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Abstract

Scalar implicature (SI) arises when a speaker
uses an expression (e.g., some) that is seman-
tically compatible with a logically stronger al-
ternative on the same scale (e.g., all), leading
the listener to infer that they did not intend
to convey the stronger meaning. Prior work
has demonstrated that SI rates are highly vari-
able across scales, raising the question of what
factors determine the SI strength for a partic-
ular scale. Here, we test the hypothesis that
SI rates depend on the listener’s confidence in
the underlying scale, which we operationalize
as uncertainty over the distribution of possible
alternatives conditioned on the context. We use
a T5 model fine-tuned on a text infilling task to
estimate this distribution. We find that scale un-
certainty predicts human SI rates, measured as
entropy over the sampled alternatives and over
latent classes among alternatives in sentence
embedding space. Furthermore, we do not find
a significant effect of the surprisal of the strong
scalemate. Our results suggest that pragmatic
inferences depend on listeners’ context-driven
uncertainty over alternatives.

1 Introduction

Human communication involves not only the trans-
mission of linguistic signals, but also context-
guided inference over the beliefs and goals of other
conversational agents (e.g., Sperber and Wilson,
1986; Grice, 1975). One signature pattern of this
pragmatic reasoning is scalar implicature (SI). The
standard view is that SIs arise as a result of ordered
relationships between linguistic items – when a
weaker (less informative) item of a scale is uttered,
then a listener can infer that the speaker did not
have grounds to utter the stronger (more informa-
tive) item on that scale. For example, if Alice
says “Some of the students passed the exam”, Bob
can draw the scalar inference that not all students
passed the exam, even though Alice’s utterance
would still be semantically true in that scenario.

While this view predicts that SIs are context-
independent and generally strong – known as the
Homogeneity Assumption (Degen, 2015) – empiri-
cal studies have demonstrated a remarkable amount
of variance in SI rates both within (Degen, 2015;
Li et al., 2021) and across lexical scales (Doran
et al., 2009; van Tiel et al., 2016; Gotzner et al.,
2018; Pankratz and van Tiel, 2021). This raises the
question of what factors determine the SI strength
for a particular scale. In a landmark study, van Tiel
et al. (2016) test two classes of potential predictors
of SI strength: the availability of the strong scale-
mate given the weak scalemate, and the degree to
which scalemates can be distinguished from each
other. They demonstrate that availability is not a
reliable predictor of SI strengths (but see Westera
and Boleda 2020), while measures of scalemate
distinctness, such as the boundedness of the scale,
do robustly predict SI. More recent studies (e.g.,
Gotzner et al., 2018; Sun et al., 2018; Pankratz and
van Tiel, 2021; Ronai and Xiang, 2022) have pro-
posed a variety of other factors such as negative
strengthening, polarity, and extremeness.

Here, we revisit the hypothesis that SI rates de-
pend on the availability of the strong scalemate.
While prior work has operationalized availabil-
ity with measures of the strong scalemate such
as word frequency or similarity/association with
the weak scalemate (van Tiel et al., 2016; Westera
and Boleda, 2020; Ronai and Xiang, 2022), we
re-frame availability as the listener’s confidence in
the underlying scale. Upon hearing a scalar ex-
pression, listeners must determine the items on the
scale as well as the ordering metric before infer-
ence proceeds (Hirschberg, 1985). If the listener
is less certain about the scale, then they will be
less likely to exclude the meaning of a particular
strong scalemate. We operationalize scale uncer-
tainty as uncertainty over the alternatives that could
serve as a strong scalemate to the observed scalar
expression. To estimate the alternatives predicted
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by humans, we use a T5 model (Raffel et al., 2020)
fine-tuned on a text infilling task. While prior stud-
ies have treated alternatives as linguistic forms, we
also consider the idea that listeners reason about
alternatives at a conceptual level (Buccola et al.,
2021) by treating alternatives as latent classes in
a conceptual space. Our results support the role
of scale uncertainty in determining SI rates, and
suggest a new way of testing conceptual theories
of alternatives for scalar inference.

2 Human data

To obtain human SI strengths, we use the data from
Experiment 2 by van Tiel et al. (2016). In our
analyses, we only consider the adjectival scales
from van Tiel et al.’s original materials, result-
ing in 32 scales. Each scale is a pair of adjec-
tives ⟨[WEAK], [STRONG]⟩, where the meaning of
[STRONG] entails the meaning of [WEAK] (e.g.,
⟨intelligent, brilliant⟩). The experiment measures
whether humans exclude the meaning of [STRONG]
upon observing a speaker use [WEAK].

