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Abstract

I investigate how to use pretrained static word
embeddings to deliver improved estimates of
bilexical co-occurrence probabilities: condi-
tional probabilities of one word given a sin-
gle other word in a specific relationship. Such
probabilities play important roles in psycholin-
guistics, corpus linguistics, and usage-based
cognitive modeling of language more gener-
ally. I propose a log-bilinear model taking pre-
trained vector representations of the two words
as input, enabling generalization based on the
distributional information contained in both
vectors. I show that this model outperforms
baselines in estimating probabilities of adjec-
tives given nouns that they attributively mod-
ify, and probabilities of nominal direct objects
given their head verbs, given limited training
data in Arabic, English, Korean, and Spanish.

1 Introduction

Word co-occurrence probabilities are a key ingre-
dient in usage-based cognitive models of language.
By word co-occurrence probabilities, I mean the
probability of a word w given some other single
word c, p(w | c), where words w and c have some
specific relationship, for example adjectives that at-
tributively modify nouns or nouns serving as direct
objects of verbs (Gries and Durrant, 2020).

These co-occurrence probabilities are psy-
cholinguistically relevant because they feed into
information-theoretic measures of ‘thematic fit’
and selectional restriction (Resnik, 1996; Lap-
ata et al., 1999; Padó et al., 2007; Vecchi et al.,
2017) which are relevant in predicting human on-
line processing difficulty (e.g. McRae et al., 1998;
Trueswell et al., 1994), and play a key role in lan-
guage acquisition (Erickson and Thiessen, 2015).
Most prominently, the widely-used pointwise mu-
tual information (PMI) measure of association
strength, PMI (w, c) = log p(w|c)

p(w) (Fano, 1961;
Church and Hanks, 1990), relies on these condi-

tional probabilities as an input. PMI makes appear-
ances in models of grammar induction from text
(Magerman and Marcus, 1990; Yuret, 1998; Clark
and Fijalkow, 2020; Hoover et al., 2021), online
sentence comprehension and production (Futrell
et al., 2020b; Ranjan et al., 2022), and quantita-
tive theories of word order variation (Futrell et al.,
2020a; Sharma et al., 2020).

Word co-occurrence probabilities are hard to es-
timate accurately from text data because empiri-
cal counts of a particular pair of words in a par-
ticular relation are often sparse. This limitation
makes it hard to evaluate cognitive theories that
operate on co-occurrence probabilities. Although
high-performance pretrained language models now
exist (Radford et al., 2019; Devlin et al., 2019, etc.),
the probabilities of interest often cannot be read off
of these models directly, because w and c might
be defined by relations that cannot be straightfor-
wardly detected in terms of linear word order or
templates. For example, suppose we are interested
in the distribution of adjectives attributively modi-
fying a noun in English. It would not do to ask a
language model for the distribution of words im-
mediately preceding a noun, because some of these
words will not be attributive adjectives.

I propose to improve the estimation of word co-
occurrence probabilities by leveraging pretrained
static word embeddings to enhance generalization
from potentially small training sets. My method
enables generalization based on the semantic and
syntactic information contained in word embed-
dings for both words w and c.

2 Model

Setting We are given a vocabulary of words V ,
a finite target word set W ⊆ V , a dataset of
N pairs of words {〈wi, ci〉}Ni=1 where the target
word w is an element of target word set W and the
context word c is an element of the full vocabu-
lary V , and a pretrained mapping from words to
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D-dimensional static embeddings E : V → RD.
Supposing the dataset consists of iid samples from
some distribution p (w, c) = p(c)p(w | c), our
goal is to find a conditional distribution q(w | c)
with support W to approximate p(w | c) in a way
that leverages the static embeddings E.

