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Abstract
Deep neural models have become the main-
stream in answer selection, yielding state-of-
the-art performance. However, these models
tend to rely on spurious correlations between
prediction labels and input features, which in
general suffer from robustness and general-
ization. In this paper, we propose a novel
Spurious Correlation reduction method to im-
prove the robustness of the neural ANswer se-
lection models (SCAN) from the sample and
feature perspectives by removing the feature
dependencies and language biases in answer
selection. First, from the sample perspec-
tive, we propose a feature decorrelation mod-
ule by learning a weight for each instance at
the training phase to remove the feature de-
pendencies and reduce the spurious correla-
tions without prior knowledge of such corre-
lations. Second, from the feature perspective,
we propose a feature debiasing module with
contrastive learning to alleviate the negative
language biases (spurious correlations) and fur-
ther improve the robustness of the AS mod-
els. Experimental results on three benchmark
datasets show that SCAN achieves substantial
improvements over strong baselines. For repro-
ducibility, we will release our code and data at
https://github.com/xish9/SCAN.

1 Introduction

Answer selection, which aims to select the most
applicable answers from an answer candidate pool,
has broad applications in information retrieval
(IR) and natural language processing (NLP). Con-
ventional answer selection methods primarily fo-
cus on designing various features, such as syntac-
tic features (Li, 2003), dependency trees (Wang
et al., 2007), and translation features (Surdeanu
et al., 2008). However, the remarkable success of
these methods relies heavily on feature engineer-
ing, which is a labor-intensive and time-consuming
process.

*Min Yang is corresponding author.

Subsequently, deep neural models (Qiu and
Huang, 2015; Guo et al., 2017; Tay et al., 2017;
Zhou et al., 2018) have been widely employed for
answer selection and become the mainstream tech-
niques for answer selection by automatically learn-
ing the contextual representations of questions and
answers. To capture the relationships between the
question-answer pairs, different attention mecha-
nisms (Zhang et al., 2017; Tay et al., 2018a; Shen
et al., 2018; Yang et al., 2019a; Xie et al., 2020)
have been proposed to learn the interactive fea-
tures of the questions and the answers. Recently,
pre-trained language models, such as BERT (De-
vlin et al., 2018) and RoBERTa (Liu et al., 2019),
have been proposed and applied to answer selection
(Garg et al., 2020; MacAvaney et al., 2020; Zhang
et al., 2021a), obtaining the state-of-the-art results.

Despite the remarkable progress of previous
works, these deep neural models are prone to rely
on spurious correlations between input features and
prediction labels, which capture the prediction cor-
relations that hold for most training samples but
do not hold in general. The spurious correlations
limit the robustness and generalization ability of
the neural AS models to the out-of-distribution and
challenging datasets. In particular, for answer selec-
tion, the word-overlap between the question and the
answers is highly correlated with the relevance pre-
diction label. Thus, the deep AS models perform
poorly on the out-of-distribution or challenging cor-
pora that cannot be tackled with these superficial
correlations (e.g., word overlap). This issue is also
referred to as dataset bias (Clark et al., 2019) and
data distribution shift (Sagawa et al., 2020).

In this paper, we propose a novel Spurious
Correlation reduction method to improve the ro-
bustness of the neural ANswer selection models
(SCAN) from the sample and feature perspectives
by removing the feature dependencies and lan-
guage biases in answer selection. First, from the
sample perspective, we employ the feature decorre-

https://github.com/xish9/SCAN
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lation module based on Random Fourier Features
(Rahimi and Recht, 2007) to decorrelate the rele-
vant and irrelevant features by learning a weight
for each sample during the training phase, which
facilitate the deep AS models to reduce spurious
correlations and concentrate on the true discrimina-
tive features (relevant features) for label prediction.
Second, from the feature perspective, we propose a
feature debiasing module with contrastive learning
to weaken the negative biases in language and im-
prove the robustness of the AS models. Concretely,
the feature debiasing module aims to make the base
contextual representation of input sample close to
the debiased features and away from the negative
bias features.

Our main contributions are three-fold:

• We propose a feature decorrelation module by
learning a weight for each training instance
to remove the feature dependencies and re-
duce the spurious correlations without prior
knowledge of such correlations.

