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Abstract
Question answering over knowledge bases
(KBQA) for complex questions is a challenging
task in natural language processing. Recently,
generation-based methods that translate natural
language questions to executable logical forms
have achieved promising performance. These
methods use auxiliary information to augment
the logical form generation of questions with
unseen KB items or novel combinations, but
the noise introduced can also leads to more in-
correct results. In this work, we propose GMT-
KBQA, a Generation-based KBQA method
via Multi-Task learning, to better retrieve and
utilize auxiliary information. GMT-KBQA first
obtains candidate entities and relations through
dense retrieval, and then introduces a multi-
task model which jointly learns entity disam-
biguation, relation classification, and logical
form generation. Experimental results show
that GMT-KBQA achieves state-of-the-art re-
sults on both COMPLEXWEBQUESTIONS and
WEBQUESTIONSSP datasets. Furthermore,
the detailed evaluation demonstrates that GMT-
KBQA benefits from the auxiliary tasks and
has a strong generalization capability.1

1 Introduction

Question answering over knowledge bases (KBQA)
is the task of answering natural language questions
based on the facts stored in knowledge bases (KBs).
In recent years, an increasing number of KBQA
methods arise with the emergence of large-scale
KBs, such as Freebase (Bollacker et al., 2008),
DBpedia (Lehmann et al., 2015) and Wikidata
(Vrandečić and Krötzsch, 2014). A mainstream
paradigm of KBQA methods is semantic parsing
(SP) (Berant et al., 2013), where natural language
questions are parsed into logical forms such as λ-
DCS (Liang, 2013), SPARQL (Pérez et al., 2009),
S-expression (Gu et al., 2021), etc. However, com-
plex questions that involve reasoning over multiple

1Our code is available at https://github.com/
HXX97/GMT-KBQA.

entities, relations, or constraints remain a challenge
for SP-based methods. Most of the SP-based meth-
ods use a pipeline including entity/relation link-
ing, constraint detection, and logical form building
(Singh et al., 2018; Hu et al., 2021). As complex
questions require multiple entities and relations,
errors introduced by previous linkers reduce the
performance of the pipeline.

With the success of applying natural language
generation to various tasks (Raffel et al., 2019;
Rothe et al., 2020), recent KBQA methods (Cao
et al., 2022; Yin et al., 2021; Gu et al., 2021) cast
semantic parsing to a logical form generation task
in a sequence-to-sequence (Seq2Seq) manner, fine-
tuning pre-trained encoder-decoder models to gen-
erate logical forms from natural language questions.
However, it is impractical for a simple Seq2Seq
model to generate unseen entities and relations
that never appear in the training set. To allevi-
ate such cases, more generation-based methods
(Huang et al., 2021; Das et al., 2021; Ye et al.,
2021) augment logical form generation with auxil-
iary information such as linked entities (Huang
et al., 2021), similar question-query pairs (Das
et al., 2021), candidate logical forms (Ye et al.,
2021), etc. Auxiliary information enhances the
generalization capability of the generation mod-
els, but can also lead to incorrect results due to
the noisy information introduced. We find that a
Seq2Seq model can generate exact logical forms
for around 92% questions in COMPLEXWEBQUES-
TIONS dataset if provided with golden entities and
relations. However, the proportion drops drastically
to 51% if the linking results are from practical link-
ers. This shows that Seq2Seq models can construct
correct logical forms augmented with auxiliary in-
formation, and the quality of the auxiliary informa-
tion has a great impact on the generated results.

Inspired by this discovery, we propose a
generation-based KBQA method GMT-KBQA
(Generation via Multi-Task learning) that learns to

https://github.com/HXX97/GMT-KBQA
https://github.com/HXX97/GMT-KBQA
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Figure 1: Overview of GMT-KBQA. The T5 encoder is
learned with multiple tasks including the entity/relation
classification and the logical form generation.

refine the auxiliary information and generate log-
ical forms at the same time. Figure 1 shows the
overview of our proposed method. The core of
GMT-KBQA is an encoder-decoder model jointly
trained with a translation task for logical form gen-
eration and two auxiliary tasks: entity disambigua-
tion and relation classification. Our method at-
tempts to improve logical form generation by shar-
ing the parameters within related tasks. Instead of
linking the entities and relations by off-the-shelf
linkers before logical form generation, we retrieve
candidate entities and relations in a dense space,
leaving entity disambiguation and relation classifi-
cation as auxiliary tasks.