On each trial of the experiment, participants read
a prompt of the form “John says: [NP] is [WEAK]”,
where [WEAK] is an adjective scalar item that may
trigger a scalar inference, and [NP] is a noun phrase
that sets the context for the scalar item. There were
3 such sentences per scale, which differ from each
other only in the NP. For example, the weak scalar
item intelligent is associated with the sentences
“This student/That professor/The assistant is intelli-
gent”. Participants were then asked: “Would you
conclude from this that, according to John, [NP]P
is not [STRONG]?”, where [STRONG] is the strong
scalemate to [WEAK], and [NP]P is a pronominal-
ized version of the [NP] in the speaker’s original
utterance (e.g., “she is not brilliant”). Participants
marked their response as Yes or No. The SI rate
for a scale is computed as the proportion of Yes
responses averaged over participants and sentences.

3 Predictors

We use T5 (Raffel et al., 2020) to estimate all
probabilities in our analyses. T5 is a sequence-
to-sequence Transformer model (Vaswani et al.,
2017) trained to represent language processing
tasks as text-to-text problems. Our model is based
on the pre-trained T5-base model from Hugging-
face Transformers (Wolf et al., 2020). Since the
off-the-shelf T5 model is not optimized for text gen-
eration, we use a T5 model that has been fine-tuned

on a text infilling task (Qian and Levy, 2022). The
model is fine-tuned on a 10-million-token subset
of the 2007 portion of the New York Times Corpus
(Sandhaus, 2008). The supervision signal is gen-
erated by randomly masking some spans of words
in a sentence to get the fragmentary context and a
plausible completion. At inference time, the model
decodes autoregressively via greedy sampling.

3.1 Predictability of strong scalemate
As a baseline, we first consider whether SI rates
– i.e., the rate at which [WEAK] is taken to ex-
clude the meaning of [STRONG] – are explained by
the context-conditioned predictability of the tested
strong scalemate. This is similar to production-
based measures of availability, such as the tendency
of humans to mention the strong scalemate in a
Cloze task (van Tiel et al., 2016; Ronai and Xiang,
2022). However, these metrics are expensive to
estimate, especially if we wish to estimate the full
distribution of alternatives. We address this by us-
ing T5 as a proxy of human predictions, taking the
view that humans maintain expectations about pos-
sible alternatives via a predictive language model
optimized on the surface statistics of language.

To measure the predictability of a certain lin-
guistic expression as a strong scalemate under T5,
we leverage scalar constructions (Hearst, 1992;
de Melo and Bansal, 2013; Pankratz and van Tiel,
2021). Scalar constructions are patterns such as X,
but not Y, which indicate a scalar relationship be-
tween a weak item X and strong item Y . For each
weak scalar item in our test materials, we construct
a scalar template of the following form:

[NP] is [WEAK], but not . (1)

We have 3 such templates for each scale, where
[NP] is given by the 3 sentences from van Tiel
et al.’s materials. By embedding the weak scalar
item within the X, but not Y construction, the model
should set up expectations for a potential scale-
mate in the masked position. For each ⟨[WEAK],
[STRONG]⟩ pair from van Tiel et al.’s items, we
substitute the strong scalemate into the masked po-
sition and compute the surprisal (i.e., negative log
probability) at that token under T5.1 Language
model surprisal has been shown to predict psy-
chometric measures of human sentence processing
(e.g., Smith and Levy, 2013; Goodkind and Bick-
nell, 2018; Wilcox et al., 2020), suggesting that

1When scalar items are split into multiple tokens, we obtain
surprisals by summing over these sub-word tokens.
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the distribution learned by these models captures
expectations deployed by humans during real-time
language comprehension.

3.2 Scale uncertainty
Next, we test the hypothesis that SI depends on the
listener’s uncertainty about the scale implied by the
speaker’s utterance. Depending on the context, a
single word (e.g., bad) could lie on multiple scales –
e.g., “The food is bad” might imply that the food is
not rotten, whereas “The score is bad” might imply
that the score is not failing. This uncertainty is
not a function of a particular scalemate (unlike the
availability measure described in Section 3.1 and
in prior work), but rather a property of the scalar
trigger and the context in which it is observed.

We operationalize scale uncertainty as uncer-
tainty over the distribution of possible alternatives
conditioned on the context. To obtain a set of can-
didate alternatives A, we sample N = 100 comple-
tions from the T5 infilling model given the scalar
template in Equation (1).2 During decoding, we
restrict the maximum number of generated tokens
to 5, and only keep the unique completions. We
further process the outputs by removing punctua-
tion and casing, and only keep the first word of the
sequence (e.g., “always” and “always,” would be
collapsed into “always”). After this step, we also
removed completions that consisted only of stop-
words.3 We performed these processing steps in or-
der to reduce the sensitivity of the model-generated
alternatives distribution to low-level features like
punctuation, and to account for the model’s ten-
dency to output high-frequency function words.