Proposed model I propose a log-bilinear model
(Mnih and Hinton, 2007, 2008) using word embed-
dings as input:1

q(w | c) = 1

Z(c)
exp

{
φ(w)>Aψ(c)

}
(1)

Z(c) =
∑

w∈W
exp

{
φ(w)>Aψ(c)

}
, (2)

where w = E(w) and c = E(c) are the
static embeddings of target word w and context
word c respectively, the target word encoder
φ(·) : RD → RK and context word encoder
ψ(·) : RD → RL are functions which may
be parameterized as feed-forward neural networks
with parameters denoted φ and ψ respectively, and
A is a K × L interaction matrix. The model pa-
rameters φ, ψ, and A are trained to minimize the
cross-entropy loss

J (φ, ψ,A) = −
N∑

n=1

log q(wn | cn). (3)

Modeling decisions A modeler applying this ap-
proach needs to make a number of decisions, in-
cluding the choice of static word embeddings and
the structure of the word encoders φ(·) and ψ(·).
It is also possible to set ψ = φ, using the same
function to encode both the target word and the
context word; this setup can reduce the number of
parameters at the cost of less flexibility in fitting
the training data.

Another major modeling decision involves the
target word vocabulary W , which determines the
support of q(w | c) and is summed over during
the calculation of the partition function (Eq. 2). In
some cases, the modeler may not have access to a
finite set W of possible target words. As long as
the full vocabulary V is finite, it is possible to set
W = V and learn a probability distribution with
support on all words in V .

Setting W = V has the advantage that it al-
lows the modeler not to commit to any particular
target word set, thus avoiding the risk of prema-
turely excluding legitimate target words. It has the

1I have suppressed bias terms from the notation.

disadvantages that (1) calculation of the partition
function (Eq. 2) is slower and/or more memory
intensive, and (2) the learning problem is more dif-
ficult because probability mass is initially spread
over the set V as opposed to a potentially much
smaller set W .

Implementation In all experiments reported be-
low, stochastic gradient descent is performed us-
ing the Adam algorithm with default initial learn-
ing rate (Kingma and Ba, 2015). All experi-
ments are implemented in PyTorch with use of
opt_einsum to compute the partition function
(Smith and Gray, 2018; Paszke et al., 2019).

To handle out-of-vocabulary items, I include an
unknown-word symbol UNK in the target word set
W and full vocabulary V . If a target word w in a
dataset is not present in the target word set W , or a
context word c is not present in the full vocabulary
V , then that word is mapped to UNK. In the embed-
ding map, UNK is assigned to a normalized random
vector drawn from a Gaussian distribution.

3 Related work

Distributional similarity information has been used
to improve modeling of word co-occurrence prob-
abilities in previous work. Dagan et al. (1994,
1999) defined a kernel-based interpolated language
model where probability mass is explicitly spread
over similar words, with variant models along these
lines found in Wang et al. (2005) and Yarlett (2008).
These models leverage similarity information about
target words but not context words. In contrast,
Bíró et al. (2007) proposed a method which uses
similarity information about the context word but
not the target word. Toutanova et al. (2004) de-
veloped a method that can exploit similarity in-
formation about both target and context, using a
Markov Chain algorithm incorporating distribu-
tional and WordNet similarities. None of this previ-
ous work derived word similarity information from
pretrained embeddings, because such embeddings
did not exist at the time.

The log-bilinear model for conditional word
probabilities was introduced in a language mod-
eling context by Mnih and Hinton (2007, 2008).
Mikolov et al. (2013a) influentially proposed to use
the vector representations output by the word en-
coder in such a model as general word embeddings.
The current work aims to return log-bilinear models
to their language modeling roots, evaluating the ca-
pabilities of these models to estimate co-occurrence
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probabilities using pretrained embeddings as input,
with a focus on word distributions where training
data is limited. Here the target word vocabulary
is typically small enough that the partition func-
tion (Eq. 2) can be computed directly on modern
hardware, so that approximations such as noise-
contrastive estimation (Mikolov et al., 2013b) are
not necessary.

Recently Nikkarinen et al. (2021) introduced a
neural-Bayesian nonparametric estimator for prob-
ability distributions on single words. Their setting
has an unknown and generally infinite vocabulary
V , and their model generalizes using a character-
level LSTM. In contrast, the current model assumes
a pre-existing known vocabulary V with embed-
dings, and generalizes based on those embeddings.
A hybrid model may be possible in future work.

