
Proceedings of the Workshop on Cognitive Aspects of the Lexicon, pages 1–15
November 20, 2022. ©2022 Association for Computational Linguistics

https://doi.org/10.26615/978-954-452-056-4_001

1

Patterns of Text Readability in Human and Predicted Eye Movements

Nora Hollenstein
University of Copenhagen

nora.hollenstein@hum.ku.dk

Itziar Gonzalez-Dios
HiTZ Center - IXA (UPV/EHU)

itziar.gonzalezd@ehu.eus

Lisa Beinborn
CLTL Lab, VU Amsterdam
l.beinborn@vu.nl

Lena Jäger
University of Zurich; University of Potsdam

jaeger@cl.uzh.ch

Abstract

It has been shown that multilingual transformer
models are able to predict human reading be-
havior when fine-tuned on small amounts of
eye tracking data. As the cumulated predic-
tion results do not provide insights into the lin-
guistic cues that the model acquires to predict
reading behavior, we conduct a deeper analy-
sis of the predictions from the perspective of
readability. We try to disentangle the three-fold
relationship between human eye movements,
the capability of language models to predict
these eye movement patterns, and sentence-
level readability measures for English. We
compare a range of model configurations to
multiple baselines. We show that the models
exhibit difficulties with function words and that
pre-training only provides limited advantages
for linguistic generalization.

1 Introduction

Eye movement data of reading provides rich in-
sights into cognitive processes of language under-
standing. The signal can be used to modulate the
inductive bias of machine learning models towards
more cognitively plausible processing which can
increase model performance (Mathias et al., 2020;
Hollenstein et al., 2019). It has been shown that
large multilingual pre-trained language models are
able to accurately predict eye tracking patterns
when fine-tuned on small amounts of eye track-
ing data (Hollenstein et al., 2021; Takmaz, 2022;
Salicchi et al., 2022).

Generally, transformer-based language models
seem to be better at predicting cognitive signals of
human language comprehension (e.g., self-paced
reading times, eye movements, or brain activity)
than language models based on other architec-
tures (Merkx and Frank, 2021; Schrimpf et al.,
2020). However, as prediction is not explanation
(Demberg and Keller, 2019; Hale et al., 2022), we
aim to dissect the predicted reading patterns and

analyze them in more detail to gain clearer insights
into the underlying representation of processing
complexity. Eye tracking data can be very
informative to evaluate sentence comprehension
strategies, however, the interdependencies between
the eye tracking measures need to be taken into
account (Vasishth et al., 2013). We propose to use
the relation between eye movements in reading and
text readability in terms of linguistic complexity to
better understand procedural patterns of English
sentence comprehension in language models. We
provide interpretable insights into the prediction
errors to investigate the following two questions:
(1) What is the impact of pre-training on the
performance of language models predicting human
eye movements?
(2) Is the relationship between human reading
patterns and English text readability preserved in
the reading patterns predicted by the investigated
language models?

We focus on multilingual pre-trained language
models (mBERT and XLM), fine-tuned on a range
of eye tracking features from reading in multiple
languages (English, German, Dutch, and Russian).
We build upon the approach by Hollenstein et al.
(2021) and provide strong baselines and a series of
model configurations to answer the first question
in Section 2. Subsequently, we address the second
question in Section 3, by performing an extensive
readability analysis based on various aspects of En-
glish text complexity. We propose to evaluate the
predicted gaze features by analyzing whether their
correlation with a range of readability measures is
similar to the correlation observed in human eye
movement data.1 These two contributions allow us
to better interpret the ability of language models to
predict human reading behaviour.

1Our code is available here: https://github.com/
norahollenstein/readability-patterns

https://github.com/norahollenstein/readability-patterns
https://github.com/norahollenstein/readability-patterns
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Models EN NL DE RU ALL

RANDOM BL 78.66 (0.06) 84.30 (0.11) 74.11 (4.6) 65.83 (2.55) 86.15 (0.43)
MEAN BL 89.94 90.15 84.98 85.35 92.54

MBERT

M☆ 90.95 (0.11) 90.51 (0.31) 75.68 (3.99) 70.64 (2.38) 92.93 (0.13)
M♡ 93.73 (0.08) 91.91 (0.23) 77.41 (3.65) 77.30 (4.17) 94.68 (0.05)
M
☇

93.30 (0.03) 91.60 (0.36) 77.85 (2.85) 77.38 (1.85) 94.35 (0.13)

XLM-100

M☆ 92.94 (0.05) 91.80 (0.40) 77.31 (2.75) 76.54 (1.92) 94.19 (0.10)
M♡ 93.92 (0.07) 92.26 (0.33) 86.38 (0.27) 94.65 (0.88) 94.89 (0.12)
M
☇

93.92 (0.16) 92.32 (0.36) 86.04 (0.28) 94.62 (0.84) 94.15 (1.20)

Table 1: Prediction accuracy aggregated across all eight eye tracking features (with standard deviation across three
runs in parentheses). Fine-tuned models: last layer (M☆), all layers (M♡), all layers without pre-training (M

☇
).