The main contributions of this work are as fol-
lows:

1. We propose a generation-based KBQA
method via multi-task learning (GMT-KBQA),
where the logical form generation task is jointly
trained with two auxiliary tasks. GMT-KBQA re-
trieves auxiliary information including candidate
relations and entities through dense retrieval, which
balances coverage and efficiency. The refined aux-
iliary information enables GMT-KBQA to generate
unseen KB items.

2. Experimental results demonstrate that our
method outperforms previous methods on both

WEBQUESTIONSSP and COMPLEXWEBQUES-
TIONS. Further analysis shows that our method
benefits from the multi-task learning framework
and achieves better performances on both logical
form generation and the two auxiliary tasks.

2 Methodology

This section details the GMT-KBQA method.
Given a natural language question, we first retrieve
auxiliary information including candidate entities
and relations by dense retrieval. Then we refine
the retrieved auxiliary information and generate
the target logical form via multi-task learning. As
shown in Figure 1, the three tasks share a common
encoder, and each task has an individual layer on
top of the encoder. Details of our method will be
given in the following subsections.

2.1 Preliminaries
A knowledge graph is a collection of subject-
relation-object triples in the form of (s,r,o), where
s is an entity, r is a relation, and o can be entities
or literals (e.g., text descriptions, numeric values,
date-time, etc).

Given a natural language question, our method
aims at generating a logical form that can be exe-
cuted over the KB. Following Gu et al. (2021) and
Ye et al. (2021), we use S-expressions as the tar-
get logical forms. Since most KB storage engines
only support SPARQL queries, we finally convert
S-expressions into equivalent SPARQL queries to
get answers following Gu et al. (2021).

2.2 Retrieval of Auxiliary Information
Existing generation-based methods retrieve similar
question-query pairs (Das et al., 2021) or enumer-
ate candidate logical forms (Ye et al., 2021) as
auxiliary information, but the coverage of cases
cannot be guaranteed and the enumeration of log-
ical forms can be time-consuming. Instead, we
retrieve candidate entities and relations in a dense
space as auxiliary information, which balances cov-
erage and efficiency.

Candidate entity retrieval Most KBQA meth-
ods (Yih et al., 2015; Sun et al., 2019; Lan and
Jiang, 2020; Huang et al., 2021; Ye et al., 2021)
take entity linking as the first step, whereas the re-
sult of entity linking determines the upper bound
of the final performance. We conduct entity re-
trieval to get candidate entities with high coverage,
deferring entity disambiguation until logical form



1689

generation by multi-task learning. Specifically, we
use ELQ (Li et al., 2020), an end-to-end entity
linking model through dense retrieval. To further
improve the coverage of candidate entities, we use
a large entity mention map provided by FACC1
project (Gabrilovich et al., 2013) to retrieve en-
tities not linked by ELQ. For each question, we
merge top-k/2 candidate entities from each link-
ing model, to retain top-k ranked entities. If the
number of candidate entities is less than k, enti-
ties randomly sampled from the training set will be
supplemented.

Candidate relation retrieval Inspired by the
zero-shot entity linking work with dense retrieval
(Wu et al., 2020), we design a two-stage relation
retrieval module utilizing the bi-encoder and cross-
encoder architecture, which is shown in Figure 2.

In the first stage, we train a bi-encoder that em-
beds questions and relations into the same dense
space with two independent BERT (Devlin et al.,
2019) encoders.

Specifically, inspired by Das et al. (2021), for
each question q, we mask entity mentions detected
in candidate entity retrieval stage with [BLANK]
token. And we denote the question with entity
mentions masked as τq.

In addition, a relation r is represented as:

r | labelr | domainr | ranger

where labelr, domainr and ranger are the meta
descriptions of r in KB. For example, relation
location.location.time_zones is represented as lo-
cation.location.time_zones | Time zone(s) | loca-
tion.location | time.time_zone. This enriched form
of relation is denoted as τr. A question q and a
relation r are encoded into vectors:

yq = BERTCLS1(τq)

yr = BERTCLS2(τr)
(1)

where BERTCLS denotes the [CLS] representation
of the input. The relevance score of question q and
relation r is computed by dot-product:

sb(q, r) = yq · yr (2)

For each pair of a question and its relevant relation
(q, ri), we randomly sample B−1 relations that are
not in the logical form of the question to construct a
batch consisting of B training pairs. The optimiza-
tion goal is to maximize the score of the relevant
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Dense space

Where are the time zones in 

the USA?

location.location.time_zones

cross-

encoder
0.9

Where are the time zones in 

the USA?

book.newspaper.owner Where are the time 

zones in the [BLANK]?

