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Abstract

Despite the success of state-of-the-art pre-
trained language models (PLMs) on a series of
multi-hop reasoning tasks, they still suffer from
their limited abilities to transfer learning from
simple to complex tasks and vice-versa. We
argue that one step forward to overcome this
limitation is to better understand the behavioral
trend of PLMs at each hop over the inference
chain. Our critical underlying idea is to mimic
human-style reasoning: we envision the multi-
hop reasoning process as a sequence of explicit
single-hop reasoning steps. To endow PLMs
with incremental reasoning skills, we propose
a set of inference strategies on relevant facts
and distractors allowing us to build automat-
ically generated training datasets. Using the
SHINRA and ConceptNet resources jointly, we
empirically show the effectiveness of our pro-
posal on multiple-choice question answering
and reading comprehension, with a relative im-
provement in terms of accuracy of 68.4% and
16.0% w.r.t. classic PLMs, respectively.

1 Introduction

Recent developments have shown that models
based on transformers (Vaswani et al., 2017; Liu
et al., 2019b) have emerged as effective soft rea-
soners over language (Talmor et al., 2020a; Kass-
ner et al., 2020). To teach transformers the ability
to emulate reasoning, they are trained on knowl-
edge encoded in the form of natural language state-
ments generally built upon explicit rules (Clark
et al., 2020) or symbolic facts that refer to triples
in knowledge graphs (KG) (Kassner et al., 2020).
In addition, the reasoning skills of these models
can successfully combine explicit natural language
statements with implicit knowledge acquired dur-
ing pre-training (Talmor et al., 2020b). In particu-
lar, many state-of-the-art pre-trained language mod-
els (PLMs), such as BERT (Devlin et al., 2019) or
RoBERTa (Liu et al., 2019b), have been success-
fully used in multi-hop reasoning problems includ-

ing multi-hop question-answering (QA) tasks (We-
ber et al., 2019; Richardson and Sabharwal, 2020;
Saxena et al., 2020; Saha et al., 2021) and multi-
hop reading comprehension (RC) (Min et al., 2019;
Ding et al., 2019). Training multi-hop reasoning
specifically implies a two-step process: 1) distin-
guish -within a context- the relevant facts from
the distractors to be used for reasoning; both rele-
vant facts and distractors are generally expressed
as statements in natural language using linguistic
patterns (Clark et al., 2020); 2) reasoning over a
sequence of relevant facts leading to chains of rea-
soning (Das et al., 2019). A common approach to
teaching PLMs to solve a multi-hop reasoning task
is to convert the structural reasoning task into sub-
tasks that model the sequence of reasoning tasks.
For instance, Richardson and Sabharwal (2020)
and Clark et al. (2020) rely on a multitasking train-
ing strategy (Caruana, 1997) that uses training in-
stances mixing different depths of reasoning steps
(hops). More precisely, to teach a model solving a
k-hop reasoning problem, it is trained to simulta-
neously solve single i-hop (1 ≤ i ≤ k) inference
tasks. In the same line, Min et al. (2019) and Ding
et al. (2019) carry out several steps of single-hop
reading comprehension to simulate multi-hop rea-
soning. However, while yielding impressive results,
it is still unclear if PLMs endowed with multi-hop
reasoning skills really leverage the learned skills
at each single-hop depth level along the reasoning
chain. More specifically, our work is motivated
by observing that PLMs yield unpredictable re-
sults while performing multi-hop reasoning. For in-
stance, previous studies show that the performance
of PLMs degrades substantially even with a slight
increase in the number of hops in the underlying
reasoning tasks (Richardson and Sabharwal, 2020).
This result indicates that multi-hop models at lower
depths struggle to transfer information to deeper-
hop models, giving rise to the compositionality
generalization (Chaabouni et al., 2020) issue from
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simpler to complex tasks.
In this work, we advocate that a better under-

standing of the inherent relationships between the
different single-hop reasoning models allows the
design of more predictable models. We seek to
answer three main questions. First, grounded in
previous findings in the literature (Richardson and
Sabharwal, 2020) showing the compositionality
generalization issue, do single-hop reasoning mod-
els incrementally learn? (RQ1). We construct
large probe datasets using SHINRA (Sekine et al.,
2018), ConceptNet (Speer et al., 2017), and Rule-
Takers (Clark et al., 2020) using single-depths of
inference to train and probe single-hop models and
compare their performance. Overall, our findings
confirm the prevalence of the compositionality gen-
eralization issue from complex to less complex
multi-hop reasoning tasks. Second, inspired by the
human reasoning style to solve complex problems
based on simpler ones (Anderson, 1980), can PLMs
be guided toward incremental reasoning? (RQ2).
Specifically, we propose a generic and automatic
methodology for generating training probe datasets
that endow PLMs with reasoning capabilities over
a sequence of single-hop steps. We particularly in-
vestigate the impact of using distractor generation
strategies. Our empirical results show that we can
guide PLMs to incrementally reason by leveraging
classic approaches with a gain of up to 7.98 accu-
racy. These training datasets are publicly available1.
Finally, grounded on previous findings revealing
that PLMs trained on one specific reasoning task
improve their performance on different and unre-
lated reasoning tasks (Talmor et al., 2020b), do
QA tasks leverage incrementally trained reasoning
models? (RQ3). For the multi-hop QA task, in par-
ticular, the results show that our approach quickly
adapts to obtain an accuracy of 54.74 compared to
52.03 from state-of-the-art

2 Methodology

In this section, we first introduce the basic defini-
tions and notations used in our proposal and then
present the data probe generation methodology.

