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Abstract

Deep prompt tuning (DPT) has gained great
success in most natural language process-
ing (NLP) tasks. However, it is not well-
investigated in dense retrieval where fine-
tuning (FT) still dominates. When deploying
multiple retrieval tasks using the same back-
bone model (e.g., RoBERTa), FT-based meth-
ods are unfriendly in terms of deployment cost:
each new retrieval model needs to repeatedly
deploy the backbone model without reuse. To
reduce the deployment cost in such a scenario,
this work investigates applying DPT in dense
retrieval. The challenge is that directly apply-
ing DPT in dense retrieval largely underper-
forms FT methods. To compensate for the per-
formance drop, we propose two model-agnostic
and task-agnostic strategies for DPT-based re-
trievers, namely retrieval-oriented intermediate
pretraining and unified negative mining, as a
general approach that could be compatible with
any pre-trained language model and retrieval
task. The experimental results 1 show that the
proposed method (called DPTDR) outperforms
previous state-of-the-art models on both MS-
MARCO and Natural Questions. We also con-
duct ablation studies to examine the effective-
ness of each strategy in DPTDR. We believe
this work facilitates the industry, as it saves
enormous efforts and costs of deployment and
increases the utility of computing resources.

1 Introduction

Fine-tuning (FT) has been a de facto approach for
effective dense passage retrieval (Karpukhin et al.,
2020; Xiong et al., 2020) based on pre-trained lan-
guage models (PLM). However, FT is unfriendly
for industrial deployment in multi-task scenarios.
Imaging for cloud service providers or infrastruc-
ture teams of search companies, each retrieval
model (w.r.t., an individual task) necessarily re-
deploys a backbone model since the weights of

1Our code is available at https://github.com/
tangzhy/DPTDR

the backbone model in each task are fine-tuned
and therefore slightly different. That dramatically
increases hardware costs and inefficiency.

Recently, prompt tuning (PT) (Liu et al., 2021a)
is a lightweight alternative to FT, which does not
need storing a full copy of the backbone model
for each task. One variant of PT, namely Deep
Prompt Tuning (DPT; Li and Liang, 2021; Liu et al.,
2021b), exhibits comparable performances with
FT in various NLP tasks. DPT enjoys parameter-
efficient(Houlsby et al., 2019) characteristics, of
which the resulting prompts are light-weighted and
can be easily passed to an online PLM service, thus
overcoming the above challenge of FT. This paper
asks: whether can we replace FT by DPT with com-
parable performance to SOTA FT methods in dense
passage retrieval? With comparable performance,
DPT is much more friendly in deployment than FT.

DPT usually freezes weights in the backbone
models and alternatively trains deep prompts in-
serted; the latter has much fewer parameters than
the former. However, freezing most weights in
DPT hinders its adaptability and therefore possi-
bly harms performance. Experimental results in
Sec. 4.2.2 also demonstrate directly applying DPT
in dense retrieval largely underperforms FT meth-
ods.

To make DPT comparable to FT in dense re-
trieval, a natural solution is retrieval-oriented inter-
mediate pretraining (RIP), which warms up the text
representation via contrastive learning. Though it
is not a novel idea(Lee et al., 2019; Gao and Callan,
2021b; Izacard et al., 2021), there exist two dif-
ferent pretraining ways tailored for DPT-based re-
trievers. One is to pre-train deep prompts while
freezing the PLM backbone and use the pre-trained
prompts to initialize a DPT retriever. The other is
to pre-train a PLM directly and initialize a DPT
retriever using the pre-trained PLM; in contrast to
prior works(Gao and Callan, 2021b), we intend to
allow any PLM easily pre-trained for DPT so that

https://github.com/tangzhy/DPTDR
https://github.com/tangzhy/DPTDR
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users may employ their own PLMs, and thus we
deliberately remove the workload to modify any
model structures. Surprisingly, empirical findings
in Sec. 4.4 show that this choice yields better per-
formance than carefully modified PLMs(Gao and
Callan, 2021b). Furthermore, we propose a unified
negative mining (UNM) to merge retrieved nega-
tives from many retrievers including BM25 and
dense retrievers, in order to provide diverse and
hard negatives for DPT training.

