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Abstract

There have been many efforts to try to under-
stand what grammatical knowledge (e.g., abil-
ity to understand the part of speech of a token)
is encoded in large pre-trained language mod-
els (LM). This is done through ‘Edge Probing’
(EP) tests: supervised classification tasks to
predict the grammatical properties of a span
(whether it has a particular part of speech) us-
ing only the token representations coming from
the LM encoder. However, most NLP applica-
tions fine-tune these LM encoders for specific
tasks. Here, we ask: if an LM is fine-tuned,
does the encoding of linguistic information in
it change, as measured by EP tests? Specifi-
cally, we focus on the task of Question Answer-
ing (QA) and conduct experiments on multiple
datasets. We find that EP test results do not
change significantly when the fine-tuned model
performs well or in adversarial situations where
the model is forced to learn wrong correlations.
From a similar finding, some recent papers con-
clude that fine-tuning does not change linguis-
tic knowledge in encoders but they do not pro-
vide an explanation. We find that EP models
themselves are susceptible to exploiting spuri-
ous correlations in the EP datasets. When this
dataset bias is corrected, we do see an improve-
ment in the EP test results as expected.

1 Introduction

The encoding of linguistic information in large pre-
trained language models (LMs) such as BERT (De-
vlin et al., 2019) has become an active research
topic in recent times. This encoding is usually
measured by edge probing (EP) tasks (Liu et al.,
2019; Tenney et al., 2019a). Consider the sentence
“the Met is closing soon”. The token ‘met’ is a
noun (a museum and not a form of the verb ‘meet’).
The context words (‘the’, ‘is’) are the only signals
for determining its part of speech. If a ‘simple’
(one or two layer MLP (Hewitt and Liang, 2019))

* Work done at the University of Copenhagen.

classifier predicts ‘met’ as a noun only using the
representation of the token ‘met’ (coming from a
contextual encoder such as BERT (Devlin et al.,
2019) or ELMo (Peters et al., 2018)) and not the
whole sentence, then these signals must have been
encoded in the token representation itself. This is
the grammatical knowledge the test is ‘probing’ for.
If encoder E1 performs better than encoder E2 on
an EP test, say, part-of-speech tagging, we say that
E1 has a better knowledge of part-of-speech than
E2.

For many NLP tasks, pre-trained LMs (most
commonly, BERT) have emerged as standard en-
coders (Raffel et al., 2020). These encoders are
fine-tuned after adding task-specific layers on top.
While probing tests on pre-trained encoders are
quite popular, fine-tuned encoders are relatively
under-explored (with notable exceptions of Mer-
chant et al. (2020) and van Aken et al. (2019). We
aim to bridge this gap by probing fine-tuned mod-
els using question answering (QA) as a target task.
QA is a complex NLU problem requiring the model
to implicitly perform many reasoning steps, and
fine-tuned models provide strong baselines for var-
ious QA datasets (Devlin et al., 2019). Our first
research question is thus:

RQ1: Does fine-tuning for QA tasks improve the
encoding of linguistic skills in the encoders, when
measured by existing EP tests? Intuitively, DNN
based QA models would require implicit knowl-
edge of semantic roles (who did what to whom,
when, and where), an understanding of the part of
speech and entity boundaries (most answers are
entities in the context), and anaphora resolution
(entities in the context would refer to each other).
Indeed, prior works show how injecting knowledge
about semantic roles (Shen and Lapata, 2007) and
coreference resolution (González and Rodríguez,
2000) in classical QA pipelines improves their
performance. Therefore, a fine-tuned QA model
should implicitly acquire these linguistic skills. The
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QA layers in the fine-tuned models have much
fewer parameters than the encoders (§3), therefore,
the encoders themselves are more likely to encode
that grammatical knowledge. Consequently, when
these fine-tuned encoders are used for the SRL (se-
mantic role labeling), CoREF (coreference), PoS
(part-of-speech tagging), and NER (named entity
recognition) EP tests, we would expect to see im-
provements over pre-trained LMs. But we do not
observe any such change (§4).

Fine-tuning is generally performed on much less
data than pre-training and the encoder weights
might not change significantly. Could that cause
the EP test results to remain the same? If the en-
coder weights are kept fixed during fine-tuning, the
performance in the target (QA) task drops 50−70%
on all datasets. However, this frozen encoder has
the same performance on the EP test as the origi-
nal one. In other words, two encoders with a high
difference in the target task performances have no
discernible difference in the EP task performances.
A possible explanation is that the QA models have
no need to use the grammatical knowledge we are
testing for. This motivates the second research
question:

RQ2: Does fine-tuning for QA tasks impart the
linguistic skills necessary to perform QA in the en-
coders? To answer this, we create a QA dataset
that requires a particular ‘skill’ (Rogers et al., 2022;
Ray Choudhury et al., 2022): the knowledge of
coreference resolution (§5). Quoref (Dasigi et al.,
2019) is such a dataset, but one might not require
the knowledge of coreference to answer all ques-
tions in Quoref. Many instances in standard NLU
tasks can be solved by heuristics, i.e., without
proper reasoning (see Gururangan et al. (2018) for
NLI or Min et al. (2019) for multi-hop QA). We
design algorithms to filter out questions that can
be answered heuristically (§5), and consequently,
any model probably needs to use the knowledge
of coreference to answer the rest. However, two
encoders with a significant performance difference
on this de-biased dataset have no difference in the
CoREF EP test. This motivates the third research
question:

RQ3: Why do the EP test results not reflect that
encoders have learned the linguistic skills needed
to perform QA?: Our analysis (§6) of the EP test
datasets suggests that the EP models themselves
might rely on dataset biases (as opposed to learn-
ing the task with input representations). When this

bias is corrected, fine-tuned encoders behave as
expected, i.e., show significant performance im-
provements over the base encoders. Previously,
van Aken et al. (2019) and Merchant et al. (2020)
observed that the EP test results do not differ in the
base vs fine-tuned encoders1 (RQ1) and concluded
that the encoding of grammatical knowledge in the
encoders does not change during fine-tuning. How-
ever, unlike ours, their studies were not done on
the problems that explicitly call for such grammati-
cal knowledge. Moreover, current criticisms of EP
tests on non fine-tuned encoders focus on the task
design itself (Hewitt and Liang, 2019; Voita and
Titov, 2020) (see §6), whereas this work calls for
bias correction in the standardized EP test datasets.