2.1 Task Definition

We focus on the multi-hop symbolic reasoning task
over explicit knowledge. Following previous work,
our setting includes the following:

1https://github.com/jeslev/
incremental_reasoning

1) a knowledge graph (KG) G = (E ,R) with
entities as nodes (e ∈ E), inference relation-
ships as edges (r ∈ R), and a set of real
relation facts fij as positive triples (ei, r, ej)
denoted F+ among all the possible ones in
E ×R× E ;

2) a hypothesis Hk
ij about the relationship r∗ be-

tween two target entities (ei, r∗, ej) separated
by k hops in graph G;

3) a hypernym inference path of depth k on
G, referred to as Ik

ij , allowing to build a
new relation fact f∗

ij /∈ F+ by combining
k + 1 relation facts along the reasoning chain
< (ei, r0, e1) (e1, r1, e2) . . . (ek, rk, ej) >,
such as ∀0 ≤ n ≤ k, (en, rn, en+1) ∈ F+,
(ei, r1, e1), (ek, rk, ej) ∈ F+;

4) a context, composed of relevant facts F∗
ij ⊂

F+, defined by the facts that form the hyper-
nym inference chain Ik

ij and distractors Dij ,
defined by triplets that do not form the hyper-
nym inference in Ik

ij .

Given a hypothesis in context < Hk
ij , (F∗

ij ,Dij) >,
the task consists in inferring its truth value. A
hypothesis Hk

ij is either true if it deductively fol-
lows a hypernym inference Ik

ij from the context
(F∗

ij ,Dij), or false if it does not (under the close-
world assumption).

2.2 Data Probe Generation
Given a knowledge graph G, we propose a generic
dataset generation methodology to probe multi-hop
reasoning PLMs in a single-hop setup. We define
two generation functions to construct the input <
Hk

ij , (F∗
ij ,Dij) >: i) HYP(G, k), to generate both

the hypothesis Hk
ij and the related inference path

Ik
ij ; and ii) DISTR(G, Ik

ij ,Hk
ij), to generate a set

of distractors Dij with respect to the inference path
Ik
ij .
Hypothesis Generation HYP(G, k). First, we

apply the Depth First Search (DFS) algorithm to
visit all entities of knowledge graph G, generating
a set of paths of length k + 1, excluding the root,
used as inference paths. For the true hypothesis,
we create Hk

ij with the form (ei, rk, ej) using the
first and last facts from Ik

ij (see Figure 1, which
illustrates examples of 1-hop and 2-hop hypothe-
sis). Unlikely, for the false hypothesis, we simply
generate a hypothesis Hiz replacing the last real
fact of the inference path by (ek, rk, ez) /∈ F+.

https://github.com/jeslev/incremental_reasoning
https://github.com/jeslev/incremental_reasoning
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Figure 1: Hypothesis and inference path generation
from a knowledge graph for 1-hop and 2-hop reasoning
depths.

Distractor Generation DISTR(G, Ik
ij ,Hk

ij) .
We generate object, relationship, and inference dis-
tractors for each hypothesis Hk

ij (as shown in Fig-
ure 3b).

An object distractor is generated by sampling a
fact with the form (., ., ej), ej referencing the last
entity in the hypothesis. Similarly, a relationship
distractor is a sampled fact with the form (., rk, .).

Inference distractors. Finally, we generate infer-
ence distractors in such a way that they exploit
evidence from the structure of the inference path
Ik
ij by linking two of its facts with a pivot element.

Having in mind the goal of guiding a k-hop model
to perform incremental inference over single-hops,
we propose distractor strategies that either improve
the entity representations or bridge between entities
by transferring information along with intermediate
hops necessary to complete the reasoning. More
precisely, based on a recent finding (Kassner and
Schütze, 2020) showing that fine-tuned PLMs are
good for recognizing false facts, we assume that dis-
tractors have a hidden impact on the reasoning task.
While most common approaches attempt to im-
prove PLMs entity representations by enriching the
context-based relevant facts, we believe distractors
can significantly leverage PLMs entity representa-
tions and thus the reasoning performance. Thus,
we investigate the rationale behind this assumption
by designing the following strategies for generat-
ing inference distractors: shared (s-inf), which
uses the same distractor entity (x = y) of the two
consecutive facts from the inference path, and the
individual (i-inf), that uses different distractor en-
tities (x ̸= y). Figure 2 shows the implementation
P-INF for both inference distractors, with the vari-
able shared= True for (s-inf) and shared= False
for (i-inf).

