
Proceedings of the 4th Clinical Natural Language Processing Workshop, pages 93 - 102
July 14, 2022 ©2022 Association for Computational Linguistics

An exploratory data analysis: the performance differences of a medical
code prediction system on different demographic groups

Heereen Shim1,2,3, Dietwig Lowet3, Stijn Luca4 and Bart Vanrumste1,2

1Campus Group T, e-Media Research Lab, KU Leuven, Leuven, Belgium
2Department of Electrical Engineering (ESAT), STADIUS, KU Leuven, Leuven, Belgium

3Philips Research, Eindhoven, the Netherlands
4Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium

{heereen.shim, bart.vanrumste}@kuleuven.be
{dietwig.lowet}@philips.com

{stijn.luca}@ugent.be

Abstract

Recent studies show that neural natural pro-
cessing models for medical code prediction suf-
fer from a label imbalance issue. This study
aims to investigate further imbalance in a med-
ical code prediction dataset in terms of de-
mographic variables and analyse performance
differences in demographic groups. We use
sample-based metrics to correctly evaluate the
performance in terms of the data subject. Also,
a simple label distance metric is proposed to
quantify the difference in the label distribution
between a group and the entire data. Our anal-
ysis results reveal that the model performs dif-
ferently towards different demographic groups:
significant differences between age groups and
between insurance types are observed. Interest-
ingly, we found a weak positive correlation be-
tween the number of training data of the group
and the performance of the group. However, a
strong negative correlation between the label
distance of the group and the performance of
the group is observed. This result suggests that
the model tends to perform poorly in the group
whose label distribution is different from the
global label distribution of the training data set.
Further analysis of the model performance is re-
quired to identify the cause of these differences
and to improve the model building.

1 Introduction

Medical coding is the process of assigning standard
codes, such as The International Classification of
Diseases (ICD) codes, to each clinical document
for documenting records and medical billing pur-
poses. Even though medical coding is an important
process in the healthcare system, it is expensive,
time-consuming, and error-prone (O’malley et al.,
2005).

Researchers have investigated approaches for au-
tomated ICD coding systems and there has been
great progress with neural network architectures
(Kalyan and Sangeetha, 2020). However, current

state-of-the-art models still suffer from data imbal-
ance issues: since the benchmark dataset is imbal-
anced in terms of assigned ICD codes, the model
performances differ across ICD codes (Mullenbach
et al., 2018; Li and Yu, 2020; Kim and Ganapathi,
2021; Vu et al., 2021; Ji et al., 2021). Moreover, a
recent study argues that the performances of mod-
els tend to decrease when the ICD codes have fewer
training instances (Ji et al., 2021).

Based on this observation from the literature (i.e.,
imbalanced ICD code distribution results in the per-
formance imbalance between the ICD codes), the
goal of this paper is to investigate the effect of
the imbalance of different demographic groups in
the training data set on the performances of the
demographic groups. More specifically, we study
the following questions: 1) Is a benchmark dataset
for medical code prediction imbalance in terms of
the data subject’s demographic variables (i.e., age,
gender, ethnicity, socioeconomic status)?; 2) If so,
would it result in performance differences between
demographic groups? To answer these questions,
we analyse the benchmark dataset, reproduce one
of the state-of-the-art models (Li and Yu, 2020),
and analyse the performance of the model. To
the best of our knowledge, this is the first attempt
to study the demographic imbalance of the medi-
cal code prediction benchmark dataset and analyse
the performance differences between demographic
groups.

Our contribution is three-fold. Firstly, we
analysed the medical code prediction benchmark
dataset to investigate the underlying imbalance in
the dataset (Section 4.1) and reproduced one of the
state-of-the-art medical code prediction models pro-
posed by Li and Yu (2020). Secondly, we propose
sample-based evaluation metrics (Section. 3.4) to
identify potential biases inside a model and poten-
tial risk of the bias (Section. 4.2). Thirdly, we pro-
pose a simple label distance metric to quantify the
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differences in the label distribution between each
group and the global data (Section. 3.2) and found
that the label distance metric is strongly correlated
with the performance negatively (Section. 4.3). We
expect that these analytic results could provide a
valuable insight to the natural language processing
(NLP) research community working for clinical
applications.

2 Data

This section includes the information on the bench-
mark dataset used and the details of pre-processing
steps taken for preparing data for the experiments.
Note that we followed the previous approach to re-
produce the result from the literature. More details
are explained in the following subsections.