By incorporating RIP and UNM, we implement
a Deep Prompt Tuning method in Dense Retrieval
tasks, called DPTDR. The experimental results
show that DPTDR outperforms previous state-of-
the-art models on both MS-MARCO and Natural
Questions. We also conduct extensive experiments
and find that: i) when combined with RIP and
UNM, DPT is able to obtain comparable perfor-
mance with FT in dense retrieval and exhibits in-
sensitivity to prompt length, and ii) both RIP and
UNM are effective in improving the performance.
The contributions of this paper can be summarized
as follows:

• To our best knowledge, this is the first work
to apply DPT in dense retrieval. We bring for-
ward two essential strategies, namely retrieval-
oriented intermediate pretraining and unified
negative mining, allowing DPT to match
FT’s performance and be compatible with any
PLM.

• Experiments show that DPTDR outperforms
previous state-of-the-art models on MS-
MARCO and Natural Questions and examine
the effectiveness of the above strategies.

• We believe this work facilitates the industry,
as it saves enormous efforts and costs of de-
ployment and increases the utility of comput-
ing resources.

2 Related Work

2.1 Deep Prompt Tuning
DPT originates from prompting and prompt tun-
ing (Liu et al., 2021a). Given some discrete or con-
tinuous prompts, PLMs like GPT-3(Brown et al.,
2020) can achieve impressive zero-shot and few-
shot performances for knowledge-intensive tasks.
However, studies find that prompt tuning fails to
perform well for moderate-size models (Liu et al.,
2021b). Thus, DPT(Li and Liang, 2021; Liu et al.,

2021b) is proposed by inserting prompts at deep
layers to steer PLMs towards desired directions
more capably. It obtains comparable performance
to FT across a range of NLP tasks. DPTDR is
mainly related to DPT, focusing on dense passage
retrieval instead of NLP. There also exist works
of pretraining prompts for prompt tuning(Gu et al.,
2021), which shows effectiveness in few-shot learn-
ing using billion-size models, as we will explore as
well in the context of DPT.

2.2 Dense Retrieval

Pretraining We have witnessed a series of unsu-
pervised pretraining works proposed for dense re-
trieval, such as ICT, BFS, WLP, and independent
cropping (Lee et al., 2019; Chang et al., 2020; Izac-
ard et al., 2021). Following works also try to pre-
train retriever and reader jointly for question an-
swering (Guu et al., 2020). coCondenser (Gao and
Callan, 2021b) follows a contrastive learning frame-
work using Condenser structure (Gao and Callan,
2021a) by adding an explicit decoder to learn rep-
resentations better. There are also semi-supervised
and weakly-supervised works. DPR-PAQ (Oğuz
et al., 2021) pre-trains a PLM using 65-million-size
synthetic QA pairs on the target corpus. GTR (Ni
et al., 2021) pre-trains T5 (Raffel et al., 2019) on
2-billion-size community QA pairs from T5-base
to T5-xxlarge. We follow unsupervised contrastive
learning as our pretraining strategy for DPTDR.
However, we aim to ensure compatibility with any
PLM, thus resulting in different sample building
processes and model structure choices.

Negative mining DPR (Karpukhin et al., 2020)
proposes to train retrievers using BM25 negatives.
ANCE (Xiong et al., 2020) extends that by min-
ing negatives periodically from previously-trained
dense retrievers. RocketQA and RocketQAv2 (Qu
et al., 2021; Ren et al., 2021) introduce the idea
of denoised negative sampling by selecting nega-
tives with high confidence scored by a re-ranker.
DPTDR unifies the above into a general negative
mining strategy.

3 Methodology

In this section, we first formalize the application
of DPT in dense retrieval. We then describe the
two strategies of RIP and UNM for DPT-based
retrievers.
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Figure 1: The framework of DPTDR. We first perform RIP which results in a PLM (the blue blocks) that can be
used as the backbone for DPT training and deployed once as online PLM services. Then we train deep prompts (i.e.,
DPT) for different retrieval tasks such as WebQA, WikiQA, and MedicalQA (the pink blocks), during which we
may employ UNM to improve performances. For inference, we can send tokenized input, together with trained
prompts of their corresponding task, to online PLM services to get dense vectors.