FAISS index

bi-encoder

bi-encoder

cross-
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0.1

…

…
…

Figure 2: Overview of our two-stage relation retrieval
method utilizing the bi-encoder and cross-encoder.

relation against randomly sampled relations, and
the loss is computed as:

L(q, ri) = −sb(q, ri) + log
B∑
j=1

exp(sb(q, rj))

(3)
After training the bi-encoder, relation representa-
tions are cached for inference efficiency. For an
incoming question, we embed it to a vector by
the bi-encoder and then use FAISS (Johnson et al.,
2019) to retrieve the nearest relations.

In the second stage, the retrieved relations for a
question are re-ranked with a cross-encoder to get
the most relevant relations. The cross-encoder is
a single BERT model that takes the concatenation
of the question and its candidate relation as input.
Compared with the bi-encoder, the cross-encoder
has deep cross attention between the question and
the relation.

The input of cross-encoder is the concatenation
of question q and candidate relation r. The rele-
vance score of q and r is:

sc(q, r) = LINEAR(BERTCLS([q; r])) (4)

where LINEAR is a layer that projects the represen-
tation to a binary probability distribution. We train
cross-encoder using cross-entropy loss. Finally,
top-k candidate relations ranked by cross-encoder
are retained.

2.3 Logical Form Generation via Multi-task
Learning

After the retrieval of auxiliary information includ-
ing candidate entities and relations, we introduce a
multi-task model that learns to refine the auxiliary
information and generate the target logical form as
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Figure 3: Multi-task model for logical form generation
where “Q” is short for the original question. All tasks
share a T5 encoder to encode inputs, and the results of
prior stages will be leveraged in the latter stages as the
dotted lines indicate.

Figure 3 shows. The backbone of our model is T5
(Raffel et al., 2019), an encoder-decoder structured
Seq2Seq model that achieves strong performances
on several generation tasks. We use a shared T5
encoder to obtain the representations of the inputs,
and the representations are fed to individual net-
works for different tasks. We define two auxiliary
tasks: relation classification and entity disambigua-
tion to enhance the logical form generation task.

Relation classification Given a question q and
its retrieved candidate relations R, the relation clas-
sification task aims to select the correct relations
from R that compose the target logical form. We
cast this task to a sentence-pair classification task.
The concatenation of question q and relation r is
fed to a T5 encoder, and it is represented by the
average pooling of the encoder output:

yq,r = AVGPOOL(T5ENCODER([q; r])) (5)

Then the representation is projected to a scalar
score through a linear projection, and then acti-
vated by a sigmoid function:

s(q, r) = SIGMOID(LINEAR(yq,r)) (6)

We use binary cross-entropy loss for the relation
classification task:

LREL = −1

k

k∑
i=1

[ui · log(s(q, ri))

+ (1− ui) · log(1− s(q, ri))]

(7)

where ui denotes the classification label of relation
ri, and k is the number of candidate relations. The
relations classified as positive are denoted as Rq.

Entity disambiguation The retrieved candidate
entities usually contain ambiguity, where multiple
KB entities are retrieved for one mention. To select
the exact entities in the question, we cast entity dis-
ambiguation as a sentence-pair classification task
similar to the relation classification task. Following
Ye et al. (2021), we leverage adjacent relations to
help determine if an entity should be linked by a
mention. Specifically, we concatenate the label of
entity e, with its adjacent KB relations in the form
of:

labele | r1 | r2 | r3 | . . .

