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Abstract

Natural language generation (NLG) models can
propagate social bias towards a particular de-
mography. Though several studies investigated
bias from data and models, the NLG task dis-
tinctively uses stochastic decoders that can pos-
itively or negatively impact the bias-sensitive
tokens initially predicted by the model. To
address this gap in research, we present an ex-
tensive analysis of bias from decoding tech-
niques for open-domain language generation
considering the entire decoding space. We an-
alyze to what extent bias metrics like toxicity
and sentiment are impacted by the individual
components of decoder algorithms. We also
analyze the trade-off between bias scores and
human-annotated generation quality through-
out the decoder space. Together, these methods
reveal the imperative of testing inference time
bias and provide evidence on the usefulness of
inspecting the entire decoding spectrum.

1 Introduction

Natural language generation (NLG) techniques pro-
vide the backbone for many downstream artificial
intelligence applications, such as chat-bots, vir-
tual assistance, machine translation, automatic sto-
rytelling, text summarization, and writing assis-
tants. With the advancement of deep learning, NLG
tasks are commonly powered by auto-regressive
language models like GPT-2 (Radford et al., 2019),
GPT-3 (Brown et al., 2020), T5 (Raffel et al., 2019),
or GPT-Neo (Gao et al., 2021). However, language
models (LMs) pretrained on large web text corpora
are also known to pass on stereotypical associa-
tions learned from real-world training data. Such
disproportionate generations that produce represen-
tational or allocational harms towards a particular
group is called "bias" in the context of AI fair-
ness (Crawford, 2017; Barocas and Selbst, 2016).
Although a moderate amount of studies has been
conducted on quantifying bias for natural language
understanding (NLU) (Webster et al., 2018; Lu

et al., 2018; Cao and Daumé III, 2020; Dev et al.,
2019; Nangia et al., 2020; Nadeem et al., 2021;
Zhao et al., 2018, 2020), exploring the same for
NLG is a nascent, yet active area of research.

Indeed, bias can be introduced at various
phases of the model’s development and deploy-
ment pipeline, such as data, modeling, decoding,
evaluation. Much of the work on analyzing bias in
NLG focuses on benchmarking biases pertaining
to models or training data (Henderson et al., 2018;
Sheng et al., 2019, 2020; Habash et al., 2019; Bor-
dia and Bowman, 2019; Cercas Curry et al., 2020;
Liu et al., 2020; Yeo and Chen, 2020; Dhamala
et al., 2021). Yet, up to now work on examining
biases from decoder techniques is relatively scarce.
However, NLG models distinctively use search,
random sampling, entropy (softmax penalty) that
changes the distribution of model predicted tokens
at each autoregressive time-step. Redistributing
the predicted token and inducing randomness dur-
ing inference can positively or negatively impact
the bias-sensitive tokens initially predicted by the
model. Bias-sensitive tokens are words with neg-
ative connotations towards specific demographics
as explained by Liang et al. (2021). This redistri-
bution of the predicted bias sensitive tokens solely
due the randomness induced by the decoding algo-
rithm is called as inference time bias.

In this paper, we focus on addressing this gap in
the literature for auto-complete generations, which
are continuous conditional generations directly
from LMs. Related works test bias in LMs for a sin-
gle point in the decoder spectrum, which does not
quantify the effect of the decoder in propagating
bias. In contrast we investigate the bias variation in-
duced by the decoding algorithms for the full spec-
trum of decoder space1. We perform tests for six
state-of-the-art LMs, with diverse decoding setup
and bias objectives like sentiment and toxicity. To

1In this paper, we will be using decoder spectrum and
decoder space interchangeably
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the best of our knowledge, this is the first compre-
hensive analysis in this regard. We observed en-
tropy and nucleus sampling impacts absolute bias
scores across the decoder space while top-k and
beam search is agnostic. This along with our exper-
imental findings, we demonstrate why inspecting
bias for the full decoder spectrum is imperative.
Finally, noticing the lack of consensus on which
decoding procedure is best from the perspective of
bias and quality (previously restricted to the quality
vs. diversity Zhang et al., 2021; Holtzman et al.,
2019), we also study the trade-off between quality
and bias throughout the decoding space using hu-
man evaluation. In this regard we attempt to find
the optimal trade-off point for different decoding
setup. Our framework and empirical findings can
guide the community to quantify inference time
bias for other type of metrics and demographic
groups. We share the code associated with this
work at github.2

2 Related Work

In the domain of continuous auto-complete gen-
eration, bias analysis mostly focuses on probing
the models with curated prompts containing the
demographic information and then quantifying the
generation with some metric. Sheng et al. (2019)
and Huang et al. (2020) both used this setup. While
the former uses a regard metric to measure social
perception towards groups, the latter uses distri-
butional differences in sentiment scores. Shwartz
et al. (2020) curated prompts to test biased towards
named entities given a name. Groenwold et al.
(2020) tested GPT-2 generation sentiment distri-
bution when prompted with AAVE and SAE. Yeo
and Chen (2020) proposed a theoretical framework
for fairness in NLG while Gehman et al. (2020)
curated prompting data-set to measure toxic degen-
eration from pre-trained LMs. Sheng et al. (2020)
also showed that adversarial triggers (Wallace et al.,
2019) can be used to further induce bias in pre-
trained LMs. Dhamala et al. (2021) extricated the
beginnings of Wikipedia articles containing demo-
graphic mention to collect the BOLD dataset and
used state-of-the-art metric to evaluate bias in gen-
erated text. Other works anchors around proposing
novel metrics to quantify bias towards a primary
attribute or secondary dimension (Gaut et al., 2020;
Rudinger et al., 2018; Webster et al., 2018).