2 Related Work

Prior work has focused on understanding various
aspects of pre-trained LMs including attention pat-
terns (Clark et al., 2019) and linguistic knowledge
(Liu et al., 2019). When these LMs are used as
encoders in models, they turn out to be strong base-
lines for many tasks (Raffel et al., 2020). However,
less is known about how the fine-tuning process
changes the encoder’s attention patterns (Kovaleva
et al., 2019) or their encoding of linguistic knowl-
edge. While many papers (Jia and Liang, 2017;
Kaushik and Lipton, 2018; Sen and Saffari, 2020;
Sugawara et al., 2020, inter alia) argue that DNN
models often use heuristics to answer questions,
Ray Choudhury et al. (2022) shows that at least
some of the models use human-interpretable rea-
soning steps. Therefore, it is important to study
how edge probing tests capture the task-specific
reasoning abilities introduced in the fine-tuning
process.

The paradigm of the classifier based probing
tasks (of which our EP tasks are a subset) is quite
mature (Ettinger et al., 2016), and has seen in-
creasing popularity with the release of benchmark
EP datasets (the ones we use here) (Tenney et al.,
2019a). Typically, internal layers of large language
or machine translation models are used as features
for auxiliary prediction tasks for syntactic proper-
ties: part-of-speech (Shi et al., 2016; Blevins et al.,
2018; Tenney et al., 2019a), tense (Shi et al., 2016;
Tenney et al., 2019a), or subject-verb agreement

1Merchant et al. (2020) uses one QA dataset (SQuAD (Ra-
jpurkar et al., 2016)) and all our EP tests; van Aken et al.
(2019) uses two datasets (SQuAD and HotpotQA (Yang et al.,
2018)) and two of our EP tests; which makes this study more
rigorous in the QA domain.
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(Tran et al., 2018; Linzen et al., 2016). See Be-
linkov and Glass (2019) for an extensive survey.

However, not many papers study the benchmark
EP tests for fine-tuned representations. Most simi-
lar to our work is the layer-wise analysis of BERT
weights for QA (van Aken et al., 2019) and the
results of fine-tuning BERT on EP tasks (Merchant
et al., 2020) – van Aken et al. (2019) use three QA
datasets (SQuAD, HotpotQA, and bAbi (Weston
et al., 2016)) to show that: 1) for the EP task of
CoREF, test results remain unchanged, even when
representations are taken from different layers; 2)
different layers of a fine-tuned BERT can be at-
tributed to different tasks in the QA process such
as supporting fact extraction or entity selection.
Merchant et al. (2020) studies MNLI, dependency
parsing, and QA (SQuAD) to arrive at a similar
finding, although their main results use a scalar
mix of the weights from all layers of a fine-tuned
BERT (whereas our work uses the top layer). RQ1
in our work can be considered complementary to
their work, but RQ2 and RQ3 have not been studied
before.

EP tests are indirect, i.e., a classifier (probe) is
used to measure the linguistic information in the
representation. Do the test results reflect the quality
of the representations or the classifier’s ability to
learn the task (Hewitt and Liang, 2019; Voita and
Titov, 2020)? We discuss this in §6. See Belinkov
(2022) for more background on probing classifiers.

3 Edge Probing & QA: The Setup

Edge Probing: Following prior work (Merchant
et al., 2020; van Aken et al., 2019), we use the
model architecture and four of the edge probing
tasks proposed by Tenney et al. (2019a). Given
a sentence S = [T1, ...Tn] of n tokens where
Ti ∈ Rd, for PoS and NER tasks, the goal is to
predict the part of speech or entity tag for a set of
spans Ti..Tj , 1 ≤ i, j ≤ n in that sentence (with
only the span and not the sentence as the input).
Using the same setting for SRL and CoREF tasks,
the input is a pair of spans and the output is a class
label: for SRL, it is a semantic role, for CoREF
it is a binary label indicating whether one span is
an antecedent of the other or not. A self-attention
pooling operator is used to generate a fixed repre-
sentation for spans of different lengths (Lee et al.,
2017). For SRL and CoREF, these representations
for the two spans are concatenated. A single-layer
linear probe is used for the actual classification task

I eat strawberry ice cream

Pre-trained LM: (BERT) 

T1 T2 T3 T4 T5

E1

S1 (T1) S2 (T2) S3 (T3) S4 (T3, 4, 5)

E2 E3 E4

POS MLP (Is S2 a VVP?) SRL  MLP (is S4 ARG1 of S2?)

Original sentence

Encoder layer

Token representations from 
the encoder

Pooling layer on tokens 

Pooled span representations: 1 
or multiple tokens

MLPs for EP tasks

Figure 1: The architecture for edge probing tasks. For
all tasks (PoS, SRL, CoREF, NER) the same MLP is
used.

(Figure 1).
For EP tests, the span representations need to

be generated from the token representations. To-
ken representations can be generated from each
layer (Tenney et al., 2019a) or the top layer (Ten-
ney et al., 2019b) of the encoder. In each case,
the layer i representation can be calculated as: 1.
Just the output of layer i, 2. A concatenation of
the first layer output and layer i output (‘cat’), and
3. A scalar mixing of the output of 0 − i layers
where the mixing weights are trainable parameters
(‘mix’). In all experiments, we use the ‘cat’ set-
ting for the topmost layer in the encoder because
both Merchant et al. (2020) and we find no signifi-
cant difference for the other settings (the top layers
generally perform better).
Question Answering: In typical QA setups, mod-
els are given a context and a question as input. We
use two span-based datasets (SQuAD, Rajpurkar
et al. (2016) and HotpotQA, Yang et al. (2018))
where the task is to extract a span of the text
from the context as the answer. We also use two
MCQ datasets (ReCoRD, Zhang et al. (2018) and
MultiRC, Khashabi et al. (2018)) where the model
is trained to select an answer from a set of choices.
The architectures follow Devlin et al. (2019) and
are similar for all datasets: one or two QA-specific
layers on top of an encoder (see the appendix for
more details).