• We propose a feature debiasing module with
contrastive learning to alleviate the negative
language biases (spurious correlations) and
improve the robustness of the AS models.

• Experimental results show that our SCAN
method achieves substantial improvements
over the state-of-the-art baseline methods for
answer selection.

2 Related Work

2.1 Deep Learning for Answer Selection

Answer selection has received remarkable atten-
tion in various tasks, such as dialogue systems
(Yuan et al., 2019; He et al., 2022b,a), knowledge
base question answering (Niu et al., 2021; Saxena
et al., 2020), and information retrieval (Li et al.,
2021). So far, deep learning approaches have be-
come the mainstream in answer selection (AS) due
to their impressive improvement. Severyn and Mos-
chitti (2015) was an early representative neural AS
model, which utilized convolutional neural network
(CNN) to learn question and answer representa-
tions separately followed by a similarity function
to compute the relevance score. Tay et al. (2017)
extended the long short-term memory (LSTM) net-
work with holographic composition for sentence
modeling and semantic matching. Several works

(Yin et al., 2016; Tan et al., 2016) explored differ-
ent attention mechanisms to capture the relations
between sentences. For example, Tay et al. (2018c)
proposed a casted attention for feature augmenta-
tion to improve the representation learning process.
Shen et al. (2017b) proposed an inter-weighted
alignment network, which utilized the word-level
similarity matrix to explore the fine-grained align-
ment of two sentences. Tay et al. (2018b) presented
HyperQA which leveraged a parameter efficient
network to model the relations between the ques-
tion and answer representations with PLMs in the
Hyperbolic space instead of the Euclidean space.

Recently, the pre-trained language models
(PLMs), such as BERT (Devlin et al., 2018) and
RoBERTa (Liu et al., 2019), have been applied to
the answer selection task and yielded state-of-the-
art results by capturing rich linguistic knowledge
from large textual corpora. Yoon et al. (2019) em-
ployed ELMo (Peters et al., 2018) to a compare
aggregate architecture, which leveraged the latent-
cluster information to enhance the AS model. Lai
et al. (2019) combined a gated self-attention mem-
ory network and the pre-trained language models
for answer selection. Garg et al. (2020) proposed a
two-step transfer-adapt (TANDA) method, which
fine-tuned the pre-trained language models by us-
ing a large QA dataset ASNQ. Recently, Zhang
et al. (2021b, 2022) focused on exploiting the in-
terrelated information between candidate answers
and obtained the best results for answer selection.

2.2 Spurious Correlation Reduction in NLP

Despite the remarkable progress made by deep
neural networks, some studies (Gururangan et al.,
2018; McCoy et al., 2019; Zhang et al., 2021a)
have revealed that the deep models often relied
on spurious correlations between the learned fea-
tures and the prediction labels, making the deep
models unstable and not generalize well to the data
with different distributions. For example, previ-
ous studies (Gururangan et al., 2018; McCoy et al.,
2019) observed that specific linguistic phenomena
or syntactic heuristics are highly correlated with
certain inference classes in natural language in-
ference (NLI). Jia and Liang (2017) revealed that
the question-answering (QA) models trained on
SQuAD were not robust to perturbations with mod-
ified semantics since the QA models cannot possess
the true text understanding. Recently, there are sev-
eral efforts made to reduce the spurious correlations
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by removing the data bias explicitly. For example,
CoQA (Reddy et al., 2019) limited the question
annotation process by avoiding using exact words
in the passage. SWAG (Zellers et al., 2018) uti-
lized an adversarial filter methodology to construct
the debiased dataset. In addition, several studies
focused on recognizing these spurious correlations
and then removing them implicitly. Clark et al.
(2019) proposed a two-stage training procedure,
which built a bias-only strategy to train a robust
model through the ensembling approach. Sagawa
et al. (2020) coupled the distributionally robust op-
timization with regularization to improve the worst
group generalization. To the best of our knowledge,
we are the first to reduce the spurious correlations
for answer selection, leveraging feature decorrela-
tion and language debiasing.

