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Abstract
Decision support systems based on clinical
notes have the potential to improve patient care
by pointing doctors towards overseen risks. Pre-
dicting a patient’s outcome is an essential part
of such systems, for which the use of deep
neural networks has shown promising results.
However, the patterns learned by these net-
works are mostly opaque and previous work
revealed both reproduction of systemic biases
and unexpected behavior for out-of-distribution
patients. For application in clinical practice it is
crucial to be aware of such behavior. We thus
introduce a testing framework that evaluates
clinical models regarding certain changes in
the input. The framework helps to understand
learned patterns and their influence on model
decisions. In this work, we apply it to analyse
the change in behavior with regard to the pa-
tient characteristics gender, age and ethnicity.
Our evaluation of three current clinical NLP
models demonstrates the concrete effects of
these characteristics on the models’ decisions.
They show that model behavior varies drasti-
cally even when fine-tuned on the same data
with similar AUROC score. These results ex-
emplify the need for a broader communication
of model behavior in the clinical domain.

1 Introduction

Outcome prediction from clinical notes. The
use of automatic systems in the medical domain is
promising due to their potential exposure to large
amounts of data from earlier patients. This data can
include information that helps doctors make better
decisions regarding diagnoses and treatments of a
patient at hand. Outcome prediction models take
patient information as input and then output prob-
abilities for all considered outcomes (Choi et al.,
2018; Khadanga et al., 2019). We focus this work
on outcome models using natural language in the
form of clinical notes as an input, since they are a
common source of patient information and contain
a multitude of possible variables.

58yo man presents with stomach
pain and acute shortness of breath

58yo woman presents with stomach pain
and acute shortness of breath

58yo afro american man presents with
stomach pain and shortness of breath

58yo obese man presents with stomach
pain and shortness of breath

Predicted
Mortality Risk

Predicted
Diagnoses i.a.

86yo man presents with stomach pain
and shortness of breath

Original sample

Artificially altered testing samples

49% ... esophagitis ...

44% ... anxiety ...

63% ... abuse of drugs ...

31% ... hypertension ...

84% ... heart failure ...

Figure 1: Minimal alterations to the patient description
can have a large impact on outcome predictions of clin-
ical NLP models. We introduce behavioral testing for
the clinical domain to expose these impacts.

The problem of black box models for clinical
predictions. Recent models show promising re-
sults on tasks such as mortality (Si and Roberts,
2019) and diagnosis prediction (Liu et al., 2018;
Choi et al., 2018). However, since most of these
models work as black boxes, it is unclear which
features they consider important and how they in-
terpret certain patient characteristics. From earlier
work we know that highly parameterized models
are prone to emphasize systemic biases in the data
(Sun et al., 2019). Further, these models have high
potential to disadvantage minority groups as their
behavior towards out-of-distribution samples is of-
ten unpredictable. This behavior is especially dan-
gerous in the clinical domain, since it can lead to
underdiagnosis or inappropriate treatment (Straw,
2020). Thus, understanding models and allocative
harms they might cause (Barocas et al., 2017) is
an essential prerequisite for their application in
clinical practice. We argue that more in-depth eval-
uations are needed to know whether models have
learned medically meaningful patterns or not.

Behavioral testing for the clinical domain. As
a step towards this goal, we introduce a novel test-
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ing framework specifically for the clinical domain
that enables us to examine the influence of certain
patient characteristics on the model predictions.
Our work is motivated by behavioral testing frame-
works for general Natural Language Processing
(NLP) tasks (Ribeiro et al., 2020) in which model
behavior is observed under changing input data.
Our framework incorporates a number of test cases
and is further extendable to the needs of individual
data sets and clinical tasks.

Influence of patient characteristics. As an ini-
tial case study we apply the framework to analyse
the behavior of models trained on the widely used
MIMIC-III database (Johnson et al., 2016). We
analyse how sensitive these models are towards
textual indicators of patient characteristics, such as
age, gender and ethnicity, in English clinical notes.
These characteristics are known to be affected by
discrimination in health care (Stangl et al., 2019),
on the other hand, they can represent important risk
factors for certain diseases or conditions. That is
why we consider it especially important to under-
stand how these mentions affect model decisions.

