
Proceedings of the 29th International Conference on Computational Linguistics, pages 1580–1592
October 12–17, 2022.

1580

Repo4QA: Answering Coding Questions via Dense Retrieval on GitHub
Repositories

Minyu Chen1, Guoqiang Li1∗, Chen Ma2, Jingyang Li1, Hongfei Fu1

1Shanghai Jiao Tong University, Shanghai, China
2City University of Hong Kong, Hong Kong S.A.R.
{minkow,li.g,lijjjjj}@sjtu.edu.cn

chenma@cityu.edu.hk, fuhf@cs.sjtu.edu.cn

Abstract

Open-source platforms such as GitHub and
Stack Overflow both play significant roles in
current software ecosystems. It is crucial but
time-consuming for developers to raise pro-
gramming questions in coding forums such
as Stack Overflow and be navigated to actual
solutions on GitHub repositories. In this pa-
per, we dedicate to accelerating this activity.
We find that traditional information retrieval-
based methods fail to handle the long and
complex questions in coding forums, and thus
cannot find suitable coding repositories. To
effectively and efficiently bridge the seman-
tic gap between repositories and real-world
coding questions, we introduce a specialized
dataset named Repo4QA, which includes over
12,000 question-repository pairs constructed
from Stack Overflow and GitHub. Further-
more, we propose QuRep, a CodeBERT-based
model that jointly learns the representation of
both questions and repositories. Experimental
results demonstrate that our model simultane-
ously captures the semantic features in both
questions and repositories through supervised
contrastive loss and hard negative sampling.
We report that our approach outperforms exist-
ing state-of-art methods by 3%-8% on MRR
and 5%-8% on P@1. 1

1 Introduction

With the increasing popularity of software develop-
ment, Stack Overflow and GitHub (two large-scale
communities widely recognized in open source
ecosystems) have attracted growing research in-
terests. As the idiom goes, “Don’t reinvent the
wheel”. Tackling programming problems with ex-
isting codes and documents is more effective and
economical, since various resources in repositories
can provide more helpful information than text-
formed answers. Specifically, developers can get

∗Corresponding author.
1Our dataset and code are available at https://

github.com/Minkow/Repo4QA

help and advice to solve the technical challenges
they face, and be provided a variety of solutions
and tools in repositories on GitHub. As a vast num-
ber of challenges have already been considered and
settled by the community, sophisticated schemes
posted on GitHub can help satisfy requirements or
solve problems discussed in Stack Overflow. Nat-
urally, many answers in Stack Overflow provide
links to GitHub repositories, and a large amount of
these answers are acknowledged to be high-quality
and helpful by the community. This phenomenon
is worth investigating to determine its contribution
to the efficiency improvement and the code reuse
of the open source ecosystem.

Motivated by the interplay between Stack Over-
flow and GitHub, we introduce a novel question-
repository matching task. Given a natural-
language-formed question in the programming do-
main, we aim to search for the most relevant
GitHub repository from all candidate repositories
as the answer. Figure 1 illustrates the interaction
between a question and a repository, where the key
information for problem-solving is framed.

To this end, we introduce Repo4QA, a dataset
consisting of 12,995 question-repository pairs2 for
complex coding question solving. The questions
are collected from Stack Overflow, and the reposi-
tories are crawled from GitHub through the hyper-
links provided in corresponding Stack Overflow an-
swers. Each repository is instrumental for trouble-
shooting confirmed by forum users with upvotes.
Such that proper repositories can be used as an-
swers to coding questions.

Different from previous information retrieval
(IR) tasks, the challenge of the proposed task lies
in the long-form questions. Typical IR methods
and tricks, such as query expansion, are designed
for short and keyword-based user inputs, while our
task focuses on questions written in natural lan-

2We also call them query-document pairs from the perspec-
tive of IR.

 https://github.com/Minkow/Repo4QA
 https://github.com/Minkow/Repo4QA

1581

Figure 1: An example of interaction between question
at Stack Overflow and repository at GitHub.

guages containing semantic information, which is
harder to resolve.

Different from code searching task (Husain et al.,
2019; Cambronero et al., 2019), our task is sup-
posed to find a reasonable semantic alignment be-
tween two long-form sentences. Questions and
repositories have more complex structures and
richer information than short-form web queries
and code snippets. Compared with community-
based QA task (Qiu and Huang, 2015a; Zhao et al.,
2017), our task is a cross-platform task resulting
in semantic gaps between questions and answers,
which is more challenging for traditional IR-based
methods such as BM-25 (Robertson et al., 1995).
Besides, unlike common questions, questions about
programming are more challenging and specialized.
The terminology of programming is widely used
to form questions; there are even some questions
described with codes. Moreover, complex models
considering more interactions between QA pairs
are more computationally expensive in our task. Fi-
nally, the interactions inside queries or documents
corpus should not be neglected. The relationship
of the elements in the same semantic category is
informative while discriminating positive samples

from negatives.
To address the aforementioned issues, we pro-

pose a novel jointly learning scheme, QuRep, for
Question and Repository pairs. QuRep employs
CodeBERT (Feng et al., 2020) as the initial weight
of its transformer-based encoder. Our work lever-
ages the supervised contrastive loss for better sep-
arating elements from each other in the represen-
tation space. An unsupervised hard negative sam-
pling strategy enables better discrimination per-
formance. The shared weights between encoders
reduce the computation cost, while the relevance
between questions and answers can be ranked by
the similarity score of embedding vectors. With
experimental evaluation and comprehensive analy-
ses, we show that our method strongly outperforms
baselines.

To summarize, the main contributions of this
paper are concluded into three points respectively.

• Dataset : A novel cross-platform Question-
Answering task is presented, aiming at answer-
ing real-world programming questions with
existing GitHub repositories. We especially
collect a dataset, Repo4QA, for this task.

