@inproceedings{zhao-etal-2022-polarity,
title = "From Polarity to Intensity: Mining Morality from Semantic Space",
author = "Zhao, Chunxu and
Liu, Pengyuan and
Yu, Dong",
editor = "Calzolari, Nicoletta and
Huang, Chu-Ren and
Kim, Hansaem and
Pustejovsky, James and
Wanner, Leo and
Choi, Key-Sun and
Ryu, Pum-Mo and
Chen, Hsin-Hsi and
Donatelli, Lucia and
Ji, Heng and
Kurohashi, Sadao and
Paggio, Patrizia and
Xue, Nianwen and
Kim, Seokhwan and
Hahm, Younggyun and
He, Zhong and
Lee, Tony Kyungil and
Santus, Enrico and
Bond, Francis and
Na, Seung-Hoon",
booktitle = "Proceedings of the 29th International Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Gyeongju, Republic of Korea",
publisher = "International Committee on Computational Linguistics",
url = "https://preview.aclanthology.org/fix-sig-urls/2022.coling-1.107/",
pages = "1250--1262",
abstract = "Most works on computational morality focus on moral polarity recognition, i.e., distinguishing right from wrong. However, a discrete polarity label is not informative enough to reflect morality as it does not contain any degree or intensity information. Existing approaches to compute moral intensity are limited to word-level measurement and heavily rely on human labelling. In this paper, we propose MoralScore, a weakly-supervised framework that can automatically measure moral intensity from text. It only needs moral polarity labels, which are more robust and easier to acquire. Besides, the framework can capture latent moral information not only from words but also from sentence-level semantics which can provide a more comprehensive measurement. To evaluate the performance of our method, we introduce a set of evaluation metrics and conduct extensive experiments. Results show that our method achieves good performance on both automatic and human evaluations."
}
Markdown (Informal)
[From Polarity to Intensity: Mining Morality from Semantic Space](https://preview.aclanthology.org/fix-sig-urls/2022.coling-1.107/) (Zhao et al., COLING 2022)
ACL