This rich form of entity e is denoted as τe. Note that
we only concatenate relations classified as relevant
to the question by the relation classification task.
The concatenation of question q with τe is fed to
the shared T5 encoder, and the output is averagely
pooled:

yq,e = AVGPOOL(T5ENCODER([q; τe])) (8)

The relevance score of q and e is computed as:

s(q, e) = SIGMOID(LINEAR(yq,e)) (9)

Similarly, we use binary cross-entropy loss for the
entity disambiguation task:

LENT = −1

k

k∑
i=1

[vi · log(s(q, ei))

+ (1− vi) · log(1− s(q, ei))]

(10)

where vi is the classification label of entity ei, and
k is the number of candidate entities. The entities
classified as positive are denoted as Eq.

Logical form generation The task of logical
form generation is to generate the target logical
form of question q given disambiguated entities
Eq and classified relations Rq. Following previ-
ous generation-based methods (Das et al., 2021; Ye
et al., 2021), we construct the inputs by concatenat-
ing the question q with relations in Rq and entities
in Eq in the form as:

q [REL] r1 [REL] r2, . . . [ENT]
labele1 [ENT] labele2 , . . .
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This concatenation is denoted as τall and fed to the
T5 encoder shared with the above-mentioned two
auxiliary tasks to obtain the representations:

[h1,h2, . . . ,hn] = T5ENCODER(τall) (11)

where hi denotes the representation of the i-th to-
ken of the input and n is the number of tokens
in τall. Then we use a T5 decoder to decode the
representations into a logical form token by token.
Assuming that the target logical form consists of
m tokens a1, . . . , am, we calculate cross-entropy
loss with teacher forcing:

pj = T5DECODER(a1, . . . , aj−1,h1, . . . ,hn)

LGEN = − 1

m

m∑
j=1

logpj,aj

(12)
where pj denotes the probability distribution over
the decoding vocabulary at the j-th step, and pj,aj

represents the probability of token aj .

Training Objective We jointly train the relation
classifier, entity disambiguator, and logical form
generator with a combined loss:

L = LREL + LENT + LGEN (13)

This training objective enables the generator to
learn from auxiliary tasks, where the target logical
form not only supervises the generation task but
also supervises entity disambiguation and relation
classification.

3 Evaluation

3.1 Setups

Datasets All the experiments are conducted on
WEBQUESTIONSSP (WebQSP) (Yih et al., 2016)
and COMPLEXWEBQUESTIONS (CWQ) (Talmor
and Berant, 2018) datasets. Both datasets are based
on Freebase (Bollacker et al., 2008).

WebQSP consists of 4,737 questions labeled
with SPARQL queries. Most questions of WebQSP
require up to 2 hops of reasoning.

CWQ contains 34,689 questions with SPARQL
queries. These questions are obtained by extending
the questions in WebQSP to increase the complex-
ity. Questions in CWQ may require up to 4-hops
reasoning, making it quite challenging.

Hyperparameters We use T5-base and BERT-
base-uncased implementation from HuggingFace2.
The sample size B for training the bi-encoder in
relation retrieval (Section 2.2) is set to 100, and
the top 100 nearest relations are searched by the
FAISS index. The number of candidate k is set
to 10 for both entity and relation retrieval. Beam
search is utilized in the decoding process, and we
set beam size to 50 by default. For CWQ, our multi-
task models are trained for 15 epochs, with training
batch size set to 8 and inference batch size set to 4
due to GPU memory limits. For WebQSP, models
are trained for 20 epochs with batch size set to 2
due to less data volume.

Implementation details Since neither WebQSP
nor CWQ provides golden S-expressions, we fol-
low the implementation of Ye et al. (2021) to con-
vert a golden SPARQL query to its equivalent
S-expression. WebQSP provides more than one
SPARQL annotation for some questions, and we
choose the shortest SPARQL query that can be
successfully converted to S-expression.

The generation target of our model is normalized
S-expression, where KB relations are split into to-
kens and entities are represented with their labels.
Thus, a post-process step is needed to convert gen-
erated normalized S-expression to its original form.
Specifically, entity labels are mapped into entity ids
in the KB based on the output of the entity disam-
biguation task; normalized relations are converted
back based on rules. Finally, S-expression is con-
verted to SPARQL to be executed against KB in
the same way of Gu et al. (2021).

In the training phase, the results of auxiliary
tasks are not steady at the beginning, since the
model parameters are not well-trained. Therefore,
we do not concatenate the output of prior tasks
as described in Section 2.3 for the first 5 training
epochs.