• Methodology: A practical joint embedding
model, QuRep, is proposed to optimize the
classification and contrastive loss, which can
represent both questions in language and
repositories.

• Experiment : Experimental results demon-
strate the effectiveness and efficiency of the
proposed QuRep model compared with base-
lines.

2 Related Work

Datasets. Existing datasets in the programming
domain focus on text-code interaction. Code-
SearchNet (Husain et al., 2019), Deep Code
Search (Gu et al., 2018) and CoDesc (Hasan et al.,
2021) collect large-scale corpus of code snippet
with corresponding descriptions. CoSQA (Huang
et al., 2021) collects pairs of web query and func-
tion code for code question answering. Stack Over-
flow resources are mined (Yin et al., 2018) as long-
form natural language queries to retrieval code snip-
pets (Nie et al., 2016; Yao et al., 2018; Heyman
and Van Cutsem, 2020). CodeXGLUE (Lu et al.,
2021) includes text-to-code generation task and
code memorization task. The only text-to-text task

1582

is documentation translation in CodeXGLUE. Be-
sides, LinkSO (Liu et al., 2018) discovered the
similarity between repositories.

Neural Matching Networks. Ranking methods
are widely used in text matching and semantic
search tasks, such as community-based question
answering (Qiu and Huang, 2015b; Zhang et al.,
2021b), retrieval-based question answering (Qu
et al., 2020; Cohen et al., 2018), and visual question
answering (Lee et al., 2020). Specifically, in the
programming domain, traditional IR-based ranking
models regard code as text and match keywords in
queries (Bajracharya et al., 2006). Recently, deep
learning based methods represent coding questions
and answers with vectors and leverage similarities
to rank answers (Gu et al., 2018; Cambronero et al.,
2019; Wan et al., 2019).

Considering the computational cost for
matching, representation-based learning ap-
proaches (Huang et al., 2013) encode a query
paired with a document separately into a vector
and judge the relevancy by the similarity of vectors.
Towards a better representation of repositories,
paper2repo (Shao et al., 2020) maps the embed-
dings of academic papers and repositories into
the same space for ranking and recommendation.
Very recently, pre-trained models, including
CodeBERT (Feng et al., 2020) that trained from
data in the programming domain, have been
applied to improve representation learning.

LM Based Retrieval and Ranking. Pretrained
language models (Kenton and Toutanova, 2019;
Liu et al., 2019b) dramatically advance the state
of the art on various NLP tasks. However, lim-
itations on text length and the trade-off of effec-
tiveness and efficiency are important issues, as
the cross-attention operations are too expensive in
pair-wise cross-encoders. Recent work (Karpukhin
et al., 2020; Xiong et al., 2020; Khattab and Za-
haria, 2020; Nie et al., 2020; Gao et al., 2021a) try
to reduce the computational interaction between
query and document and move it to the online re-
rank procedure. By storing the representation of
documents offline, these methods facilitate cheap
runtime costs while achieving promising results on
retrieval tasks.

Moreover, contrastive learning on pre-training
models has recently been broadly applied to sev-
eral sentence-level tasks. SBERT (Reimers and
Gurevych, 2019) uses siamese and triplet network

Dataset Type Samples Avg. length

Large
Question 12,995 7.97 + 104.50

Repository 9,954 9.79 + 572.58

Small
Question 3,766 8.02 + 105.73

Repository 2,862 9.77 + 688.03

Table 1: The statistics of Repo4QA dataset. Avg.
length means title length + body length for question,
and description length + Readme length for repository.
Readme file has the maximum character length of 8192.

to derive embedding of two sentences, then fine-
tune the model to yield useful sentence embed-
dings. Some work aims to improve BERT sentence
embeddings in an unsupervised way (Gao et al.,
2021b; Kim et al., 2021) by data augmentation.

3 Dataset Description

3.1 Repo4QA Dataset

Questions. We collect complex programming
questions from the well-known coding forum Stack
Overflow. Stack Overflow provides data dump 3

from 2014 to 2021. To avoid ambiguous answers
such as “We can deploy A after B to tackle this”,
answers less than 200 characters that contain only
a hyperlink to a GitHub repository are selected.

Responders are required not only to get through
the requirements raised by questioners, but also to
be familiar with repositories stored on GitHub. The
goal of our research is to fill in the gap between the
questioner and various open source tools.

To filter out answers without specific repository-
for-solution and repository-structured intent such
as bug-reporting discussion, we discard answers
linking to particular resources in repositories
such as issues, commits, and releases (e.g., the
question is “Assets serving paths in Rails 3.1
- how to customize it?” and the answer is
“GitHub.com/chriseppstein/compass/issues/337 -
there is a big discussion about it”). We control
the quality and correctness of answers by only min-
ing posts with at least one upvote. After removing
answers with inaccessible GitHub repository links,
these answers and corresponding questions com-
pose 12,995 QA pairs with 12,713 unique ques-
tions. Codes are marked with [code] token to help
our model learn the combination of natural lan-
guage and code in questions.

3https://archive.org/details/stackexchange

1583

Repositories. We crawl repositories through the
GitHub API with given hyperlinks in answers. For
our task, we collect basic information such as the
name, description, topics (also called tags), and
stars of a repository. The description is short tex-
tual documentation to describe a repository briefly.
Topics are keywords to classify a repository. For
instance, the tag “python” indicates the program-
ming language that the repository uses, and the tag
“deep-learning” shows that the repository is used in
the deep learning domain. In addition, the Readme
file is also obtained for detailed documentation.
Most repositories introduce the main contribution
and usage in the head of the Readme file. We in-
vestigate 50 repositories randomly and find that
the most informative part of a Readme file is the
starting 2 or 3 paragraphs, which is far less than
512 tokens. Hence, we cut the first 8192 characters
of a Readme file after text cleaning to represent
the repository in natural language. Likewise, 9,663
unique repositories are investigated in this step, in
which 2,862 repositories have at least one topic.