3 Methodology

We assume there are N instances (question-answer
pairs) in the training set. Given a question qi and a
set of K candidate answers Ai = {a1, a2, ..., aK},
the answer selection task aims to find the best
answer by ranking the candidate answers based
on their relevance to the given question. Benefit-
ing from the pairwise ranking, we can reformal-
ize the answer selection as a classification prob-
lem by predicting the relevance label yi of each
question-answer pair (qi, ai). We represent each
question qi and answer ai as q = [wqi

1 , . . . , w
qi
n ]

and ai = [wai
1 , . . . , wai

m ], where n and m are the
lengths of question qi and answer ai, respectively.

In this paper, we propose a novel SCAN method
for answer selection. As illustrated in Figure 1, the
proposed SCAN consists of two primary modules:
the feature decorrelation module based on sample
weighting and the feature debiasing module based
on contrastive learning (Chuang et al., 2020; Liu
et al., 2021). Next, we will introduce the base
context encoder and two key spurious correlation
reduction components in detail.

3.1 Base Context Encoder

Inspired by the remarkable success of pre-trained
language models (PLMs) on most NLP tasks, we
employ RoBERTa (Liu et al., 2019) as our base
context encoder to obtain the contextual represen-
tations of each question-answer pair.

We take the concatenation of the question qi
and each candidate answer ai as input, and use
RoBERTa to generate the contextual representation

of the i-th question-answer pair as:

Ei = RoBERTa([cls, qi, sep, sep, ai, sep]) (1)

where Ei ∈ R(n+m+4)×dh denotes the hidden
states of the question-answer pair (qi, ai) and dh
is the dimension of each hidden state. The special
tokens [cls] and [sep] represent the classification
token and the separation token respectively. We
denote the hidden vector of the special [cls] token
as Hi ∈ Rdh , which can be treated as the base
contextual representation of the question-answer
pair (qi, ai) for prediction.

3.2 Feature Decorrelation with Sample
Weighting from Sample Perspective

Spurious correlations are very common in deep
models, especially when the answer selection
model is overparameterized. Spurious correlations
could hurt the stability and generality of the model
when deployed in practice. In this paper, we em-
ploy the feature decorrelation method with sample
weighting to decorrelate the relevant and irrelevant
features, and make the model focus on discrimina-
tive features (relevant features) that are truly related
to the label prediction.

Given the training data with N question-answer
pairs, the representations learned by the base con-
text encoder can be denoted as H ∈ RN×dh . We
input the representation H into the feature decorre-
lation module based on Random Fourier Features
(Rahimi and Recht, 2007), which learns a weight
for each instance such that features are decorrelated
on the weighted training data.

Formally, we use w ∈ RN to denote the local
weights of individual samples, which are initialized
with all-ones vector at the beginning of each train-
ing iteration. During the optimization process with
stochastic gradient descent (SGD), there are merely
part of samples being observed in each batch, while
the global weights of all samples would be ignored.
Thus, we leverage global weights wG ∈ RN and
global features HG ∈ RN×dh to exploit the global
information of the training data. By concatenating
the global and local information, we can obtain the
combined features Hcom and weights wcom as:

Hcom = Concat(HG,H)

wcom = Concat(wG,w)
(2)

We denote the combined features of the i-th sam-
ple as Hcom

i . The j-th feature in the combined
representation space is denoted as Hcom

:,j .
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Figure 1: The overall architecture of our SCAN method, which reduces the spurious correlations with a feature
decorrelation module module and a feature debiasing module.

To eliminate the correlation between features, we
measure their independence via Hilbert-Schmidt
Independence Criterion (HSIC) which is a ker-
nel statistical test of independence (Gretton et al.,
2007), inspired by (Zhang et al., 2021a). To reduce
the computational complexity, we approximate the
test statistical independence by Frobenius norm.
In particular, we sample r Random Fourier Fea-
tures(RFF) mapping functions from the function
sapce G respectively, and then convert the com-
bined representations Hcom into H̃ ∈ RN×dh×r:

H̃i,j =
(
g1(H

com
i,j ), . . . , gr(H

com
i,j )

)
(3)

where gk(Hi,j) ∈ G, ∀k, (4)

G ={g : x →
√
2cos(ωx+ ϕ)| (5)