2 Multilingual Prediction of Eye
Movements in Reading

Hollenstein et al. (2021) showed that language mod-
els can predict a range of eye tracking features in
multiple languages. The prediction setup has been
made widely available as a shared task to facilitate
comparisons between models and the analysis of
their inner workings (Hollenstein et al., 2022). In
this work, we use a similar setup which we summa-
rize below before we present the results of the eye
tracking prediction.

2.1 Data

We use eye tracking corpora for sentences in four
languages: English, Dutch, German, and Russian.
Full sentences or longer naturally occurring text
spans were read by multiple native speakers (see
Appendix A.1 for detailed statistics) and tracked
by high-precision eye trackers. The datasets re-
port the following eye tracking features for each
token of the stimulus text: (NFIX), mean fixation
duration (MFD), fixation proportion (FPROP), first
fixation duration (FFD), first pass duration (FPD),
total reading time (TRT), number of re-fixations
(NREFIX), and re-read proportion (REPROP). All
features are first computed for each subject sepa-
rately by aggregating over the fixations, and then
averaged over all subjects.

These features arguably reflect the complete
reading process at the various stages of linguis-
tic integration, from early lexical access for word
recognition (e.g., FFD) up to subsequent syntactic
integration taking into account regression move-

ments (e.g., NREFIX). For a review of which eye
movement feature reflects which linguistic level,
see Clifton et al. (2007).

For more detailed information about the data
and the training procedure, see Hollenstein et al.
(2021).

2.2 Model Configurations

The model is optimized to predict eye tracking fea-
tures from reading as accurately as possible. For
each token w in the input text, we predict a vec-
tor containing the eight eye tracking features listed
above. We focus on the transformer-based models
multilingual BERT (Devlin et al., 2019) and cross-
lingual XLM-100 (Lample and Conneau, 2019).
We use pre-trained checkpoints from the Hugging-
Face repository.2

We propose the following baselines to bench-
mark model performance. First, we compare with
a random baseline (RANDOM BL), which presents
model predictions made from a randomly initial-
ized regression layer. Second, we use a mean
baseline averaged across all eye tracking features
(MEAN BL), which calculates the mean value for
each eye tracking feature from the training data and
uses it as a prediction for all words in the test data.

Since one of our goals is to evaluate the gains
from fine-tuning a pre-trained LM on eye tracking
data, we also compare fine-tuning all layers (we
call these models M♡), to fine-tuning only the final
regression layer (M☆). Finally, we investigate the
benefits of pre-training on large language corpora

2xlm-mlm-100-1280 and bert-base-multilingual-cased

https://huggingface.co/xlm-mlm-100-1280
https://huggingface.co/bert-base-multilingual-cased
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by comparing the fully fine-tuned pre-trained lan-
guage models (M♡) to a model trained from scratch
on randomly initialized weights (M

☇
).

2.3 Results
Since we scale all gaze features to values between
0–100, we evaluate the models using the mean
absolute error (MAE). For better readability, we
report the results as prediction accuracy, defined
as 100−MAE. The results are presented in Table 1.

Baseline comparison The performance of the
random baseline (RANDOM BL) is much lower than
that of the mean baseline (MEAN BL), and there-
fore is not suitable for comparison. XLM-100 out-
performs the mean baseline for all languages, but
mBERT does not reach it for German (DE) and
Russian (RU).

The impact of pre-training The results of the
pre-trained and fine-tuned language models (M♡)
and the transformer models trained from scratch
(M
☇
) show a very similar performance. This

demonstrates that the advantage of pre-training lan-
guage models on large text corpora is only minimal
for the task of predicting human eye movements.
When fine-tuning only the regression layer (M☆),
the models yield only modest (if any) improve-
ments over the MEAN BL. However, when all layers
of a model are fine-tuned (M♡), the differences be-
come more notable, especially for languages where
less eye tracking data is available (DE and RU).

Generally, XLM-100 yields better results than
mBERT for all languages, and especially for the
ones with smaller datasets (DE and RU). Our re-
sults are in line with previous work showing that
XLM models perform better at zero-shot eye track-
ing prediction for an unseen language than mBERT
(Srivastava, 2022). Similarly, Hollenstein et al.
(2021) find that mBERT is outperformed by mono-
lingual models for languages with small eye track-
ing training datasets.