Additionally, we explicitly guide a k-hop model
to perform incremental inference using a guided

P-INF (Ik
ij ,k, shared)

AD = {E × R × E} ∖ F+

D = ∅
for i ∈ 1 . . . k + 1 do

(ex, _, _)= Ik
ij [i]

(_, _, ex+2)= Ik
ij [i+1]

L1 = ∅, L2 = ∅
for (ex, ra, p) ∼ AD(ex) do

L1=L1∪{(ex, ri, bj)}
end for
for (q, rb, ex+2) ∼ AD(ex+2) do

L2=L2∪{(ei, rj , ex+2)}
end for
for (d1, d2) ∼ L1 × L2 do

(ex, ra, x)=d1

(y, rb, ex+2)=d2

if x = y and shared then
D=D∪{d1, d2}
break

else if x ̸= y and not shared then
D=D∪{d1, d2}
break

end if
end for

end for
return D

G-INF (Ik
ij ,k)

D = P-INF(Ik
ij ,k, True)

for i ∈ 1 . . . k + 1 do
(ex, _, _)= Ik

ij [i]
(_, r, ex+2)= Ik

ij [i+1]
D=D∪{(ex, r, ex+2)}

end for
return D

S-INF (Ik
ij ,k)

D = P-INF(Ik
ij ,k, True)

return D

I-INF (Ik
ij ,k)

D = P-INF(Ik
ij ,k, False)

return D

Figure 2: Pseudocode for distractors generation in a
k-hop dataset. D, L1, and L2 are lists used to stock the
generated distractors. AD stands for “available distrac-
tors”, considering all the possible triples in the KG not
used in the inference. AD(e) represents a filtered AD
where e is present.

distractor (g-inf) that connects the two consecu-
tive facts in the inference path (see Figure 2 algo-
rithm G-INF). The key underlying idea is to drive
the PLM to incrementally reason over the inference
path by transferring information between entities
along intermediate hops of a multi-hop reasoning
path. Figure 3b illustrates the different distractors
generated for a specific example.

3 Experimental Setup

3.1 Generated Dataset Probes

We present here the dataset probes, namely Single-
RuleTakers (S-RT) and SHINet, we automatically
constructed using the previously presented gener-
ation functions (see Section 2.2). These datasets
are based on three different publicly available re-
sources: the RuleTakers dataset (Clark et al., 2020),
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(a)

(b)

Figure 3: RuleTakers (a) and SHINet 2-hop (b) examples.

SHINRA (Sekine et al., 2018), a knowledge graph
manually built upon a structured taxonomy, and
ConceptNet (CN) (Speer et al., 2017), another KG
widely used in NLP tasks (Talmor et al., 2020b;
Ma et al., 2021).

3.1.1 The Single RuleTakers Dataset (S-RT)
In the original RuleTakers dataset, each entry has
a small theory representing the context (F∗

ij), and
a True/False question representing the hypothesis
Hk

ij , mainly grouped on five variations k = 0, and
D ≤ k with k = {1, 2, 3, 5} with questions requir-
ing reasoning up to depths 0, 1, 2, 3, 5 respectively.
An example of a true hypothesis in the RuleTak-
ers dataset is presented in Figure 3(a). We filtered
these datasets to construct our probes, single k-hop
datasets with k ∈ {0, 1, 2, 3, 5} for train and test
splits, called S-RT dataset.

3.1.2 SHINet Dataset
The RuleTakers dataset presents the context as a
paragraph, with no annotations on the relevant facts
or the distractors, making it difficult to measure
their impact on the inference process. To overcome
this limitation, we created the SHINet dataset built
upon the public SHINRA dataset. The SHINRA
contains facts with the form (ei, is-a, ej), limited
to the “is-a” relation. Having in mind that the in-
ference task heavily relies on the range of rela-
tionships and objects that the model has seen in
the training phase (Wang et al., 2021), we created

Dataset train dev test

1-hop (s-inf) 35,000 1,200 2,074
2-hop (s-inf) 35,000 1,200 5,994
2-hop (i-inf) 35,000 1,200 -
2-hop (g-inf) 35,000 1,200 -

Table 1: Number of samples for train/dev/test splits for
each generated dataset.

SHINet dataset by sampling from SHINRA and
ConceptNet based on a manual alignment of the in-
termediate nodes of SHINRA. We enrich the single
“is-a” relationship with the facts from ConceptNet
in the form (ej , r

′, pj). The alignment relies on
manual verification of finding ej in both datasets.
An example of a true hypothesis in the SHINet
dataset with related distractors s-inf, i-inf, and g-inf
is presented in Figure 3(b). Table 1 summarizes
our generated datasets.

