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Abstract

Eye movement data are used in psycholinguis-
tic studies to infer information regarding cogni-
tive processes during reading. In this paper, we
describe our proposed method for the Shared
Task of Cognitive Modeling and Computational
Linguistics (CMCL) 2022 - Subtask 1, which
involves data from multiple datasets on 6 lan-
guages. We compared different regression mod-
els using features of the target word and its
previous word, and target word surprisal as re-
gression features. Our final system, using a
gradient boosting regressor, achieved the low-
est mean absolute error (MAE), resulting in the
best system of the competition.

1 Introduction

This year’s Cognitive Modeling and Computational
Linguistics (CMCL) workshop proposed a Shared
Task focused on eye-tracking data prediction (Hol-
lenstein et al., 2022). Differently from the last
edition (Hollenstein et al., 2021), the 2022 Shared
Task includes two subtasks: "Predict eye-tracking
features for sentences of the 6 provided languages"
and "Predict eye-tracking features for sentences
from a new surprise language". In this paper, we
present our proposed method for the first subtask.

In this task, the teams were asked to predict 4
eye-tracking features for 6 different languages (Chi-
nese, Dutch, English, German, Hindi, and Russian);
the features were: first fixation duration (FFD,
which refers to the duration of the first fixation
on the prevailing word), the standard deviation of
the FFD across readers, total reading time (TRT,
which refers to the sum of all fixation durations on
the current word, including regressions), and the
standard deviation of TRT across readers.

One of the challenging aspects of this task
is the substantially different nature of these
languages; they belong to different language
families or different branches within the same
family (i.e., Germanic, Balto-Slavic, Indo-Iranian,

Sino-Tibetan) and 4 different writing systems are
involved (i.e., Latin alphabet, Cyrillic alphabet,
Devanagari abugida, and logograms). Therefore,
we proposed a unified method that could be applied
to account for the similarities and differences
exhibited in the datasets of these 6 languages;
this method includes regression features of the
target word and of its previous word, and the
surprisal for the target word within the context.
Our codes are shared on Github at: https:
//github.com/laviniasalicchi/
HkAmsters_CMCL2022.

2 Related work

Eye movement data provide valuable evidence re-
garding the cognitive processes underlying read-
ing, and thus revealing how language is elaborated
in our brain in every aspect, from morphology
(Clifton Jr et al., 2007) to syntax (Van Schijndel and
Schuler, 2015) to semantics (Ehrlich and Rayner,
1981). Since the early studies published in the last
century, several studies have revealed that some
features of the words themselves may influence
language processing and, consequently, reading be-
havior; these features include word position, word
length, word frequency, and the number of sylla-
bles within the word (Just and Carpenter, 1980). In
addition, the spillover effect (Rayner et al., 1989)
infers that the cognitive load of a word due to
its frequency and length (Pollatsek et al., 2008)
may influence the processing of its following word.
Considering the multilingual nature of this task, in
addition to the aforementioned features, we also
included whether the word is all in uppercase, and
whether it begins with a capital letter.

One additional factor that influences language
comprehension is the sentence-level predictability
of a word given the previous context (Kliegl et al.,
2004), and in recent years, with the growth of com-
putational linguistics, some attempts to model this
kind of dynamic have been successfully achieved
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using the surprisal (i.e., the negative logarithm
of the probability of encountering a word given
the context) computed by language models (Hale,
2001; Levy, 2008; Fossum and Levy, 2012).

In the last year’s shared task, a regression model
was proposed using the following features: two-
word features (i.e., word length and word fre-
quency), the cosine similarity between the vector
representing the target word and the vector repre-
senting the sentence context, and the surprisal com-
puted word-by-word (Salicchi and Lenci, 2021).
However, Frank (2017) showed that given the over-
laps in the information conveyed by cosine similar-
ity and the surprisal, the latter alone is sufficient for
the effective modeling of eye movements. Further-
more, in Frank’s model the frequency and length
of the word preceding the target one are included
in the regression for modeling the spillover effect.