4 RQ1: EP Tests & Fine-Tuned Encoders

We first run the EP tests with a standard en-
coder. Next, the QA models (the same encoder
+ QA layers) are trained (fine-tuned). Then, in the
fine-tuned models the QA layers are replaced with
the same MLP layers used in the EP tests, and
the tests are repeated. This gives us a measure of
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how much the encoding of linguistic knowledge
in the encoder might have improved due to the
fine-tuning process. We also randomize the QA
training data (for SQuAD and HotpotQA) by using
random noun phrases as answers. Thus the model
is forced to learn wrong correlations, which can
cause it to ‘forget’ the skills to some extent, and in
turn, the encoder should perform worse on the EP
tests.

4.1 Experimental Setup
We use a BERTbase-uncased model as the base en-
coder for all tasks. For each QA task, we run five
experiments. The span-based QA models are eval-
uated using the F1 score and the exact match (EM)
metric. The exact match measures the percentage
of answers that exactly match the actual answers.
The F1 score measures the token overlap between
the predicted and the actual answer. The MCQ
questions are classification tasks and evaluated us-
ing the usual accuracy and Micro-F1 metrics for
classification.

For EP tests we use the highest performing
model in each QA dataset. The tests use the bench-
mark OntoNotes 5.0 corpus (Weischedel et al.,
2013), as in Tenney et al. (2019a) and Merchant
et al. (2020). We use the same hyper-parameters as
the original paper on EP tests (Tenney et al., 2019b)
except for the batch size (32 theirs vs 16 ours).2

The QA models were trained for 10 epochs with a
batch size of 16 using the Adam optimizer (Kingma
and Ba, 2015). The EP models were trained for
three epochs, using the same batch size and opti-
mizer. The learning rates were kept at 1e-04 for
the EP tasks and 1e-05 for the fine-tuning tasks.
Further details about hyper-parameter searching
and the exact configurations are provided in the
appendix. Following the training regime of (Pruk-
sachatkun et al., 2020), the models were evaluated
on a subset of the validation data every 500 mini-
batches with early stopping on 100 evaluations.

4.2 Results
We report the Micro-F1 scores for the EP tests on
fine-tuned models in Table 1 (the average over 5
runs for each experiment, and the standard devia-
tion varies between 0.1− 1.5%). See the appendix
for detailed results.

For SQuAD the test data is not publicly avail-
able, therefore, we report the results on dev data.

2Merchant et al. (2020) and van Aken et al. (2019) report-
edly used the same HPs.

SRL CoREF PoS NER

BERT-base 81.1 81.2 96.1 93.0

Fine-tuning on original data

SQuAD (81.9) 79.9 81.2 95.3 92.4
ReCoRD (57.0) 79.7 80.9 95.8 93.4
MultiRC (63.7) 80.7 82.3 95.8 93.5
HotpotQA (77.0) 77.7 80.2 94.3 90.9

Fine-tuning on randomized data

SQuAD (7.4) 74.8 78.9 91.7 86.8
HotpotQA (12.5) 74.0 79.5 92.0 86.2

Table 1: Micro-F1 scores for different EP tasks: without
fine-tuning, with fine-tuning on the original datasets,
and with fine-tuning on randomized datasets. The F1
scores for the QA datasets are given in parentheses.

We changed HotpotQA instances to SQuAD style
ones by providing the relevant sentences as the con-
text, which is given for the train and dev data, but
not for the test data. Therefore, we only report the
results on the dev data.

For SQuAD and MultiRC, the results are some-
what lower than the best results reported in the
literature with similar architectures (88.5 for De-
vlin et al. (2019) and 70.4 for Wang et al. (2019)).3

For ReCoRD, the results are slightly better (Zhang,
2020). For HotpotQA, no fair evaluation is possi-
ble due to the data modifications.

Our EP test results for SRL and CoREF do dif-
fer from the previous work (Tenney et al., 2019a),
but they are comparable with Liu et al. (2019),
which uses the same dataset. However, we are more
concerned with the fact that the EP test results do
not change significantly when a fine-tuned vs the
original encoder is used. In the randomization ex-
periments, we see that the QA F1 score drops as
expected, and the EP test results do change, but not
as significantly as the QA F1 scores. This also in-
dicates that improving the performance of the QA
model itself might not change the EP test results
significantly.

In summary, our experiments suggest that
fine-tuning indeed does not significantly change
the encoding of linguistic knowledge in the un-
derlying encoder, when measured by the EP tests,
which is consistent with the findings of previous
work (Merchant et al., 2020; van Aken et al., 2019),
but provides complementary evidence.

3We use a max length of 128 in the encoder, whereas a
max length of 512 produces comparable results. However,
the target test results and EP test results are not correlated,
therefore, we do not investigate this further.
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5 RQ2: EP Test for Coreference

While we can expect the model to acquire some
linguistic skills (the ability to do coreference res-
olution, identify the part of speech of a token) by
learning to perform a QA task, there is no guaran-
tee for this: a model can reason differently than we
expect it to. For example, many HotpotQA ques-
tions can be answered by identifying the necessary
entity type and not the multi-hop reasoning process
that we expect (Min et al., 2019).