In the inference phase, we utilize KB to validate
generated logical forms. Given a question, we gen-
erate a bunch of logical forms by beam search and
they are executed in turn until a non-empty query
result is returned. It helps to filter invalid logical
forms.

Metrics Following Das et al. (2021), we use the
standard evaluation metrics, namely precision (P),
recall (R), macro F1 (F1), and accuracy (Acc.).

2https://huggingface.co/

https://huggingface.co/
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CWQ WebQSP

Method Acc. F1 Acc. F1

QGG (Lan and Jiang, 2020) - 40.4 - 74.0
BART-large (Huang et al., 2021) - 68.2 - 74.6
CBR-KBQA (Das et al., 2021) 67.1 70.0 69.9 72.8
ReTraCk* (Chen et al., 2021) - - - 74.7
RnG-KBQA (Ye et al., 2021) - - 71.1 75.6

GMT-KBQA (Ours) 72.2 77.0 73.1 76.6

Table 1: QA evaluation results (%) on CWQ test set and WebQSP test set. * denotes using oracle entity linking
results. Acc.: Accuracy.

CWQ WebQSP

Entity linking Relation linking Entity linking Relation linking

Methods P R F1 P R F1 P R F1 P R F1

Retriever 71.6 70.5 68.8 84.9 74.2 77.3 53.9 86.0 62.6 66.3 68.7 65.4
GMT-KBQA 78.8 69.4 72.3 85.2 81.0 81.4 79.9 75.3 76.1 74.1 73.9 72.1

Table 2: Entity and relation linking evaluation (%) of our retriever and multi-task model.

3.2 Experimental Results

QA performance Table 1 summarizes evalua-
tion results on both CWQ and WebQSP dataset.
The results of other methods are taken from cor-
responding papers directly. The result shows that
our method sets the new state-of-the-art on CWQ
dataset by a large margin, surpassing CBR-KBQA
(Das et al., 2021) by 5.1% accuracy and 7.0% F1.
CBR-KBQA retrieves similar question-query pairs
in the training set to augment logical form genera-
tion and introduces a revision step for relations not
covered by the cases, whereas our method retrieves
relevant entities and relations from the entire KB
through dense retrieval, which balances coverage
and efficiency. Huang et al. (2021) utilize auxil-
iary information including candidate entities and
generate entity text labels instead of entity IDs.
Our method achieves a notable advantage against
Huang et al. (2021), indicating that our method
makes better use of auxiliary information and is
more capable of dealing with unseen KB items.

GMT-KBQA also achieves new state-of-the-art
results on WebQSP dataset, where the questions are
relatively simpler than CWQ. According to Table
1, our method outperforms existing methods even
if they use oracle entity annotations (Chen et al.,
2021). RnG-KBQA (Ye et al., 2021), the previous
state-of-the-art on WebQSP, combines ranking and

generation for both coverage and generalization.
Our method obtains an increase of 2.0% accuracy
and 1.0% F1 against RnG-KBQA although we only
rely on the generation results. In summary, the
results on CWQ and WebQSP datasets suggest that
our method is effective in solving questions with
different complexity.

Improvement on auxiliary tasks GMT-KBQA
consists of three tasks, namely entity disambigua-
tion, relation classification, and logical form gen-
eration. Apart from the experiments on QA tasks,
also we evaluate the entity and relation linking re-
sults to show the impact of multi-task learning.

As shown in Table 2, for Retriever, candidate
entities/relations retrieved in Section 2.2 are disam-
biguated with prediction scores in retrieval stage.
For GMT-KBQA, candidate entities/relations are
disambiguated with the output of entity disam-
biguation task and relation classification task de-
scribed in Section 2.3 respectively. Experiment
result indicates the improvement of our model
on both entity linking and relation linking perfor-
mance. The entity linking F1 is improved by 3.5%
and 13.5% on CWQ and WebQSP, respectively. Al-
though our disambiguation model sacrifices recall
to some extent, we can observe a significant in-
crease in precision. The experiment results further
prove the effectiveness of our disambiguation ap-
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CWQ WebQSP

Methods F1 ∆ F1 ∆

GMT-KBQA 77.0 - 76.6 -
w/o Entity 72.7 -4.3 74.9 -1.7
w/o Relation 75.9 -1.1 75.1 -1.5
w/o Entity, Relation 74.0 -3.0 74.7 -1.9

Table 3: QA performance (%) of variants of our model.
Entity and Relation are short for entity disambiguation
task and relation classification task respectively.