3.3 Strings vs. concepts
For each of our surprisal and scale uncertainty mea-
sures, we consider two operationalizations that re-
flect differing theories of alternatives. The first
assumes that surface-level linguistic forms (i.e.,
strings) are the alternatives driving SI. The second
view is that listeners reason about alternatives at a
conceptual level (Buccola et al., 2021), which we
estimate using sentence embeddings.

String-based measures. We first consider the
string-based view of alternatives. We obtain string-
based surprisal by plugging the strong scalemate

2The completions are not guaranteed to be scalar items,
but we take this to be a first approximation. All results are
averaged over 4 random seeds for the sampling of alternatives.

3https://gist.github.com/sebleier/
554280

into the blank in Equation (1) (i.e., Y in the X,
but not Y construction) and computing its context-
conditioned surprisal under T5. Similarly, to ob-
tain a string-based measure of scale uncertainty,
we compute uncertainty over the strings that fill
the masked position in the scalar template (Equa-
tion (1)). That is, we normalize the probabilities of
each a ∈ A to obtain a probability distribution over
alternatives, and then compute the Shannon entropy
over this distribution. We predict that lower sur-
prisal reflects a more predictable alternative, and
thus results in a stronger SI. Similarly, lower en-
tropy reflects lower uncertainty over the underlying
scale, and should lead to a stronger SI.

This method implicitly assumes that surface-
level linguistic forms (i.e., strings) are the alterna-
tives driving scalar inferences. As a single concept
can be expressed with multiple forms, however, the
surprisal over forms may not be a good estimate
of the surprisal of the underlying concept. This
motivates using hierarchical methods to identify la-
tent classes among alternatives in some conceptual
representation.

Hierarchical measures. An alternate view is that
listeners do not reason about alternatives at the
level of linguistic forms (i.e., strings), but instead a
deeper conceptual level (Buccola et al., 2021). As a
proxy for a conceptual representation of an alterna-
tive, we use sentence embeddings from Sentence-
T5 (Ni et al., 2021). Prior work has shown that
clustering over word embeddings has been shown
to uncover latent topics, suggesting that there is
usable conceptual information represented in the
embedding spaces induced by large language mod-
els (e.g., Sia et al., 2020; Thompson and Mimno,
2020; Meng et al., 2022). For each sampled al-
ternative a ∈ A, we substitute a into the masked
position in the scalar template (Equation (1)) to
obtain a full sentence, and then feed this as input to
Sentence-T5 to obtain a 768-dimensional embed-
ding of the entire sentence.4 We assume sentences
close in this space are more likely to reflect the
same underlying scale, and distant sentences are
likely to reflect different scales.

To formalize the idea of conceptual alternatives
for scalar inference, we treat scales as latent classes
that may give rise to multiple alternative strings.
On this view, the surprisal of a strong scalemate is
the surprisal of its underlying class, and scale uncer-

4We use the PyTorch implementation via SentenceTrans-
formers (Reimers and Gurevych, 2019).
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Figure 1: Best-fit linear relationship between human SI rates (van Tiel et al., 2016) and four predictors (Section 3):
(a) String-based surprisal of the strong scalemate under T5. (b) Entropy over alternative strings sampled by T5.
(c) Surprisal of latent class assigned to the strong scalemate by the Gaussian mixture model. (d) Entropy over
probabilities of classes identified by the Gaussian mixture model.

tainty is uncertainty over these classes. To identify
latent classes among alternative sentence embed-
dings, we fit a Gaussian mixture model (GMM) for
each set of alternatives (i.e., one per weak scalar
item, sentence template, and random seed). To
determine the number of latent classes k, we fit
a GMM for each k ∈ {1, 2, 3} and chose the k
that minimized the Bayesian information criterion
(BIC) of the fitted model.5

After fitting a GMM on the alternative embed-
dings for each weak scalemate, we predict the class
for each alternative. We obtain a score for each
class by summing the probabilities assigned by T5
to each alternative within that class. We compute
class-based surprisal as the negative log of the score
assigned to the class containing the strong scale-
mate, and class-based scale uncertainty as the en-
tropy over the normalized class scores. As before,
we expect that lower surprisal and lower entropy
should result in higher SI.

4 Results

We computed the four metrics described in Sec-
tion 3 on the data from Experiment 2 of van Tiel
et al. (2016), and evaluated the causal roles of each
metric in predicting scalar inference rates across
scales. For each of the four metrics, we fit a linear

5For speed of convergence, we assumed diagonal covari-
ance matrices for each estimated class distribution.

regression model to predict mean SI rates for each
scale (averaged across trials). In all models, we
included scale boundedness as an additional predic-
tor, as it is the factor explaining the most variance
in van Tiel et al.’s (2016) study.