2https://github.com/Mayukhga83/
decoder-bias

As most of the prior work intended to test model
bias, they are indifferent about decoding strat-
egy during inference time, thereby prompting the
model for a specific strategy and particular point.
Closely related to our work was a study done by
Sheng et al. (2021) that compared change in regard
score and gendered word co-occurrence for GPT,
GPT-2, XLNet generations with decoders but for a
single point in the decoder spectrum (which does
not quantify the impact of particular decoding strat-
egy). However, in contrast we strongly presume
that to quantify bias from decoding techniques, it is
imperative to inspect the entire decoder spectrum
for each decoding method. We also inspect the
effect of bias with modulation in entropy (not con-
ducted by any previous study) because sampling
with temperature is currently the de facto inference
type which further adds randomness in a genera-
tion. While reporting the results for more recent
models, we further discern why assessing gener-
ation quality with bias is crucial when analyzing
inference time bias.

3 NLG Decoding

Given a sequence of tokens as context, the task
of auto-complete generation is to generate text
that forms a legible continuation from the given
context. Formally, when prompted with a se-
quence of m tokens x1...xm the model computes
P (x1:m+n) =

∏m+n
i=1 P (xi|x1...xi−1) to generate

the next n completions xm+1...xm+n autoregres-
sively using a particular decoding strategy.

One popular decoder is top-k sampling (Fan
et al., 2018; Radford et al., 2019; Holtzman et al.,
2018). Given a distribution P (x|x1:i−1), top-k vo-
cabulary V (k) ⊂ V is defined as a set of size
k that maximizes

∑
xϵV (k) P (x|x1:i−1). At each

time-step the next token is randomly sampled from
top-k. Holtzman et al. (2019) introduced Nucleus
Sampling that exploits the shape of the probability
distribution to select the set of tokens to be sampled
from. Formally, Given a distribution P (x|x1:i−1),
top-p vocabulary V (p) ⊂ V is defined as the small-
est set such that

∑
xϵV (p) P (x|x1:i−1) ≥ p. At each

time-step random sampling is done from the high-
est probability tokens whose cumulative probability
mass exceeds the pre-chosen threshold p ∈ [0, 1).
Typically, temperature-controlled sampling tech-
niques are used where before sampling, tempera-
ture T ∈ [0, 1) is use to control the shape of the
distribution (controlling entropy) (Ackley et al.,

https://github.com/Mayukhga83/decoder-bias
https://github.com/Mayukhga83/decoder-bias
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1985; Fan et al., 2018; Caccia et al., 2018). Like
for greedy distribution: T → 0, for flat distribu-
tion: T → ∞ and T > 1 is rarely used. Formally,
before sampling given a temperature T > 0 and
scores vi ∈ Rn for each token i in the vocabulary
V , the probability that the model would predict the
ith token is given by (softmax re-estimation):

Pi =
evi/T∑
j e

vj/T
(1)

In this context, we take temperature T as the
set containing all the temperature points to be in-
spected between [0, 1) and sampling parameter S
as the set containing all the sampling controllable
parameter points to be inspected. We define de-
coder space DST for a sampling technique as:

DST = S × T (2)

where S ∈ [0, 1) for top-p or S ∈ [0, V (k)) for
top-k (for actual values see sec 4.3). This work
investigates the effect on Bias ratings when we
sweep across the decoder space for distinct de-
coding strategies given some specific demographic
prompt. For the experiment, we adapt methods
and metrics from related publications concerning
the LMs fairness check but make necessary mod-
ifications (fairness score) to suit the task we are
tackling.

4 Method and Metrics

We document our evaluation methods as suggested
by Dev et al. (2021), predominantly stressing the
details regarding bias measures and metrics. This
section explicates the respective components like
models, prompts and metrics utilized for the exper-
iments and the necessary reasons.

4.1 Models

As the bias testing framework is catered for
auto-complete generation tasks, we only include
transformer-based LM that is trained with a causal
language modeling objective. Therefore, we use
GPT-2 (large) trained on BooksCorpus3. Two vari-
ants of GPT-Neo trained on Pile4: GPT-Neo 1.3B,
GPT-Neo 2.7B and three versions of GPT-3 trained
on Common Crawl, WebText2: Babbage, Curie
and Davinci (Radford et al., 2019; Brown et al.,

3https://huggingface.co/datasets/
4https://mystic.the-eye.eu/public/AI/

pile/

2020; Gao et al., 2021). All the models have ar-
chitecture loosely styled around GPT-2 but with
increasing number of transformer decoder stacks.
The models were chosen with the intent to under-
stand whether model size has any auxiliary effect
on the bias ratings while sweeping through DST .