3.1 DPT in Dense Retrieval
Let C be a corpus consisting N passages, denoted
by p1, p2, ..., pN . Given a question q, the task of
dense retrieval is to find a passage pi that is consid-
ered relevant to the question.

The dual-encoder Normally, a dual-encoder is
applied. First its passage encoder Ep(·) embeds a
passage p to a d-dimensional dense vector. Then a
vector search index (Johnson et al., 2019) of pas-
sages is built for retrieval. At inference time, the
question encoder Eq(·) embeds the question q to a
d-dimensional dense vector, and k passages closet
to the question based on the vector similarity will
be retrieved. In practice, the similarity score is
computed as the inner product:

s(q, p) = Eq(q) · Ep(p). (1)

For PLM-based dual-encoder, we usually take
the representation at the first token (e.g., [CLS]
symbol in BERT (Devlin et al., 2018)) as the output
dense vector.

Deep prompt tuning We then apply DPT in the
PLM-based dual-encoder, as illustrated in the left
part of Figure 1. To prepend multi-layer prompts
for the dual-encoder, we initialize a trainable prefix
matrix M of dimension l × d for each layer of the
PLM, where l is the length of the prompt and d is
the hidden size of the PLM. Since the prompt re-
sides at the deep layers of PLM, it has a full capac-
ity to steer the PLM towards the desired direction
and output meaningful dense vector for questions
and passages. Note that a verbalizer (Schick and
Schütze, 2020) plays a vital role in mapping words
to labels in canonical prompt tuning. However, we
remove it in dense retrieval since the output dense

vector is what we need. Let E′
p as the prompted

passage encoder and E′
q as the prompted question

encoder, and the similarity score is computed:

s′(q, p) = E′
q(q) · E′

p(p). (2)

Training The objective of the training is to learn
dense vectors so that the similarity between rele-
vant pairs of questions and passages ranks higher
than irrelevant ones. Given a pair of question q
and positive passage pi, along with n negative pas-
sages, we optimize the loss function as the negative
log-likelihood of the positive passage:

L(qi, p
+
i , {p

−
i,j}

n
j=1) =

− log
es

′(qi,p
+
i )

es
′(qi,p

+
i ) +

∑n
j=1 e

s′(qi,p
−
i,j)

. (3)

Generating negative passages is critical for the
performance, and we will explain it in Sec. 3.3.
During training, we freeze parameters of the back-
bone PLM and only update the deep prompts,
where approximately 0.1%-0.4% parameters of a
PLM get trained.

Inference As illustrated in the right part of Fig-
ure 1, since the backbone PLM is frozen, it is pos-
sible to deploy it ahead as online PLM services and
then pass the trained prompts as pre-computed key
values together with tokenized inputs to get dense
vectors. It is at the core of how we save efforts
and costs of deployment and increase the utility of
computing resources. In practice, the cloud service
providers or infrastructure teams of search com-
panies are able to focus on the PLM as a central
service, while users can quickly train deep prompts
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for different retrieval tasks and obtain efficient and
compelling retrieval performances without any de-
ployment.

Although DPT brings in many advantages, it is
worth noting that it does not accelerate the infer-
ence speed because the forward computation is not
reduced but increased slightly.

3.2 Retrieval-oriented Intermediate
Pretraining (RIP) for DPT

The goal of RIP is to either pre-train deep prompts
or PLMs using contrastive learning. We first de-
scribe the task as follows. Let C denote a corpus
consisting N passages. For a passage pi, we split
it into l sentences, denoted by s1i , ..., s

l
i. Given a

sentence sji , the task of pretraining is to distinguish
its context sentence sj

′

i from sentences of other pas-
sages slk, where k ̸= i. Formally, we randomly
select a pair of sentences from each passage as
context sentences to form a batch of training data
B = {s1i , s2i }mi=1, where m is the batch size. Then
we define the contrastive loss for sji over the batch
as:

Lc(s
j
i ) = − log

es(s
1
i ,s

2
i )∑m

k=1

∑2
l=1 ij ̸=kle

s(sji ,s
l
k)
. (4)

In contrast to prior works(Gao and Callan,
2021b; Izacard et al., 2021), we directly sample
sentences as opposed to text spans. Since sam-
pling text spans is a non-trivial technique where
factors such as the probability of short sentences
and how to keep the spans linguistically meaning-
ful can have a complicated effect on the pretraining,
we remove this complexity in our approach. We
also conduct an experiment observing sentences
work even better than text spans on MS-MARCO
corpus (Sec. 4.4).