Therefore, in RQ2, we want to see whether the
EP test results change when we know the encoder
has to acquire particular grammatical knowledge
K for the QA task. Consider two models M1 (E1 +
QA_Layer1) and M2 (E2 + QA_Layer2) in our
encoder + QA layer architecture. Assume we can
identify a set of questions Q that can only be an-
swered using K. If M1 performs significantly bet-
ter than M2 in these questions, we can say that E1

has encoded more information about K than the
E2 because the QA layers are unlikely to encode
that knowledge as they have much less parameters
than the encoders. Therefore, in the EP test for K,
we can expect E1 to perform better than E2.

We define M1 as a fine-tuned-encoder, where
the full architecture (encoder (E1) + QA layer) is
trained; and M2 as a frozen encoder: the encoder
(E2) is frozen and only the QA layer is trained.
We choose K to be the grammatical knowledge of
coreference. It is difficult to understand whether
the knowledge of semantic roles or part of speech
would be needed to answer a question, but it possi-
bly can be done for coreference. For example, in
Figure 2a, it is relatively easy to see that to answer
the question a human needs to resolve the reference
‘he’ in the second sentence to ‘Leo Strauss’.

5.1 Finding Coreference Questions

We employed four NLP practitioners to anno-
tate 200 questions (100 each from SQuAD and
HotpotQA). Each annotator was given a sample of
100 questions and was asked to stop as soon as they
found 50 positive (questions they thought required
coreference) instances. The question in Figure 2a
is sampled from that dataset. But the question
can also be answered by a shortcut (Geirhos et al.,
2020). We know a ‘where’ question will only be
answered by an entity of type location and there
are two such entities in the context: Germany and
United States. Germany is an argument to the trig-
ger verb ‘born’, hence, is the answer.

The Quoref dataset (Dasigi et al., 2019) report-
edly consists of questions that can only be an-
swered by understanding the concept of corefer-
ence. The annotators design the questions them-
selves, which is different from our post-hoc anno-
tation process. Figure 2b shows a sample question
from the dataset. This question can not be answered
without resolving the pronominal antecedent ‘he’
to ‘Frankie’. But even Quoref can have questions
that can be answered with a shortcut, therefore
we develop algorithms to filter them out (§5.1.1,
§5.1.2).

5.1.1 Model-Agnostic Filter

In Quoref, the answer is a span in the context.
The Model-Agnostic Filter algorithm works in two
steps: a) Sentence Selection: Select the context
sentence that is most similar to the question; and b)
Entity Type Matching: The question expects an
entity of a particular type, eg: ‘where’→ location,
‘who’→ person. From the sentence selected in the
last step, select an entity of the same type.

For ‘Sentence Selection’, we use two methods:
1) Token-Overlap: Select the sentence that has
the highest token overlap with the question tokens,
and 2) Sentence Encoder: An off-the-shelf sen-
tence encoder from Reimers and Gurevych (2019)
trained on MS Marco (Nguyen et al., 2016), a large
scale dataset for answer passage retrieval (see the
appendix for details).

For the ‘Entity Type Matching’ step, we design
both supervised and unsupervised algorithms to
determine the type of the answer entity from the
question. For the unsupervised algorithm, we de-
fine a map (see the appendix) with the ‘wh’ words
(who, when, whom) as the keys and the entity type
as values (who ← PER). The first ‘wh’ word in
the question determines the output. For example,
for the question “where was Plato born, who wrote
Republic?” it produces LOC. If no such word is
found, it outputs an UNK_ETYPE.

This unsupervised approach will predict the
wrong entity type for questions such as “Who won
the World Cup in 2002?” (PER instead of LOC).
Therefore, we train and evaluate supervised classi-
fication models on the training split of the Quoref
dataset.4 The label for a question is the entity type
of the answer,5 as detected by an off-the-shelf en-
tity extractor from Spacy. If the answer is not a

4Further divided into 70(train)-20(dev)-10(test) splits
5One of the 18 types in Pradhan et al. (2013)

https://spacy.io
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Context: Leo Strauss ...was a German-American politi-
cal philosopher ... He was born in Germany... Thoughts
on Machiavelli is a book by Leo Strauss ...
Question: Where was the author of Thoughts of Machi-
avelli born?
Answer: Germany

(a) A sample question from SQuAD.

Context: Frankie Bono, a mentally disturbed hitman
from Cleveland,..Next, he goes to purchase a revolver
from Big Ralph....
Question: What is the first name of the person who pur-
chases a revolver?
Answer: Frankie

(b) A sample question from Quoref.

Figure 2: Sample questions from SQuAD and Quoref datasets. A reader relying on coreference resolution would
take into account the green tokens.

Sentence Etype EM

Overlap Supervised fine-tuned (63) 6.31
WordConv (58) 6.27

Unsupervised 1.22

Encoder Supervised fine-tuned 5.99
WordConv 5.48

Unsupervised 0.97

Table 2: Different strategies for the
Model-Agnostic Filter algorithm. EM stands for
exact match, i.e., the percentage of cases where the
filter produces the exact answer.

named entity, or our entity extractor fails to de-
termine its type, the label is UNK_ETYPE.6 We
experiment with two architectures: 1) a fine-tuned
BERTbase-cased model; and 2) a popular word con-
volutional model for sentence classification (Kim,
2014) using three parallel filters and 300 dimen-
sional Google News Word2Vec representations
(Mikolov et al., 2013). More details about the data,
model architectures, and training is provided in the
appendix.

5.1.2 Model-Dependent Filter
Following Sugawara et al. (2020) we replace all
pronouns from the context in a question with ran-
dom strings of the same length. If any one of M1

or M2 can still answer the question, it can arguably
be answered without the knowledge of coreference.

5.1.3 Experiments & Results
The BERT and the WordConv supervised entity
detectors have an average accuracy of 63.55±0.1%,
and 58.81± 0.3% over 5 runs respectively.