Construction. Questions and repositories are
aligned according to QA pairs mined in questions
to constitute a QA pair sample. For each pair, the
original answer is replaced by the repository men-
tioned. All samples in the small dataset have at
least one topic, while most repositories in the large
dataset lack topics. The statistics of both datasets
are listed in Table 1.

Comparison. To the best of our knowledge, this
is the first dataset applied to solving complex re-
alistic programming problems with existing web
resources. In this part, we conduct a comparison
between Repo4QA and datasets from two aspects:
1) Code intelligence and 2) Community-based QA.
Datasets in the programming domain (Yao et al.,
2018; Nie et al., 2016; Yin et al., 2018; Heyman
and Van Cutsem, 2020) tend to adopt only the title
of the question in Stack Overflow or a short de-
scription as the query. However, for some complex
questions raised in Stack Overflow, the title is too
short to fully reveal the logic or semantics of those
complex questions. On the other hand, the details
of those questions are often clearly illustrated in the
question body, and the neglect of the question body
will lead to an incomplete understanding of the
question. We also find that in Community-based
QA datasets (Lyu et al., 2019; Zhang et al., 2021b),
their QA pairs are on the same webpage, while our

Repo4QA aims to bridge the semantic gap between
natural languages and GitHub repositories, which
is challenging to represent due to its length (av-
eragely over 500 words) and heterogeneous text
structures. In comparison, the average length of
question/answer on the CoSQA dataset (Huang
et al., 2021) is 6.60/71.51, and 7.86/81.6 on the
CQA-SO (Lyu et al., 2019) dataset. A detailed
comparison can be found in appendix A.

4 Methodology

4.1 Task Description

Before diving into the details of our model, we
first describe some notations used in the answer
selection problem. Each question consists of a ti-
tle, content, and tags, while each repository served
as an answer candidate has descriptions and doc-
umentation. Note that tags may not be contained
in some repositories. Given a question in a natural
language question set q ∈ Q, and a set of reposito-
ries R = {r1, r2, · · · , rn} from GitHub, our main
task is to find the most helpful repository r ∈ R to
solve the question q.

Due to the limitation of computation resources
in real-world applications, joint embedding is an
effective and efficient way to find repositories re-
lated to the raised question. Ideally, we train a
model that jointly learns the embedding of Q and R
with a transformer-based encoder network. Specifi-
cally, given any question and its dense representa-
tion qi and repositories’ embedding r+i , r−i , where
r+i is one of the answer to qi, and r−i is not re-
lated to qi. We expect the model to distinguish r+i
from others via similarity metrics, that is, to make
s(qi, r

+
i) and s(qi, r

−
i) satisfying the inequality:

s(qi, r
+
i) > s(q, r−i), where s denotes a similar-

ity function, e.g., cosine similarity or Euclidean
distance-based similarity. Then we rank all the
answers for a given question according to the simi-
larity between them.

4.2 Model Architecture

We present our QuRep in Figure 2. Different from
the natural language in common domains, the lan-
guage used in the programming domain contains
various out-of-vocabulary words, e.g., “flask” is
a tool used for web in Python programming. To
solve this problem, we leverage CodeBERT as our
text encoder. CodeBERT is a bi-modal pre-trained
RoBERTa-based (Liu et al., 2019b) model for nat-
ural language (NL) and programming language

1584

Projection Layers

CodeBERT

Desc Doc Topics

Cross-Batch Memory

CodeBERT

Repo

Body Tags

Question

Title

Shared

Contrastive LossContrastive Loss

q+

q−

r+

r−
Hard

Negatives

Discrimination LossCE Loss

Figure 2: The QuRep applies a weight-sharing Code-
BERT for encoding questions and repositories. Similar-
ity is computed between model outputs and embeddings
stored in Cross-Batch Memory for model training.

(PL) tasks. It is a bidirectional Transformer with
12 layers, 768 dimensional hidden states and 12
attention heads pre-trained on the large-scale Code-
SearchNet (Husain et al., 2019) corpus. CodeBERT
achieves the state-of-the-art in most NL-PL, tasks
such as the natural language code search and code
documentation generation. By expanding the vo-
cabulary of RoBERTa, CodeBERT can properly
represent programming terms that occur in the train-
ing corpus, especially for word-combining termi-
nologies commonly used in programming. For ex-
ample, “pyflask” is an OOV word in most models’
vocabulary, but the WordPiece encoding will split
“pyflask” into “py” and “flask”.

For each question with title, body, and tags, we
put a [CLS] token at the beginning of these three
parts and separate them by [SEP] after tokeniza-
tion. Then we feed the tokenized sequences into
CodeBERT to acquire pooled contextualized rep-
resentations of them, respectively. A [Q] is placed
in the start to identify the question. In practice, we
adopt the mean pooling value of contextual repre-
sentations as the output of CodeBERT. Similarly,
for each repository, we conduct the same manner as
its description, Readme documentation, and topics.
The weights are shared between the model for both
question encoding and answer encoding.

As few Readme files exceed the token length
limit of 512 in CodeBERT, we only take the first

509 tokens (3 tokens are left for [Q]/[A], [CLS]
and [SEP]) of the Readme file as the documen-
tation. In practice, the head content of Readme
file is descriptive and summative enough, which is
more informative than the usage description and
changelogs in the later part of Readme file.

4.3 Loss Functions
Our approach considers three kinds of losses,
namely discrimination loss, supervised contrastive
loss, and classification loss. These loss functions
are designed for specific tasks to better represent
questions and repositories.

Discrimination Loss. Given a randomly sampled
minibatch of positive pairs D = (qi, ri)

N , the goal
of Discrimination loss is to separate the answer ri
apart from all other 2N−2 repositories in the same
batchD. It matches the target to satisfy the inequal-
ity : s(q+, r+) > s(q+, r−). where s(·) represents
the similarity. We choose cosine similarity as the
metric. Following previous work (Karpukhin et al.,
2020), the discrimination loss is defined as the neg-
ative log likelihood of positive pairs of instances:

LD = −log es(qi,ri)/τ

es(qi,ri)/τ +D
, (1)

where τ refers to the temperature parameter, D =∑
j ̸=i e

s(qj ,rj)/τ denotes the normalization part.