Under the contrastive learning task, there exist
two pretraining ways tailored for DPT, depending
on the pre-trained objects (i.e., the deep prompts or
the PLM backbone).

Pre-train deep prompts One is to pre-train deep
prompts with a vanilla PLM. Later we initialize
a DPT-based retriever using the pre-trained deep
prompts and the vanilla PLM. However, experi-
ments in Sec. 4.4 show that it suffers from catas-
trophic forgetting and exhibits no superior perfor-
mance to randomly initialized prompts.

Pre-train the PLM The other is to pre-train a
PLM, and then we initialize a DPT-based retriever

using randomly-initialized deep prompts and the
pre-trained PLM. Notice that we intend to allow
any PLM to be easily pre-trained for DPT so that
users may employ their own PLMs. Thus we con-
trast prior works such as coCondenser(Gao and
Callan, 2021b), a state-of-the-art model structure
in contrastive pretraining, by removing the work-
load to modify any model structures. Surprisingly,
it yields better performance than coCondenser in
Table 8. Therefore, we refer RIP strategy as pre-
training of PLMs for the rest.

For any PLM, We also intend to remain its origi-
nal self-supervised tasks, such as masked language
modeling(MLM; Devlin et al., 2018; Sun et al.,
2019), denoted as Ls. Therefore, the final loss of
pretraining over the batch is:

L =
1

2m

m∑
i=1

2∑
j=1

Ls(s
j
i ) + Lc(s

j
i ). (5)

After pretraining, the resulting model can be
deployed once as online services and taken as the
backbone model for DPT training.

3.3 Unified Negative Mining (UNM)
We also develop unified negative mining for DPT,
as interpreted as "Multiple Retrievers & Hybrid
Sampling." "Multiple Retrievers" is to incorporate
negatives from as many retrievers as we can. We
use a BM25 retriever as the initial retriever and
train a DPT-based retriever using BM25 negatives.
Later we treated retrieved negatives from the BM25
retriever and the first DPT-based retriever as un-
denoised hard negatives. Users are allowed to
introduce any other retrievers if possible. "Hy-
brid Sampling" is to select denoised hard negatives
from un-denoised hard negatives retrieved by the
above multiple retrievers. We borrow an existing
re-ranker released by RocketQA (Qu et al., 2021)
and select those negatives with high confidence.
For training the final DPT-based retriever, we mix
the denoised hard negatives, un-denoised hard neg-
atives, and easy negatives from in-batch or cross-
batch training.

We believe unified negative mining is critical
for the performance of DPT-based retrievers, as it
provides negatives of high quality and diversity.

4 Experiments

4.1 Experimental Setting
Datasets and metrics We experiment with two
popular dense retrieval datasets, including MS-
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Table 1: The statistics of MS-MARCO and Natural Questions.

Dataset #q in train #q in dev #q in test #passages

MS-MARCO 502,939 6,980 6,837 8,841,823
Natural Questions 58,812 6,515 3,610 21,015,324

MARCO (Bajaj et al., 2016) and Natural Ques-
tions(NQ; Karpukhin et al., 2020). The statistics
of the datasets are listed in Table 1. MS-MARCO
is constructed from Bing’s search query logs and
web documents retrieved by Bing. Natural Ques-
tion contains questions from Google Search. For
evaluation, we report official metrics MRR@10,
RECALL@1000 for MS-MARCO, and RECALL
at 5, 20, and 100 for NQ. All models are trained on
a single server with 8 NVIDIA Tesla A100 GPUs.

Settings in DPT We use RoBERTa-large-size
models as the backbone for DPT training. Hyper-
parameters are explored as below.