Our first model tested string-based surprisal as a
predictor of SI rates. In line with van Tiel et al.’s
results, boundedness is a highly significant pre-
dictor (p < 10−16). Furthermore, surprisal of
the strong scalemate is not a significant predictor
(t = −0.09, p = 0.928). Figure 1a shows the lack
of relationship between in-context surprisal of the
strong scalemate and SI rate. Each point represents
a scale, with values averaged over the trials and
sentence templates (three per scale) presented in
van Tiel et al.’s Experiment 2. This lack of relation-
ship concords with van Tiel et al.’s original finding
that availability is not predictive of SI rate.

Our second model tested the predictive power of
string-based scale uncertainty (i.e., the entropy over
completions sampled from T5 in a scalar construc-
tion). We found string-based entropy to be a signif-
icant predictor of SI rate (t = −3.28, p = 0.001),
suggesting that uncertainty over alternatives (as
string forms) may play a role in scalar inference.
Figure 1b shows the negative relationship between
SI rates and string-based entropy.

Next, we turn to the hierarchical metrics, which
treat alternatives as latent classes in sentence em-
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Figure 2: Example of classes (distinguished by color
and marker) identified by Gaussian mixture model
among alternatives in sentence embedding space. Sen-
tence embeddings are projected into 2 dimensions via
PCA for visualization.

bedding space. In general, the pattern mirrors what
we found for the string-based metrics. Our third
model did not find class-based surprisal to be a
significant predictor of SI rates (t = −1.33, p =
0.186; Figure 1c), and our fourth model found
class-based entropy to be a significant predictor
(t = −2.4, p = 0.01; Figure 1d).

Finally, we performed a qualitative evaluation
of the classes identified by the Gaussian mixture
models (GMMs). Figure 2 shows the alternatives
generated by T5 for the template “The salary is
adequate, but not .”, with each point obtained
by projecting the Sentence-T5 embedding into 2-
dimensional space via PCA. The BIC-minimizing
GMM identifies two latent classes, distinguished
by color and marker, among the alternatives gener-
ated by T5 for the weak scalar item adequate. First,
we examine the cluster containing good, the strong
scalemate tested in van Tiel et al.’s experiments
(marked with boldface and outline). This cluster
(indicated by blue triangles) contains good as well
as semantically similar alternatives such as “great”,
“sufficient”, and “enough”. In general, the alterna-
tives in this cluster appear to suggest a scale where
high salaries are positive (e.g., from an employee’s
perspective), with strong scalar items like “gener-
ous”, “ideal”, and “competitive”. In contrast, the
second cluster (indicated by red circles) contains al-
ternatives such as “extravagant” and “overcharged”,

capturing the potential of adequate to be on a scale
where higher salaries are not always desirable (e.g.,
from an employer’s perspective). While the model-
generated alternatives and clusters are noisy, we
take this to illustrate that a single weak scalar item
(like adequate) can plausibly be interpreted as be-
longing to multiple scales.

5 Discussion

We tested the hypothesis that SI rates depend on
the listener’s confidence in the underlying scale, us-
ing two operationalizations of alternatives (surface-
level string forms and latent classes in a sentence
embedding space). Using data from a previously
conducted experiment (van Tiel et al., 2016), we
found that scale uncertainty was a significant pre-
dictor of SI rates: on average, when uncertainty
over alternatives (i.e., entropy over sampled alter-
natives, or over classes of alternatives in sentence
embedding space) is lower, humans are more likely
to draw a scalar inference. On the other hand, the
predictability of the strong scalemate (as measured
by surprisal of the string form, or of its underlying
cluster) was not a significant predictor of SI rates.

An open question is why scale uncertainty pre-
dicts SI rates, while strong scalemate surprisal and
the availability measures from van Tiel et al. (2016)
are poor predictors. We conjecture that the pre-
dictability of the strong scalemate may be shrouded
by the paradigm used in experimental investiga-
tions of scalar diversity. In these experiments,
the participant is explicitly asked to reason about
the strong scalemate in the prompt (e.g., “John
says: This student is intelligent. Would you con-
clude from this that, according to John, she is not
brilliant?”). Thus, the effort required to retrieve the
strong scalemate (e.g., “brilliant”), which may be
captured by its in-context predictability, may no
longer be relevant in this setting. We note, how-
ever, that our findings likely depend on the chosen
clustering algorithm and conceptual representation
of the alternatives. We intend to explore this space
more broadly in future work.

Looking forward, our methods can be applied
to scales that are ordered by ad-hoc relationships
instead of entailment (Hirschberg, 1985). Beyond
predicting scalar diversity, our approach suggests
a way to derive quantitative behavioral predictions
from non-linguistic alternatives (Buccola et al.,
2021), and supports the idea that context-driven
expectations may give rise to pragmatic behaviors.
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