For these reasons, we modified the previously
proposed method, increasing the number of word-
specific features, and excluding the cosine similar-
ity in our system.

3 Datasets

The shared task is formulated as a regression task
to predict 2 eye-tracking features and their cor-
responding standard deviation across readers: (1)
FFD; (2) the standard deviation of FFD across read-
ers; (3) TRT; and (4) the standard deviation of TRT
across readers. Subtask 1 (multilingual prediction)
requires systems to predict these four eye-tracking
features of words in 6 provided languages. The
dataset includes materials from 8 openly available
eye movement corpora:

• Chinese: Beijing Sentence Corpus (Pan et al.,
2021).

• Dutch: GECO Corpus (Cop et al., 2017) .

• English: Provo Corpus (Luke and Christian-
son, 2018), ZuCo 1.0 Corpus (Hollenstein
et al., 2018), and ZuCo 2.0 Corpus (Hollen-
stein et al., 2019).

• German: Potsdam Textbook Corpus (Jäger
et al., 2021).

• Hindi: Postdam-Allahabad Hindi Eyetrack-
ing Corpus (Husain et al., 2015).

• Russian: Russian Sentence Corpus (Lauri-
navichyute et al., 2019).

Data statistics are given in Table 1.

Data Source Train Dev Test
Chinese 1,355 82 248
Dutch 7,462 403 1,475
English(ZuCo1) 5,325 269 994
English(ZuCo2) 5,398 303 1,127
English(Provo) 5,314 152 440
German 1,463 139 293
Hindi 2,021 142 433
Russian 1,140 59 218

Table 1: Dataset statistics. The instance numbers for
each portion are given.

4 Methodology

In this section, we introduce the selected features,
inspired by psycholinguistic studies relying on eye-
tracking data, and the investigated regression algo-
rithms. The same set of features was used for each
regression model.

4.1 Features

Given the multilingual nature of Subtask 1, we
adopted several lexical features as hand-crafted
features. The Word position index was used to
provide the sequential information of a word . The
word length of the current word and previous one
was also included. Furthermore, we added two
Boolean features: Capitalization and Upper. The
first feature was set to 1 if the first letter of the
target word was uppercase, and it was set to 0 oth-
erwise; the second feature was set to 1 if all the
letters of the target word were uppercase, and it
was set to 0 otherwise. We also used language-
specific tools for the following features: Word
frequencies for all the 6 languages were computed
using wordfreq1. These frequencies were col-
lected for both the current and previous word. Syl-
lables counts for Hindi words were computed us-
ing the syllable package2 of Indic NLP
Library, whereas the other languages were avail-
able in textstat3. Finally, to compute Sur-
prisal, 6 different GPT versions were used: Rus-
sian GPT by Grankin et al.4, Hindi GPT5 by Par-
mar, Chinese GPT6 by Du (2019), Dutch GPT7 by

1pypi.org/project/wordfreq/
2github.com/anoopkunchukuttan/indic_nlp_library/find/master
3pypi.org/project/textstat/
4github.com/mgrankin/ru_transformers
5huggingface.co/surajp/gpt2-hindi
6github.com/Morizeyao/GPT2-Chinese
7github.com/wietsedv/gpt2-recycle
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de Vries and Nissim (2021), and German GPT8.
More specifically, for each word (w) we computed
the surprisal as the negative logarithm of its prob-
ability given the previous context, from the be-
ginning of the sentence to the word immediately
preceding the target one:

Surprisal(wn) = − log(P (wn|w0, w1, ..., wn−1))
(1)

with P being the probability computed by GPT.
A total of 9 features were extracted. We decided

to generate polynomial features from our set in
order to exploit potential interactions. We used
the PolynomialFeatures functionality of the
scikit-learn Python package to generate in-
teraction features of order 2, and we used only
interaction features, so that the final number of
features that were fed to the regressors was 46.