• Learning rate We search for 1e-2, 5e-3, 7e-
3, 5e-4, 5e-5, 5e-6 with prompts’ length of
32, where 7e-3 performs relatively better than
others and is set for the main experiment.

• Training epochs For training epochs, we
search for 3, 6, 10 with a learning rate 7e-
3 on MS-MARCO, where 10 performs best
and is set for the main experiment. We also set
training epochs as 60 for NQ for acceptable
time cost.

• Prompt length We search for 8, 16, 32, 64,
128, as is discussed in Sec. 4.3. We use 128
for the main experiment.

• Reparametrization We also conduct exper-
iments for prompts with or without MLP
reparametrization, as is discussed in Sec. 4.3.
We use non-reparametrization for the main
experiment.

We follow coCondenser (Gao and Callan, 2021b)
for other hyper-parameters (e.g., parameter sharing,
batch size, warm-up ratio, and mixed-precision
training).

Settings in RIP We choose to pre-train vanilla
RoBERTa-large for RIP, whose model size appears
more common for DPT (Li and Liang, 2021; Liu
et al., 2021b) and is consistent with the above
DPT training. We remain RoBERTa’s original
self-supervised task (MLM; Liu et al., 2019). To

compare our approach with coCondenser (Gao and
Callan, 2021b), we also pre-train a coCondesner
RoBERTa-large. Since coCondenser modifies the
PLM by adding a carefully designed Condenser
structure, we follow their structural setting using
an equal split, 12 early layers, and 12 late layers.
We split the passages into sentences on both MS-
MARCO and NQ Wikipedia as the training corpus.
The models are trained using AdamW optimizer
with a learning rate 1e-4, weight decay of 0.01, lin-
ear learning rate decay, and a batch size of 2K. We
train 8 epochs for MS-MARCO and 4 epochs for
NQ Wikipedia.

Settings in UNM For un-denoised hard nega-
tives, we randomly select 30 out of the top 200
retrieved negatives from multiple retrievers. For
denoised hard negatives, we select negatives with
a score less than 0.1 output by an existing re-
ranker (Qu et al., 2021).

Baselines We use the following baselines. co-
Condenser (Gao and Callan, 2021b) designs a
complicated pretraining model structure on top of
a vanilla PLM. DPR-PAQ (Oğuz et al., 2021)
pre-trains a RoBERTa-large using 65-million-size
synthetic QA pairs. Since the data is created by a
model trained on NQ (Kwiatkowski et al., 2019)
and Trivia QA (Joshi et al., 2017), it can be con-
sidered a semi-supervised method. It is also com-
parable to us as both of us use RoBERTa-large.
GTR (Ni et al., 2021) pre-trains T5 encoder (Raf-
fel et al., 2019) using 2-billion size community QA
pairs. It also provides results across all model size
ranges from T5-base to T5-xxlarge. The massive
training corpus and model size establish a SOTA
performance.

We also include some standard baselines includ-
ing sparse retrieval systems (BM25, DeepCT (Dai
and Callan, 2019), DocT5Query (Nogueira et al.,
2019), and GAR (Mao et al., 2020)) and dense
retrieval systems ( DPR (Karpukhin et al., 2020),
ANCE (Xiong et al., 2020), ME-BERT (Luan et al.,
2020), and RocketQA (Qu et al., 2021)). We also
include RocketQAv2 (Ren et al., 2021) as it jointly
trains the retriever and reranker using hybrid sam-
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Table 2: Passage retrieval results on MS-MARCO Dev and Natural Questions Test. We copy the results from the
original papers. The best and second-best results are in bold and underlined fonts respectively.