This indicates that the architecture and training
objective of a model might be more important for
eye tracking prediction than pre-training on large
amounts of text. Transformer architectures are
promising for predicting reading times, but the ex-
tensive pre-training on text input might be superflu-
ous, as the models learn more from the fine-tuning
on psychometric features. This could mean that
not much linguistic knowledge is required for eye
tracking prediction. Alternately, the choice of met-
ric (MAE) might not be the most appropriate to

capture the subtleties of the task. However, as we
will see in Section 3, the pre-trained models show
an advantage over randomly initialized models in
their correlation with text readability measures.

Evaluation of individual eye tracking features
The aggregated mean baseline across all eye track-
ing features can be misleading because it conceals
the model’s prediction performance for individual
features. A model that yields a superior perfor-
mance on the aggregated level does not necessar-
ily outperform the mean baseline for all features.
Therefore, we zoom in on individual eye track-
ing features and compare the performance of the
fine-tuned mBERT and XLM-100 with the mean
baseline in Figure 2. The results show that mBERT
fails to predict MFD, FPROP and REPROP for Ger-
man and Russian, while XLM-100 outperforms the
aggregate mean baseline for all languages. Some
features are more strongly affected by the large
degree of individual variability in human eye move-
ments (Kidd et al., 2018). We additionally visual-
ize the feature ranges of the predicted eye tracking
features compared to the real eye tracking data in
Figure 1.

3 Readability Analysis

Eye movement patterns during reading are known
to be influenced by the readability of texts (Rayner
et al., 2006). Singh et al. (2016) assess text read-
ability with automatically predicted eye tracking
features. Although their readability assessment
model was based only on predicted reading times,
it yielded results comparable to models that use
extensive syntactic features to compute linguistic
complexity. Wiechmann et al. (2022) find that, for
English, the accuracy of eye tracking prediction is
systematically linked to sentence-level text features
that approximate readability.

We try to disentangle the three-fold relation-
ship between human eye movements, the capabil-
ity of language models to predict these eye move-
ment patterns, and sentence-level readability mea-
sures for English. We analyze the correlation be-
tween model predictions and readability measures
to better understand the processing patterns that the
model picks up.

3.1 Measuring Readability
The readability of a text is affected by variation at
all levels of linguistic processing (Beinborn et al.,
2012). Feng et al. (2009) introduce a large range of
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Figure 1: Feature ranges of the true eye tracking values for MFD and FPROP compared to the predicted eye tracking
data (mBERT and XLM-100) for English and all four languages together.
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Figure 2: Improvements on prediction accuracy of the fine-tuned models mBERT and XLM-100 compared to the
mean baseline across all four languages.

cognitively motivated readability measures that can
be extracted using a standard natural language pro-
cessing pipeline. Machine learning models trained
on these measures can reliably predict the readabil-
ity of texts in multiple languages (Vajjala Balakr-
ishna, 2015). We explore a subset of 11 measures
that are likely to affect eye movement patterns.

Flesch score (FLESCH): Flesch (1948) intro-
duced the most renowned readability formula that
takes the surface structure of a text into account,
which is measured by the number of syllables,
words and sentences. The Flesch reading ease score
has been found to provide only a shallow readabil-
ity estimation for English texts because it ignores
deeper linguistic levels of text processing (Collins-
Thompson, 2014; Bengoetxea and Gonzalez-Dios,
2021). Nahatame (2021) show that readability mea-
sures that quantify lexical and syntactic character-
istics provide better approximations for predicting
eye movement patterns than the Flesch score. We
include it in our analysis mainly for the sake of
comparison and completeness.

Word frequency (WF, ZIPF): The influence of
lexical frequency on fixation duration is one of
the most studied phenomena in psycholinguistic
reading research. It is well established that readers
tend to look longer at infrequent words (Rayner,

1977). We use the lexical frequency values pro-
vided by the wordfreq Python library (Speer
et al., 2018) and its Zipfian variant on a logarithmic
scale (Van Heuven et al., 2014).

Word length (WL): Longer words (measured in
terms of number of characters) are generally fixed
for longer periods. Nearly 70% of the variance in
mean fixation duration can be explained by word
length and word frequency (Just and Carpenter,
1980).

Sentence length (SL): We include sentence
length, calculated as the number of tokens of
each sentence, since the readability measures high-
lighted in our analysis are strongly related to the
length of a sentence. Sarti et al. (2021) confirm
that for all text complexity metrics, sentence length
exhibits the highest correlation.