4.2 Regressors
Once we had computed all the regression features,
we ran several experiments to find the best regres-
sion model for each language and each feature,
using the mean absolute error (MAE) for all the
words within the same language as our main index.
We tested several regression algorithms using the
implementations in the scikit-learn Python
package. The adopted scikit-learn API and the
main hyper-parameters are listed below:

• RR (Ridge): Ridge regression solves a re-
gression model in which the loss function is
the linear least-squares function, and regular-
ization is given by the l2 norm. alpha=1.0,
normalize=True.

• MLP (MLPRegressor): The multi-
layer perceptron regressor optimizes the
squared-loss using L-BFGS algorithm
or stochastic gradient descent. hidden
layer size=5, activation=identity,
solver=adam.

• PLSR (PLSRegression): PLS regression
implements the PLS2, which blocks regres-
sion in the case of a one-dimensional response.
components=5.

• BRR (BayesianRidge): A Bayesian
Ridge model implements the optimization
of the regularization parameters lambda
and alpha. alpha_1,alpha_2==1.0e-6,
lambda_1,lambda_2=1.0e-6.

8huggingface.co/dbmdz/german-gpt2

• LR (LinearRegression): Linear regres-
sion is trained based on an ordinary least-
squares function. normalize=True.

• RF (RandomForestRegressor): A ran-
dom forest is a meta estimator that fits a num-
ber of classifying decision trees on various
sub-samples of the dataset and uses averaging
to improve the predictive accuracy and con-
trol over-fitting. min_samples_split=2,
min_samples_leaf=1.

• SVR (SupportVectorRegressor):
SVR is short for epsilon-support vector
regression. It uses the kernel trick to map
data to map the original data space to a
high-dimensional space. kernel=’rbf’,
epsilon=0.1, degree=3.

• Elast (ElastRegressor): Elast regressor
uses linear regression with combined L1 and
L2 priors as the regularizer. alpha=1.0,
l1_ratio=0.5, selection=’cyclic’.

• LGB (LGBMRegressor): LightGBM is a
gradient boosting framework that uses tree-
based learning algorithms. It is designed to be
distributed and is efficient with faster training
speed and higher efficiency. objective
=’regression’,learning_rate=0.05,
mum_leaves=31.

4.3 Metrics
The performance of the participating systems was
evaluated in terms of the mean absolute error
(MAE), mean squared error (MSE), R-Square
(R2), Pearson correlation (Pears.), and Spearman
correlation (Spear.) between the outputs and the
annotated values. In the Results and Discussion
section, MAE is adopted as the main comparison
index.

5 Results and Discussion

To use a single model that could be applied to mul-
tilingual data, we selected the model with gener-
ally better performance. Table 2 shows the perfor-
mances of different regressors over the FFD for one
of the target languages. LGB, which is the gradient
boosting regressor with the regression feature inter-
acting, provided the best predictions. LGB not only
had the lowest MAE, but also achieved the best
results in terms of MSE, R2, Pearson correlation,
and Spearman correlation.
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Regressor MAE MSE R2 Pears. Spear.

LGB 2.31 10.35 0.20 0.48 0.45
BRR 2.44 10.77 0.17 0.42 0.37
RR 2.46 10.75 0.17 0.43 0.39
PLSR 2.47 11.17 0.14 0.38 0.33
Elast 2.51 11.52 0.11 0.34 0.32
LR 2.51 11.01 0.15 0.41 0.37
SVR 2.51 11.39 0.12 0.39 0.35
RF 2.56 15.03 -0.16 0.25 0.36
MLP 2.63 13.49 -0.04 0.19 0.22

Table 2: Performance of different regressors over FFD for Hindi. Evaluation metrics including MAE, MSE, R2,
Pears., Spear. are provided. LGB is the best performed model for Hindi. BRR and RR are the second and third
best models, but the performance gap is rather marginal.