4.2 Prompts and Metric

Bias analysis typically involves studying a partic-
ular primary demographic dimension (e.g., ethnic-
ity) through a secondary dimension (e.g., profes-
sion). We condition the language model with pre-
fix template <prim demography><context with
secondary demography> introduced by (Sheng
et al., 2019). In this paper, we include only race
(black/white) as the primary demography and re-
spect/occupation as secondary dimensions to sep-
arate the confounding effect of occupation on the
generations (see Appendix A.1).

Generation tasks are not compatible with tradi-
tional measures of fairness like equalized odds,
demographic parity (Dwork et al., 2011; Hardt
et al., 2016). Therefore every generation from the
prompted LMs are commonly tested with an abso-
lute (i.e., metrics rely on “an accumulated score to
outline inequalities”) or relative metrics (i.e., met-
rics report inequality scores for all demographics).
As absolute metrics enable ease of comparison,
we document the raw toxicity and negative senti-
ment polarity per demographic prompt, model, and
points in DST .

4.2.1 Toxicity
In this paper, our take on toxicity is similar to
Dhamala et al. (2021). We fine-tune a BERT-base-
uncased5 model on a toxic comment classification
dataset6 for 4 epoch to classify a text into multiple
labels: toxic, severe toxic, threat, obscene, insult
and identity threat with an accuracy 98% . We
label a text as toxic if classified into at least one
label with confidence ⩾ 0.5 by the classifier. For
comprehensive model performance please refer to
Appendix A.2.

4.2.2 Negative Sentiment
We use VADER7 (Hutto and Gilbert, 2014), which
computes the sentiment score by first taking word-

5https://huggingface.co/
bert-base-uncased

6https://www.kaggle.com/c/
jigsaw-toxic-comment-classification-challenge

7https://github.com/cjhutto/
vaderSentiment

https://huggingface.co/datasets/
https://mystic.the-eye.eu/public/AI/pile/
https://mystic.the-eye.eu/public/AI/pile/
https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge
https://github.com/cjhutto/vaderSentiment
https://github.com/cjhutto/vaderSentiment
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level valence-based lexicons and then combining
the lexicon polarity with rules for text context-
awareness. Using a threshold ⩾ 0.5 over the neg-
ative polarity score, classify texts as conveying
negative feelings.

As the motive of this article is not about report-
ing LM bias scores towards protected groups, for
brevity of the paper (to meet time constraints sec 5
), we only go by two demography and two absolute
metrics. However, we strongly encourage discern-
ing the bias-variance when captured with relative
metrics or other protected groups as a proxy for
immediate future direction.

4.3 Decoding Strategy

For time constraints (see sec 5), it was not pos-
sible to generate completions for the entire DST .
Moreover, some specific combination of parame-
ters leads to less diverse and repetitious generation.
Therefore by manual inspection we define DPT

and DKT as the restricted decoder space where P,
K, T stands for temperature, top-p and top-k in-
tervals. We modulate sampling parameters taking
P = {0.2, 0.3 . . . 0.9} and K = {10, 30 . . . 110}
with fixed T = {0.3, 0.9} (for low and high en-
tropy respectively). We also modulate temperature
T = {0.2, 0.3 . . . 0.9} keeping fixed sampling pa-
rameters at P = {0.3, 0.9} (for low and high c.m.f)
and K = {10, 50, 90}. We also run the same
experiments with Beam search (Li et al., 2016;
Wiseman et al., 2017), where we modulate beam
width b = {2, 3 . . . 30}, which solely defines the
decoder space in this case. Henceforth we will use
the nomenclature InferenceType to refer a specific
decoder combination with symbol <Modulating
Parameter>@<Constant Parameter=value>. For
example, T@top-p=0.9 (decoder: top-p with fixed
p = 0.9, modulate: T ).

5 Experiment and Evaluation

We use 10 prompts (sec 4.2) per demographic men-
tion to trigger generations from each LM for every
inferenceType. In section 5.1 we analyze the ef-
fect in bias rating of the LM generations when we
sweep through DST for a specific decoder type.
From here on, by DST we imply DPT or DKT . In
this respect, we hold and check for the following
prior hypothesis: (i) Inducing randomness during
inference by adding entropy or increasing top-p
or top-k will negatively impact the bias score as
the likelihood of bias-sensitive token decreases. (ii)

Model size and demographics can have an auxiliary
effect on the change in bias score because the train-
ing data is the main contributor to bias (Blodgett
et al., 2020; Bender et al., 2021) and the models
tend to amplify such training data bias (Zhao et al.,
2017; Jia et al., 2020; Hashimoto et al., 2018). In
section 5.2 we further inspect the absolute bias and
quality trade-off across the decoder spectrum using
human evaluation. For generations from GPT-3,
we used OpenAI’s API and huggingface8 library
for other models. The GPT-3 api only supports
nucleus sampling. Generations for a single set of
model, demographic prompts and InferenceType
takes 4-5 hrs using one RTX2080Ti or Tesla T4
GPU.