ω ∼ N (0, 1), ϕ ∼ Uniform(0, 2π)}

where ω is sampled from the standard Normal dis-
tribution and ϕ is sampled from the Uniform dis-
tribution to approximate continuous shift-invariant
kernels*. With the sample weights wcom, we can
calculate the weighted partial cross-covariance ma-

*Similar to (Zhang et al., 2021a), we adopt both sin and
cosine functions to learn better features.

trix
∑̂

j1,j2
of two features Hcom

:,j1
and Hcom

:,j2
by:

∑̂
j1,j2

=
1

N − 1
·

N∑
i=1

[(
wcom
i H̃i,j1 − E(H̃:,j1)

)T
·
(
wcom
i H̃i,j2 − E(H̃:,j2)

)]
(6)

where E(H̃:,j) =
1

N

N∑
i=1

wcom
i H̃i,j (7)

where wcom
i is the weight of the i-th question-

answer pair (qi, ai).
We use the squared Frobenius norm of the par-

tial cross-covariance matrix to estimate the inde-
pendence between any pair of features. Thus, we
optimize the sample weights wcom by minimizing
the squared Frobenius norm between any pair of
features, which can be defined as follows:

wcom∗ = argmin
wcom

∑
1≤j1<j2≤dh

∥∥∥∥∑̂j1,j2

∥∥∥∥2
F

(8)

During the procedure of learning the weights wcom,
we keep the model parameters fixed.

With the learned weights wcom of question-
answer pairs during the training phase, we can
optimize the model parameters by minimizing the
weighted cross-entropy loss function as:

LSW = −
N∑
i=1

wcom
i yi log ŷi (9)
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where yi denotes the one-hot vector of the ground-
truth relevance label yi of the i-th question-answer
pair (qi, ai). ŷi is the predicted relevance label of
(qi, ai), which is defined as:

ŷi = softmax(Hi) (10)

During the procedure of updating the model param-
eters via back propagation, we keep the weights of
training samples fixed.

Note that for efficient optimization the weights
of training samples and the model parameters are
learned iteratively, and the training procedure is
repeated until convergence. At the end of each
training iteration, we update the global features
HG and the corresponding weights wG as:

wG = αwG + (1− α)w

HG = αHG + (1− α)H
(11)

where α denotes the hyperparameter for controlling
the impact of global information.

3.3 Language Debiasing with Contrastive
Learning from Feature Perspective

Most previous AS models frequently follow the su-
perficial correlations (i.e., language bias) induced
by the training data, which is another kind of the
spurious correlation. The language biases makes
the neural AS models brittle to linguistic variations
in questions/answers. However, not all the lan-
guage biases are harmful in answer selection, and
some language biases may contain commonsense
knowledge that is beneficial for answer selection.
For example, when a question begins with “When”,
the corresponding answer should contain words
that indicate time or period. In this section, we pro-
pose a feature debiasing module with contrastive
learning, which weakens the negative biases in lan-
guage and improves the robustness of AS models.

First, we utilize a bias detection method to rec-
ognize the negative biases that existed in the base
contextual representation Hi of the i-th question-
answer pair learned by the base context encoder.
The detection function σ(·) consists of dense layer
followed by a sigmoid activation function. For-
mally, we learn the bias weight vector bi as fol-
lows:

bi = σ(Htrans
i ), whereHtrans

i = ρb(Hi) (12)

where ρb denotes a multi-layer perceptron (MLP).
Htrans

i represents the transformed feature contain-
ing language biases.

Second, we can learn the negative bias represen-
tation Hbias

i based on the base contextual represen-
tation Hi by the product of the bias weight vector
bi and transformed feature Htrans

i as:

Hbias
i = bi ·Htrans

i (13)

Then, we learn the debiased representation Hd
i ∈

Rdh by removing the negative bias representation
Hbias

i from the original base contextual representa-
tion Hi. We compute the debiased representation
Hdebias

i as follows:

Hd
i = ρd(Hi −Hbias

i ) (14)

where ρd denotes another MLP layer.