3.2 Model Training

We used PLMs trained on the single-hop training
partitions of our generated datasets. It is worth
mentioning that this training protocol differs from
the protocol used in previous approaches, where
mixed datasets {0 ≤ i}-hop datasets are simultane-
ously used for training multi-hop reasoning models
based on a multitasking approach (Richardson and
Sabharwal, 2020). More specifically, we exploited
the following: 1) we used several pre-trained LMs
based on BERT (Devlin et al., 2019), XLNet (Yang
et al., 2019), and RoBERTA (Liu et al., 2019b);
even using similar architectures, they showed sig-
nificant differences in performance results, espe-
cially on reasoning tasks (Talmor et al., 2020a); 2)
as a building block, we used the training protocol
proposed in previous work (Talmor et al., 2020b),
removing the first fact from Ik

ij in 40% of the sam-
ples. Using this training protocol, we can provide
insights into both the intrinsic strengths and lim-
its of our proposed PLM since we exploit a recent
state-of-the-art PLM that captures rich semantic
information.

3.3 Implementation Details

Each fact (ei, r, ej) can be expressed as a state-
ment in natural language using linguistic patterns
referred to as fact templates (e.g., ei is a ej). We
make use of the Hearst Patterns templates (Hearst,
1992; Roller et al., 2018) and the ones proposed in
Talmor et al. (2020b) as fact templates. Then, we
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train a transformer-based model with a set of input
sequences of tokens with the following schema:
“[CLS] Context [SEP] Hypothesis [SEP]”. Then,
we used the output representation of the [CLS] to-
ken and projected it into a binary classifier layer to
obtain the probabilities that the hypothesis is true
or false. For all of the models, we used the trans-
formers’ public implementation from HuggingFace
(Wolf et al., 2020). Main hyperparameters were
set following standard setup or original authors’
recommendations. In all the experiments where
SHINet is used for training, we set a maximum
word length to 256, batch size to 4, number of
steps per batch to 729, number of epochs to 4, and
Adam as optimizer with learning rate to 1e-5 and
weight decay to 0.1. In the case of fine-tuning, each
dataset uses its default hyperparameters. However,
the parameters remain the same for each dataset re-
gardless of the fine-tuning order. For the QA tasks
evaluation, we opted for the same parameters as
when fine-tuning the SHINet datasets, except for
the loss (categorical cross entropy), and the num-
ber of steps per batch is set to 2,163. We trained
and evaluated the models with 10 different random
seeds and presented mean scores in our compar-
isons (see Appendix A for computational costs).
To provide statistical significance to our results, we
applied a test for Almost Stochastic Dominance
(Dror et al., 2019) between test score distributions,
using α = 0.05.

4 Results and Discussion

To address RQ1 and RQ2, we used the k-hop S-
RT with k ∈ {0, 1, 2, 3, 5} and the {D ≤ 2}-hop,
1-hop, and 2-hop SHINet dataset. All the SHINet
datasets are composed of the object, relationship,
and inference distractors. Regarding the inference
distractors, we evaluated with the three strategies:
i-inf, s-inf, g-inf. The default setting uses the (s-inf)
strategy unless it is explicitly mentioned otherwise.
Note that for each SHINet strategy-based dataset,
we have train and test partitions. As recommended
in the literature (Elazar et al., 2021; Sakaguchi
et al., 2020), to avoid biases in these datasets that
lead to an overestimation of the reasoning capabili-
ties of PLMs, we applied on the test partitions the
AFLITE algorithm (Sakaguchi et al., 2020) that
finds machine-detectable embeddings associations
to reduce biases. We used optimal parameters af-
ter grid-search: n (classifiers) = 64, m(samples) =
1000, top-k = 200, threshold = 0.75. Comparing

Test (k-hop) k=0 k=1 k=2 k=3 k=5

Train ↓ Models → RoBERTa

0-hop 99.99 43.51 26.52 22.94 12.78
1-hop 90.11 98.16 50.64 37.30 23.07
2-hop 66.92 64.62 88.54 91.65 96.16
3-hop 68.36 64.44 88.47 91.35 96.11
5-hop 63.32 63.11 87.09 89.92 95.06

Table 2: Accuracy performance (in %) for a RoBERTa model
trained on k-hop S-RT training set (rows) and tested on k-hop
S-RT test set (columns). For a better reading, scores worse
than random (< 50%) are in italic and good results (> 80%)
are in bold.