5.1 Bias Score across Decoder Space
For each InferenceType we generate completions
for every LM and demographic prompt. For each
InferenceType, let M = {m1,m2, . . . mn} be the
modulating parameter with n modulation points
and Prompt = {p1, p2, . . . p10} be the set of
prompts for an unique demographic dimension
(e.g. black, respect). ∀pi ∈ Prompt, ∀mi ∈ M
we generate a set of 150 completions Gpmi (each
50 token long) with a LM. Each generation i.e.
∀gk ∈ Gpmi : k ∈ [0, 150) is tested for an abso-
lute bias score Bk with classifier (sec 4.2.1). Score
pertaining to a single prompt pi at mi is calculated
by PBk∼Gpmi

(Bk > 0.5) (number of generations
out of 150 with bias score > 0.5). If Pscore be the
set containing scores ∀pi ∈ Prompt at mi. Then
the absolute group bias score for Prompt at mi is
given by BSi = Pscore.

BS = {BS1 , BS2 , . . . BSn}

We report BS vs. M in Figure 1 pertaining to few
selected demographic dimensions and Inference-
Type (for brevity of the paper).

We estimate the monotonicity between BS and
M with Spearman’s rank correlation rs, for every
model, InferenceType, bias metric (Table 1). As
the inference method is highly stochastic, to make
generalized conclusion we also report the p-value,
i.e. the probability that the null hypothesis Ho is
true. Ho states that the correlation rs is not signif-
icant and could occur by chance. The alternative
hypothesis Ha is what we are trying to inspect, i,e
the correlation measured is statistically significant.
We set a threshold of p-value > 0.05 to accept the

8https://huggingface.co/

https://huggingface.co/
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Figure 1: Absolute bias score (toxicity: top, negative sentiment: bottom) vs. modulating parameter for InferenceType
and LMs

null hypothesis Ho is true (as usually done in scien-
tific standards). Therefore, p-value < 0.05 implies
a correlation exists as measured by rs (Ha is true).
We separate the following cases:

Case 1: rs < 0 and p-value < 0.05
There is a -ve correlation between modulating pa-
rameter and absolute bias score

Case 2: rs > 0 and p-value < 0.05
There is a +ve correlation between modulating pa-
rameter and absolute bias score

Case 3: p-value > 0.05
We ignore the rs reading and conclude there is no
correlation

We consider cases to be a general conclusion for
an InferenceType if it is observed with a majority
for all models and demographic prompt, otherwise
we reject it as an artefact of random generation.

5.1.1 Results

We primarily call attention to Table 1, Appendix
A.3 and Figure 1. From the tables, we observe
that Case 2 (marked as red) surfaces seldomly and
inconsistently without any majority case for an In-
ferenceType. Therefore we discard Case 2 as an
artefact of stochastic generation, i.e., results we
observed in our study but usually not an actual pat-
tern and could happen by chance due to random
sampling. The remaining two cases (Case 1 and
3) frequently occur with a majority for specific In-
ferenceTypes. Our results can be summarized as
follows:

Entropy: Temperature is negatively correlated to
absolute bias scores like toxicity and negative sen-
timent. This outcome is consistent with all Infer-
enceType, LMs and demographics. Observing such
a pattern is unsurprising: As high entropy (T → 1)
approximates a flat distribution, increasing the sam-
pling interval. Consequently, the likelihood of pre-
dicting the bias-sensitive token decreases as more
neutral tokens add up to the interval. However,
surprisingly we also notice that model size and
the demographic dimensions have no confounding
effects on the strength of correlation which contra-
dicts our (ii) prior (even though the absolute bias
scores for group <black><any> is much higher
<white><any>).
Nucleus sampling: top-p and bias scores are nega-
tively correlated when tested at high temperatures.
At low temperatures, there is no correlation, and
the bias scores are random. This result could indi-
cate that entropy might have a confounding effect
on the correlation, because decoding techniques
heavily influence the sampling interval only at low
temperatures. However, at high temperatures, as
the entropy of distribution does not alone charac-
terize its samples, our claim cannot be validated
and is inconclusive that requires further exploration
in the future. Again the model size and the demo-
graphic dimensions have no auxiliary effects on the
correlation strength.
Top-k sampling: Though we expected similar re-
sults to top-p, changing k for fixed temperature
surprisingly has no relation with bias metrics. The
bias scores are random (p > 0.05 for most of the
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InferenceType Gpt2-l Neo-1.3B Neo-2.7B Babbage Curie Davinci
rs p rs p rs p rs p rs p rs p

top-p@T=0.3 0.97 0.30 -0.76 0.03 -0.90 0.15 -0.05 0.91 0.45 0.26 0.63 0.09
top-p@T=0.9 -0.81 0.01 -0.93 0.003 -0.98 0.006 -0.56 0.05 -0.12 0.007 0.47 0.24
top-k@T=0.3 0.49 0.33 -0.29 0.58 -0.17 0.75 - - - - - -
top-k@T=0.9 -0.6 0.21 -0.49 0.32 -0.94 0.1 - - - - - -
T@top-p=0.3 0.83 0.01 -0.98 0.003 -0.82 0.01 -0.47 0.02 -0.85 0.01 -0.41 0.03
T@top-p=0.9 -0.85 0.01 -0.92 0.001 -0.83 0.01 -0.73 0.04 0.87 0.01 -0.67 0.04
T@top-k=10 -0.9 0.003 -0.92 0.001 -0.81 0.01 - - - - - -
T@top-k=50 -0.9 0.009 -0.99 0.009 -0.92 0.002 - - - - - -
T@top-k=90 -0.83 0.01 -0.9 0.002 -0.86 0.01 - - - - - -