Cross-Entropy Loss The learned debiased rep-
resentation Hd

i of the i-th question-answer pair is
fed into a classifier with a softmax layer as:

ŷi = softmax(Hd
i ) (15)

where ŷi represents the predicted relevance label
of (qi, ai). We can optimize the answer selection
model by minimizing the cross-entropy loss as:

LCE = −
N∑
i=1

yi log ŷi (16)

where yi denotes the one-hot vector of the ground-
truth relevance label yi of the question-answer pair
(qi, ai). N is the number of training instances.

Contrastive Loss To avoid using additional pa-
rameters in inference phase, we attempt to discard
the language debiasing module in for inference and
make the base context features H and debiased fea-
tures Hd learned by the language debaising module
as similar as possible. In this paper, we leverage the
contrastive learning to learn robust representations
by incorporating instance-level semantic discrim-
inativeness into the representation learning. Con-
cretely, we leverage a contrastive loss function LCL

to make each base context representation Hi close
to the corresponding debiased feature Hd

i and away
from the negative bias feature Hbias

i . Formally, we
define the contrastive loss as:

LCL = − 1

N

N∑
i=1

log
µ(Hi,H

d
i )

µ(Hi,Hd
i ) + µ(Hi,Hbias

i )
(17)

µ(Hi,H
bias
i ) = exp(sim(Hi,H

bias
i )/τ) (18)

where sim() denotes a cosine similarity function.
τ is a temperature value.
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3.4 Joint Training Objective
Overall, our method consists of three training ob-
jectives, including the sample weighting loss LSW,
cross-entropy loss LCE, and the contrastive loss
LCL. We minimize the joint loss function Ljoint by
summing up the three training objectives as:

Ljoint = LSW + LCE + LCL (19)

Although the sample weights are optimized accord-
ing to Eq. (8) during the training process, we do
not include the weight optimization function dur-
ing the overall training objective for optimizing the
model parameters.

3.5 Inference Stage
In the inference phase, given the back propaga-
tion is disabled, we escape the sample weighting
phase without any calculation of sample weights
and discard the language debiasing phase without
introducing additional parameters. Instead, we con-
duct the prediction directly via Eq. (10) by merely
leveraging the optimized base RoBERTa encoder.

4 Experimental Setup

4.1 Datasets
To evaluate the effectiveness of our method, we
conduct comprehensive experiments on three pub-
licly available corpora. The statistics of the three
datasets are shown in Table 1.

WikiQA The WikiQA dataset (Yang et al., 2015)
is an open-domain question answering dataset. The
original WikiQA contains 3047 questions origi-
nally sampled from Bing query logs and 29258
answer sentences from Wikipedia. We denote the
questions that have no correct answer sentences
as “All-” and the questions that have only correct
answer sentences as “All+”. The remaining data
set without both “All-” and “All+” questions is de-
noted as “Clean”. Following the previous works
(Garg et al., 2020), we train the AS models on the
no “All-” questions, and then test the models on
the “Clean” questions. The statistics of WikiQA
are shown in Table 1.

SelQA The SelQA (Jurczyk et al., 2016) dataset
is similar to WikiQA but covers more diverse top-
ics drawn from Wikipedia. It consists of a larger
number of questions, which is about 6 times larger
than WikiQA. We adopt the original data split as in
(Jurczyk et al., 2016) to verify the AS models. The
statistics of SelQA are shown in Table 1.

Dataset Train Dev Test

WikiQA
#Q 873 122 237
#A 8672 1126 2341

SelQA
#Q 5529 785 1590
#A 66438 9377 19435

ANTIQUE
#Q 2226 200 200
#A 25229 2193 6589

Table 1: Statistics of the three experimental datasets.

ANTIQUE The ANTIQUE dataset (Hashemi
et al., 2020) is an open-domain non-factoid QA
dataset collected from a community question an-
swering service, Yahoo!Answers. Different from
WikiQA and SelQA, ANTIQUE has four-level rel-
evance labels between 1 to 4. Following previous
work (MacAvaney et al., 2020), we regard scores 3
and 4 as relevant, while scores 1 and 2 are treated as
irrelevant. Since the original dataset has no valida-
tion set, we choose 200 questions from the training
set as a held-out set for validation, similar to MacA-
vaney et al. (2020). The statistics of ANTIQUE are
shown in Table 1.