Supervised Contrastive Loss. The discrimina-
tion loss discussed above focuses on modeling the
distance between questions and answers. How-
ever, compared with other QA or NLI tasks (Ren
et al., 2021; Zhang et al., 2021a), our questions
are more complex and long-formed, which means
different questions implicate diverse semantic in-
formation. We insist that a good dense representa-
tion model should not only control the distance of
questions and answers, but can also represent the
semantic difference between questions and reposi-
tories. Hence, we further leverage the supervised
contrastive loss, to enforce the model learn to dis-
tinguish similar questions and answers, that is,
sim(q+, r+) > sim(q+, q−), and sim(q+, r+) >
sim(r+, r−). We also employ the negative log like-
lihood to achieve the supervised contrastive loss at
the instance level:

LCq = −log
es(qi,ri)/τ

es(qi,ri)/τ + Cq
,

LCr = −log
es(qi,ri)/τ

es(qi,ri)/τ + Cr
,

(2)

1585

where Cq =
∑

j ̸=i e
s(qi,qj)/τ , and Cr =∑

j ̸=i e
s(ri,rj)/τ . They refer to the similarity of

questions and repositories themselves, respectively.
We can observe that the difference between

LCq, LCr, and LD is the normalization part. In-
stead of simply summing them up, we can uni-
formly conclude these different types of loss func-
tions into one negative log likelihood as the follow-
ing Discrimination-Contrastive loss:

LDC = −log es(qi,ri)/τ

es(qi,ri)/τ +D + α · Cq + β · Cr
,

(3)
where the weight hyper-parameter α and β control
the importance of distinguishing similar questions
and repositories. The combined Discrimination-
Contrastive loss consists of four interactions:

(1) q+ →← r+ : The main element that gathers
paired question and repository together.

(2) q+ ←→ q− : The factor that separates the
embedding of questions.

(3) r+ ←→ r− : The component that makes
repositories to be distant from each other.

(4) q+ ←→ r− : An important role that cause un-
matched question-repository pairs segregated.

Hard Negative for Classification Loss. Previ-
ous studies (Luan et al., 2021; Karpukhin et al.,
2020; Xiong et al., 2020) provide effective meth-
ods of hard negative sampling, and further demon-
strate the importance of hard negatives. Ideally, we
aim to pay more attention to these hard negatives,
which are not semantically similar but are mapped
close to the anchor in the vector space.

We employ BM25 as the base sentence match-
ing algorithm. For each question in the training
set, we query it in the repository corpus, and then
select the top 10 results as the hard negatives ex-
cept the correct answer. Then we construct triplets
(q+, r+, r−) as training instances, where the nega-
tive r− is randomly sampled from these hard neg-
atives at a ratio of p to avoid the model collapse.
We minimize the cross entropy loss of enhanced
representations of q and r as follows:

LCE = CrossEntropy (f(q, r, |q − r|), y) ,
(4)

where f denotes a feed-forward classification net-
work, and y represents the classification label.

Overall Loss. The overall loss is the weighted
sum of the DC loss and the CE loss, which is:

L = LDC + γLCE , (5)

where γ is a hyper-parameter to balance the loss.

4.4 Cross-Batch Memory Augmentation
Cross-batch memory (XBM) (Wang et al., 2020)
can considerably boost the performance of con-
trastive learning tasks. The XBM module stores
embeddings and labels for data points. It is main-
tained as a first-input-first-output (FIFO) queue.
Enqueue and dequeue procedures are conducted
when a mini-batch arrives. As mentioned above,
for an anchor question qi, we pair it with rest M−1
repositories {rj |j ̸= i} in the M -size mini-batch
as negative pairs. In practice, those heavyweight
BERT-based model has acute GPU memory cost
issues. The size of mini-batch is often limited in
NLP tasks using BERT-based models. By pairing
anchors with samples stored in XBM, the infor-
mation provided by negative pairs is significantly
enriched.

5 Experiments

5.1 Experimental Setup
Dataset. We conduct experiments on the
Repo4QA-small dataset, by randomly splitting
Repo4QA-small dataset into 2,966/400/400
for training/testing/validation. For repositories
retrieval, we evaluate the performance from
3 different corpora: the test split, the whole
Repo4QA-small repositories, and the whole
Repo4QA-large repositories, which is a more
realistic setting since the repositories do not occur
during the training period. We always only raise
all 400 questions in the testing set. However, we
retrieve answers from our dataset with different
scales. As for the test split, we search for the
best answer in the 400 repositories. For the
Repo4QA-small split, the range of ranking is the
400 repositories in the testset and the rest 3,366
repositories in the Repo4QA-small set. Note
that though some repositories have occurred in
the training step, we never learn the relationship
between questions and these repositories. For the
Repo4QA-large split, we seek suitable repositories
among the union of the 400 repositories in the
testset and all the repositories in the Repo4QA-
large set. If given more repositories, such as whole
GitHub repositories, a practical solution is to filter

1586

Models
Test Small Large

MRR P@1 P@5 MRR P@1 P@5 MRR P@1 P@5

BERT-base 7.98 4.25 9.50 3.08 1.50 3.75 1.23 0.50 1.75
CodeBERT-base 2.22 0.25 2.25 0.34 0 0.25 0.05 0 0
Glove 19.82 13.00 26.00 10.33 7.00 14.50 5.74 3.75 6.50
BM25 43.22 35.25 51.75 28.23 22.00 35.50 22.13 17.50 27.00
Universal Sentence Encoder 62.72 49.75 78.25 41.24 31.25 51.75 27.09 20.00 33.00
S-BERT 80.23 72.00 91.00 59.22 47.00 73.50 43.89 34.50 55.75
Siamese-CodeBERT 79.37 70.75 88.50 56.62 44.50 68.25 41.67 32.25 53.00
Triplet-CodeBERT 82.96 76.00 89.75 61.86 50.25 76.50 46.24 36.75 57.25
QuRep-BERT-base 77.23 70.25 87.00 59.61 48.50 73.00 44.93 32.75 60.75
QuRep (ours) 86.26 81.00 93.00 69.04 58.50 82.25 54.26 41.75 70.00

Table 2: Experimental results on the Repo4QA-small test set. The best figure of MRR and P@1 metric is in bold.
Our QuRep model outperforms both unsupervised and supervised baselines.

several repositories with traditional IR approaches
such as BM-25, then re-rank these repositories via
our model.