CWQ WebQSP

Methods F1 ∆ F1 ∆

T5-base 74.0 - 74.7 -
w/ Retrieval 71.4 - 2.6 72.9 - 1.8
w/ Oracle 94.1 +20.1 94.8 +20.1

GMT-KBQA 77.0 + 3.0 76.6 + 1.9

Table 4: Impact of auxiliary information on the genera-
tion model. Retrieval/Oracle are short for concatenating
retrieved/oracle auxiliary information to input.

proach: the entity representation can be enriched
with retrieved relations, which provides sufficient
evidence for the disambiguation model. The rela-
tion linking F1 is also improved by 4.1% and 6.7%
on two datasets, which proves the effectiveness of
our multi-task model for relational linking.

3.3 Analysis

Ablation study To further illustrate the impact of
each task and their combination, we evaluate QA re-
sults with different model variants, i.e., with task(s)
removed. Table 3 shows 1) our final model substan-
tially outperforms other model variants, indicating
that our multi-task setting properly organizes and
makes full use of all the tasks; 2) performance
drops in general with more tasks removed, which
shows the necessity of the auxiliary tasks.

Impact of auxiliary information Table 4 shows
that a giant improvement can be achieved with
oracle entities and relations, which confirms the
importance and potential of utilizing auxiliary in-
formation.

However, for practical scenarios without the ora-
cle, directly concatenating linking results leads to
a decrease in performance compared to the vanilla
generation model (T5-base in Table 4). The results
are consistent with our motivation that auxiliary in-

CWQ WebQSP

Methods P R F1 P R F1

T5-base 64.8 67.0 64.9 64.3 68.5 64.5
GMT-KBQA 68.3 70.9 68.5 66.7 69.8 66.6

Table 5: QA results (%) on test set questions with un-
seen KB items.

formation could be better utilized via a multi-task
setting instead of simple concatenation.

There are two advantages of GMT-KBQA to
achieve the improvement. First, GMT-KBQA
jointly trains the three tasks with a combined loss,
improving the accuracy of each task and resulting
in better overall performance. Second, when noisy
candidate relations/entities are provided, for the
model with simple concatenation, although given
a generation loss, there’s no explicit clue for the
model to locate the noisy candidates, which leads to
confusion in the optimization stage. As for GMT-
KBQA with a multi-task setting, the loss of rela-
tion classification and entity disambiguation helps
the model locate mis-classified candidates, making
the optimization objective clearer. In this way, can-
didate relations/entities with higher precision and
recall are given to the model, making it easier to
generate correct logical forms.

Performance on unseen KB items To measure
our model’s capability of handling unseen relations
and entities, experiments are conducted on ques-
tions from CWQ/WebQSP test set whose golden
SPARQL contains unseen entities or relations (com-
pared to the training set). Evaluation result in Table
5 indicates that GMT-KBQA contributes to 3.6%
and 2.1% F1 increase in CWQ and WebQSP re-
spectively. This experiment demonstrates that our
method leads to improvement in generalization ca-
pability compared to the vanilla generation model.

Effect of beam size To study the impact of dif-
ferent beam sizes on the decoding stage, the QA
performance of GMT-KBQA with different beam
sizes is evaluated as shown in Table 6, where we
also list the performance of other methods utiliz-
ing beam search. As the result implies, perfor-
mance improves with a larger beam size, which
indicates that beam search combined with the ex-
ecution checking (Section 3.1) helps to discover
valid and correct logical forms. The experiment
further proves that our model still achieves great
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CWQ WebQSP

Methods 1 5 10 50 100 1 5 10 50 100

CBR-KBQA (Das et al., 2021) - 70.0 - - - - 72.8 - - -
BART-large (Huang et al., 2021) 55.5 - 60.9 - 68.2 67.5 - 73.6 - 74.6

GMT-KBQA(Ours) 62.2 72.7 74.4 77.0 - 70.5 75.2 76.5 76.6 -

Table 6: F1 metrics (%) with different beam sizes.

performance with smaller beam sizes, outperform-
ing other methods with the same beam size.

Error analysis We analyze the questions not an-
swered correctly by GMT-KBQA in the CWQ test
set. The errors can be summarized as follows.