4.2 Baselines

For WikiQA and SelQA which are widely used
in previous works, we compare the proposed
SCAN with several advanced baselines, includ-
ing CNN-DAN (Santos et al., 2017), CNN-hinge
(Santos et al., 2017), ACNN (Shen et al., 2017a),
AdaQA (Shen et al., 2017a), HyperQA (Tay et al.,
2018b), DRCN (Kim et al., 2019), RE2 (Yang
et al., 2019b), a compare aggregate model (Comp-
Agg) (Yoon et al., 2019), BERT (Devlin et al.,
2018), RoBERTa (Liu et al., 2019), TANDA (Garg
et al., 2020), answer support-based reranker (ASR)
(Zhang et al., 2021b), DAR and DAR-DPR Zhang
et al. (2022). For ANTIQUE, we compare SCAN
with four benchmark baselines including aNMM
(Yang et al., 2016), BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019), a curriculum learn-
ing method with BERT (BERT-CL) (MacAvaney
et al., 2020), a bilateral generation method (BERT-
BiG) (Deng et al., 2021), and TANDA (Garg et al.,
2020).

4.3 Implementation Details

We adopt the RoBERTa-base (Liu et al., 2019) that
is pre-trained on large-scale English corpus and
fine-tuned on ASNQ corpus (Garg et al., 2020) as
the sentence encoder. In the experiments, we ap-
ply the grid search algorithm (Huang et al., 2012)
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on the validation set to tune the hyper-parameters.
Concretely, we set the maximum sequence length
to 128. The training batch size is set to 140. The di-
mension of hidden state (i.e., dh) is set to 768. We
adopt the Adam optimizer to optimize the whole
SCAN method. The temperature value τ , learning
rate and α for decorrelation module are 1/0.3/0.5,
1e-4/1e-4/1e-3 and 0.7/0.9/0.9 for WikiQA, SelQA
and ANTIQUE, respectively. For reproducibility,
we will release our code and data upon the publica-
tion of this paper.

4.4 Evaluation Metrics

For WikiQA and SelQA, we measure our method
on test set with three official metrics: Mean Av-
erage Precision (MAP), Mean Reciprocal Rank
(MRR), Precision at 1 of ranked candidates (P@1).
For ANTIQUE, we also measure the MAP, MRR
and P@1. In addition, we compute Normal-
ized Discounted Cumulative Gain (i.e., nDCG@1,
nDCG@3 and nDCG@10) with the original four-
level relevance labels.

5 Experimental results

5.1 Overall Performance

Tables 2-4 summarize the experimental results
on WikiQA, SelQA and ANTIQUE, respectively.
SCAN performs significantly and consistently bet-
ter than the compared baselines on all the three
datasets, verifying the effectiveness of our SCAN
method. From Table 2 and Table 3, we can observe
that the CNN- or RNN-based methods perform
poorly because they do not take advantage of the
pre-trained language models (PLMs). TANDA out-
performs BERT and CNN-based methods by adopt-
ing the RoBERTa-base that is pre-trained on large-
scale general corpus and fine-tuned on ASNQ cor-
pus. ASR, DAR and DAR-DRP, which are based
on TANDA, improve the performance of TANDA
by exploiting the interrelated information between
the target answer and the other candidate answers.
SCAN takes a further step towards reducing the
spurious correlations for answer selection by fea-
ture decorrelation and language debiasing.

Table 4 reports the experimental results on the
ANTIQUE dataset, demonstrating that the pro-
posed SCAN method is also effective on the
non-factoid QA. Specifically, SCAN exceeds the
TANDA model (the base model of SCAN) by
3.97% on MRR and 6% on P@1. This verifies
that it is necessary to remove the spurious corre-

Method MAP MRR P@1
HyperQA ♮ 0.7120 0.7270 -
RE2 ♯ 0.7452 0.7618 -
Comp-Agg † 0.7640 0.7840 -
Comp-Agg (QNLI) † 0.8340 0.8480 -
BERT † 0.8130 0.8280 -
RoBERTa 0.8441 0.8551 0.7553
TANDA † 0.8890 0.9010 -
TANDA-re ‡ 0.8860 0.8983 0.8189
ASR ‡ 0.9014 0.9123 0.8436
DAR ‡ 0.9011 0.9136 0.8519
DAR-DRP ‡ 0.9051 0.9164 0.8560
SCAN 0.9164 0.9281 0.8776

Table 2: Experimental Results on WikiQA. The results
with ♮ are retrieved from (Tay et al., 2018b), with ♯

are retrieved from (Yang et al., 2019b), with † are re-
trieved from (Garg et al., 2020), with ‡ are retrieved
from (Zhang et al., 2022). TANDA-re denotes a reim-
plementation of TANDA. The best scores are in bold.