Metrics. We adopt two common metrics widely
used in answer ranking to measure the effective-
ness of our proposed model, namely, Mean Recip-
rocal Rank (MRR) and Precision@K, which means
the rate that correct answer appears in the top-K
ranked candidates. In practice, we evaluate the
performance of K = 1 and K = 5.

Baselines. As Repo4QA is a new challenge, no
model is specifically designed for it. Existing
methods such as ColBert (Khattab and Zaharia,
2020) focus on passage ranking tasks such as MS
MARCO (Nguyen et al., 2016), with short queries
and related passages. While query expansion meth-
ods (Nogueira et al., 2019b,a) are not so helpful
because of the complexity of our questions. Pair-
wise cross-encoders are more suitable for the re-
rank task after we retrieve the dense representa-
tion for the consideration of the effective-efficient
trade-off. For a fair comparison, diversified meth-
ods for similar tasks, such as sentence embedding
and metric learning, are introduced as baselines.
We use the exact same processed data for our
model as the input of these baselines. To be spe-
cific, BM25(okapi) (Robertson et al., 1995) and
GloVe (Pennington et al., 2014) is widely used in
IR tasks, while Universal Sentence Encoder (Cer
et al., 2018), BERT (Kenton and Toutanova, 2019),
CodeBERT (Feng et al., 2020), S-BERT (Reimers
and Gurevych, 2019) are transformer-based models
with different pre-training and fine-tuning strate-

gies. To compare with our designed loss functions,
we train the CodeBERT model with vanilla siamese
loss and triplet loss. Appendix B provides imple-
mentation details of baselines.

Implementation Details. We implement our
model based on the Hugging Face transform-
ers library. The initial weight is adopt from
microsoft/codebert-base4. We use
RAdam (Liu et al., 2019a) as the optimizer, with
a cosine annealing learning rate from 1e-5 to 1e-7.
The temperature τ in the loss function is 0.01. Fac-
tors of weights are set as α = β = 1.5 and γ = 0.4.
The negative sampling ratio is 0.2. For cross-batch
memory, we set the size of the memory bank to 64,
and this mechanism starts working from epoch 6.

5.2 Model Comparisons

The performance of different approaches on the
Repo4QA task is in Table 2. From these experi-
mental results, we have the following observations:

First, our proposed model outperforms all com-
petitive baselines on MRR, P@1, and P@5 metrics.
Especially, for the retrieval task on Repo4QA-large
dataset, traditional IR-based and word embedding
approaches cannot differentiate target from similar
repositories, while contrastive-learning methods
strongly outperform others. This result demon-
strates the difficulty of understanding long-form
questions compared with short queries, and the
necessity of precise retrieval on large corpora via
semantic search instead of lexical matching.

Second, poor performance is shown by BERT

4https://github.com/microsoft/CodeBERT

https://github.com/microsoft/CodeBERT

1587

Loss MRR P@1 P@5

Ours 86.26 81.00 93.00
Vanilla triplet loss 82.96 76.00 89.75
Hinge loss 83.72 77.25 91.75
Circle loss 82.44 75.00 91.25
InfoNCE 84.44 78.25 92.25

Table 3: Results with different comparable loss function.

and CodeBERT if directly employing mean pooling
output to similarity computation. The results are
even worse than using average GloVe embeddings.
Universal Sentence Encoder shows effectiveness
among unsupervised learning methods, and SBERT
achieves great performance since they are trained
on large QA corpora.

Third, nearly all supervised methods achieve
higher performance than unsupervised models,
though no early interaction, such as cross-attention
between questions and repositories, is considered.
This phenomenon demonstrates the sound effect of
contrastive learning.

Fourth, although some repositories in the
Repo4QA-small dataset have been modeled in the
training period, the performance still drops a lot
compared with the result in the Repo4QA-test. The
root cause is the diversity of questions. As the ques-
tions are always from the testset, they keep unseen
for the model in the inference step. There is also no
issue of data leakage in our Repo4QA-small dataset
because the training data consists of QA pairs, but
the questions in testset never pair with answers in
the Repo4QA-small dataset. When questions have
a longer form instead of simple keywords query,
the semantic information contained is richer and
more diversified, which increases the difficulty of
encoding.

5.3 Loss Comparisons

We agree that an empirical study for comparable
loss functions contributes to the soundness of our
method. As reported in Table 3, experimental re-
sults demonstrate the hybrid loss we design signif-
icantly improves the performance compared with
the classical loss functions of contrastive study(Sun
et al., 2020; Gao et al., 2021b).

The strongest baseline, InfoNCE, has a similar
form to our Discrimination-Contrastive loss. The
difference is that we distinguish the effect from
questions and repositories as stated in Sect. 4.3.

Models MRR P@1 P@5

QuRep 86.26 81.00 93.00
w/o XBM -3.28 -4.00 -2.50
w/o CodeBERT -9.03 -10.75 -6.00
w/o Constrative Loss -21.24 -26.75 -13.25
w/o CE Loss -0.83 -1.50 -1.00
w/o Hard Negatives -1.43 -2.75 -1.25

Table 4: Results of ablation study conducted on Test
split about model structure.