Contributions. In summary, we present the fol-
lowing contributions in this work:
1) We introduce a behavioral testing framework
specifically for clinical NLP models. We release
the code for applying and extending the frame-
work1 to enable in-depth evaluations.
2) We present an analysis on the patient character-
istics gender, age and ethnicity to understand the
sensitivity of models towards textual cues regard-
ing these groups and whether their predictions are
medically plausible.
3) We show results of three state-of-the-art clinical
NLP models and find that model behavior strongly
varies depending on the applied pre-training. We
further show that highly optimised models tend to
overestimate the effect of certain patient character-
istics leading to potentially harmful behavior.

2 Related Work

2.1 Clinical Outcome Prediction
Outcome prediction from clinical text has been
studied regarding a variety of outcomes. The most
prevalent being in-hospital mortality (Ghassemi
et al., 2014; Jo et al., 2017; Suresh et al., 2018; Si
and Roberts, 2019), diagnosis prediction (Tao et al.,

1URL: https://github.com/bvanaken/
clinical-behavioral-testing

2019; Liu et al., 2018, 2019a) and phenotyping
(Liu et al., 2019b; Jain et al., 2019; Oleynik et al.,
2019; Pfaff et al., 2020). In recent years, most
approaches are based on deep neural networks due
to their ability to outperform earlier methods in
most settings. Most recently, Transformer-based
models have been applied for prediction of patient
outcomes with reported increases in performance
(Huang et al., 2019; Zhang et al., 2020a; Tuzhilin,
2020; Zhao et al., 2021; van Aken et al., 2021;
Rasmy et al., 2021). In this work we analyse three
Transformer-based models due to their upcoming
prevalence in the application of NLP in health care.

2.2 Behavioral Testing in NLP
Ribeiro et al. (2020) identify shortcomings of com-
mon model evaluation on held-out datasets, such as
the occurrence of the same biases in both training
and test set and the lack of broad testing scenarios
in the held-out set. To mitigate these problems,
they introduce CHECKLIST, a behavioral testing
framework for general NLP abilities. In partic-
ular, they highlight that such frameworks evalu-
ate input-output behavior without any knowledge
of internal structures of a system (Beizer, 1995).
Building upon CHECKLIST, Röttger et al. (2021)
introduce a behavioral testing suite for the domain
of hate speech detection to address the individual
challenges of the task. Following their work, we
create a behavioral testing framework for the do-
main of clinical outcome prediction, that comprise
idiosyncratic data and respective challenges.

2.3 Analysing Clinical NLP Models
Zhang et al. (2020b) highlight the reproduction of
systemic biases in clinical NLP models. They quan-
tify such biases with the recall gap among patient
groups and show that models trained on data from
MIMIC-III inherit biases regarding gender, ethnic-
ity, and insurance status–leading to higher recall
values for majority groups. Log’e et al. (2021) fur-
ther find disparities in pain treatment suggestions
by language models for different races and genders.
We take these findings as motivation to directly
analyse the sensitivity of large pre-trained models
with regard to patient characteristics. In contrast
to earlier work and following Ribeiro et al. (2020),
we want to eliminate the influence of existing data
labels on our evaluation. Further, our approach
simulates patient cases that are similar to real-life
occurrences. It thus displays the actual impact of
learned patterns on all analysed patient groups.
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Figure 2: Behavioral testing framework for the clinical domain. Schematic overview of the introduced framework.
From an existing test set we create test groups by altering specific tokens in the clinical note. We then analyse the
change in predictions which reveals the impact of the mention on the clinical NLP model.

3 Behavioral Testing of Clinical NLP
Models

Sample alterations. Our goal is to examine how
clinical NLP models react to mentions of certain
patient characteristics in text. Comparable to ear-
lier approaches to behavioral testing we use sample
alterations to artificially create different test groups.
In our case, a test group is defined by one manifes-
tation of a patient characteristic, such as female as
the patient’s gender. To ensure that we only mea-
sure the influence of this certain characteristic, we
keep the rest of the patient case unchanged and ap-
ply the alterations to all samples in our test dataset.
Depending on the original sample, the operations
to create a certain test group thus include 1) chang-
ing a mention, 2) adding a mention or 3) keeping a
mention unchanged (in case of a patient case that
is already part of the test group at hand). This re-
sults in one newly created dataset per test group, all
based on the same patient cases and only different
in the patient characteristic under investigation.