Methods PLM MS-MARCO Dev Natural Questions Test
MRR@10 R@1000 R@5 R@20 R@100

BM25 - 18.7 85.7 - 59.1 73.7
DeepCT(Dai and Callan, 2019) - 24.3 91.0 - - -
docT5query(Nogueira et al., 2019) - 27.7 94.7 - - -
GAR(Mao et al., 2020) - - - - 74.4 85.3
DPR(Karpukhin et al., 2020) BERT-base - - - 78.4 85.4
ANCE(Xiong et al., 2020) RoBERTa-base 33.0 95.9 - 81.9 87.5
ME-BERT(Luan et al., 2020) BERT-large 34.3 - - - -
RocketQA(Qu et al., 2021) ERNIE-base 37.0 97.9 74.0 82.7 88.5
RocketQAv2(Ren et al., 2021) ERNIE-base 38.8 98.1 75.1 83.7 89.0
coCondenser(Gao and Callan, 2021b) Condenser 38.2 98.4 75.8 84.3 89.0
DPR-PAQ(Oğuz et al., 2021) RoBERTa-large 34.0 - 76.9 84.7 89.2

GTR(Ni et al., 2021)

T5-base 36.6 98.3 - - -
T5-large 37.9 99.1 - - -
T5-xlarge 38.5 98.9 - - -
T5-xxlarge 38.8 99.0 - - -

DPTDR RoBERTa-large 39.1 98.9 77.5 85.1 89.4

pled negatives.

4.2 Experimental Results

4.2.1 Comparison with Existing Methods

Table 2 shows the dev set performance for MS-
MARCO and test set performance for NQ. We can
generally see that DPTDR outperforms all the
baselines in terms of MRR@10 on MS-MARCO
and R@5 on NQ and set a new SOTA in the two
datasets.

We first compare DPTDR with DPR-PAQ. DPR-
PAQ achieves competitive performance on NQ. It
should be expected since it involves large semi-
supervised pretraining on the NQ dataset. Nonethe-
less, DPTDR still outperforms DPR-PAQ by 0.6
points in R@5 although we use an unsupervised
pretraining model. When we study the performance
on MS-MARCO, DPR-PAQ fails to perform as con-
sistently well as on NQ, which could result from
domain mismatch of pretraining, and DPTDR out-
performs it by a significant margin of 5.1 points in
MRR@10.

Secondly, we compare DPTDR with GTR. GTR
pre-trains T5 using 2-billion-size community QA
pairs as a weakly-supervised pretraining. For such
a scale of training corpus, we would expect that
larger models consume the corpus more thoroughly
and perform better on downstream tasks. As a re-
sult, GTR consistently boosts the performance on
MS-MARCO with the model size increasing. How-

ever, DPTDR still outperforms GTR T5-xxlarge,
a 10-billion-size model, and outperforms GTR
T5-large by a noticeable margin of 1.2 points in
MRR@10. It shows that model size is a positive
contributor but not an absolute dominator for dense
retrieval. Appropriate pretraining and negative min-
ing can help improve performances using much
more affordable computing resources. At the same
time, note that DPT shall play a critical role in
achieving comparable performance to FT with the
help of RIP and UNM. We will validate this in
Sec. 4.2.2.

Finally, we would like to compare DPTDR with
coCondenser. Since coCondenser employs a pre-
trained Condenser model(Gao and Callan, 2021a),
we will conduct a more fair comparison in Sec. 4.4.

4.2.2 Comparing FT with and without RIP
and UNM Strategies

To answer the raised question: whether can we
replace FT by DPT with comparable performance
to SOTA FT methods in dense passage retrieval?
We conduct FT by following hyper-parameters of
coCondenser (Gao and Callan, 2021b).

Comparison w/o RIP&UNM As a starter, we
examine the effectiveness of directly replacing FT
with DPT, which means we conduct training with-
out RIP and UNM strategies. Thus we use the
vanilla RoBERTa-large as the backbone model and
BM25 negatives. As is shown in Table 3. We notice
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Table 3: The comparison between FT and DPT with and without RIP and UNM strategies on MS-MARCO Dev and
Natural Questions Test. DPT with RIP&UNM is the proposed method, a.k.a, ‘DPTDR’.

MS-MARCO Dev Natural Questions Test
MRR@10 R@1000 R@5 R@20 R@100

w/o RIP&UNM
FT 34.9 97.2 68.8 80.0 86.4
DPT 32.7 ( 2.2 ↓) 96.3 (0.9 ↓) 66.5 ( 2.3 ↓) 78.5 ( 1.5 ↓) 85.5 ( 0.9 ↓)

w/ RIP&UNM
FT 39.4 99.0 77.0 85.4 89.2
DPT 39.1 ( 0.3 ↓) 98.9 ( 0.1 ↓) 77.5 ( 0.5 ↑) 85.1 ( 0.3 ↓) 89.4 ( 0.2 ↑)

that DPT largely underperforms FT in this setting
with a noticeable margin of 2.2 points in MRR@10
on MS-MARCO and 2.3 points in R@5 on NQ.
It indicates that freezing most weights in DPT ac-
tually hinders its adaptability and therefore harms
performance.