5.4 Ablations Study

As the experimental results show the same trend
in all three splits, in this part, we only conduct
experiments in the test split. We consider the model
components and loss function components as two
main aspects of our ablation studies.

Effects of model components. Removing or re-
placing components of QuRep decreases the per-
formance, as Table 4 shows. To be more specific,
we replace CodeBERT with BERT-base, just as the
result of QuRep-BERT-base shows. The perfor-
mance drop proves the effectiveness of pre-training
in the programming domain. Cross-batch memory
is proved to be a necessary mechanism for con-
structing more QA pairs to be trained.

Effects of loss components. We also investigate
the ablation of constituents in our proposed hybrid
loss function. Each part of our loss contributes to
the improvement of performance. As illustrated in
Table 4, contrastive loss is the backbone of our
learning target, and the hard negative sampling
strategy also plays an important role.

5.5 Case Study

To better understand the difficulty of the task and
the effectiveness of our solution, we present a case
study in this part. As a typical method in the IR
field, BM25 is selected as the baseline method
to compare. All these cases can be viewed on
StackOverflow. We only display key parts of ques-
tions/repositories considering the full length.

The first and second cases in Table 5 are ex-
amples that QuRep outperforms BM25. Question
1 means to find a dictionary implementation in
JavaScript. BM25 returns results containing the
keyword “dictionary,” as the repository “stig/json-
framework” (now redirected to SBJson/SBJson)
mentions NSMutableDictionary type in Objective-

1588

Question Title
BM25
Rank

QuRep
Rank

BM25 Top1 QuRep Top1

Is there a dictionary
implementation in JavaScript

13 1
stig/json-framework

This framework implements a strict
parser and generator in Objective-C

jieter/django-tables2
A complete, fully tested and documented

data structure library written in pure JavaScript.

What is the simplest way
to graph rrd files in Grafana

30 1
bookkojot/mp4fixer

Recover damaged/unfinished
mp4 files with h264 video

doublemarket/grafana-rrd-server
A simple HTTP server that reads RRD files

and responds to requests from Grafana.

Validate URL with
standard package in GO

32 1
GitHub/fetch

Promise-based mechanism for programmatically
making web requests in the browser

asaskevich/govalidator
Go Package of validators and sanitizers
for strings, numerics, slices and structs.

Angular: How to force run
unit tests when running Git push

245 6
mozilla-mobile/fenix

all-new Firefox for Android browser, based
on GeckoView and Mozilla Android Components.

lerna/lerna
A tool for managing JavaScript
projects with multiple packages

Table 5: Case study on BM25 and QuRep.

C, which is not so close to the question. In com-
parison, our proposed model recommends the col-
lection of data structures written in JavaScript.
Though the word “dictionary” is not discussed in
the repository so frequently, “dictionary” is con-
tained by the concept “data structures.” This is
what language models bring us. Case 2 and 3 also
show that BM25 tend to return similar repositories
at the word level, which results in repositories from
different disciplines or programming languages.
While QuRep can identify the purpose of questions
and recommend better answers.

Case 4 is a bad case in which both models fail.
The best answer posted on StackOverflow is “typi-
code/husk.” QuRep ranks “lerna/lerna” as the best
because it discusses both Angular and Git. How-
ever, the phrase “unit test” is ignored.

From the case study section, we can learn that
understanding the intent of a question is a key fac-
tor for our task, especially when the question con-
tains rich semantic information. The relations of
concepts are also an important issue to study.

6 Conclusion

In this paper, we introduce an automatically col-
lected novel dataset, Repo4QA, for the proposed
task. Furthermore, we propose QuRep, a con-
trastive learning method to fine-tune CodeBERT
for our task. Experimental results demonstrate that
our method outperforms baseline models in effec-
tiveness and efficiency. Detailed analyses are con-
ducted to investigate the impact on performance
brought by components of our model. We look
forward to other applications and more research
interest in our task. Moving forward, we plan to
deploy our dataset and method to solve program-

ming questions in software engineering practice
and consider code stored in repositories for better
modeling of multi-modal GitHub repositories.

Acknowledgements

This work is supported by the National Science
Foundation of China Grant No. 62161146001.

References
Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng

Dou, Paul Rigor, Pierre Baldi, and Cristina Lopes.
2006. Sourcerer: a search engine for open source
code supporting structure-based search. In Compan-
ion to the 21st ACM SIGPLAN symposium on Object-
oriented programming systems, languages, and ap-
plications, pages 681–682.

J. Cambronero, Hongyu Li, Seohyun Kim, Koushik
Sen, and S. Chandra. 2019. When deep learning met
code search. Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering.

Daniel Cer, Yinfei Yang, Sheng-yi Kong, Nan Hua,
Nicole Limtiaco, Rhomni St John, Noah Constant,
Mario Guajardo-Cespedes, Steve Yuan, Chris Tar,
et al. 2018. Universal sentence encoder for english.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 169–174.

Daniel Cohen, Liu Yang, and W. Croft. 2018. Wikipas-
sageqa: A benchmark collection for research on non-
factoid answer passage retrieval. The 41st Interna-
tional ACM SIGIR Conference on Research & Devel-
opment in Information Retrieval.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, et al. 2020. Codebert: A

1589

pre-trained model for programming and natural lan-
guages. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
Findings, pages 1536–1547.

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021a. Coil:
Revisit exact lexical match in information retrieval
with contextualized inverted list. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 3030–3042.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021b.
Simcse: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 6894–6910.

Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018.
Deep code search. 2018 IEEE/ACM 40th Interna-
tional Conference on Software Engineering (ICSE),
pages 933–944.