The ‘EM’ column in Table 2 shows the pro-
portion of Quoref questions (the validation split)
that can be answered by the Model-Agnostic Filter

6Indeed, a significant number of questions are labeled as
such: 33%, 34%, and 35% in the train, dev, and test split of
the data respectively.

frozen fine-tuned

F1 EM F1 EM
Quoref dev 10.23 5.41 69.53 65.61
- MAF 10.09 5.36 69.21 65.31
- MDF 7.00 3.19 38.57 30.85
- (MAF + MDF) 6.76 2.97 38.38 30.69

CoREF (Micro-F1) 81.68 ± 1.68 83.11 ± 0.7

Table 3: Performance of frozen encoder and
fine-tuned-encoder models when filters are applied:
separately and in combination. MAF and MDF stands
for model agnostic and dependent filters. The last row
reports the Micro-F1 for both encoders in CoREF EP
test.

algorithm. ‘Overlap’ and ‘Encoder’ are the two
strategies for the ‘Sentence Selection’ step, and
‘Supervised’ and ‘Unsupervised’ are the same for
the ‘Entity Type Matching’.

The final Model-Agnostic Filter algorithm uses
the token overlap approach to select a sentence
from the context and uses the best fine-tuned BERT
model to find the entity type for the answer. With
this, we can filter out 6.3%(155/2418) questions
from the dev set. While this number is not very
high, a similar exercise on SQuAD determines that
at least 21% questions can be answered by this
shortcut, which is consistent with prior findings
(Jia and Liang, 2017).

In the Model-Dependent Filter algorithm, indi-
vidually, the fine-tuned model filters out 55% dev
instances, and the frozen encoder model filters out
6% of them, and in total, they filter out 56% (there
is a large overlap).

5.2 Target Task vs Encoder EP Test

Table 3 shows the results of the fine-tuned and the
frozen encoder on Quoref dev set before and af-
ter the filters are applied. As can be seen, the
fine-tuned encoder performs much better than the
frozen one across all scenarios. The performance of
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these encoders on the CoREF EP test is given in the
last column, which, however, does not differ much.
This proves that while one encoder might encode
a linguistic knowledge (coreference) better than
the other, the EP tests might fail to capture that.

6 RQ3: An Analysis of EP Tests

6.1 Analysis

We see that the EP test results are surprisingly sta-
ble, even when we expect the fine-tuned encoder to
learn or forget certain linguistic skills. EP tests are
indirect measures of a representation’s quality and
have been criticized as such. Voita and Titov (2020)
shows that for some EP tests, a large pre-trained
LM (ElMo (Peters et al., 2018)) has the same per-
formance as a random encoder. They conclude that
the test measures the classifiers’ ability to learn
the EP task, and not the knowledge encoded in
the representations itself. They propose using an
information-theoretic (minimum description length
or MDL) probe.

In a similar vein, Hewitt and Liang (2019) sug-
gests designing a control task. A control task for
an EP test is the same classification task, only the
labels of the original task are changed so that it
can not be recovered from the linguistic informa-
tion. For example, two tokens with different part-
of-speech tags will be mapped to the same arbi-
trary label. A classifier (probe) that performs well
on both the control task and the original EP test
must be learning the correlations in the data, and
not using any information from the representations.
Therefore, it can not measure the encoding of gram-
matical knowledge in the encoders.

If an EP test has only two labels, they will just
be flipped in the control task. This makes the con-
trol task and the original EP test the same prob-
lem for the probe, and they must have the same
performance. Therefore, for binary EP tests such
as CoREF (the one we are interested in), no con-
trol task can be designed, but we use simple linear
probes following Hewitt and Liang (2019)’s recom-
mendations.

Had we used MDL probes instead, would our
conclusions in RQ1 and RQ2 change? Prior work
reports that the fine-tuned encoders do not show
much difference in the MDL probes themselves
(Merchant et al., 2020). Moreover, even in the orig-
inal MDL probe paper, the CoREF test results are
similar in a pre-trained vs random encoder (Voita
and Titov, 2020). Therefore, replacing the current

SRL CoREF PoS NER

mem_uniform 32.46 65.02 88.62 71.59
mem_freq 44.45 78.06 88.69 73.27
same_prec_ante - 70.23% - -
BERT-base 81.08 81.2 96.11 93.06

Table 4: A performance comparison on EP test results:
Micro-F1 scores for heuristics and BERTbase-uncased
models (average over 5 runs, STD. varies from 0.09−
1%).

EP tests with MDL probes should not change the
findings for the previous research questions.

Does this conclusively mean that the linguistic
skill is not improved in the encoder, even when the
task calls for it? Both Merchant et al. (2020) and
van Aken et al. (2019) arrive at that conclusion,
albeit without fine-tuning on a skill-specific target
dataset such as Quoref. We present a dataset bias
explanation (§6.2). Note the EP test dataset is used
in both Merchant et al. (2020), van Aken et al.
(2019), therefore the same explanation is valid for
both these studies.

6.2 EP Test Heuristics

Following Gururangan et al. (2018), we design
unsupervised algorithms that exploits spurious cor-
relations in the dataset.

• Memorization: If a test data point is in the training
data, the classifier returns the training data label.
Else, it returns a random label either a) uniformly
sampled (‘mem_uniform’) or b) sampled from the
label probability distribution of the training data
(‘mem_freq’).

• Same Precedent-Antecedent: In the CoREF
dataset, whenever the precedent and antecedent
are the same (“Obama is the president of the US.
He lives in Washington D.C. He went to Harvard.”),
return positive.

6.2.1 Results
Table 4 shows the results for various heuristics
and a BERTbase-uncased encoder. To achieve mod-
erately high performance on most EP tests, no
specific representation is needed, let alone from
a pre-trained or a fine-tuned one. The Same
Precedent-Antecedent heuristic has a Micro-F1
score of 70.23% when used alone. This can be
combined with mem_freq/ mem_uniform, but the
combination provides no significant improvement.
Overall, mem_freq is a strong baseline for the EP
tests.
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Best Worst

SRL
overall - -7.05
easy - -4.40
hard - -8.47

CoREF
overall +1.93 -2.32
easy +4.51 -7.11
hard +0.47 -0.17

PoS
overall - -4.12

easy - -4.01
hard - -12.30

NER
overall +0.35 -6.85

easy +0.25 -4.82
hard +0.62 -12.48

CoREF-LS
overall +1.93 -2.32

easy -1.22 +1.1
hard +13.27 -14.68

Table 5: The accuracy changes across easy and hard
instances for the best and worst fine-tuned models. For
SRL and PoS, BERT-base is the best, therefore, there
is no positive change. CoREF-LS refers to the case
when the easy and hard points are created by splitting
the data across labels. In some splits, the changes are
significantly different than the overall change.