Prediction analysis. After creating the test
groups, we collect the models’ predictions for all
cases in each test group. Different from earlier
approaches to behavioral testing we do not test
whether predictions on the altered samples are true
or false with regard to the ground truth. As van
Aken et al. (2021) pointed out, clinical ground
truth must be viewed critically, because the col-
lected data does only show one possible pathway
for a patient out of many. Further, existing biases
in treatments and diagnoses are likely included in
our testing data potentially leading to meaningless
results. To prevent that, we instead focus on de-
tecting how the model outputs change regardless
of the original annotations. This way we can also
evaluate very rare mentions (e.g. transgender) and
observe their impact on the model predictions reli-

ably. Figure 2 shows a schematic overview of the
functioning of the framework.

Extensibility. In this study, we use the introduced
framework to analyse model behavior with regard
to patient characteristics as described in 4.2. How-
ever, it can also be used to test other model behavior
like the ability to detect diagnoses when certain in-
dicators are present in the text or the influence of
stigmatizing language (cf. Goddu et al. (2018)). It
is further possible to combine certain patient groups
to test model behavior regarding intersectionality.
While such analyses are beyond the scope of this
paper, we include them in the published codebase
as an example for further extensions.

4 Case Study: Patient Characteristics

4.1 Data

We conduct our analysis on data from the MIMIC-
III database (Johnson et al., 2016). In particu-
lar we use the outcome prediction task setup by
van Aken et al. (2021). The classification task in-
cludes 48,745 English admission notes annotated
with the patients’ clinical outcomes at discharge.
We select the outcomes diagnoses at discharge
and in-hospital mortality for this analysis, since
they have the highest impact on patient care and
present a high potential to disadvantage certain pa-
tient groups. We use three models (see 4.3) trained
on the two admission to discharge tasks and con-
duct our analysis on the test set defined by the
authors with 9,829 samples.

4.2 Considered Patient Characteristics

We choose three characteristics for the analysis in
this work: Age, gender and ethnicity. While these
characteristics differ in their importance as clinical
risk factors, all of them are known to be subject
to biases and stigmas in health care (Stangl et al.,

65



2019). Therefore, we want to test, whether the
analysed models have learned medically plausible
patterns or ones that might be harmful to certain
patient groups. We deliberately also include groups
that occur very rarely in the original dataset. We
want to understand the impact of imbalanced input
data especially on minority groups, since they are
already disadvantaged by the health care system
(Riley, 2012; Bulatao and Anderson, 2004).

When altering the samples in our test set, we uti-
lize the fact that patients are described in a mostly
consistent way in clinical notes. We collect all men-
tion variations from the training set used to describe
the different patient characteristics and alter the
samples accordingly in an automated setup. Details
regarding all applied variations can be found in the
public repository linked in 1.

Age. The age of a patient is a significant risk
factor for a number of clinical outcomes. Our
test includes all ages between 18 and 89 and the
[** Age over 90**] de-idenfitication label from
the MIMIC-III database. By analysing the model
behavior on changing age mentions we can get in-
sights on how the models interpret numbers, which
is considered challenging for current NLP models
(Wallace et al., 2019).

Gender. A patient’s gender is both a risk factor
for certain diseases and also subject to unintended
biases in healthcare. We test the model’s behavior
regarding gender by altering the gender mention
and by changing all pronouns in the clinical note.
In addition to female and male, we also consider
transgender as a gender test group in our study.
This group is extremely rare in clinical datasets like
MIMIC-III, but since approximately 1.4 million
people in the U.S. identify as transgender (Flores
et al., 2016), it is important to understand how
model predictions change when the characteristic
is present in a clinical note.

Ethnicity. The ethnicity of a patient is only occa-
sionally mentioned in clinical notes and its role in
medical decision-making is controversial, since it
can lead to disadvantages in patient care (Anderson
et al., 2001; Snipes et al., 2011). Earlier studies
have also shown that ethnicity in clinical notes is
often incorrectly assigned (Moscou et al., 2003).
We want to know how clinical NLP models inter-
pret the mention of ethnicity in a clinical note and
whether their behavior can cause unfair treatment.
We choose White, African American, Hispanic and

PubMedBERT CORe BioBERT

Diagnoses 83.75 83.54 82.81
Mortality 84.28 84.04 82.55

Table 1: Performance of three state-of-the-art models on
the tasks diagnoses (multi-label) and mortality predic-
tion (binary task) in % AUROC. PubMedBERT outper-
forms the other models in both tasks by a small margin.

Asian as ethnicity groups for our evaluation, as they
are the most frequent ethnicities in MIMIC-III.