Masum Hasan, Tanveer Muttaqueen, Abdullah Al Ish-
tiaq, Kazi Sajeed Mehrab, Md. Mahim Anjum Haque,
Tahmid Hasan, Wasi Ahmad, Anindya Iqbal, and
Rifat Shahriyar. 2021. CoDesc: A large code–
description parallel dataset. In Findings of the Asso-
ciation for Computational Linguistics: ACL-IJCNLP
2021, pages 210–218, Online. Association for Com-
putational Linguistics.

Geert Heyman and Tom Van Cutsem. 2020. Neural code
search revisited: Enhancing code snippet retrieval
through natural language intent. arXiv preprint
arXiv:2008.12193.

J. Huang, D. Tang, L. Shou, M. Gong, and N. Duan.
2021. Cosqa: 20,000+ web queries for code search
and question answering. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers).

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM
international conference on Information & Knowl-
edge Management, pages 2333–2338.

H. Husain, Hongqi Wu, Tiferet Gazit, Miltiadis Alla-
manis, and Marc Brockschmidt. 2019. Codesearch-
net challenge: Evaluating the state of semantic code
search. ArXiv, abs/1909.09436.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769–6781.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of NAACL-HLT, pages 4171–4186.

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR conference on research
and development in Information Retrieval, pages 39–
48.

Taeuk Kim, Kang Min Yoo, and Sang-goo Lee. 2021.
Self-guided contrastive learning for BERT sentence
representations. In Proceedings of the 59th Annual
Meeting of the Association for Computational Lin-
guistics and the 11th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 2528–2540, Online. Association for
Computational Linguistics.

Kyungjae Lee, Nan Duan, Lei Ji, Jason Li, and Seung-
won Hwang. 2020. Segment-then-rank: non-factoid
question answering on instructional videos. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pages 8147–8154.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu
Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei Han.
2019a. On the variance of the adaptive learning rate
and beyond. In International Conference on Learn-
ing Representations.

Xueqing Liu, Chi Wang, Yue Leng, and ChengXiang
Zhai. 2018. Linkso: a dataset for learning to retrieve
similar question answer pairs on software develop-
ment forums. In Proceedings of the 4th ACM SIG-
SOFT International Workshop on NLP for Software
Engineering, pages 2–5.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong
Zhou, Linjun Shou, Long Zhou, Michele Tufano,
Ming Gong, Ming Zhou, Nan Duan, Neel Sundare-
san, Shao Kun Deng, Shengyu Fu, and Shujie Liu.
2021. Codexglue: A machine learning benchmark
dataset for code understanding and generation. ArXiv,
abs/2102.04664.

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and
Michael Collins. 2021. Sparse, dense, and attentional
representations for text retrieval. Transactions of the
Association for Computational Linguistics, 9:329–
345.

Shanshan Lyu, Wentao Ouyang, Yongqing Wang,
Huawei Shen, and Xueqi Cheng. 2019. What we
vote for? answer selection from user expertise view

https://doi.org/10.18653/v1/2021.findings-acl.18
https://doi.org/10.18653/v1/2021.findings-acl.18
https://doi.org/10.18653/v1/2021.acl-long.197
https://doi.org/10.18653/v1/2021.acl-long.197

1590

in community question answering. In The World
Wide Web Conference, pages 1198–1209.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao,
Saurabh Tiwary, Rangan Majumder, and Li Deng.
2016. Ms marco: A human generated machine read-
ing comprehension dataset. In CoCo@ NIPS.

Liming Nie, He Jiang, Zhilei Ren, Zeyi Sun, and Xi-
aochen Li. 2016. Query expansion based on crowd
knowledge for code search. IEEE Transactions on
Services Computing, 9:771–783.

Ping Nie, Yuyu Zhang, Xiubo Geng, Arun Ramamurthy,
Le Song, and Daxin Jiang. 2020. Dc-bert: Decou-
pling question and document for efficient contextual
encoding. In Proceedings of the 43rd International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 1829–1832.

Rodrigo Nogueira, Jimmy Lin, and AI Epistemic. 2019a.
From doc2query to doctttttquery. Online preprint.

Rodrigo Nogueira, Wei Yang, Jimmy Lin, and
Kyunghyun Cho. 2019b. Document expansion by
query prediction. arXiv preprint arXiv:1904.08375.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532–1543.

Xipeng Qiu and Xuanjing Huang. 2015a. Convolutional
neural tensor network architecture for community-
based question answering. In Twenty-Fourth interna-
tional joint conference on artificial intelligence.

Xipeng Qiu and Xuanjing Huang. 2015b. Convolutional
neural tensor network architecture for community-
based question answering. In IJCAI.

Chen Qu, Liu Yang, Cen Chen, Minghui Qiu, W Bruce
Croft, and Mohit Iyyer. 2020. Open-retrieval con-
versational question answering. In Proceedings of
the 43rd International ACM SIGIR conference on
research and development in Information Retrieval,
pages 539–548.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 3982–3992.

Ruiyang Ren, Shangwen Lv, Yingqi Qu, Jing Liu,
Wayne Xin Zhao, Qiaoqiao She, Hua Wu, Haifeng
Wang, and Ji-Rong Wen. 2021. Pair: Leverag-
ing passage-centric similarity relation for improving
dense passage retrieval. In Findings of the Associ-
ation for Computational Linguistics: ACL-IJCNLP
2021, pages 2173–2183.

Stephen E Robertson, Steve Walker, Susan Jones,
Micheline M Hancock-Beaulieu, Mike Gatford, et al.
1995. Okapi at trec-3. Nist Special Publication Sp,
109:109.

Huajie Shao, Dachun Sun, Jiahao Wu, Zecheng Zhang,
A. Zhang, Shuochao Yao, Shengzhong Liu, Tian-
shi Wang, C. Zhang, and T. Abdelzaher. 2020. pa-
per2repo: Github repository recommendation for aca-
demic papers. Proceedings of The Web Conference
2020.

Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang,
Liang Zheng, Zhongdao Wang, and Yichen Wei.
2020. Circle loss: A unified perspective of pair simi-
larity optimization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 6398–6407.