Considering how regressors accounted for each
language dataset, we present the lowest MAE val-
ues for each feature and each language in Table
3. Despite the generally good performances of
LGB1, this model was not always the best. A fu-
ture direction may be to identify regression features
and regression models that are more suitable for
a specific language and the relevant eye-tracking
features.

This conclusion is reinforced by a further anal-
ysis of the performance of our system (Table 6,
Appendix); it revealed that TRTAvg was the hard-
est feature to predict with a mean error across lan-
guages of 5.1. Regarding the mean error, the lan-
guages that performed better in our model regard-
ing TRTAvg were Dutch (mean error 3.37, standard
deviation (std) 3.34) and English (mean error 4.76,
std 4.7), but their coefficients of variation were
higher, compared with other languages (English:
0.993, Dutch: 0.993), such as Hindi, for which
our model registered a high mean error of 8.81
(std 7.045) but the lowest coefficient of variation
(0.799). For both Russian and Chinese, LGB1 had
high mean errors (approximately 10) and high coef-
ficients of variation (0.867 and 0.931, respectively).

Given the differences in the amount of data
among language datasets, our comparison mainly
follows the coefficient of variation, which reveals
that for FFDAvg, English, German, and Hindi were
the languages for which our system performed
better, followed by Dutch, Russian and Chinese.
For TRTStd, the better performances were on the
datasets of Hindi, Chinese, and Russian, whereas
the most difficult portions of the dataset for this
feature were those in English, Dutch, and German.
Finally, regarding the errors for FFDStd, English

Feature Language Model MAE
FFD Chinese ELAST1 3.18

Dutch LGB0 1.72
English LGB0 5.37
German SVR0 0.451
Hindi LGB1 2.31
Russian SVR1 2.45

FFD sd Chinese LGB1 3.61
Dutch ELAST0 1.47
English LGB1 2.21
German SVR1 0.45
Hindi LGB1 2.64
Russian SVR1 2.43

TRT Chinese LR1 6.52
Dutch LGB0 3.34
English LGB1 8.28
German RF0 3.052
Hindi LGB1 5.32
Russian SVR0 9.71

TRT sd Chinese LR1 6.84
Dutch LGB0 2.78
English LGB1 5.42
German RF0 2.57
Hindi BRR1 5.23
Russian LGB0 6.34

Table 3: Best models for each language and feature to
be predicted. Models in this table with ‘0’ do not have
interaction between regression features while models in
this table with ‘1’ take advantage of interaction between
regression features.

was undoubtedly the language for which our sys-
tem performed the best, and it showed the worst
results for Chinese and Hindi datasets.

Finally, we performed an ablation study for the
German dataset, in order to examine the contribu-

117



MAE MSE R2 Pearson Spearman
w/o w w/o w w/o w w/o w w/o w

FFD 0.467- 0.457 0.363- 0.362 0.140- 0.142 0.406- 0.407 0.325- 0.399
FFD sd 0.464- 0.456 0.432- 0.425 0.036- 0.051 0.245- 0.274 0.272- 0.327
TRT 3.517+ 3.520 29.337+ 30.181 0.628+ 0.618 0.865- 0.875 0.793- 0.803
TRT sd 2.892- 2.872 20.397- 20.090 0.510- 0.517 0.780- 0.788 0.717+ 0.716

Table 4: Feature analyses for whether using Capital letters in processing the German dataset. ’+’ indicates a better
performance compared with all features training, while vice verses for ’-’.