6.3 EP Tests: Hard & Easy Instances

The results in §6.2 can be viewed in another way.
Many instances in the EP test data can be solved
by memorization, i.e., are easy instances. But there
are definitely difficult ones that account for the
performance difference in the heuristics and the
BERTbase-uncased model. When the fine-tuned en-
coders show marginal improvements or deteriora-
tion (over the base encoders) do the performance in
these EP tests increase/decrease uniformly across
the hard/easy instances, or in the harder instances
the results change more drastically? In the second
case, it can be argued that the EP tests do ac-
tually capture the change in the encoders, but
the change is artificially clamped, which is an
unfortunate side-effect of the dataset.

We first divide the test data for an EP test into
easy and hard instances: the ones that can be solved
by mem_freq or not. Then we note the average ac-
curacy of base BERTbase-uncased encoders on these
splits. Finally, we take two QA models (from two
separate datasets) for which the encoders had the
average best/worst results in the said EP test. Do
the results change from the base encoder similarly
across these splits?

6.3.1 Results
Table 5 shows no discerning pattern in the ‘Best
fine-tuned’ column, probably because the overall
improvements are indeed not significant. How-
ever, when an encoder model performs poorly (the
‘Worst fine-tuned’ column), it performs dispropor-
tionately badly on the hard instances. This proves
that while on the surface it might appear the results
are similar (Merchant et al., 2020; van Aken et al.,
2019), they are indeed not.

We are however more interested in CoREF, be-
cause as discussed in RQ2, we have reasons to be-
lieve that some encoders have indeed learnt more
about the skill of coreference than the others. How-
ever, contrary to the other results, it seems that the
better/worse results come from the easy instances.

CoREF dataset has a significant label imbalance
(compare row 1 and 2 in Table 4). A classifier pre-
dicting a negative label for all test instances can
achieve an accuracy of 78.33%. If we split the data
across the labels (CoREF-LS), we see that the re-
sults change drastically, with a clear indication that
a better encoder gets better by classifying the hard
(positive) instances better, and a worse encoder
fails harder on the same instances. Unsurprisingly,
the better encoders come from the encoders trained
on the Quoref dataset.

In summary, we show why an EP model can fit
well to the EP data without using a good represen-
tation. This indicates that while fine-tuning may
improve the encoding of grammatical knowledge
in encoders, the current EP tests (even the MDL
probes) might not be able to capture it. There
are issues with the datasets rather than the task
design itself. This is a new explanation for the ap-
parent consistency of EP test results in fine-tuned
models, whereas previous work has mostly focused
on classifier knowledge (see §6.1).

7 Conclusion and Future Work

Edge probing tests are the predominant method to
probe for linguistic information in large language
models. We use them to evaluate how the pro-
cess of fine-tuning an LM for QA might change
the grammatical knowledge in an encoder, and ob-
serve no significant differences between pre-trained
and fine-tuned LMs. More importantly, we find
this phenomenon in carefully designed target tasks
where the models must use the said grammatical
knowledge. From similar EP test results, previous
works have concluded that fine-tuning does not
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change the encoding of grammatical knowledge.
However, our analysis provides a ‘dataset bias’ ex-
planation for the consistency of the results and pro-
vides some clues as to why any representation tends
to achieve very similar results for EP tests. This is
different from the previous task-design criticisms
of the EP tests.

Do fine-tuned NLU models score highly on
benchmarks for the right reasons, i.e., follow the
human reasoning process? This work shows some
evidence in favor of that. The encoding of gram-
matical knowledge in QA encoders is improved as
expected when the models are trained on the right
datasets, and the dataset biases in the EP tests are
corrected. In light of this evidence, in the future,
we plan to identify the exact reasoning steps in the
QA models through post-hoc explainability meth-
ods and study whether they align with the human
reasoning steps.
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A Appendix A: RQ1

A.1 QA Datasets and Model Architectures
SQuAD: We use the first (V1.1) version of the
SQuAD dataset, which contains around 100K ques-
tion, answer, context triples collected from the En-
glish Wikipedia. The answers are spans within the
context. The questions and contexts are concate-
nated, and a linear layer on top of a contextual
encoder is used to predict the probability of a con-
text token i being the start (Pi,s) or end (Pi,e) of
an answer. The score (Si,j) for a span with start
token i and end token j is Pi,s + Pj,e. For all valid
combinations of i and j, the span with the highest
score is chosen as the answer. A cross-entropy loss
between the actual and predicted start/end positions
is minimized.
HotpotQA: The HotpotQA dataset is a collection
of 113K question-answer pairs, with two improve-
ments over SQuAD: 1) Each context consists of
multiple paragraphs (as opposed to a single one)
and the model needs to reason over some of them to
provide an answer and 2) The sentences required to
answer a question are provided (as paragraph index,
sentence index). The dataset features an implicit
IR task (finding the relevant sentences), therefore
we reduce it to a SQuAD style one by changing
the context to the full paragraphs from where the
supporting facts are chosen and removing the ques-
tions where the answer spans cannot be found in
the context (3.8 % in train and 3.9 % in dev data).
ReCoRD: The ReCoRD dataset contains a set of
120,000 Close style questions from the CNN/Daily
Mail dataset (Hermann et al., 2015). A Cloze style
query is a statement with an occluded entity that
is factually supported by a passage. The dataset
provides the named entities in the context, one of
which is the answer. For each (question, context,
N named entity) triple in the data, N (question,
context, label) triples are created, with the missing
entity in the question replaced by one of the pro-
vided entities, and the label is put as true or false
depending on whether the entity is the answer or
not. This NLI style formulation reduces the QA
task to a classification problem, for which a two-
layer MLP is used on top of the encoder layer: a
linear layer with a tanh activation, followed by an-
other linear layer.
MultiRC: MultiRC is a multiple-choice QA
dataset where the model has to choose one or mul-
tiple of provided answers utilizing the text from the
question, context, and the answer itself. We reduce

it to a binary classification task, where the input is
a concatenation of the question, the context, and
the answer (for each of the possible answers). The
same architecture as ReCoRD is used.