4.3 Clinical NLP Models

In this study, we apply the introduced testing frame-
work to three existing clinical models which are
fine-tuned on the tasks of diagnosis and mortal-
ity prediction. We use public pre-trained model
checkpoints and fine-tune all models on the same
training data with the same hyperparameter setup2.
The models are based on the BERT architecture
(Devlin et al., 2019) as it presents the current state-
of-the-art in predicting patient outcomes. Their
performance on the two tasks is shown in Table
1. We deliberately choose three models based on
the same architecture to investigate the impact of
pre-training data while keeping architectural con-
siderations aside. In general the proposed testing
framework is model agnostic and works with any
type of text-based outcome prediction model.

BioBERT. Lee et al. (2020) introduced BioBERT
which is based on a pre-trained BERT Base (De-
vlin et al., 2019) checkpoint. They applied another
language model fine-tuning step using biomedical
articles from PubMed abstracts and full-text arti-
cles. BioBERT has shown improved performance
on both medical and clinical downstream tasks.

CORe. Clinical Outcome Representations
(CORe) by van Aken et al. (2021) are based on
BioBERT and extended with a pre-training step
that focuses on the prediction of patient outcomes.
The pre-training data includes clinical notes,
Wikipedia articles and case studies from PubMed.
The tokenization is similar to the BioBERT model.

PubMedBERT. Gu et al. (2020) recently intro-
duced PubMedBERT based on similar data as
BioBERT. They use PubMed articles and abstracts
but instead of extending a BERT Base model, they

2Batch size: 20; learning rate: 5e-05; dropout: 0.1;
warmup steps: 1000; early stopping patience: 20.
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Figure 3: Influence of gender on predicted diagnoses. Blue: Predicted probability for diagnosis is below-average;
red: predicted probability above-average. PubMedBERT shows highest sensitivity to gender mention and regards
many diagnoses less likely if transgender is mentioned in the text. Graph shows deviation of probabilities on 24
most common diagnoses in test set.

Figure 4: Original distribution of diagnoses per gender
in MIMIC-III. Cell colors: Deviation from average prob-
ability. Numbers in parenthesis: Occurrences in the
training set. Most diagnoses occur less often in trans-
gender patients due to their very low sample count.

train PubMedBERT from scratch. The tokeniza-
tion is adjusted to the medical domain accordingly.
The model reaches state-of-the-art results on multi-
ple medical NLP tasks and outperforms the other
analysed models on the outcome prediction tasks.

5 Results

We present the results on all test cases by averaging
the probabilities that a model assigns to each test
sample. We then compare the averaged probabili-
ties across test cases to identify which characteris-
tics have a large impact on the model’s prediction
over the whole test set. The values per diagnosis
in the heatmaps shown in Figure 3, 4, 7 and 8 are
defined using the following formula:

ci = pi −
∑N

j pj

N
(1)

where ci is the value assigned to test group i, p
is the (predicted) probability for a given diagnosis
and N is the number of all test groups except i.

We choose this illustration based on the concept
of partial dependence plots (Friedman, 2001) to
highlight both positive and negative influence of
a characteristic on model behavior. Since all test
groups are based on the same patients and only dif-
fer regarding the characteristic at hand, even small
differences in the averaged predictions can point
towards general patterns that the model learned to
associate with a characteristic.

5.1 Influence of Gender

Transgender mention leads to lower mortal-
ity and diagnoses predictions. Table 2 shows
the mortality predictions of the three analysed
models with regard to the gender assigned in the
text. While the predicted mortality risk for female
and male patients lies within a small range, all
models predict the mortality risk of patients that
are described as transgender as lower than non-
transgender patients. This is probably due to the
relative young age of most transgender patients

PubMedBERT CORe BioBERT

Female 0.335 0.239 0.119
Male 0.333 0.245 0.121
Transgender 0.326 0.229 0.117

Table 2: Influence of gender on mortality predictions.
PubMedBERT assigns highest risk to female, the other
models to male patients. Notably, all models decrease
their mortality prediction for transgender patients.
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Figure 5: Influence of age on diagnosis predictions. The x-axis is the simulated age and the y-axis is the predicted
probability of a diagnosis. All models follow similar patterns with some diagnosis risks increasing with age and
some decreasing. The original training distributions (black dotted line) are mostly followed but attenuated.

in the MIMIC-III training data, but can be harm-
ful to older patients identifying as transgender at
inference time.