Method MAP MRR P@1
CNN-DAN ♮ 0.8660 0.8730 -
CNN-hinge ♮ 0.8760 0.8810 -
ACNN ♮ 0.8740 0.8800 -
AdaQA ♮ 0.8910 0.8980 -
DRCN ♮ 0.9250 0.9300 -
TANDA-re ‡ 0.9512 0.9587 0.9302
ASR ‡ 0.9519 0.9592 0.9314
DAR ‡ 0.9592 0.9653 0.9415
SCAN 0.9641 0.9701 0.9484

Table 3: Experimental Results on SelQA. The results
with ♮ are retrieved from (Kim et al., 2019), with ‡ are
retrieved from (Zhang et al., 2022).

lations between the text representations and the
prediction relevance labels.

5.2 Ablation study

To verify the effectiveness of feature decorrelation
and language debiasing in SCAN, we perform ab-
lation test of SCAN on two types of QA corpora
(WikiQA and ANTIQUE) in terms of removing
the feature decorrelation module (denoted as w/o
FD) and language debiasing (denoted as w/o LD),
respectively. In particular, for the w/o FD model,
the weighted cross-entropy loss is replaced with a
normal cross-entropy loss without considering sam-
ple weights. We also report the results of removing
both feature decorrelation and language debiasing
(w/o FD+LD).

The ablation test results are reported in Table 5.
Generally, both feature decorrelation and language
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Method MAP MRR P@1 nDCG@1 nDCG@3 nDCG@10
aNMM ♮ 0.2563 0.6250 0.4847 0.5289 0.5127 0.4904
BERT ♮ 0.3771 0.7968 0.7092 0.7126 0.6570 0.6423
RoBERTa 0.6137 0.7763 0.6550 0.6683 0.6525 0.6765
BERT-CL ♯ - 0.7335 0.6450 - - -
BERT-BiG † - 0.8470 0.7650 0.7500 0.7100 0.7200
TANDA 0.6511 0.8258 0.7250 0.7167 0.6969 0.7091
SCAN 0.6722 0.8637 0.7850 0.7550 0.7186 0.7297

Table 4: Experimental Results on ANTIQUE. The results with ♮ are retrieved from (Hashemi et al., 2020), with ♯

are retrieved from (MacAvaney et al., 2020), with † are retrieved from (Deng et al., 2021).

Method
WikiQA ANTIQUE

MAP MRR P@1 MAP MRR P@1
SCAN 0.9164 0.9281 0.8776 0.6722 0.8637 0.7850
w/o FD 0.9004 0.9148 0.8523 0.6667 0.8399 0.7400
w/o LD 0.9011 0.9144 0.8523 0.6603 0.8424 0.7500
w/o FD+LD 0.8943 0.9063 0.8354 0.6511 0.8258 0.7250

Table 5: Experimental Results of the ablation study on WikiQA and ANTIQUE.

debiasing contribute noticeable improvement to
the proposed SCAN method. Concretely, the per-
formances decrease sharply, especially in terms
of MRR and P@1, when removing either the FD
model or the LD module. This is within our expec-
tation since both feature decorrelation and language
debiasing can reduce the spurious correlations for
answer selection.

5.3 Robustness to Noise and Perturbation
To further analyze the robustness of our method,
we conduct experiments on the WikiQA dataset
with injected noise and adversarial perturbations.
Following previous work (Gokhale et al., 2022),
we create adversarial samples by adding character-
level perturbations such as swapping, inserting or
deleting characters to 30% of samples. In addition,
similar to (Garg et al., 2020), we inject noise into
the training samples in WikiQA by randomly sam-
pling 20% of question-answer pairs from the train-
ing set and switching their labels. The experimental
results are shown in Table 6. SCAN achieves con-
sistently better performance than TANDA on these
settings, verifying the robustness of our method to
noise and adversarial perturbations.