A.2 HP Searching and Final Configurations
for QA Datasets and EP Tests

Training Details: We searched for the following
hyper-parameters (HPs): number of epochs and
learning rates. Finally, the QA models were trained
for 10 epochs with a batch size of 16 using the
Adam optimizer (Kingma and Ba, 2015). The EP
models were trained for the three epochs, using the
same batch size and optimizer. The learning rates
were kept at 1e-04 for the EP tasks and 1e-05
for the fine-tuning tasks. Following the training
regime of (Pruksachatkun et al., 2020), the model
was evaluated on a subset of the validation data
every 500 mini-batches with early stopping on 100
evaluations. The config files in the provided code
show the detailed HPs. For the EP tests, the hyper-
parameters are all same as the baseline (Tenney
et al., 2019b) except for the batch size (32 theirs vs
16 ours). Merchant et al. (2020) and van Aken et al.
(2019) reportedly used the same HPs.

A.3 Reproducibility Checklist
Description of computing infrastructure used:
Titan RTX GPU, CUDA version 11.2.
The average runtime for each model or algo-
rithm (e.g., training, inference, etc.), or esti-
mated energy cost: 5-6 Hours for EP tests, 3-4
hours for QA models.
Number of parameters in each model: For
QA models: BERT base uncased parameters +
128*num_classes (FC layer). For EP tests, they
are the same.
Corresponding validation performance for each
reported test result: For three QA datasets, we
use the validation data itself. For the EP models,
validation results are very similar to the test results
reported.
Explanation of evaluation metrics used, with
links to code: The evaluation metric for QA mod-
els is F1, as common in most QA datasets, in-
cluding SQuAD. For EP tests, the evaluation met-
ric is Micro-F1, which is used in Tenney et al.
(2019b), the paper which is our baseline. The im-
plementations are from Pruksachatkun et al. (2020),
which hosts the original code used in Tenney et al.
(2019b). We also use

For all experiments with hyperparameter search:
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model acc micro_f1 macro_f1 weighted
_f1

BERT-
base

81.08 ±
1.33

81.08 ±
1.33

31.93 ±
1.34

80.09 ±
1.54

fine-tuned on original data
SQuAD 79.97 ±

1.1
79.97 ±
1.1

30.57 ±
1.0

78.86 ±
1.3

ReCoRD 79.71 ±
1.46

79.71 ±
1.46

30.47 ±
1.61

78.61 ±
1.7

MultiRC 80.69 ±
1.25

80.69 ±
1.25

31.76 ±
1.37

79.68 ±
1.47

Hotpot 77.73 ±
1.2

77.73 ±
1.2

28.4 ±
1.23

76.45 ±
1.43

finetuned on randomized data
SQuAD 74.79 ±

0.15
74.79 ±
0.15

26.07 ±
0.56

73.36 ±
0.17

Hotpot 74.03 ±
0.33

74.03 ±
0.33

25.79 ±
0.38

72.5 ±
0.35

Table 6: Results for SRL EP test.

The exact number of training and evaluation
runs: For each QA model, 5 training/evaluation
runs. For each EP test, 5 training/eval run.
Bounds for each hyperparameter: training
batch size: 8-32, learning rate: for QA models,
1e-05 to 1e-03, 3 steps. For EP tests, 1e-06
to 1e-04, 5 steps.
Hyperparameter configurations for best-
performing models: Provided as config files.
The method of choosing hyperparameter values
(e.g., uniform sampling, manual tuning, etc.)
and the criterion used to select among them
(e.g., accuracy): Uniform sampling, F1 for QA
models in dev data, Micro-F1 for EP tests in test
data.

A.4 Results

Detailed results for the experiments in §4 are
provided below in Tables 6, 7, 8, and 9.

B Appendix B: RQ2

B.1 Sentence Embedding Model for Answer
Sentence Selection

MS MARCO (Nguyen et al., 2016) is a large
dataset of question/ answer pairs. The dataset was
built by first sampling queries from Bing search log
and then using Bing to retrieve relevant documents
and automatically extract relevant passages from
those documents. Annotators were asked to mark
relevant spans from the documents as answers.

We us a sentence embedding model (Reimers
and Gurevych, 2019) built on the MS MARCO