A related literature in corpus linguistics and NLP
has explored the nature of restricted binary word
co-occurrences, called collocations (for recent ex-
amples, see Savary et al., 2017; Kutuzov et al.,
2017; Garcia et al., 2021; Espinosa Anke et al.,
2021). This work focuses narrowly on the estima-
tion of bilexical conditional probabilities, which
are often inputs to models for collocation detection.

4 Experiments

I study the ability of the embedding-based log-
bilinear model to estimate conditional distributions
for (1) adjectives attributively modifying nouns and
(2) nominal direct objects modifying verbs, in Ara-
bic, English, Korean, and Spanish. I compare the
model against baselines:

• Additive smoothing with α = 1:

padd(w | c;α) ∝ count(c, w) + α,

where count(c, w) is the frequency of the pair
of words c and w in the training data.

• An interpolated smoothed estimator:

pinterp(w | c) = padd(w | c;α) + λpMLE(w),

where pMLE is a maximum likelihood estimate,
λ = 1

4 , and α = 1.

• A softmax distribution on target words as a
function of the context word embedding c (as
proposed by Bíró et al., 2007):

psoftmax(w | c) ∝ exp
{
θ>wψ (c)

}
,

where θw is an optimized weight vector for the
target word w. This baseline uses the context
word embedding c but not the target word
embedding w. It is equivalent to having the
target word encoder return a one-hot vector
representation of target word w.

• Models without word encoders, achieved by
setting φ(·) and ψ(·) to identity functions.
Such models decode target words from the
word embeddings directly.

All baselines are subject to the same vocabulary
restrictions and out-of-vocabulary policy as the full
log-bilinear models. As a standard test metric, I
report the average negative log likelihood (NLL)
of held-out data. I report NLLs for the full test
set, as well as the challenging subset of the test set
consisting of word pairs where the context word
was never seen during training.

Below, I describe the experimental setting for
the two tasks, and then I describe the results.

4.1 Distribution of attributive adjectives
given nouns

I examine the distribution of attributive adjectives
given the nouns that they modify, for example
adjectives like red modifying nouns like ball in
phrases like the red ball.

Data I use Universal Dependencies (UD) 2.82

(Nivre et al., 2020) and the automatically-parsed
Wikipedia datasets released as part of the CoNLL
2017 Shared Task (Zeman et al., 2017) as a source
of attributive adjective–noun pairs. I extract all
pairs of words linked by a dependency of type
amod where the head has universal part-of-speech
(UPOS) NOUN and the dependent has UPOS ADJ. I
represent the pair using the downcased wordforms
of the adjective and noun.

For each language, I use the fastText aligned
word vectors (Bojanowski et al., 2017; Joulin et al.,
2018),3 limiting the vocabulary set V to the top
200,000 vectors by frequency. For the target word
vocabulary W , I take the 10,000 most frequent
wordforms among all attributive adjectives ex-
tracted from the entire CoNLL Wikipedia dataset.

As training sets, I use 99,000 adjective–noun
pairs drawn randomly from the Wikipedia datasets
for each language, so training set size is fixed

2http://hdl.handle.net/11234/1-3687
3https://fasttext.cc/docs/en/

aligned-vectors.html
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Attributive adjectives given nouns Direct objects given verbs

Softmax Log-Bilinear Softmax Log-Bilinear

Data Add. Interp. No Enc. Enc. No Enc. Enc. Add. Interp. No Enc. Enc. No Enc. Enc.