Comparison w/ RIP&UNM Next, we examine
the performance of FT and DPT with RIP and
UNM strategies. We use the RIP RoBERTa-large
as the backbone model and UNM negatives. Ta-
ble 3 shows that i) RIP and UNM improve the
performances of both FT and DPT and ii) most
importantly, DPT is comparable to FT under this
setting, where the gap shrinks to only 0.3 points in
MRR@10 on MS-MARCO, and DPT even slightly
outperforms FT by 0.5 points in R@5 on NQ. As
a result, we can see that when combined with RIP
and UNM, DPT can obtain comparable perfor-
mance with FT in dense retrieval.

4.3 Analysis on DPT

Sensitivity on prompt length We also seek to
understand how prompt length affects the perfor-
mance of DPT-based retrievers. From Table 4, we
observe that the performance of prompt length of
8 already achieves a strong MRR@10 at 38.6 on
MS-MARCO. When we increase the length to 128,
it makes the most robust performance of MRR@10
at 39.1. The longer prompt means more trainable
parameters, which obtains more power to steer
PLMs. However, we also want to point out that
the DPT retriever exhibits insensitivity to prompt
length since the performances are competitive over-
all across various lengths. Therefore, we choose 32
as the default prompt length along with other hyper-
parameters in the main experiment for the rest of
the ablation studies on MS-MARCO to accelerate
the training.

Impact of reparameterization Reparametriza-
tion plays an important role in DPT. Li and Liang,

Table 4: Sensitivity of prompt length on MS-MARCO
Dev.

Prompt Length MRR@10 R@1000

8 38.6 98.9
16 38.6 99.0
32 38.7 98.9
64 38.5 98.9
128 39.1 98.9

2021 point out that MLP reparametrization results
in more stable and compelling performances, while
Liu et al., 2021b find it still depends on differ-
ent tasks. In dense retrieval, we aim to determine
whether it has a positive effect. Table 5 presents
the results on MS-MARCO. We observe that MLP
reparametrization results in a performance drop in
MRR@10 on MS-MARCO. Since MLP breaks the
independence of inter-layer prompts, we conjec-
ture this brings optimization difficulty for dense
retrieval.

Table 5: Ablations of reparamerization on MS-MARCO
Dev.

Reparamerization MRR@10 R@1000
embedding 38.7 98.9
mlp 38.0 99.0

4.4 Analysis on RIP

Whether to pre-train deep prompts or not? We
try to examine whether pre-trained deep prompts
could improve the performance of DPT-based re-
trievers. We use BERT-base as our backbone model
and pre-train deep prompts of length 32 without
reparameterization. The pretraining tasks and cor-
pus are exactly the same as Sec. 3.2. We ini-
tialize DPT-based retrievers using pre-trained and
randomly-initialized prompts. As is shown in Ta-
ble 6, the pre-trained prompts do not boost the
performance over randomly initialized prompts on
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MS-MARCO. It reveals that the deep prompts may
easily suffer from catastrophic forgetting.

Table 6: Ablations of prompt initialization on MS-
MARCO Dev.

Prompt Initialization MRR@10 R@1000
Random 32.4 95.5
Pre-trained 32.4 95.5

RIP on text spans or sentences We also explore
pretraining using randomly-sampled sentences ver-
sus randomly-sampled text spans. Since coCon-
denser(Gao and Callan, 2021b) releases their pre-
trained model using randomly-sampled text spans,
we directly use their model to examine the zero-
shot performance. For sampling sentences, we
use the same PLM and hyper-parameters based on
coCondenser code2 except changing the training
corpus consisting of randomly-sampled sentences.
Table 7 presents the zero-shot performance on MS-
MARCO. The pretraining using sentences works
better than the one using text spans. This is might
be owing to that text-spans do not consider the
(starting and ending) borders of natural sentences
and therefore break their completeness in seman-
tics.