model acc micro_f1 macro_f1 weighted
_f1

BERT-
base

81.18 ±
1.68

81.18 ±
1.68

59.33 ±
7.99

76.2 ±
3.89

fine-tuned on original data
Quoref 83.11 ±

0.7
83.11 ±
0.7

67.97 ±
2.05

80.45 ±
1.09

SQuAD 81.19 ±
1.49

81.19 ±
1.49

60.27 ±
8.48

76.58 ±
4.01

ReCoRD 80.88 ±
1.76

80.88 ±
1.76

58.08 ±
9.79

75.57 ±
4.66

MultiRC 82.37 ±
1.71

82.37 ±
1.71

65.12 ±
8.7

78.99 ±
4.19

Hotpot 80.19 ±
1.84

80.19 ±
1.84

55.38 ±
8.86

74.21 ±
4.31

finetuned on randomized data
SQuAD 78.86 ±

0.38
78.86 ±
0.38

48.77 ±
3.29

71.01 ±
1.5

Hotpot 79.45 ±
0.23

79.45 ±
0.23

52.1 ±
2.31

72.61 ±
1.03

Table 7: Results for CoREF EP test

model acc micro_f1 macro_f1 weighted
_f1

BERT-
base

96.11 ±
0.15

96.11 ±
0.15

87.88 ±
0.8

96.06 ±
0.15

fine-tuned on original data
SQuAD 95.27 ±

0.04
95.27 ±
0.04

87.08 ±
0.45

95.2 ±
0.05

ReCoRD 95.77 ±
0.08

95.77 ±
0.08

86.91 ±
0.39

95.71 ±
0.09

MultiRC 95.77 ±
0.19

95.77 ±
0.19

86.51 ±
1.29

95.71 ±
0.19

Hotpot 94.31 ±
0.09

94.31 ±
0.09

83.45 ±
0.7

94.21 ±
0.1

fine-tuned on randomized data
SQuAD 91.74 ±

0.35
91.74 ±
0.35

78.52 ±
1.15

91.54 ±
0.37

Hotpot 91.99 ±
0.13

91.99 ±
0.13

79.59 ±
0.65

91.8 ±
0.14

Table 8: Results for PoS EP test

model acc micro_f1 macro_f1 weighted
_f1

BERT-
base

93.0 ±
0.28

93.0 ±
0.28

78.12 ±
1.1

92.29 ±
0.37

fine-tuning on original data
SQuAD 92.44 ±

0.09
92.44 ±
0.09

78.19 ±
0.47

91.86 ±
0.12

ReCoRD 93.35 ±
0.24

93.35 ±
0.24

79.88 ±
0.8

92.79 ±
0.31

MultiRC 93.5 ±
0.4

93.5 ±
0.4

80.51 ±
1.54

93.0 ±
0.52

Hotpot 90.9 ±
0.16

90.9 ±
0.16

73.81 ±
0.62

89.94 ±
0.21

fine-tuning on randomized data
SQuAD 86.77 ±

1.02
86.77 ±
1.02

64.05 ±
3.64

85.25 ±
1.26

Hotpot 86.15 ±
0.32

86.15 ±
0.32

61.56 ±
1.42

84.48 ±
0.37

Table 9: Results for NER EP test
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dataset. The pre-trained model is available off-the-
shelf,7 therefore can be used directly to find the
most ‘similar’ sentence to the question. Among
many sentence embedding models available for se-
mantic search, we use this one because it is specifi-
cally trained on a question-passage retrieval dataset
using a bi-encoder model. During training, the
questions and the relevant/non-relevant passages
are passed through a contextual encoder and their
pooled representations are compared. The model
is trained with the following objective: the (query,
positive_passage) pair is supposed to be close in
the vector space, while (query, negative_passage)
should be distant.

B.2 Unsupervised Entity Type Selection

In unsupervised entity type selection method, we
use a map to determine the entity type of the answer
for a question. The map is given below:

{
‘how far’: [QUANTITY],
‘how long’: [DATE],
‘how many’: [CARDINAL],
‘how old’: [QUANTITY],
‘what’: [PRODUCT, WORK_OF_ART],
‘when’: [DATE, TIME],
‘where’: [FAC, LOC, ORG, GPE],
‘who’: [PERSON],
‘whom’: [PERSON],
‘whose’: [PERSON, ORG, NORP]
}

The entity types are defined in Pradhan et al.
(2013). If the question has the phrase ‘how far’, the
returned entity type is QUANTITY. The map is an
OrderedDict, i.e., if the question is ‘how old is
the person who wrote Harry Potter’, the returned
entity type is QUANTITY. When there are multiple
possibilities (‘where’), one is returned randomly.

B.3 Supervised Entity Type Selection

B.3.1 Dataset

The dataset is created using the training set of
Quoref which is divided into train/dev/test split
for entity type detector model training and evalua-
tion. A sample data point is shown in Figure 3.

The data distribution is shown in Figure 4. As
can be seen, it is very skewed.

7https://www.sbert.net/docs/pretrained-models/msmarco-
v5.html

Text: What is the full name of the person who is the
television reporter that brings in a priest versed in
Catholic exorcism rites?
Label: PER

Figure 3: A sample instance for answer entity type
classifier.

acc macro_f1
BERTbase-cased 63.55 ± 0.00 19.65 ± 0.04
WordConv 58.81 ± 0.01 13.31 ± 0.02

Table 10: Results for supervised entity type selection

B.3.2 Models
We use two types of models: 1) a fine-tuned 12
layer 768 dimensional BERTbase-cased model; and
2) a popular word convolutional model for sentence
classification (Kim, 2014) using three parallel fil-
ters (size 3, 4, and 5) and 300 dimensional Google
News Word2Vec representations (Mikolov et al.,
2013).

BERT model: This model is trained for 5
epochs, with Adam optimizer (Kingma and Ba,
2015) with a weight decay of 1.0e-08 and a
learning rate of 1.0e-05. The sequence max
length is kept at 128. We search for two hyper-
parameters: 1) number of epochs: 3-7, increasing
by 1; and 2) learning rate: 1.0e-05, 5.0e-05,
1.0e-04. Accuracy is used as the early stopping
metric.

WordConv model: This model is trained for
40 epochs, with Adadelta optimizer (Zeiler, 2012)
with a learning rate of 1.0e-05. The sequence
max length is again kept at 128. Accuracy is used
as the early stopping metric.

B.4 Results
The results are provided in Table 10.



1635

PE
RSO

N

UNKN
OWN_EN

TIT
Y

FA
C

WORK_O
F_A

RT
ORG

GPE LA
W

DATE

CARDINAL

PR
ODUCT

MONEY LO
C

ORDINAL
NORP

TIM
E

EV
EN

T

PE
RCEN

T

QUANTIT
Y

labels

0

1000

2000

3000

4000

5000

6000 train
dev
test

Figure 4: Label distribution for supervised entity type.