• Structure generation error (54.5%). An ex-
ample of this error is the wrong choice of function.
For instance, in question "What is the youngest col-
lege that Harry S Truman attend?", GMT-KBQA
fails to understand that "youngest" indicates the
shortest existence time of a college, i.e., the lat-
est foundation time. Therefore, our model applies
"AGRMIN" operation instead of the correct "AGR-
MAX" function on the foundation time.

• Relation linking error (16.4%) and entity
linking error (12.3%). Despite the efforts we
put into relation classification and entity disam-
biguation, linking errors cannot be completely
avoided. For example. in question "What
form of currency was used in the place where
Nicolas Sarkozy was governor before the Euro
was established?", linking correct relation "loca-
tion.country.currency_formerly_used" requires un-
derstanding of past tense, i.e., "was used" in the
question.

• S-expression conversion (11.1%) and De-
normalization (4.6%). Some overly complex
SPARQL queries do not have equivalent S-
expression or the execution result of converted S-
expression differs from the original SPARQL query.
Apart from that, our de-normalization phase also
causes some errors.

4 Related Work

Existing KBQA methods can be mainly divided
into two categories: information retrieval-based
methods (IR-based methods) and semantic parsing-
based methods (SP-based methods).

IR-based methods (Bordes et al., 2015; Dong
et al., 2015; Hao et al., 2017; Zhao et al., 2019)
follow a retrieval-and-rank paradigm. They first
retrieve a question-specific graph from the KB and
then rank entities in the graph by their relevance
to the question. For complex questions, recent IR-
based methods turn their attention to graph retrieval
(Sun et al., 2019; Saxena et al., 2020) and multi-
hop reasoning over graphs (Zhou et al., 2018; He
et al., 2021; Shi et al., 2021). Generally, IR-based
methods fit into end-to-end training, but they lack
interpretability because of the black-box reasoning
process.

SP-based methods, closely relevant to our
method, are more transparent compared with IR-
based methods. They answer questions by parsing
them into logical forms executable against KBs,
including λ-DCS (Berant et al., 2013), SPARQL
(Huang et al., 2021; Das et al., 2021), query graph
(Yih et al., 2015; Bao et al., 2016; Lan and Jiang,
2020), and S-expression (Gu et al., 2021; Ye et al.,
2021). Past SP-based methods parse questions with
a bottom-up semantic parser (Berant et al., 2013)
or iteratively generate and rank candidate query
graphs (Yih et al., 2015; Lan and Jiang, 2020).
However, previous semantic parsers have limited
coverage for diverse complex queries (Lan and
Jiang, 2020), and query graph generation methods
suffer from the high computational cost of expand-
ing the graphs (Qin et al., 2021). Recent methods
(Zhang et al., 2019; Yin et al., 2021; Huang et al.,
2021) take advantage of language generation mod-
els to directly generate executable logical forms
from questions. As vanilla generation models do
not generalize well to questions on KB items with
novel combinations and unseen ones, Das et al.
(2021) generate complex logical forms conditioned
on retrieved similar questions along with their log-
ical forms, but they need to add human-labeled
cases to cover absent relations in the case memory.
Ye et al. (2021) first rank a pool of candidate logi-
cal forms obtained by enumerating relation paths
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over the KBs, and then generate the final logical
form based on the question combined with top-
ranked candidates. The enumeration of candidate
logical forms involves a large search space on the
KB, which is time-consuming and computationally
expensive.

5 Conclusion

We present GMT-KBQA to improve the gener-
alization capability of generation-based methods
utilizing auxiliary information. GMT-KBQA first
retrieves candidate entities and relations in dense
space. Then, its multi-task learning framework
learns to refine the auxiliary information along
with generating target logical forms at the same
time. Experimental results on two datasets, CWQ
and WebQSP, show that our method sets new state-
of-the-art by a large margin. The further analy-
sis illustrates that our logical form generation task
and auxiliary tasks benefit from each other and
GMT-KBQA achieves strong performance for un-
seen KB items. In general, GMT-KBQA gives
an insight into generating more accurate logical
forms through auxiliary information retrieval and
multi-task learning. Currently, answering questions
that require in-depth understanding such as logical
or commonsense reasoning remains a challenging
task, and we will strengthen GMT-KBQA for such
scenarios in the future.
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