5.4 Case Study
We use a representative exemplary case that is
selected from the WikiQA test set to further in-
vestigate the effectiveness of SCAN. This chosen
question is incorrectly predicted by TANDA while

Method MAP MRR P@1
TANDA 0.8943 0.9063 0.8354
TANDA-Perturb 0.8898 0.9019 0.8270
TANDA-Noise 0.8740 0.8871 0.8059
SCAN 0.9164 0.9281 0.8776
SCAN-Perturb 0.9111 0.9228 0.8692
SCAN-Noise 0.8907 0.9055 0.8439

Table 6: Performance comparison when noise and per-
turbations are injected into WikiQA.

being correctly predicted by SCAN. From Table
7, We observe that TANDA simply picks up the
answer that contains the matching words cricket
wireless without understanding the deep semantics.
On the contrary, SCAN obtains the correct answer
since it can recognize the real intention of the ques-
tion. Another example shown in Tabel 8 is from
ANTIQUE, where the topic of answers is more
diverse than factoid QA dataset. While TANDA
predicts an answer with superficial relation with the
question, our model make a more precise prediction
without the disturbance of spurious relation. These
examples demonstrates that our model can focus
on the true correlation between the question and
the answer, which is critical when the candidate
answers contain misleading information.

5.5 Error Analysis

Although our SCAN model achieves better perfor-
mance than previous models, it still fails to handle
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Question: “what company is cricket wireless
by?”
Predicted by TANDA: “Cricket Communica-
tions, Inc., ( d.b.a. Cricket Wireless) founded in
1999, provides wireless services to over 7 million
customers in the United States.” (incorrect an-
swer)
Predicted by SCAN: “The company is a sub-
sidiary of Leap Wireless, utilizing its CDMA
1X, 1xEV-DO and LTE networks.” (correct an-
swer)

Table 7: A question from WikiQA with the answers
predicted by TANDA and SCAN, respectively.

some cases. To investigate the limitations of SCAN,
we analyze the bad cases produced by SCAN. We
summarize the several reasons for obtaining the
incorrect predictions. First, SCAN fails to tackle
some questions that require commonsense knowl-
edge to reason correct answers. In particular, some
questions and the corresponding answers have dif-
ferent expressions for the same entities, thus our
method struggles to capture the relations of the
question-answer pairs based on the contextual rep-
resentations only. One possible solution is to lever-
age knowledge bases to facilitate the reasoning
process. Second, there are some noises (confused
candidates) existing in the datasets. For example,
the question “Where was the first ski flying hill
built?” has two candidate answers “Nevertheless
the first-ever ski flying hill was built in Planica,
Slovenia” and “The first ski flying hill was built in
Planica in Slovenia” with the former one labeled
as incorrect and the latter one labeled as correct.
However, both answers convey the same meaning.
We may update the datasets by carefully examining
the relevance labels of candidate answers.

6 Conclusion

In this paper, we proposed a novel spurious correla-
tion reduction method to improve the robustness of
the answer selection models from the sample and
feature perspectives. First, we devised a feature
decorrelation module by learning a weight for each
training instance to remove the feature dependen-
cies and reduced the spurious correlations without
prior knowledge of such correlations. Second, we
introduced a feature debiasing module with con-
trastive learning to alleviate the negative language
biases and improved the robustness of the AS mod-

Question: “what are some easy ways to get a
toddler to go to sleep without being mean?”
Predicted by TANDA: “There are plenty of
ways.... - The most obvious is try to sleep. -
Take some Pepto-bismol. - Have a piece of pep-
permint (that’s good too even if you still get
sick).” (incorrect answer)
Predicted by SCAN: “Let them play for a while.
Also, play with them. That way they’ll feel like
you care about them. Also, try laying down with
them. That used to help my son, who now is 3
years old.” (correct answer)

Table 8: A question from ANTIQUE with the answers
predicted by TANDA and SCAN, respectively.

els. We conducted extensive experiments on three
benchmark datasets and the experimental results
showed the effectiveness of SCAN.
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