Distance to head (D2H): Sarti et al. (2021) find
a strong correlation between readability measures
related to dependency parsing (e.g., parse depth)
and perceived complexity. Dependency features
also correlate well with eye tracking patterns and
can predict regressive eye movements (Lopopolo
et al., 2019). In the opposite direction, Strzyz et al.
(2019) show that eye tracking information can im-
prove dependency parsing. We therefore measure
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Feature FLESCH WL WF ZIPF SL D2H AMB AOA FAM CONC IMAG

NFIX -0.55 0.94 -0.54 -0.82 0.96 -0.29 -0.28 0.29 -0.46 0.45 0.43
NREFIX -0.58 0.92 -0.55 -0.82 0.81 -0.23 -0.25 0.26 -0.35 0.33 0.32
MFD -0.47 0.84 -0.44 -0.68 0.96 -0.26 -0.19 0.18 -0.42 0.42 0.40
FFD -0.47 0.82 -0.43 -0.63 0.96 -0.26 -0.19 0.18 -0.42 0.42 0.41
FPD -0.50 0.91 -0.50 -0.78 0.96 -0.28 -0.25 0.25 -0.44 0.43 0.42
TRT -0.52 0.95 -0.54 -0.82 0.95 -0.28 -0.26 0.25 -0.44 0.44 0.42
FPROP -0.52 0.98 -0.48 -0.72 0.99 -0.30 -0.25 0.24 -0.45 0.45 0.44
REPROP -0.58 0.96 -0.52 -0.83 0.86 -0.23 -0.25 0.26 -0.36 0.33 0.32

Table 2: Spearman correlation coefficients of observed eye tracking features and readability measures. All
correlations are significant (p < 0.01).

the distance to head as the number of words be-
tween the current word and its head according to
the dependency tree. For example, in the sentence
She reads a mistery novel, the distance from the
word novel to its head reads is 2. We use the parser
Stanza (Qi et al., 2020) for the dependency anal-
ysis.

Ambiguity level (AMB): The meaning of poly-
semous words can usually be disambiguated by
processing the context. The effect of a high am-
biguity level on eye movement patterns is there-
fore usually more pronounced for later processing
measures such as NREFIX than for early gaze met-
rics reflecting lexical access (Foraker and Murphy,
2012; Shen and Li, 2016). We calculate the ambi-
guity level for each open class word (nouns, adjec-
tives, adverbs, and verbs) as the number of possible
senses (synsets) that can be found in the NLTK
implementation (Bird and Loper, 2004) of Word-
Net (Fellbaum). The minimum ambiguity level is
1, which means that there is only one sense for a
given wordform. For example, the noun car has an
ambiguity level of five because it appears in 5 nom-
inal synsets. For this analysis, we exclude words
that do not appear in WordNet.

Age of acquisition (AOA), familiarity (FAM),
concreteness (CONC), and imageability (IMAG):
We include four cognitively motivated features of
word complexity that are likely to affect fixation
durations in reading (Juhasz and Rayner, 2006).
Ratings for age of acquisition, familiarity, concrete-
ness, and imageability (the intensity with which a
word evokes a clear mental image) in the MRC Psy-
cholinguistic Database (Wilson, 1988) are strongly
associated with each other and with other read-

ability metrics.3 Paetzold and Specia (2016) find
that word frequencies correlate with familiarity and
AOA, while the depth of a word in a thesaurus hier-
archy correlates with both its concreteness and its
imageability. We exclude words that do not appear
in the database when calculating the correlations.

3.2 Readability and Eye Movement Patterns

We calculate the Spearman correlation coefficients
between the recorded eye tracking data and the
readability measures for English (Table 2). The
strongest correlations can be found for sentence
length, word length, and lexical frequency, which
confirms three widely studied effects in reading
research (Sarti et al., 2021).

Predictive Power In a second step, we analyze
the correlations between four of the readability
measures (FLESCH, WL, ZIPF frequency, SL) and
the predictions of the different models for fixation
proportion and mean fixation duration for English
(see Table 3).4 The results show that for fine-tuned
mBERT, while yielding lower overall prediction
accuracy when aggregating across all features, the
correlation of the predicted eye movement values
to word frequency and length is generally more
similar to the correlation of real gaze features with
word frequency and length than for the XLM-100
models. When comparing fine-tuned pre-trained
models (M♡) to models trained from scratch on eye
tracking data (M

☇
), the results presented in Table

3 also show that the correlation with word length
and frequency is stronger in the predictions of the

3https://websites.psychology.uwa.edu.
au/school/mrcdatabase/uwa_mrc.htm

4Correlations to other gaze features show the same trends.
We analyze FPROP because the models yield low prediction
performance on this feature, compared to MFD, which yields
high prediction results.

https://websites.psychology.uwa.edu.au/school/mrcdatabase/uwa_mrc.htm
https://websites.psychology.uwa.edu.au/school/mrcdatabase/uwa_mrc.htm
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fine-tuned models and closer to the correlation of
the real eye tracking features, showing that while
pre-training might not strictly be needed for a high
prediction accuracy, it does help the model to pre-
dict eye tracking features that are closer to human
reading behavior in terms of text readability.