Test (k-hop) k=1 k=2 k=1 k=2 k=1 k=2

Train ↓ Models → XLNet BERT RoBERTa

Mixed 98.89 89.06 99.23 94.63 99.71 93.44
1-hop 99.71 86.00 98.96 89.75 99.80 96.23
2-hop 96.31 99.82 77.75 87.25 98.77 99.99

Table 3: Accuracy performances (in %) for mixed, 1-hop and
2-hop models using the SHINet dataset. The highest values
are in bold.

the original and filtered datasets, we approximately
filtered 45% of the total samples. To address RQ3,
we used the MCQA (Richardson and Sabharwal,
2020), and RACE (Lai et al., 2017). MCQA is com-
posed of 193,000 entries. Each entry is composed
of a question and five possible answers, includ-
ing reasoning tasks such as hypernymy, hyponymy,
synonymy detection, and word sense disambigua-
tion. RACE (Lai et al., 2017) consists of nearly
28,000 passages and 100,000 questions divided
into Middle and High School sets and up to four
possible answers.

4.1 Do Single-Hop Reasoning Models
Incrementally Learn? (RQ1)

To answer RQ1, we train separately single i-hop
reasoning models using the S-RT dataset (i ∈
{0, 1, 2, 3, 5})2, and we train PLMS using the
SHINet dataset on single 1-hop and 2-hop, and the
Mixed models trained on the {k ≤ 2}-hop SHINet
dataset.

Table 2 and Table 3 report, respectively, the ac-
curacy scores for the different single i-hop models
using the S-RT dataset, and the accuracy scores of
PLMs trained on 1-hop and 2-hop SHINet dataset,
as well as the Mixed model. We take an empirical
approach by assuming that incremental learning is
observed when the models generalize from com-
plex to less complex tasks. Overall, we can observe

2We keep the model, hyperparameters, and setting as pro-
posed in (Clark et al., 2020).
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that when trained with larger hop depths, models
struggle to solve even slightly less large reason-
ing tasks. Regarding specifically the S-RT dataset,
it can be seen from Table 2 (green area), that the
performance of the model trained and tested on
the 2-hop (88.54) decreases to 66.92 and 64.62
respectively when tested on the 0-hop and 1-hop
data. Similar behavior is observed for the model
trained on 3-hop. Looking at Table 3, obtained us-
ing the SHINet dataset, we can see that the results
on the 2-hop test show a similar trend with the S-RT
dataset: overall, the 2-hop PLMs exhibit better re-
sults when tested on 2-hop, but their performances
decrease for a simpler task, 1-hop test, for all the
three models while we expect at least stable perfor-
mance. More precisely, we observe a performance
decrease of 99.82 ↓ 96.31, 87.25 ↓ 77.75, and
99.99 ↓ 98.77 for XLNet, BERT, and RoBERTa,
respectively. The same performance decrease trend
is observed compared to the upper bound achieved
when testing the 1-hop trained PLMs on the 1-hop
test. This might reveal a counter-intuitive and un-
controllable behavior: having in mind the incre-
mental human-style reasoning (Anderson, 1980),
one could argue that the ability to solve a k-hop
problem implies the ability to solve the {k-1}-hop
one, but results indicate the contrary. These re-
sults are consistent in both datasets suggesting that
PLMs do not incrementally learn by accumulating
knowledge.

In addition, looking at the compositionality gen-
eralization from simple to complex tasks, we can
see from Table 2 (S-RT) that the performance of
models trained on low-depth single-hops (rows
k = 0, 1) significantly decreases when the hop
is deeper (columns k = 2, 3, 5) in the test set (e.g.,
the 1-hop model performance decreases from 90.11
to 50.64 and 37.30 for columns k = 2, 3, respec-
tively). However, for depth rows k = 2, 3, 5, this
trend is less clear. Similarly, Table 3, using the
SHINet dataset, shows that 1-hop models manage
to obtain strong accuracy scores, over 86.00 in all
datasets, indicating that they can deal with their
tasks and complex ones. This behavior can be ex-
plained by the mix of implicit knowledge (from pre-
training) and explicit knowledge (from training),
filling the logic gap between tasks as shown by (Tal-
mor et al., 2020b). Moreover, we can observe that
RoBERTa-based and XLNet-based PLMs are more
effective in both 1-hop and 2-hop configurations, in
contrast to BERT-based models, consistently with

Figure 4: Two examples from the 2-hop test set. Both exam-
ples are negative (false hypothesis), the first with a positive
phrase and the second one with a negative phrase. The guided
model correctly predicted both.

previous work (Talmor et al., 2020a).

4.2 Can Reasoning Models be Guided Toward
Incremental Reasoning? (RQ2)

To answer RQ2, we compared our models to two
different baselines: the Mixed model used in RQ1,
and the LoT model from Talmor et al. (2020b). LoT
is trained on a {k ≤ 1} using ConceptNet, Word-
Net, and Wikidata datasets to combine implicit
knowledge acquired in pre-training with explicit
rules and facts showing good performance on vari-
ous types of reasoning tasks. We also trained the
hybrid model by fine-tuning on the SHINet 2-hop
(g-inf) dataset followed by the LoT train dataset
(1-hop) to show the effect of jointly leveraging im-
plicit knowledge, explicit knowledge (LoT), and
incremental reasoning. We report in Table 4 the
mean accuracy scores of the different distractors.

