chance of getting the parent multi-
hop question q right when both sub-questions qsub1
and qsub2 are answered correctly, which indicates
that PCL can better retain the learned knowledge,
through its use of conservation learning, compared
with other multi-hop QA models. However, we
observe that PCL still has a high probability of
answering the parent multi-hop question correctly
when only one of the sub-question is answered cor-
rectly. We summarize the sub-question dependent
success rate of multi-hop QA models in Table 2
(Right). We observe that these models can answer
parent multi-hop questions with a high probabil-
ity (exceeding 20%) when only one sub-question
is answered correctly, which indicates that using
potentially unsound reasoning shortcuts to predict
answers is a common and difficult to avoid phe-
nomenon in multi-hop QA.

Evaluation on Adversarial Dataset. To com-
pare the extent to which models are currently able
to avoid the unsound-reasoning-shortcut problem,
we conducted an adversarial evaluation on the dev
set of HotpotQA, reported in Table 8. In the adver-
sarial examples, the fake answers are sampled from
the original HotpotQA dataset, but do not affect the
validity of the original answers. As shown in Table
8, we trained PCL and HGN on the standard train-
ing data and evaluated them on both the standard
and adversarial dev data. The result shows that PCL
achieves better performance than HGN, indicating
that PCL is more robust than HGN against the use
of shortcuts probed by the adversarial dataset.

Evaluation on Other Multi-hop Datasets. To
verify whether PCL can generalize to other multi-
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Question

(Bridge) Q1: Who directed the film about the living funeral for Morrie Schwartz?

Q1sub1: Which film is about the living funeral for Morrie Schwartz?

Q1sub2: Who directed Tuesdays with Morrie? 

(Comp) Q2: Are local H and For Against both from the United States? 

Q2sub1: Where does Local H from?

Q2sub2: Where does For Against from?

Answer

Mick Jackson

Tuesdays with Morrie

Mick Jackson

Yes

Illinois

Nebraska

Answer pred by PCL

Mick Jackson

Tuesdays with Morrie

Mick Jackson

Yes

Illinois

Nebraska

Answer pred by HGN

Mick Albom

Tuesdays with Morrie

Mick Jackson

Illinois

Illinois

Nebraska

Question: What was the job of the character Jack Nicholson played in a 1992 French-American biographical crime film directed by Danny DeVito?

Answer:    Teamsters leader

Supporting fact1: Jack Nicholson plays Hoffa, and DeVito plays Robert Ciaro, an amalgamation of several Hoffa associates over the years. 

Supporting fact2: Hoffa is a 1992 French-American biographical crime film directed by Danny DeVito and written by David Mamet, based on the life of 

Teamsters leader Jimmy Hoffa.

Adversarial fact:   Sweet Revenge is a 1992 French-American biographical crime film directed by Danny DeVito and written by David Mamet, based on 

the life of Dandy Jimmy Hoffa.

Answer predicted by PCL:  Teamsters leader

Answer predicted by HGN: Dandy

Figure 3: Case studies of the sub-question evaluation and adversarial multi-hop question evaluation. The upper case study
indicates that our PCL has stronger composite reasoning ability compared to HGN. The lower case study indicates that the
iterative paragraph selection is help to avoid predict the answer by using reasoning shortcuts.

2WikiMultihopQA MusiQue

EM F1 EM F1
HGN 38.74 68.69 39.42 65.12
PCL 46.03 73.42 41.28 67.34

Table 9: Results of PCL and HGN on 2WikiMultihopQA and
MusiQue multi-hop QA dataset.

hop QA datasets, we compared PCL against HGN
on the 2WikiMultihopQA and MuSiQue dataset.
In Table 9 we observe that PCL outperforms HGN
on these two datasets, which demonstrates PCL’s
good potential on generalisation to QA problems
with more than 2 hops.

4.7 Case Study

We present two case studies in Figure 3. The up-
per case illustrates the results of PCL and HGN
at each hop of the reasoning process. We observe
that PCL correctly answered the bridge question
Q1, while HGN did not, when all sub-questions
were answered correctly, supporting the claim that
PCL learns new QA knowledge while retaining
knowledge learned for sub-questions. Similarly,
for comparison question Q2, PCL learned the spe-
cific reasoning ability based on the reasoning type
to which Q2 belongs, indicating soft prompts based
on reasoning types can elicit the reasoning knowl-
edge required for multi-hop questions.

The lower case illustrates the results of PCL and
HGN on an adversarial multi-hop question. In the
example, the question can be directly answered by
matching a reasoning shortcut in supporting facts2

“a 1992 French-American biographical crime film
directed by Danny DeVito”. To avoid it, we follow

(Jiang and Bansal, 2019) to construct an adversar-
ial fact from the candidate paragraphs by replacing
the subject and the answer, e.g., “Sweet Revenge”
for “Hoffa” and “Dandy” for “Teamsters leader”.
We observed that PCL correctly answered the ques-
tion despite the interference from the adversarial
fact, while HGN did not. This supports the claim
that the iterative paragraph selection helps estab-
lish connections between supporting facts, because
PCL selects the next supporting fact2 based on the
previous supporting fact1. In this example, the ad-
versarial fact is irrelevant to supporting fact1, so
PCL excludes it during paragraph selection.

5 Conclusions and Future Work

In this paper, we introduce a novel prompt-based
conservation learning framework for multi-hop QA
– a framework that retains knowledge from previ-
ous component tasks – able to answer questions
in a principled way that matches human expecta-
tions by answering sub-questions and integrating
the answers. By developing soft prompts related to
reasoning types during training, we also show that
we can condition PLMs to stimulate and apply the
reasoning knowledge required for specific multi-
hop questions. Experimental results on multiple
multi-hop QA datasets demonstrate the improved
performance of PCL over previous multi-hop QA
models in multi-hop QA.

Next, we plan to extend PCL on QA problems
with arbitrary hop-counts, and to increase general-
ity by extending soft prompts to handle QA with
unrestricted numbers of, and implicit, reasoning
types, and non-linear reasoning structures.
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