3.3 Prediction Errors
To systematically analyze the relationship between
readability of the input and predictive power of
the model, we focus on the prediction errors. We
analyze a sample of 6,396 instances of the test
set (20%) and calculate the percentage error (PE;
Eq. 1) of the predictions compared to the observed
scaled features.

PE = ∣Prediction −Observed∣
∣Observed∣ ∗ 100 (1)

In Table 4, we present the correlations of the
readability measures with the prediction errors for
eye tracking features. Imageability, familiarity,
concreteness, function words, and Zipf scale fre-
quency values show a moderate correlation to all
eye tracking features, which is slightly more no-
table in the case of the mBERT model. Interest-
ingly, the strongest correlation can be found to fix-
ation proportion. This indicates that the prediction
of whether a word will be fixated or not is strongly
linked to its imageability and concreteness. Sim-
ilar tendencies are observed for the correlations
between all investigated eye tracking measures and
readability measures.

4 Word-Level Analysis

As lexical aspects seem to be highly relevant, we
additionally analyze the influence of the word class
on prediction errors. We focus on words that cause
a prediction error ≥ the third quartile value for that
feature. Figure 3 shows the aggregated results for
all predicted eye movement features.

4.1 Word Classes
It can be seen that the large majority of prediction
errors can be attributed to function words. This
tendency is consistent across all eight gaze fea-
tures.5 Function words such as determiners, pro-
nouns, prepositions and conjunctions, usually trig-
ger low fixation duration and high skipping proba-
bility. It has been shown that distributional models

5Detailed results per feature can be found in the Appendix
in Table 7.
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Figure 3: Percentage error per part-of-speech class, ag-
gregated across all predicted gaze features.

are generally not well suited for representing func-
tion words (Bernardi et al., 2015) and that their
representation in transformer-based models such
as BERT is highly context-sensitive (Ethayarajh,
2019; Kim et al., 2019; Atanasova et al., 2020).
Of the content words, nouns are most often mis-
predicted and responsible for around 10% of the
errors. This is in line with Furtner et al. (2009),
who indicated in a reading study that the noun is
the most influential word class for facilitating the
comprehension of other words.

4.2 A Closer Look at Function Words

We have seen that most prediction errors are caused
by function words. Function or closed category
words are words that are short, frequent, ambigu-
ous, and subject to pragmatic effects in English.
They are critical for language understanding.

Reading research has shown that short function
words can be identified in reading without a direct
fixation (Rayner et al., 1989). Similarly, Barrett
and Søgaard (2015) show a negative correlation be-
tween function word frequency and fixation prob-
ability. Schmauder et al. (2000) found increased
processing times in phrases immediately follow-
ing a low-frequency function word. Function and
content words are likely stored and accessed simi-
larly (Diaz and McCarthy, 2009), but have different
roles in text processing and constructing discourse
representations. Function words show frequency
effects in first fixation and first pass duration that
are similar to those seen for content words. How-
ever, clear differences in reading patterns in the
online processing of function and content words
emerged in later processing measures (Schmauder
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FPROP MFD

Eye tracking FLESCH ZIPF WL SL FLESCH ZIPF WL SL

Human -0.52* -0.72* 0.98* 0.99* -0.47* -0.68* 0.84* 0.96*

RANDOM BL -0.03 -0.07 0.36 -0.16* 0.12* -0.48 -0.20 -0.12*
MEAN BL -0.61* 0.14* -0.31 0.99* -0.41* -0.01 0.23 0.91*

M
☇

mBERT -0.50* -0.53* 0.72* 0.99* -0.49* -0.52* 0.61* 0.98*
M
☇

XLM-100 -0.52* -0.68* 0.67* 0.99* -0.49* -0.65* 0.68* 0.97*

M♡ mBERT -0.52* -0.73* 0.78* 0.99* -0.48* -0.68* 0.80* 0.97*
M♡ XLM-100 -0.53* -0.72* 0.68* 0.99* -0.49* -0.62* 0.62* 0.98*

Table 3: Spearman correlation coefficients between real human eye tracking features or model predictions and word
length, word frequency, and sentence length for fixation proportion (FPROP) on the left side and for mean fixation
duration (MFD) on the right side. M

☇
stands for models trained from scratch and M♡ for fine-tuned pre-trained

models. Significant results are marked with * (p < 0.01) and results in bold are closest to human eye tracking
features.