At a first glance, we can see that our proposed
guided model 2-hop (g-inf) surpasses all its coun-
terparts for 2 out of 3 settings, namely XLNet and
RoBERTa. More precisely, by comparing the per-
formance scores of 2-hop (g-inf) to 2-hop (s-inf),
we can fairly assess the positive impact of our pro-
posed inference distractors presented in Figure 2
to guide the training toward incremental learning
across all the models. For instance, we observed an
improvement of 3.53 (0.17), 6.41 (7.98), and 1.17
(0.01) when comparing the 2-hop (g-inf) model
with 2-hop (s-inf) models on the 1-hop (2-hop)
tests with XLNet, BERT, and RoBERTa respec-
tively. We further compare the accuracy scores of
2-hop (g-inf) in comparison to 2-hop (i-inf) to show
the impactful role of the (s-inf) inference distrac-
tor to improve the reasoning inference. As it can
be seen from Table 4, 2-hop (g-inf) increases the
performance on both tests by a difference greater
than 21.0 in all models. The comparison between
the 2-hop (g-inf) model to a traditional multi-hop
mixing strategy Mixed shows the advantage of the
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Test (k-hop) k=1 k=2 k=1 k=2 k=1 k=2

Models → XLNet BERT RoBERTa

Train ↓
LoT 98.37∗ 99.17 86.28∗ 95.33∗ 99.15∗ 98.96

Mixed 98.89 89.06 99.23 94.63 99.71 93.44

2-hop
(i-inf) 60.81 56.77 62.37 57.16 60.48 56.23
(s-inf) 96.31 99.82† 77.75 87.25 98.77 99.99†
(g-inf) 99.84∗† 99.99∗† 84.16∗ 95.23∗ 99.94∗† 100∗†

hybrid 99.18∗† 99.67∗† 86.32∗† 93.85∗ 99.31∗† 99.76†

Table 4: Accuracy performances (%) for 2-hop models by
varying the inference distractor in the SHINet dataset. † and
∗ indicates statistical significance according to the Almost
Stochastic Dominance test over LoT and 2-hop (s-inf), respec-
tively.

Train ↓ / Test(k-hop) → k = 0 k = 1 k = 2

S-RT 2-hop 66.92 64.62 88.54
3-hop 68.36 64.44 88.47

LoT 2-hop 72.61 65.37 88.40
3-hop 72.46 64.81 88.56

2-hop 2-hop 67.15 64.88 88.42
(s-inf) 3-hop 67.06 64.58 88.25

2-hop 2-hop 68.06 65.18 88.05
(g-inf) 3-hop 67.89 64.8 88.11

hybrid 2-hop 71.75 65.49 88.44
3-hop 72.47 65.14 88.60

Table 5: Accuracy comparing different reasoning models on
the S-RT dataset. The best result for each test in underlined
and bold for 2-hop and 3-hop models, respectively.

incremental inference for most of the settings. Fi-
nally comparing our proposed guided model 2-hop
(g-inf) to the fine-tuned multi-hop strategy hybrid,
we can observe that our guided model surpasses
the hybrid model and LoT in 2 out of 3 models,
namely (XLNet and RoBERTa). It is worth noting
that this performance is achieved using fewer com-
putational resources; the model can address both
tests 2-hop and the simpler 1-hop in an incremental
reasoning fashion.

In Figure 4, we show some hand-picked difficult
examples from the 2-hop test set for the LoT model
that are especially helped by the guided model 2-
hop (g-inf), using XLNet and RoBERTa. Specif-
ically, we observed a positive impact of the dis-
tractors to solve false hypothesis examples using a
negative phrase.

Additionally, we compare our proposed models
with those trained on the S-RT dataset used in RQ1.
We particularly examine if the proposed models
still exhibit the observed phenomenon highlighted
in the green area from Table 2. Table 5 shows re-
sults with mean values after 3 runs and under the

Model Def Hype Hypo Syn DQA Avg (%Imp)

Rand 19.90 19.90 20.20 19.80 20.00 19.96 (-38.6%)
RoB 40.10 32.65 23.15 34.41 32.26 32.51 (-)
LoT 72.41 43.83 40.54 51.85 51.53 52.03 (+60.0%)

1-hop
(s-inf) 62.65 52.69 38.58 45.80 43.68 48.68 (+49.7%)
2-hop
(s-inf) 63.65 46.50 36.82 50.52 47.69 49.04 (+50.8%)
(g-inf) 70.86 51.86 43.03 55.29 52.65 54.74 (+68.4%)

hybrid 73.09 44.70 46.43 51.87 54.72 54.16 (+66.6%)

Table 6: Accuracy (%) scores for baselines and multi-hop rea-
soning models using the validation set of the MCQA dataset.
Improvement percentages (%Imp) are given w.r.t. RoBERTa
(inoculated).

inoculation technique. The inoculation technique
from Liu et al. (2019a) was used to avoid overrid-
ing the knowledge acquired in our models. The
inoculation consists of using a small amount of
training data to solve new tasks, overcoming the
mismatch between the datasets used in training and
fine-tuning (Jiang et al., 2020).