Arabic 8.50 7.05 8.31 8.04 5.79 5.89 9.78 9.78 9.17 9.00 8.63 8.47
Unseen c 9.15 9.60 8.31 8.52 6.93 6.98 9.71 9.84 9.03 8.86 9.09 8.76

English 8.75 7.17 7.15 7.16 6.40 6.41 9.64 8.99 8.64 8.58 8.16 8.04
Unseen c 9.01 8.40 7.21 7.22 6.99 6.96 9.89 9.96 8.62 8.56 8.39 8.35

Spanish 8.70 7.49 8.13 8.10 6.27 6.27 9.70 9.10 8.64 8.52 7.96 7.84
Unseen c 9.17 9.50 8.15 8.21 7.16 7.09 9.80 9.62 8.48 8.48 8.35 8.18

Korean 7.96 5.39 5.51 5.61 4.81 4.82 9.71 9.76 9.20 9.18 8.34 7.99
Unseen c 7.16 5.92 5.45 5.48 5.44 5.40 9.67 9.91 9.16 9.14 9.58 8.76

Table 1: Average NLLs of adjectives given nouns and direct objects given verbs in UD corpora for models and
baselines. ‘Add.’ is the additive smoothing baseline. ‘Enc.’ and ‘No Enc.’ refer to models with and without word
encoders, respectively. Unseen c indicates performance on pairs where the context (the head noun for adjectives
given nouns, and the head verb for direct objects given verbs) was never observed at train time.

across languages. I use an additional 1,000 pairs
from the Wikipedia datasets as development sets
for hyperparameter tuning and early stopping, and
for test sets I extract all pairs from the relevant UD
corpora.4 Pairs where the target word w is not in
the target word vocabulary W are removed from
the development and test sets.

Training and hyperparameters Each model is
trained for the number of iterations that gives min-
imum loss on the Wikipedia dev set. The word
encoders are feed-forward neural networks with
one hidden layer of 300 units and an output layer
of 300 units, with ReLU activation. In training, I
use batch size 32; I also experimented with batch
size 512 but this resulted in rapid overfitting.

4.2 Distribution of nominal direct objects
given verbs

I examine the distribution of nominal direct objects
given verbs; for example, from a sentence such as
I kicked the red ball, one would be interested in the
probability of the direct object ball given its head
noun kicked. All procedures here are the same as
for the distribution of attributive adjectives given
nouns except as described below.

Data I extracted direct objects as all pairs of
words linked in a dependency of type obj where
the head has UPOS VERB and the dependent has
UPOS NOUN. Because nouns are more open-class
than adjectives, I used a target word vocabulary of
size 20,000.

4For English, I concatenate EWT and GUM. For Arabic, I
concatenate NYUAD and PADT. For Spanish, I concatenate
AnCora and GSD. For Korean, I concatenate Kaist and GSD.

4.3 Results

Results are shown in Table 1. The log-bilinear
models outperform all others. In several cases (see
for example Spanish and Korean adjectives), only
the log-bilinear model is capable of outperforming
the interpolated baseline.

When predicting adjectives from nouns, the log-
bilinear models without word encoders sometimes
outperform those with word encoders. These is
perhaps not surprising: the input word embeddings
were trained to be used in a log-bilinear skip-gram
probability model, so they already form useful rep-
resentations for word prediction.

Overall performance on predicting objects from
verbs is worse than when predicting adjectives from
nouns. This reflects the harder nature of the task
and the larger support size required to model nouns
rather than adjectives.

4.4 Additional experiments

I also trained full log-bilinear models with a num-
ber of other settings. I found that tying the word
and context encoders does not substantially change
performance, but that fine-tuning the input word
embeddings leads to severe overfitting. Remov-
ing the target word vocabulary restriction (setting
W = V ) also substantially negatively impacts per-
formance: for adjectives, the best test set NLL is
6.57 for Arabic, 6.75 for English, 6.95 for Spanish,
and 4.89 for Korean.

5 Conclusion

I evaluated log-bilinear modeling as means to
leverage pretrained word embeddings for the es-
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timation of co-occurrence probabilities in differ-
ent syntactic configurations. I found that this
method delivers accurate probability estimates
across languages, outperforming baselines. This
method will be useful in all applications requir-
ing such probabilities. Code implementing the
method can be found at https://github.
com/langprocgroup/vectorprob.
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