IMAG FAM CONC ZIPF FUNCT

Feature BERT XLM BERT XLM BERT XLM BERT XLM BERT XLM

NFIX -0.18 -0.17 0.19 0.14 -0.19 -0.17 0.22 0.18 0.20 0.19
MFD -0.18 -0.09 0.16 0.10 -0.19 -0.09 0.24 0.13 0.23 0.10
FPROP -0.21 -0.17 0.24 0.20 -0.21 -0.17 0.34 0.26 0.29 0.22
FFD -0.17 -0.08 0.16 0.09 -0.18 -0.09 0.23 0.12 0.22 0.10
FPD -0.16 -0.06 0.15 0.07 -0.17 -0.06 0.19 0.07 0.18 0.06
TRT -0.18 -0.13 0.16 0.12 -0.19 -0.14 0.21 0.16 0.19 0.16
NREFIX -0.19 -0.14 0.22 0.16 -0.21 -0.15 0.27 0.17 0.23 0.16
REPROP -0.14 -0.14 0.15 0.16 -0.16 -0.16 0.19 0.20 0.16 0.18

Table 4: Correlations between percentage error of the eye tracking predictions and the readability measures
(imageability, familiarity, concreteness, function words and Zipf frequencies of words).

et al., 2000). These findings can be taken as evi-
dence of the different roles the two word types have
in sentence processing beyond the lexical level.

We analyze the variance in the observed eye
tracking features for prepositions, determiners, and
conjunctions. We calculate the standard deviation
of each eye tracking feature for the six most fre-
quent words of each category. Generally, there is
a high variation in the data across all of the gaze
features, and the highest deviation can be observed
for mean fixation duration. To illustrate this, in
Figure 4 we show the graphics of the six most com-
mon prepositions. Determiners and conjunctions
are shown in Figures 5 and 6 in the Appendix (stan-
dard deviation values can also be found in Table 8
in the Appendix).

The lower fixation proportion on shorter words,
together with the immense variation on the fixation
duration of function words, is likely the cause for

the difficulty in predicting reading times on this
class accurately. The differences in skipping rate
(that is, the ratio of words that are not fixated) have
various origins. Skipping rate is regulated by word
length (Drieghe et al., 2004), which therefore leads
to differences across languages (see Fig. 1), and by
proficiency, since highly proficient readers show
a higher skipping rate (Eskenazi and Folk, 2015).
We discuss these challenges in more detail in the
next section.

5 Methodological Limitations

In this work, we make a few simplifying assump-
tions that are common in the field, but severely
affect the interpretation of the results. We want
to discuss these limitations explicitly and encour-
age methodological research to better address these
open challenges.
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Figure 4: Standard deviations of the eye tracking features of the most frequent English prepositions. Note that the
y-axis scales change in each subplot.

Token-level alignment Stimuli for eye tracking
are usually pre-processed with high linguistic qual-
ity. Neural language models, on the other hand,
are optimized for engineering objectives that some-
times compete with linguistic and cognitive plausi-
bility. This discrepancy becomes obvious when
inspecting the tokenization. The HuggingFace
transformer-based models that we apply expect
the use of subword tokenizers. Words such as
close-knit! that are interpreted as a single unit in

the eye tracking data are split into subword tokens
([‘close’, ‘##-’, ‘##knit’]) and it remains an open
challenge how to align the different units. In our
implementation, we assign the same gaze features
to all subtokens and choose to compute the loss
only with respect to the first subtoken. It is unclear,
however, if this is the best strategy as it complicates
fine-grained error analyses. For example, in the eye
tracking data, punctuation is not separated from the
preceding token as they are usually fixated jointly.
If we apply part-of-speech tagging on words with
attached punctuation signs they might get assigned
incorrect tags leading to skewed results. In this
work, we resolved this by manually aligning tok-
enized text with the eye tracking stimuli for the
readability analysis. However, this is laborious and
limits the size of the analyzed data.

Aggregating over participants The second mat-
ter we address is the variability between readers.
The negligence of individual differences is a well-
known issue in cognitive science, leading to a pic-
ture of an idealized human that is largely invariant
across individuals (Levinson, 2012), and the re-
sulting insights underestimate the extent to which
human sentence processing is affected by individ-
ual differences (Kidd et al., 2018). Currently, the
captured individual differences are merely treated
as a source of variance that is controlled for through
aggregation. As in this work, most often NLP re-
searchers aggregate across all readers due to evi-

dence showing that this leads to more robust results
regarding model performance (Klerke and Plank,
2019). However, the high variability found in some
features, such as FPROP, calls for more careful data
preprocessing, possibly by considering additional
cognitive tests performed during data collection
and performing proper outlier detection. Alterna-
tively, single-subject and cross-subject approaches
should also be considered in eye tracking predic-
tion for more practical applications.