Sensitivity to gender mention varies per model.
Figure 3 shows the change in model prediction for
each diagnosis with regard to the gender mention.
The cells of the heatmap are the deviations from the
average score of the other test cases. Thus, a red
cell indicates that the model assigns a higher prob-
ability to a diagnosis for this gender group. We see
that PubMedBERT is highly sensitive to the change
of the patient gender, especially regarding transgen-
der patients. Except from few diagnoses such as
Cardiac dysrhythmias and Drug Use / Abuse, the
model predicts a lower probability to diseases if
the patient letter contains the transgender mention.
The CORe and BioBERT models are less sensitive
in this regard. The most salient deviation of the
BioBERT model is a drop in probability of Urinary
tract disorders for male patients, which is medi-
cally plausible due to anatomic differences (Tan
and Chlebicki, 2016).

Patterns in MIMIC-III training data are par-
tially inherited. In Figure 4 we show the original
distribution of diagnoses per gender in the training
data. Note that the deviations are about 10 times
larger than the ones produced by the model predic-
tions in Figure 3. This indicates that the models
take gender as a decision factor, but only among
others. Due to the very rare occurrence of trans-
gender mentions (only seven cases in the training

data), most diagnoses are underrepresented for this
group. This is partially reflected by the model pre-
dictions, especially by PubMedBERT, as described
above. Other salient patterns such as the prevalence
of Chronic ischemic heart disease in male patients
are only reproduced faintly by the models.

5.2 Influence of Age

Mortality risk is differently influenced by age.
Figure 6 shows the averaged predicted mortality
per age for all models and the actual distribution
from the training data (dotted line). We see that

0.0

0.1

0.2

0.3

0.4

0.5

18 26 34 42 50 58 66 74 82

[**A
ge over 90 **]

MIMIC-III training data BioBERT CORe PubMedBERT

Figure 6: Influence of age on mortality predictions. X-
axis: Simulated age; y-axis: predicted mortality risk.
The three models are differently calibrated and only
CORe is highly influenced by age.
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Figure 7: Influence of ethnicity on diagnosis predictions. Blue: Predicted probability for diagnosis is below-average;
red: predicted probability above-average. PubMedBERT’s predictions are highly influenced by ethnicity mentions,
while CORe and BioBERT show smaller deviations, but also disparities on specific groups.

Figure 8: Original distribution of diagnoses per
ethnicity in MIMIC-III. Cell colors: Deviation from av-
erage probability. Numbers in parenthesis: Occurrences
in the training set. Both the distribution of samples and
the occurrences of diagnoses are highly unbalanced in
the training set.

BioBERT does not take age into account when
predicting mortality risk except for patients over
90. PubMedBERT assigns a higher mortality risk
to all age groups with a small increase for patients
over 60 and an even steeper increase for patients
over 90. CORe follows the training data the most
while also inheriting peaks and troughs in the data.

Models are equally affected by age when pre-
dicting diagnoses. We exemplify the impact of
age on diagnosis prediction on eight outcome di-
agnoses in Figure 5. The dotted lines show the
distribution of the diagnosis within an age group
in the training data. The change of predictions re-
garding age are similar throughout the analysed
models with only small variations such as for Car-
diac dysrhythmias. Some diagnoses are regarded

more probable in older patients (e.g. Acute Kidney
Failure) and others in younger patients (e.g. Abuse
of drugs). The distributions per age group in the
training data are more extreme, but follow the same
tendencies as predicted by the models.

Peaks indicate lack of number understanding.
From earlier studies we know that BERT-based
models have difficulties dealing with numbers in
text (Wallace et al., 2019). The peaks that we ob-
serve in some predictions support this finding. For
instance, the models assign a higher risk of Cardiac
dysrhythmias to patients aged 73 than to patients
aged 74, because they do not capture that these are
consecutive ages. Therefore, the influence of age
on the predictions might solely be based on the
individual age tokens observed in the training data.

5.3 Influence of Ethnicity

Mention of any ethnicity decreases prediction of
mortality risk. Table 3 shows the mortality pre-
dictions when different ethnicities are mentioned
and when there is no mention. We observe that

PubMedBERT CORe BioBERT

No mention 0.333 0.243 0.120
White 0.329 0.235 0.119
African Amer. 0.329 0.239 0.116
Hispanic 0.331 0.237 0.118
Asian 0.330 0.238 0.118

Table 3: Influence of ethnicity on mortality predictions.
The mention of an ethnicity decreases the predicted
mortality risk. White and African American patients are
assigned with the lowest mortality risk (gray-shaded).
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the mention of any of the ethnicities leads to a de-
crease in mortality risk prediction in all models,
with White and African American patients receiv-
ing the lowest probabilities.