Table 7: Zero-shot performance of coCondenser with
different sampling granularity (i.e., sentences or spans)
on MS-MARCO Dev.

Unit MRR@10 R@1000

Spans Gao and Callan (2021b) 11.1 78.2
Sentences 15.4 87.2

RIP’s effectiveness and comparison with co-
Condenser We also try to examine the effec-
tiveness of RIP strategy and compare it with
coCondenser (Gao and Callan, 2021b). Con-
cretely, we take vanilla RoBERTa-large, coCon-
denser RoBERTa-large, and RIP RoBERTa-large
as the backbone model for DPT training under
the same setting. Table 8 presents their results
in both zero-shot and full-shot settings on MS-
MARCO. For vanilla RoBERTa-large, it performs
extremely poorly in zero-shot experiments, and
with no surprise, it performs worst in full-shot
experiments among the three PLMs. For co-
Condenser RoBERTa-large, it achieves a notice-
able improvement over vanilla RoBERTa-large,

2https://github.com/luyug/Condenser

where MRR@10 of zero-shot performance be-
comes meaningful at 6.3, and MRR@10 of full-
shot performance increases to 37.3. For RIP
RoBERTa-large, we see it achieves the best per-
formance in both zero-shot and full-shot experi-
ments. We also borrow the analysis tool from Wang
and Isola (2020), which takes lalign between
semantically-related positive pairs and luniform of
representation space to measure the quality of PLM
representations. For both the metrics, lower num-
bers are better. RIP is much better than the vanilla
model in both alignment and uniformity, while co-
Condenser works well in alignment but worse in
uniformity.

Thus a question is raised: does PLM need addi-
tional structures for contrastive pretraining? Both
zero-shot and full-shot experiments demonstrate
that RIP works even better than a carefully mod-
ified model structure. Therefore, we conjecture
that PLM’s multi-layer transformers could be al-
ready expressive enough for dense retrieval under
an appropriate contrastive learning task. However,
additional model structures may bring optimization
difficulty, especially when the number of added
parameters is large.

4.5 Analysis on UNM

Ablation on UNM We try to understand how
UNM affects performances. Table 9 presents the
results on MS-MARCO. DPT using BM25 neg-
atives achieves a baseline of MRR@10 at 36.8.
When combining un-denoised hard negatives from
multiple retrievers, we see that the performance
achieves a noticeable improvement in MRR@10
by 1.5 points. When combining denoised hard
negatives selected by a re-ranker, the performance
further gets boosted of which MRR@10 increases
by 0.4 points. The results demonstrate that both
multiple retrievers and hybrid sampling positively
contribute to dense retrieval.

5 Conclusion

In this paper, we investigate applying DPT in dense
passage retrieval. To mitigate the performance drop
of a vanilla DPT, We also propose two strategies,
namely RIP and UNM, to enhance DPT and match
the performance of FT. Experiments show that
DPTDR outperforms previous state-of-the-art mod-
els on both MS-MARCO and Natural Questions
and demonstrated the effectiveness of the above
strategies. We believe this work facilitates the in-

https://github.com/luyug/Condenser
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Table 8: Ablations of different PLMs for DPT on MS-MARCO Dev.

Backbone
PLM

Zero-shot Full-shot
lalign luniform MRR@10 R@1000 MRR@10 R@1000

vanilla RoBERTa-large 161.4 -13.8 0.0 0.1 35.5 97.5
coCondenser RoBERTa-large 4.9 -12.9 6.4 63.3 37.3 98.0
RIP RoBERTa-large 21.9 -26.4 14.3 87.2 38.7 98.9

Table 9: Ablations of UNM on MS-MARCO Dev.

Neg Pool MRR@10 R@1000

BM25 Neg 36.8 98.6
+ un-denoised Neg 38.3 98.9
+ denoised Neg 38.7 98.9

dustry, as it saves enormous efforts and costs of
deployment and increases the utility of computing
resources. In future work, we will explore scaling
up the model size to further improve DPTDR.
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