Cross-lingual differences Finally, eye move-
ments depend on the stimulus and therefore contain
language-specific information (Liversedge et al.,
2016). Reading patterns can be related to linguistic
factors of the reader’s native language. Berzak et al.
(2017) found evidence that similar languages have
more similar reading patterns. Siegelman et al.
(2022) found that readers of different languages
vary considerably in their skipping rate and that
this variability is explained by cross-lingual differ-
ences in word length distributions. It is unclear yet
to what extent these differences affect the predic-
tions of pre-trained language models. Therefore,
more research is required on multilingual models
that predict eye tracking in typologically more di-
verse languages.

6 Conclusion

Our results show that transformer models yield
high accuracy in predicting cognitive language
processing signals which confirms tendencies ob-
served in previous work (e.g., Schrimpf et al., 2020;
Michaelov et al., 2021). We go beyond aggregated
performance metrics and provide a detailed anal-
ysis of the linguistic text complexity factors that
underlie the prediction of eye movement patterns.

In a detailed analysis of fine-tuned language
models that predict eye tracking features from read-
ing, we found that the models learn more from the
fine-tuning on psychometric features than from pre-
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training on textual input. However, the pre-trained
models show an advantage over the randomly ini-
tialized models in their correlation to text read-
ability measures. Although pre-training of large
language models is not required to obtain high accu-
racy in predicting eye tracking feature from reading,
it does contribute to a stronger correlation to text
readability measures, making the predictions more
similar to human reading behavior. The models
struggle most to predict accurate eye tracking val-
ues for function words, which are exactly the class
of words that exhibits large ranges in reading times
and skipping rates, together with extreme variabil-
ity between readers. The next step will be to extend
the readability analysis to the other languages and
to discern further between syntactic and semantic
text difficulty and purely structural complexity.

This line of work does not only advance our un-
derstanding of language models and allows to com-
pare their output to human language (Tuckute et al.,
2022), but it also furthers research on new readabil-
ity formulas supported by eye tracking data and ma-
chine learning methods (e.g., González-Garduño
and Søgaard, 2018; Baazeem et al., 2021). We hope
this work can serve as a stepping stone towards a
more detailed evaluation setup for eye movement
prediction from reading.
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A Appendix

A.1 Eye Tracking Corpora
The details of the datasets used in this work are presented in Table 5.

Language Corpus Subjs. Sents. Sent. length Tokens Types Word length Flesch

English
Dundee 10 2,379 21.7 (1–87) 51,497 9,488 4.9 (1–20) 53.3
GECO 14 5,373 10.5 (1–69) 56,410 5,916 4.6 (1–33) 77.4
ZuCo 30 1,053 19.5 (1–68) 20,545 5,560 5.0 (1–29) 50.6

Dutch GECO 19 5,190 11.64 (1–60) 59,716 5,575 4.5 (1–22) 57.5
German PoTeC 30 97 19.5 (5–51) 1,895 847 6.5 (2–33) 36.4
Russian RSC 103 144 9.4 (5–13) 1,357 993 5.7 (1–18) 64.7

Table 5: Descriptive statistics of all eye tracking datasets. Sentence length and word length are expressed as the
mean with the min-max range in parentheses. The last column shows the Flesch Reading Ease score (Flesch, 1948)
which ranges from 0 to 100 (higher score indicates easier to read). Adaptations of the Flesch score were used for
Dutch (NL), German (DE) and Russian (RU).

A.2 Eye Movement Features
The values of the eye tracking features vary over different ranges (see Figure 1, left-most subplots). FFD,
for example, is measured in milliseconds, and average values are around 200 ms, whereas REPROP is a
proportional measure, and therefore assumes floating-point values between 0 and 1. We standardize all
eye tracking features independently (range: 0–100), so that the loss can be calculated uniformly over all
feature dimensions.

A.3 Additional Correlation Results
In Table 6, we present additional correlations of the readability measures in relation to the eye tracking
prediction errors.

AOA D2H AMB

Feature BERT XLM BERT XLM BERT XLM

NFIX 0.00 0.02 -0.03 -0.05 0.04 0.01
MFD -0.09 -0.04 0.00 -0.03 0.04 0.00
FPROP -0.18 -0.12 -0.03 -0.04 0.13 0.05
FFD -0.09 -0.04 -0.01 -0.03 0.02 -0.01
FPD -0.06 -0.01 0.00 -0.02 0.00 -0.04
TRT 0.02 -0.05 -0.02 -0.04 0.01 0.01
NREFIX -0.01 0.01 0.00 -0.03 0.14 0.09
REPROP 0.05 0.01 0.01 -0.01 0.13 0.12

Table 6: Correlations between percentage error and readability measures (age of acquisition, distance to head, and
ambiguity level).