InferenceType Gpt2-l Neo-1.3B Neo-2.7B Babbage Curie Davinci
rs p rs p rs p rs p rs p rs p

top-p@T=0.3 1.0 0.06 0.97 0.01 0.68 0.06 -0.69 0.06 -0.33 0.42 0.55 0.16
top-p@T=0.9 -0.95 0.001 -0.88 0.008 -0.5 0.02 -0.67 0.05 -0.17 0.69 -0.71 0.05
top-k@T=0.3 0.89 0.02 0.71 0.11 -0.26 0.62 - - - - - -
top-k@T=0.9 -0.77 0.07 0.09 0.87 -0.2 0.7 - - - - - -
T@top-p=0.3 0.8 0.04 -0.9 0.001 -0.9 0.003 -0.17 0.69 -0.45 0.03 -0.76 0.03
T@top-p=0.9 -0.4 0.03 -0.71 0.05 -0.52 0.018 -0.62 0.01 -0.55 0.016 -0.81 0.04
T@top-k=10 -0.67 0.04 -0.86 0.01 -0.29 0.04 - - - - - -
T@top-k=50 -0.38 0.035 -0.29 0.49 -0.9 0.01 - - - - - -
T@top-k=90 -0.62 0.01 -0.79 0.02 -0.01 0.03 - - - - - -

Table 1: correlation (rs) and p-value (p) between toxicity vs. modulating parameter (top) neg-sentiment vs.
modulating parameter (bottom) for <black><respect> color code (Case 1) Text-font color: rs < 0 and p-value <
0.05, (Case 2) Red: rs > 0 and p-value < 0.05, (Case 3) Blue: p=value > 0.05 (sec 5.1)

time in Table 1 and Appendix A.3, also see Figure 1
top-k@T). The fact that top-k sampling does not
truncate the unreliable trail of the model prediction
could be a possible cause of this observation. When
k is large, the likelihood of bias-sensitive tokens
decreases at autoregressive time-steps where distri-
bution is peaked (as irrelevant token creeps into the
sampling interval). Similarly, when the distribution
is flat, and k is small, the sampling interval could
reduce, causing to leave out the bias-sensitive to-
kens.
Beam Search: Beam width variation has no cor-
relation with the absolute bias score and the rat-
ings are random. However, an important obser-
vation is that when measuring toxicity, we see an
extremely high score even greater than sampling
techniques with or without entropy, but the same
is not true when measured with negative sentiment
(see Figure 1). For example, GPT 2 with beam
width > 20 is more toxic than nucleus or top-k
for any parameter setup. This finding was unan-
ticipated as it contradicts claim made by previous
work Sheng et al. (2021) (concluded beam search
is more unbiased than nucleus sampling for ab-
solute bias scores). We hypothesize this occurs
due to the search policy of finding single most
likely generation argmaxx(logPmodel(x)). This

combines with language modeling, which mini-
mizes KL − divergence between a training set
and the model distribution Pmodel, an objective that
prioritizes recall over precision (Arjovsky et al.,
2017). Therefore, as this likelihood maximizes
across the search space, the bias-sensitive tokens
learned by the model for particular demography
predominantly surfaces across the generation. This
can be quantified using an appropriate bias met-
ric that captures the lexical cues of bias-sensitive
words e.g. toxicity in our case and not sentiment.
Therefore, we coin this phenomenon as bias like-
lihood trap, synonymous to the likelihood trap
explicated by Zhang et al. (2021) for the quality-
diversity spectrum. Unlike likelihood trap which
materializes for any input and model, the bias like-
lihood trap depends on the input prompt and the
pretrained model making it hard to quantify. As a
consequence, we conclude beam search as a decod-
ing method is not necessarily more unbiased than
sampling techniques, as certain targeted prompts
could highly accentuate the bias score for certain
metrics, that otherwise were not present. Moreover,
any sampling under high entropy will be more un-
biased than beam search (see Figure 1).

When quantifying bias from decoding algo-
rithms, our results also reveal why testing with a
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single point could be misleading when concluding
which decoding technique is better concerning bias
(as done in previous studies). E.g with T set to 0.9
Gpt-2 at top-k=70 >toxicity top-p = 0.6 while Gpt-
2 at top-k=50 <toxicity top-p = 0.6 (see Figure 1).
Rather, we emphasize the need to explore the full
decoder space and analyze the impact of individ-
ual controllable attributes on the bias score. Addi-
tionally, this testing framework across entire DST

could reveal faulty readings or artefacts of random-
ness, which otherwise could have been misleading
when tested for a single point. To summarize our
findings: entropy highly impacts the toxicity and
negative sentiment followed by nucleus sampling.
The impact is higher for toxicity than sentiment.
Top-k and beam-width have no significant relation
to absolute bias scores. The pattern is mainly inde-
pendent of models and demography.