Diagnoses predicted by PubMedBERT are
highly sensitive to ethnicity mentions. Figure 7
depicts the influence of ethnicity mentions on the
three models. Notably, the predictions of PubMed-
BERT are strongly influenced by ethnicity men-
tions. Multiple diagnoses such as Chronic kidney
disease are more often predicted when there is no
mention of ethnicity, while diagnoses like Hyper-
tension and Abuse of drugs are regarded more likely
in African American patients and Unspecified ane-
mias in Hispanic patients. While the original train-
ing data in Figure 8 shows the same strong variance
among ethnicities, this is not inherited the same
way in the CORe and BioBERT models. However,
we can also observe deviations regarding ethnicity
in these models.

African American patients are assigned lower
risk of diagnoses by CORe and BioBERT.
The heatmaps showing predictions of CORe and
BioBERT reveal a potentially harmful pattern in
which the mention of African American in a clinical
note decreases the predictions for a large number
of diagnoses. This pattern is found more promi-
nently in the CORe model, but also in BioBERT.
Putting these models into clinical application could
result in fewer diagnostic tests to be ordered by
physicians and therefore lead to disadvantages in
the treatment of African American patients. This is
particularly critical as it would reinforce existing
biases in health care (Nelson, 2002).

6 Discussion

Model behaviors show large variance. The re-
sults described in 5 reveal large differences in the
influence of patient characteristics throughout mod-
els. The analysis shows that there is no overall
best model, but each model has learned both useful
patterns (e.g. age as a medical plausible risk factor)
and potentially dangerous ones (e.g. decreases in
diagnosis risks for minority groups). The large vari-
ance is surprising since the models have a shared
architecture and are fine-tuned on the same data–
they only differ in their pre-training. And while
the reported AUROC scores for the models (Table
1) are close to each other, the variance in learned
behavior show that we should consider in-depth

analyses a crucial part of model evaluation in the
clinical domain. This is especially important since
harmful patterns in clinical NLP models are often
fine-grained and difficult to detect.

Model scoring can obfuscate critical behavior.
The analysis has shown that PubMedBERT which
outperforms the other models in both mortality and
diagnosis prediction by AUROC show larger sen-
sitivity to mentions of gender and ethnicity in the
text. Many of them–like lower diagnosis risk as-
signment to African American patients–might lead
to undertreatment. This is alerting since it partic-
ularly affects minority groups which are already
disadvantaged by the health care system. It also
shows that instead of measuring clinical models
regarding rather abstract scores, looking at their po-
tential impact to patients should be further empha-
sized. To communicate model behavior to medical
professionals one possible direction could be to
use behavioral analysis results as a part of clinical
model cards as proposed by Mitchell et al. (2019).

Limitations of the proposed framework. Un-
like other behavioral testing setups (see 2.2), results
of our framework cannot be easily categorized into
correct and false behavior. While increased risk
allocations can be beneficial to a patient group due
to doctors running additional tests, they can also
lead to mistreatment or other diagnoses being over-
looked. Same holds for the influence of rare men-
tions, such as transgender: One could argue that
based on only seven occurrences in the training
set the characteristic should have less impact on
model decisions overall. However, some features
e.g. regarding rare diseases should be recognized as
important even if very infrequent. Since our mod-
els often lack such judgement, the decision about
which patient characteristic to consider a risk fac-
tor and their impact on outcome predictions is still
best made by medical professionals. Nevertheless,
decision support systems can be beneficial if their
behavior is transparently communicated. With this
framework we want to take a step towards improv-
ing this communication.

7 Conclusion

In this work, we introduced a behavioral testing
framework for the clinical domain to understand
the effects of textual variations on model predic-
tions. We apply this framework to three current
clinical NLP models to examine the impact of cer-
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tain patient characteristics. Our results show that
the models–even with very close AUROC scores–
have learned very different behavioral patterns,
some of them with high potential to disadvantage
minority groups. With this work, we want to em-
phasize the importance of model evaluation beyond
common metrics especially in sensitive areas like
health care. We recommend to use the results of
these evaluations for discussions with medical pro-
fessionals. Being aware of specific model behavior
and incorporating this knowledge into clinical de-
cision making is a crucial step towards safe deploy-
ment of such models. For future work we consider
iterative model fine-tuning with medical profes-
sionals in the loop a promising direction to teach
models which patterns to stick to and which ones
to discard.
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