Yao Wan, Jingdong Shu, Yulei Sui, Guandong Xu, Zhou
Zhao, Jian Wu, and Philip S. Yu. 2019. Multi-modal
attention network learning for semantic source code
retrieval. 2019 34th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE),
pages 13–25.

Xun Wang, Haozhi Zhang, Weilin Huang, and
Matthew R Scott. 2020. Cross-batch memory for em-
bedding learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 6388–6397.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul N Bennett, Junaid Ahmed, and
Arnold Overwijk. 2020. Approximate nearest neigh-
bor negative contrastive learning for dense text re-
trieval. In International Conference on Learning
Representations.

Ziyu Yao, Daniel S. Weld, Wei-Peng Chen, and Huan
Sun. 2018. Staqc: A systematically mined question-
code dataset from stack overflow. Proceedings of the
2018 World Wide Web Conference.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. 2018 IEEE/ACM 15th International
Conference on Mining Software Repositories (MSR),
pages 476–486.

Dejiao Zhang, Shang-Wen Li, Wei Xiao, Henghui Zhu,
Ramesh Nallapati, Andrew O Arnold, and Bing Xi-
ang. 2021a. Pairwise supervised contrastive learning
of sentence representations. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 5786–5798.

Wei Zhang, Zeyuan Chen, Chao Dong, Wen Wang,
Hongyuan Zha, and Jianyong Wang. 2021b. Graph-
based tri-attention network for answer ranking in cqa.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 14463–14471.

1591

Zhou Zhao, Hanqing Lu, Vincent W Zheng, Deng Cai,
Xiaofei He, and Yueting Zhuang. 2017. Community-
based question answering via asymmetric multi-
faceted ranking network learning. In Thirty-First
AAAI Conference on Artificial Intelligence.

A Dataset comparison

As shown in Table 6, we compare our dataset
with several datasets on Code Intelligence and
Community-based QA. The scale of our dataset
is similar to SO-DS (Heyman and Van Cutsem,
2020), CQA-Quora (Lyu et al., 2019) and CQA-
SO (Zhang et al., 2021b). Our QA pairs are more
complex then short-form query/code pairs, which
resulting in less available resources on the web.
Moreover, our dataset is the only cross-platform
one.

B Baseline Implementation Details

We select GloVe average embedding, BERT [CLS]
token output and CodeBERT [CLS] token output as
baselines without supervision. For the supervised
learning method, Siamese-formed CodeBERT and
Triplet-formed CodeBERT are compared.

• BM25(okapi) (Robertson et al., 1995) BM25
is a well-known lexical retrieval model.
We employ the implementation from the
rank_bm25 library.5

• GloVe (Pennington et al., 2014) The mean em-
bedding of the whole sentence is regarded as
the representation of the sentence. Sentence
representation similarity is computed for rank-
ing.

• Universal Sentence Encoder (Cer et al., 2018)
It is a transformer-based network which aug-
ments unsupervised learning with training on
SNLI dataset. 6

• BERT (Kenton and Toutanova, 2019) We use
the [CLS] token output for sentence embed-
ding.

• CodeBERT Similar to the strategy applied on
BERT, the [CLS] token output is adopted. Be-
sides, we train a Siamese-formed CodeBERT

5https://GitHub.com/dorianbrown/rank_bm25
6https://tfhub.dev/google/universal-sentence-encoder/4

and a Triplet-formed CodeBERT for compari-
son in supervised learning. The implementa-
tion of CosQA (Huang et al., 2021) is based
on the Siamese-formed CodeBERT.

• S-BERT (Reimers and Gurevych, 2019) is a
Siamese BERT-Networks. We employ the all-
roberta-large-v1 model hosted on hugging-
face, which is pretrained over 1B+ QA pairs
for better sentence embedding. 7

C Hyper-parameter Configuration

To figure out the different role that our proposed
loss functions played in the optimization phrase, we
conduct a discussion on weight hyper-parameters,
α, β, and γ. α and β controls the importance of su-
pervised contrastive loss over discrimination loss.
Since Cq, Cr and D occurs together at the nor-
malization part of equation 4.3, the larger their
weight are, the more importance the have. We set
α = β during our experiment, and report result as
Table 7. We can find that the model performs better
while α > 1, which means the model focus more
on separating elements from the same semantic
catogory apart. The output demonstrates the impor-
tance and effectiveness of surpervised contrastive
learning. Besides, the weight γ and the hard neg-
ative sampling rate p are set to 0.2 to achieve best
performance.

α MRR P@1 P@5

2 86.01 80.50 93.50
1.5 86.26 81.00 93.00
1 85.30 79.00 92.75
0.5 85.12 78.00 92.75
0 84.48 77.75 92.50

Table 7: Results of different hyperparameter α = β
settings.

7https://huggingface.co/sentence-transformers/all-
roberta-large-v1

1592

Dataset Domain Size Query Type Answer Type Annotation
CSN (Husain et al., 2019) Coding 2.3M Short description Function code No

Deep Code Search (Gu et al., 2018) Coding 18.2M Short description Function code No
CoSQA (Huang et al., 2021) Coding 20.6K Web Query Function code Yes

QECK (Nie et al., 2016) Coding 312.9K SO question title Code block No
StaQC (Yao et al., 2018) Coding 268K SO question title Code block Partly

CoNaLa (Yin et al., 2018) Coding 598.2K SO question title Code block Partly
SO-DS (Heyman and Van Cutsem, 2020) Coding 12.1k SO question title Code block No

CQA-Quora (Lyu et al., 2019) Open 76.2k Quora question Quora Answer No
CQA-SO (Zhang et al., 2021b) Coding 13.9k SO question SO Answer No

Repo4QA (ours) Coding 13.0k SO question GitHub repository No

Table 6: Overview of existing datasets on Code Intelligence and Community-based QA