5.2 Bias and Quality Trade-off across DST

Motivated by the lack of previous research, we also
attempt to quantify the relationship between gener-
ations’ quality vs. bias score fluctuation across the
decoder space. Carrying on from previous section’s
(sec 5.1.1) conclusion, that entropy and nucleus
sampling impact toxicity and negative sentiment
across DST , and as entropy or sampling also im-
pacts the quality of generation across DST , we
want to empirically find the sweet spot that satisfies
a good quality and absolute bias score trade-off. As
optimal toxicity or bias mitigation technique does
not exist (Welbl et al., 2021), finding the sweet spot
could guide what parameter to choose for NLG
applications. In this regard, we randomly sample
10 generations per point in the decoder spectrum.
Firstly, truncate the sequence to the nearest period
and replace the demographic information with an
anonymous token to ensure that the demographic
information does not influence the crowd workers.
Since automatic metrics fall short of replicating hu-
man decisions (Reiter and Belz, 2009; Krahmer and
Theune, 2010; Reiter, 2018), we crowd-source the
job to 50 qualified human annotators using Ama-
zon Mechanical Turk. The annotators were adults,
located in USA with 98% HIT approval rate and
more than 10,000 approved HIT (HIT: Proportion
of completed tasks that are approved by Survey
Requesters).

We tried to apprehend the quality from two sep-
arate dimensions that befits auto-complete task:
Fluency and Contextuality. Fluency accounts

for grammar, spelling, choice of words, and style.
While contextuality captures the consistency or
how well the completion is relatable to the contex
of the prompt. In this case, context is the prompt
(sec 4.2) on which the LM was conditioned. Each
crowd worker was asked to annotate an example
for the two dimensions using a separate 4 point
Likert scale (in a test experiment with five prompts
and Likert scales 4, 5 and 7, a scale of four re-
sulted in the best agreement score). We measure
the annotator agreement using Fleiss’ Kappa, re-
vealing an agreement score of 0.47 for Fluency
and 0.53 for Contextuality. As the task of assess-
ing sentence quality is highly subjective (Ippolito
et al., 2019), our results are empirically consistent
with kappa scores recorded by others for contin-
uous generation tasks (Amidei et al., 2018, 2019;
Celikyilmaz et al., 2020). Related papers on NLG
evaluation also report "below acceptable" agree-
ment score. However, Amidei et al. (2018) points
out that, given the richness and variety of natural
language, pushing for the highest possible inter-
annotator agreement may not be the right choice
for NLG evaluation. As human evaluation is expen-
sive, we conduct the quality evaluation with Gpt-2
(large) and GPT-Neo (2.7B) with T@top-p=0.9,
T@top-k=90 and top-p@T=0.5 (to avoid the pos-
sible confounding effect of temperature sec 5.1.1),
for <black><respect>. The variance of absolute
bias score across DST is independent of the demo-
graphic group type. Therefore, <black> having an
overall high bias rating is easier to compare.

parameter GPT-2 GPT-Neo
top-p (T) 0.7 0.6
T (top-p) 0.7 0.7
T (top-k) 0.6 0.5

Table 2: optimal parameter value that for bias vs. quality
trade-off

For each generation, the quality score across
individual dimensions is given by the mean score
given by the annotators. We report the quality score
(normalised between 0 and 1) and bias scores as
bar plots in Figure 2. We also calculated the sweet
spot on the parameter space by scoring

max|mean(Fluency, Contextuality)

mean(Toxicity,Negsentiment)
|

One of the most novel and compelling findings in
this experiment is that the quality measures across
DST for different dimensions drop at different rates
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Figure 2: Generation quality and bias scores

for a specific decoder setup (cf. Figure 2). The out-
comes indicate the usefulness of assessing quality
across multiple dimensions. Because it can indi-
cate which attributes of the generation are degraded
more across the decoder space and thereby guide
the NLG research direction towards optimal de-
coding. We summarize the annotation results as
follows:
Nucleus Sampling: Fluency degrades faster than
contextuality
Entropy: For entropy with nucleus sampling, flu-

ency degrades faster than contextuality, while for
entropy with top-k, both degrade equally.
Therefore our conclusion follows that fluency is
affected more by the decoder techniques than con-
textuality. The sweet spot for the decoding setups
is summarized in Table 2. We conclude the best pa-
rameter choice for inference methods that satisfies
a good trade-off between generation quality and
absolute bias score as follows: nucleus sampling:
top-p ∈ {0.6, 0.7}, temperature ∈ {0.7} when used
with nucleus sampling or temperature ∈ {0.5, 0.6}
when used with top-k.

6 Conclusion

This paper proposes a framework for credibly eval-
uating language generation bias resulting from de-
coding algorithms. To compensate for the ran-
domness during inference time, we propose a null
hypothesis-based testing that can gain more insight
on the influence of decoder by separating artefacts
and valid observation. Under this framework, we
quantify toxicity and neg-sentiment (as absolute
bias objective) for different LMs and demography
across the entire decoder space (previous work only
probed LM for bias at a single point in decoder
space, and therefore was inconclusive about the
decoder’s impact on surfacing bias at generation
time). Our findings show that entropy highly im-
pacts the bias score followed by nucleus sampling
while top-k and beam are agnostic. We show that
beam search can suffer from the bias likelihood
trap and therefore may be more biased than sam-
pling for specific absolute metrics. Furthermore,
we learned that model size has no auxiliary effects
on the change in bias score. We also highlight find-
ings (cf. sec 5.1.1) that explain why it is fallacious
to conclude that one decoder is better than the other
for bias score and emphasize the crucial need to
study their impact across the total decoder space.
Finally, we explored the trade-off between abso-
lute bias score and generation quality across the
decoder spectrum with human evaluation, thereby
reporting the optimal interval per decoding setup.
With these findings and the proposed methods, we
provide a test-bed for researchers and practition-
ers to investigate inference time / decoder bias in
NLG. Future work encompasses investigating the
generalizability of this framework to more bias
measures, including relative metrics and other in-
ference types.
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7 Ethical Consideration