We did a preliminary analysis of the learning
curves for each task to determine the right amount
of data to use (see Appendix C).

We can see from Table 5 that even when
the inoculation is used, the models relying on
incremental reasoning (2-hop (g-inf) and hybrid)
overpass the baseline results (S-RT and 2-hop
(s-inf)). Particularly, we see that guiding the model
training over hops leads to improvements in lower
hop levels (k = 0, 1) compared to traditional
model training with mixed hops. For instance, for
the test k = 1, the guided model 2-hop (g-inf)
improves by 0.56 and 0.36 the model trained with
S-RT on hops k = 2 and k = 3, respectively.

4.3 Do QA Tasks Leverage Incrementally
Trained Reasoning Models (RQ3)?

To answer RQ3, we used: 1) two QA tasks, namely
Multiple Choice Question Answering (MCQA),
and Reading Comprehension (RC). We applied
the inoculation technique presented before to all
the models; 2) the Random model, denoted Rand,
the RoBERTa model, denoted RoB, and the LoT
model as baselines. The RoBERTa model has been
chosen, given its performance superiority as shown
in the previous experiments (see Sections 4.1 and
4.2). For datasets examples and illustrations of the
tasks, we refer the reader to Appendix B.
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Figure 5: Accuracy values using the hypernymy and hy-
ponymy subsets broken into number of hops k (rows) for the
models (columns).

Multiple Choice Question Answering
(MCQA).

For MCQA, we re-used a publicly available
code3 as Richardson and Sabharwal (2020) and
then applied the inoculation technique (Liu et al.,
2019a). We plot the learning curves of each probe
for the average of five different runs with random
subsets (see Appendix C).

In Table 6, we report the results of our inoculated
models. We can see that our models 2-hop (g-inf)
and hybrid achieve the best average performance
scores over all the baselines.

To deepen our analysis of the reasoning over in-
creasing numbers of hops, we experimented with
our models with the hypernymy and hyponymy
subsets, up to 4 and 3 hops levels, respectively. By
filtering the numbers of hops, we report the per-
formance variation of our models in Figure 5. We
can see that for the hypernymy (resp. hyponymy),
the hybrid (followed by 2-hop (g-inf)) model out-
performs all models in all depths but for k = 4, 5.
Furthermore, we interestingly observe a positive
trend toward reducing the performance decrease
rate between hop levels when using our proposed
guided training approach. For instance, when com-
paring levels k = 2 and k = 4, we observe that per-
formance decrease is reduced from 0.14 to 0.01 for
2-hop (s-inf) and 2-hop (g-inf) respectively. Sim-
ilarly between the hyponymy levels k = 2 and
k = 3 we can see a performance decrease reduced
from 0.18 to 0.16 for LoT and 2-hop (g-inf) mod-
els respectively. This observation clearly indicates
the positive impact of incremental reasoning on
performance.

Reading Comprehension (RC). For RC, re-
sults under inoculation conditions are reported in
Table 7. As can be seen, most of the models behave
similarly for the Middle set, with 2-hop (s-inf) as
the most performing model. On the contrary, we

3https://github.com/yakazimir/
semantic_fragments

Models Middle (%Imp) High (%Imp)

RoBERTa 77.18 (-) 59.22 (-)
LoT 77.04 (-0.2%) 68.68 (+16.0%)

1-hop (s-inf) 76.56 (-0.8%) 68.94 (+16.0%)
2-hop (s-inf) 77.32 (+0.2%) 69.76 (+17.8%)
2-hop (g-inf) 75.65 (-2.0%) 68.72 (+16.0%)

hybrid 76.37 (-1.0%) 68.56 (+15.8%)

Table 7: Accuracy (%) comparing different reasoning mod-
els on the RACE dataset for middle school and high school.
Improvement percentages (%Imp) are given w.r.t. RoBERTa.

can observe a clear improvement for all models on
the High set when compared to RoBERTa. In this
case, the most performing model is 2-hop (s-inf)
(69.76) closely followed by 2-hop (g-inf) (68.72)
and hybrid (68.56). Therefore, chains of reasoning
seem to be a key component of the solution, even
if most of the studied multi-hop models correctly
capture the needed knowledge.

Finally, we compare the results from Table 6 and
Table 7. We observe that model scores are very
close on the RC task, even when using different
distractors and the number of hops. The unifor-
mity between all models’ performances suggests
that multi-hop reasoning is not a key component in
solving these questions.