A.4 Error Rate by Part-of-Speech
Table 7 shows the percentage error for each part-of-speech class and each eye tracking feature.
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FUNC ADJ ADV NOUN PROPN VERB
Feature BERT XLM BERT XLM BERT XLM BERT XLM BERT XLM BERT XLM

NFIX 68.54 66.10 4.69 5.44 4.63 4.82 9.38 15.76 6.38 8.26 6.38 7.88
MFD 68.86 62.16 5.32 6.32 4.57 5.94 9.63 17.39 4.69 7.50 6.94 8.19
FPROP 72.17 69.17 4.57 4.75 4.50 4.44 8.13 14.82 4.38 6.82 6.25 6.82
FFD 67.98 62.48 5.25 6.25 4.63 5.88 10.44 16.89 4.75 7.13 6.94 8.51
FPD 68.36 58.91 5.25 7.32 4.44 6.19 9.82 18.89 5.19 8.51 6.94 8.69
TRT 68.36 66.60 16.60 6.57 14.03 5.19 31.03 13.07 16.40 6.94 21.94 8.57
NREFIX 75.88 78.70 3.71 3.71 3.61 3.61 7.46 7.46 2.82 2.82 6.52 6.52
REPROP 75.88 78.70 3.71 3.71 3.61 3.61 7.46 7.46 2.82 2.82 6.52 6.52

Table 7: Percentage error for each part-of-speech class and each eye tracking feature.

A.5 Standard Deviations of Function Words
Table 8 shows the standard deviations of the predictions of the most frequent function word classes,
namely prepositions (PREP), determiners (DET), and conjunctions (CONJ).

Lemma NFIX FFD FPD TRT MFD FPROP NREFIX REPROP

PR
E

P

at 0.20 33.87 35.96 42.79 4562.23 0.15 10.10 10.10
by 0.25 43.47 44.57 51.42 5109.68 0.19 0.09 0.07
for 0.26 8365.60 42.11 14199.50 6347.25 0.19 0.13 27.87

from 0.25 39.08 40.07 12828.73 38.53 0.18 0.11 35.43
in 23.15 1859.10 1859.05 41.57 2782.60 23.15 0.07 0.06
of 12.92 4158.18 4158.11 3839.08 5614.73 12.92 4.31 4.31
on 41.64 35.31 36.95 8120.68 6406.01 0.16 8.33 8.33
to 7.07 35.79 37.38 2073.26 3562.01 7.07 0.08 0.07
up 0.23 46.17 48.59 52.53 46.42 0.20 0.07 0.06

with 0.31 43.47 47.71 62.36 18589.94 0.18 0.19 0.13

D
E

T

a 12.48 1168.31 1168.30 1168.27 6726.54 17.64 0.07 0.05
all 0.24 43.44 47.06 57.88 11703.01 0.18 0.12 0.08

another 0.44 56.89 70.55 98.66 54.99 0.23 0.29 0.18
any 0.23 40.18 42.81 50.25 39.31 0.17 0.12 0.11

every 0.33 40.36 46.56 48.93 36800.71 0.15 0.25 0.14
no 0.25 39.11 40.87 50.50 38.53 0.18 0.10 0.08

some 0.31 46.57 49.31 60.57 26367.42 0.18 0.20 0.11
that 0.26 41.07 45.10 53.25 40.90 0.18 0.15 0.11
the 9.06 2060.29 919.18 2349.22 5173.09 9.06 0.11 0.08
this 0.32 47.54 53.64 67.83 26854.66 0.19 0.18 0.12

C
O

N
J

and 0.27 37.11 41.45 48.52 5318.58 32.99 0.11 0.08
as 0.22 38.20 39.10 44.08 10602.03 0.17 0.08 0.06

because 0.32 38.95 42.76 53.55 38.80 0.15 0.24 0.12
but 0.31 44.79 50.00 63.22 5564.67 0.20 0.15 0.09
if 0.25 47.90 49.16 56.45 47.71 0.21 0.09 0.07
of 0.25 44.95 51.17 56.85 45.99 0.20 0.07 0.07
or 0.22 44.45 48.68 50.86 44.59 0.18 0.08 0.07

that 0.26 41.08 44.46 56.21 21359.14 0.18 0.13 0.10
when 113.83 35.28 44.65 63.01 18228.19 0.17 0.21 0.14
where 0.39 48.09 57.04 68.93 47.88 0.19 0.25 0.16

Table 8: Standard deviation of the most frequent function words.
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Figure 5: Standard deviations of the eye tracking features of the most frequent English determiners. Note that the
y-axis scales change in each subplot.

Figure 6: Standard deviations of the eye tracking features of the most frequent English conjunctions. Note that the
y-axis scales change in each subplot.