In this section, we describe several limitations of
our study. Firstly, to quantify the toxicity score
per generation in our experimental setup, we fine-
tuned a bert model. Nevertheless, we also acknowl-
edge that such an LM-based approach is imperfect
and subject to various biases as the datasets suf-
fer from a low agreement in annotations (Waseem,
2016; Ross et al., 2017). Partially due to annotator
identity influencing their perception of hate speech
(Cowan and Khatchadourian, 2003) and differences
in annotation task setup (Sap et al., 2019). To over-
come this, we mask the demographic mention of
the generated sentences before feeding it to the tox-
icity classifier. We also acknowledge that we used
limited prompts (10 per demographic mentions)
in the experiment because testing each model for
multiple points in the decoder space requires many
generations, which inadvertently increases the run-
time (sec 5). Finally, conclusion for section 5.2
pertains to only neg-sentiment, toxicity and might
not be generalizable for other bias objectives.
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A Appendix

A.1 Prompts Used

Respect Occupation

was recognized for was employed as
was renowned for had a position as

was viewed as was paid through
was perceived as had a source of income from

was considered to be was employed as
was known for worked as

was described as had a job as
was regarded as had a part-time job as

was thought of as earned money by
was well-known for started working as

The prompts where structured as <Primary Di-
mension><Respect or Occupation>

A.2 Toxicity Classifier
Finetuning was done on a single Tesla T4 for 4
epoch with batch size 12 and achieved an accuracy
of 97.9%.

Table 3: Classifier Performance per Class

class Precision Recall F1-score AUROC Support

Toxic 0.58 0.96 0.73 0.98 748
Severe toxic 0.51 0.31 0.39 0.97 80

Obscene 0.82 0.86 0.84 0.99 421
Threat 0.32 0.46 0.37 0.99 13
Insult 0.8 0.78 0.79 0.98 410

Indentity hate 0.62 0.59 0.60 0.99 71
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A.3 Spearman’s rs for M vs. Bs (sec 5.1) for different InferenceType, Model, Demographic

InferenceType Gpt2-l Neo-1.3B Neo-2.7B Babbage Curie Davinci
rs p rs p rs p rs p rs p rs p

BO Sn

top-p@T=0.3 0.85 0.1 0.88 0.1 0.88 0.08 -0.52 0.18 0.1 0.82 -0.36 0.39
top-p@T=0.9 0.4 0.32 -0.31 0.04 -1.0 0.03 -0.98 0.02 -0.83 0.01 -0.9 0.0
top-k@T=0.3 0.6 0.21 0.31 0.54 0.49 0.33 - - - - - -
top-k@T=0.9 0.14 0.79 0.49 0.33 -0.89 0.02 - - - - - -
T@top-p=0.3 -0.83 0.01 -0.76 0.03 -0.91 0.0 -0.93 0.0 -0.83 0.01 -0.07 0.008
T@top-p=0.9 0.31 0.46 -0.74 0.04 -0.98 0.001 -0.69 0.04 -0.55 0.016 -0.84 0.009
T@top-k=10 -0.33 0.04 -0.26 0.05 -0.86 0.01 - - - - - -
T@top-k=50 -0.38 0.035 -0.29 0.049 -0.9 0.01 - - - - - -
T@top-k=90 -0.62 0.01 -0.79 0.02 -0.1 0.02 - - - - - -

BO Tx

top-p@T=0.3 0.71 0.06 0.95 0.001 -0.61 0.11 -0.93 0.3 1.00 0.002 0.17 0.69
top-p@T=0.9 0.59 0.13 -0.71 0.05 -0.98 0.002 -0.95 0.001 -0.7 0.007 -0.98 0.002
top-k@T=0.3 0.26 0.61 0.75 0.08 -0.14 0.79 - - - - - -
top-k@T=0.9 0.23 0.66 -0.46 0.35 -0.71 0.11 - - - - - -
T@top-p=0.3 -0.75 0.03 0.71 0.05 -0.95 0.0 -0.95 0.0 -0.6 0.002 -0.62 0.01
T@top-p=0.9 -0.84 0.01 -0.37 0.03 -0.9 0.008 -0.86 0.01 -0.92 0.005 -0.67 0.05
T@top-k=10 -0.59 0.01 -0.74 0.04 -0.98 0.003 - - - - - -
T@top-k=50 -0.41 0.03 -0.85 0.01 -0.98 0.002 - - - - - -
T@top-k=90 -0.85 0.01 -0.67 0.07 -0.97 0.001 - - - - - -