5 Related Work
Our main study focused on multi-hop reason-
ing. Recent studies have proposed solutions us-
ing decomposition-aggregation approaches (Min
et al., 2019) by combining or extending different
model architectures to leverage reasoning perfor-
mance (Feng et al., 2020; Yasunaga et al., 2021;
Bauer et al., 2018), creating explained reasoning
paths (Ding et al., 2019) or using chain of thought
prompting (Wei et al., 2022). In contrast, we fo-
cus on leveraging the inner reasoning skills of
PLMs, benefiting from their internal architecture
and knowledge captured in pre-training. We ar-
gue that our results may be a solid alternative to a
standard PLM in this kind of work.

There are recent demonstrations that trained
PLMs can perform simple reasoning tasks (Talmor
et al., 2020a). Even if these models are not
naturally good solvers of complex tasks such as
multi-hop reasoning (Kassner et al., 2020), they
are capable of learning when trained on such tasks
(Clark et al., 2020; Richardson and Sabharwal,
2020). However, these training setups propose
mixing different depth levels of reasoning, leading
to unpredictable results, and, thus, a lack of

https://github.com/yakazimir/semantic_fragments
https://github.com/yakazimir/semantic_fragments
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model interpretability. They do not let recognize
the knowledge captured at each hop level and
whether acquired knowledge, if any, is actually
reused to solve higher-hop level reasoning. We
proposed a single-hop design that lets us ana-
lyze the actual contribution of each reasoning level.

Although our work is inspired by the previ-
ous literature, it is different from Talmor et al.
(2020a) and Talmor et al. (2020b), as they evaluate
the inner reasoning capabilities of PLMs in simple
reasoning tasks, but we evaluate incrementally
trained PLMs for multi-hop reasoning performed
on NLP downstream tasks. Similarly, Kassner
et al. (2020) evaluate the model reasoning skills
controlling the data given in pre-training. In
contrast, we analyze how the training data and
elements in the context affect the task in a
multi-hop scenario.

6 Conclusions

Transformers have been recently gaining increas-
ing attention for reasoning tasks over language. In
this paper, we have specifically studied whether we
can endow PLMs used in multi-hop reasoning tasks
with the ability to incrementally acquire knowledge
by following the inference path over the sequence
of hops. Our underlying objective is to control
the training of PLMs better, leading to more un-
derstandable and predictable multi-hop reasoning
models. In particular, we have complemented previ-
ous findings in the literature by showing that PLMs
trained on 1-hop reasoning tasks can extrapolate
the reasoning to 2-hops but that 2-hop reasoning
models struggle to generalize over slightly simpler
1-hop tasks. Keeping in mind the human-style rea-
soning from simpler to complex tasks, we advocate
incremental reasoning over the structure of the in-
ference path as a step forward. We provide a train-
ing data generation strategy that relies critically
on inference distractors connecting intermediate
relevant facts in the reasoning path. By applying
our approach, our models achieve higher or simi-
lar performance trends than fine-tuning multi-hop
models but consume fewer resources. Furthermore,
we show that the incrementally trained multi-hop
PLMs are transferable to other QA-based tasks.

Although our experimental settings are limited
to low depths of inference (k = 1, 2), our find-
ings show both the feasibility and the benefit of
incremental reasoning and open new research op-

portunities. We may potentially extend this work
toward the benchmarking of multi-hop reasoning
interpretability with the design of baseline models,
dataset generation strategies with upper bounds,
and evaluation metrics including, but not limited
to, inference path recall.
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A Computing Infrastructure and Budget

All experiments were performed in a server
Dell R740 bi pro Intel Xeon 2630 using Nvidia
RTX6000 graphic card. A single training and test
took around 100 and 120 minutes under this infras-
tructure. In summary, to compute the results of
RQ1 and RQ2 we used approximately 120 GPU
hours.

To compute the results of RQ3, including the in-
oculation technique, we used approximately 1,730
GPU hours.

B Dataset samples for Downstream Tasks

In Figure 6, we show entry samples for the MCQA
(6a) and RACE (6b) tasks.

(a)

(b)

Figure 6: MCQA (a) and RACE (b) examples.
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C Learning Curves from Inoculation
Technique

Figure 7 shows the learning curves when applying
the inoculation technique for the MCQA and RC
tasks. We selected 5,000 as the number of samples
with the best performance and smaller training size.
Similar analysis was done for the RACE and S-RT
datasets with equal conclusion w.r.t. the number of
samples.

Figure 7: Learning curves for MCQA (upper) and RC (lower)
tasks. For MCQA we show the Hypernymy (left) and Syn-
onymy (right) dataset. For RC we show the Middle School
(left) and High School (right) datasets. For all curves, the X
axis represents the number of training samples (in thousands),
and the Y axis, the accuracy score. Average values are re-
ported with 5 runs for MCQA and 3 for RC.
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