FFD FFD sd TRT TRT sd
Word position index 0.451+ 0.463- 3.520 2.981-
Word length 0.452+ 0.463- 3.612- 2.879-
Previous word length 0.456+ 0.456 3.543- 2.869+
Word log frequency 0.468- 0.475- 3.677- 3.055-
Previous word log frequency 0.459- 0.470- 3.470+ 2.853+
Uppercase 0.457 0.456 3.520 2.872
Capitalization 0.467- 0.464- 3.517+ 2.892-
Syllable count 0.459- 0.457- 3.527- 2.933-
Surprisal score 0.456+ 0.452+ 3.573- 2.889-
all 0.457 0.456 3.520 2.872

Table 5: An ablation study for the German dataset (no Uppercase). The MAE results are presented using leave-one
comparison. ’+’ indicates a better performance compared with all features training, while vice verses for ’-’.

tion of the different features. Table 4 shows the
results of whether using the feature Capitalization.
Despite some minor performance drop (especially
for TRT), using Capitalization generally improves
the evaluation metrics. Table 5 summarizes the
MAE results of feature ablation study for the Ger-
man dataset. In general, every feature incorporated
in the proposed system contributes to the best prac-
tice. These preliminary results suggest that the
features we adopted are tenable. We leave a more
comprehensive cross-lingual comparison along this
line for the future study.

In summary, in our system, TRTAvg was the
most difficult one to predict, but TRTAvg and TRT-
Std showed better performance in Hindi, and FF-
DAvg and FFDStd were better in English. Our
proposed system outperformed the Shared Task
baseline with an average MAE of 3.0112, resulting
in the best system of the competition.

6 Conclusions

In this paper, we described the system we proposed
for the CMCL2022 Shared Task - Subtask 1 on
multilingual data. Using a gradient boosting re-
gressor with features of the target words as well as
their previous word, and the surprisal between the
target word and the previous context as regression

features, we predicted two eye-tracking features
and two standard deviations: first fixation duration,
total reading time, and their standard deviations
across readers.

Despite the multilingual nature of this task, we
were able to reach our goal of creating a unified
system capable of modeling the human reading be-
havior in 6 substantially different languages. Our
results showed a tendency of better performances
with FFD related features than with TRT related
ones. This may partly reflect the fact that in our sys-
tem, more word-level hand-crafted features were
included, which could favor this token-level predic-
tion task, given that FFD is often assumed to reflect
lexical information processing, whereas TRT may
be related to a later stage of language processing
related to information-structural integration.
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Appendix

FFDAvg FFDStd TRTAvg TRTStd
Chinese
Mean 5.884 7.152 10.096 7.804
Stddev 7.688 11.216 9.396 6.396
CV 1.307 1.568 0.931 0.820
Dutch
Mean 1.754 1.484 3.367 2.798
Stddev 1.741 1.385 3.343 2.714
CV 0.993 0.933 0.993 0.970
English(Zuco1)
Mean 0.960 1.010 4.180 4.102
Stddev 0.819 0.865 4.335 4.649
CV 0.853 0.856 1.037 1.133
English(Zuco2)
Mean 1.682 1.841 4.672 4.169
Stddev 1.383 1.459 4.805 4.169
CV 0.822 0.793 1.028 1.000
English(Provo)
Mean 2.061 2.014 5.434 5.167
Stddev 1.682 1.857 4.969 4.872
CV 0.816 0.922 0.915 0.943
German
Mean 0.457 0.456 3.520 2.872
Stddev 0.392 0.468 4.233 3.453
CV 0.857 1.025 1.203 1.202
Hindi
Mean 6.615 9.716 8.814 9.904
Stddev 6.034 11.296 7.045 7.265
CV 0.912 1.163 0.799 0.734
Russian
Mean 2.669 2.703 10.152 6.649
Stddev 2.934 1.942 8.805 6.140
CV 1.099 0.719 0.867 0.923

Table 6: Error analysis on the performance of our proposed system on every portion of the dev dataset. Mean refers
to the average of the absolute error of all words in a portion. Stddev refers to the standard deviation of the absolute
error of all words in a portion. CV refers to the coefficient of variation (representing a relative standard deviation),
which is a statistical measure of the dispersion of the absolute error of all words in a portion.
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