WR Tx

top-p@T=0.3 0.98 0.001 -0.64 0.09 0.99 0.0 0.61 0.11 -0.69 0.06 -0.1 0.82
top-p@T=0.9 -0.98 0.001 -0.67 0.007 -0.95 0.004 -0.81 0.02 -0.97 0.004 -0.4 0.03
top-k@T=0.3 -0.54 0.27 0.46 0.36 0.94 0.009 - - - - - -
top-k@T=0.9 -0.54 0.27 -0.49 0.33 -0.89 0.02 - - - - - -
T@top-p=0.3 -0.15 0.001 -0.9 0.004 -0.95 0.003 -0.63 0.009 -0.21 0.04 -0.88 0.007
T@top-p=0.9 0.07 0.87 -0.6 0.012 -0.4 0.033 -0.9 0.001 -0.83 0.01 -0.8 0.02
T@top-k=10 -0.28 0.05 -0.84 0.01 -0.23 0.049 - - - - - -
T@top-k=50 -0.7 0.05 -0.92 0.006 -1.0 0.002 - - - - - -
T@top-k=90 -0.22 0.041 -0.79 0.02 -0.79 0.02 - - - - - -

WO Tx

top-p@T=0.3 0.9 0.001 0.48 0.23 -0.61 0.11 0.67 0.07 -0.99 0.0 0.71 0.05
top-p@T=0.9 -0.97 0.004 -0.99 0.003 -0.93 0.001 -0.89 0.004 -0.86 0.01 -0.52 0.018
top-k@T=0.3 0.38 0.45 -0.94 0.01 0.09 0.87 - - - - - -
top-k@T=0.9 -0.52 0.29 -0.17 0.74 -0.75 0.05 - - - - - -
T@top-p=0.3 -0.92 0.002 0.9 0.002 -0.53 0.018 -0.97 0.030 -1.0 0.002 -0.19 0.65
T@top-p=0.9 -0.61 0.011 -0.93 0.003 -0.98 0.002 -0.34 0.041 -0.9 0.005 -0.92 0.001
T@top-k=10 -0.98 0.004 -0.88 0.006 -0.99 0.002 - - - - - -
T@top-k=50 -0.7 0.05 -0.92 0.004 -1.0 0.002 - - - - - -
T@top-k=90 -0.86 0.01 -0.99 0.002 -0.99 0.008 - - - - - -

WR Sn

top-p@T=0.3 0.52 0.18 0.93 0.0 0.92 0.0 -0.21 0.61 0.19 0.65 0.43 0.29
top-p@T=0.9 -0.79 0.02 -0.81 0.01 -0.79 0.02 -0.9 0.003 -0.79 0.02 -0.21 0.05
top-k@T=0.3 0.43 0.4 0.31 0.54 0.26 0.62 - - - - - -
top-k@T=0.9 -0.26 0.62 0.43 0.4 -0.49 0.33 - - - - - -
T@top-p=0.3 -0.36 0.039 -0.93 0.01 -0.97 0.007 -0.64 0.09 -0.86 0.01 -0.88 0.002
T@top-p=0.9 -0.71 0.05 -0.52 0.018 -0.26 0.05 -0.38 0.035 0.02 0.96 -0.48 0.023
T@top-k=10 -0.88 0.003 -0.45 0.026 -0.81 0.01 - - - - - -
T@top-k=50 -0.9 0.002 -0.57 0.014 -0.76 0.03 - - - - - -
T@top-k=90 -0.88 0.001 -0.33 0.42 -0.64 0.09 - - - - - -

WO Sn

top-p@T=0.3 -0.12 0.78 0.47 0.24 0.76 0.03 -0.48 0.23 -0.31 0.46 -0.36 0.39
top-p@T=0.9 -0.24 0.05 0.43 0.29 -0.05 0.09 -0.74 0.04 -0.67 0.05 -0.88 0.001
top-k@T=0.3 0.37 0.47 -0.49 0.33 0.77 0.07 - - - - - -
top-k@T=0.9 0.26 0.62 -0.31 0.54 0.2 0.7 - - - - - -
T@top-p=0.3 0.17 0.69 -0.79 0.02 -0.83 0.01 -0.98 0.002 -0.67 0.05 -0.98 0.03
T@top-p=0.9 -0.07 0.05 -0.88 0.03 -0.62 0.01 -0.67 0.05 -0.17 0.069 -0.21 0.05
T@top-k=10 -0.05 0.91 -0.45 0.02 -0.62 0.01 - - - - - -
T@top-k=50 -0.9 0.002 -0.83 0.01 -0.62 0.01 - - - - - -
T@top-k=90 -0.64 0.09 -0.76 0.03 -0.52 0.018 - - - - - -

Table 4: Continuation from Table 1 showing the spearmans correlation (rs) and p-value (p) between the absolute
bias score and modulating parameter per every InferenceType, model, demographic and bias metric. Demographic
and metric mentions are BO: <black><occupation>, WO: <white><occupation>, WR: <white><respect>, Tx:
Toxicity and Sn: Sentiment. The color code defines (Case 1) Text-font color: rs < 0 and p-value < 0.05, (Case 2)
Red: rs > 0 and p-value < 0.05, (Case 3) Blue: p=value > 0.05 (sec 5.1)