2.1 MIMIC-III dataset

We used Medical Information Mart for Intensive
Care (MIMIC-III v1.4.) dataset (Johnson et al.,
2016)1 for the experiments. MIMIC-III is the
benchmark dataset that has been widely used to
build a system for automated medical code pre-
diction (Shi et al., 2017; Mullenbach et al., 2018;
Li and Yu, 2020; Kim and Ganapathi, 2021). For
medical code prediction, discharge summary texts2

are used as inputs and corresponding ICD-9 codes3

are used as output of a system. In other words, the
medical code prediction is formulated as a multi-
label classification where the ground truth of the
given input includes one or more ICD-9 codes.

For benchmarking purposes, Mullenbach et al.
(2018) provides script codes that pre-process the
discharge summary text data and splits the dataset
by patient IDs into training, validation, and test-
ing sets4. Also, Mullenbach et al. (2018) cre-
ates two benchmark sets, with full ICD codes as
well as with the top 50 most frequent ICD codes,
which are denoted as MIMIC-III full and
MIMIC-III 50, respectively. The MIMIC-III
full dataset contains 52,728 discharge sum-
maries with 8,921 unique ICD codes and the
MIMIC-III 50 dataset contains 11,368 dis-
charge summaries with 50 unique ICD codes.

In this paper, we only consider the MIMIC-III
50 dataset. Following the previous works (Li and

1https://physionet.org/content/mimiciii/1.4/
2A discharge summary is a note that summarises informa-

tion about a hospital stay
3MIMIC-III dataset includes both diagnoses and proce-

dures which occurred during the patient’s stay
4https://github.com/jamesmullenbach/caml-mimic

Yu, 2020; Kim and Ganapathi, 2021; Vu et al.,
2021), we used Mullenbach et al. (2018)’s scripts
to split the data which results in 8,066 discharge
summaries for training, 1,573 for validation, and
1,729 for testing. Additionally, we extracted pa-
tients’ demographic information from the MIMIC-
III dataset, including gender, age, ethnicity, and
insurance type as a socioeconomic proxy.

2.2 Data pre-processing
Discharge Summary texts One of our objectives
is to reproduce the results by Li and Yu (2020)
and analyse the performance. Therefore, we fol-
lowed the Li and Yu (2020)’s pre-processing steps
which are the same as the work by Mullenbach
et al. (2018). Data cleaning and pre-processing
include the following steps: the discharge sum-
mary texts were tokenized, tokens that contain no
alphabetic characters were removed, and all tokens
were lowercased. All documents are truncated to a
maximum length of 2500 tokens. More details can
be found in the original paper (Mullenbach et al.,
2018).

Demographic data In the MIMIC-III dataset,
each unique hospital visit for a patient is assigned
with a unique admission ID. Therefore we used
admission ID to extract the demographic informa-
tion of patients. The following steps were taken
to pre-process the demographic data: firstly, age
values are computed based on the date of birth data
and the admission time data5. Secondly, the four
most frequent values in ethnicity data, including
‘WHITE’, ‘BLACK’, ‘ASIAN’, ‘HISPANIC’, are
being kept, whereas the remaining values are com-
bined into one group and labelled as ‘OTHER’.
Thirdly, the three most frequent values in insurance
type data, including ‘Medicare’, ‘Private’, ‘Medi-
caid’, are being kept, whereas the other values are
combined into one group ‘Other’.

3 Methods

3.1 Data analysis
We analysed the size, as well absolute as relative,
of each group and investigated relationships be-
tween variables. Also, we analysed the length of
discharge summary notes and the number of as-
signed ICD codes per note to investigate relation-

5The date of birth data of patients older than 89 have been
shifted and the original values cannot be recovered. Therefore,
we assigned the same age value of 90 to all patients who are
older than 89.
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ships between the length of notes and demographic
variables and between the number of ICD codes per
note and demographic variables. We also calculate
the differences in the ICD code label distributions
between the entire data and each group.

3.2 Label distribution distance metric
To calculate the differences in the ICD code la-
bel distributions between the entire data and each
group, we used cosine distance6 between ICD code
label representations, each of which is a multi-hot
vector R1×50. Specifically, we compute the aver-
age distances between the globally averaged label
vector and the label vector of each data point in
groups, which is defined as:

Dk =
1

Nk

Nk∑

i

1− u · vi
||u||2||vi||2

(1)

where u is the globally averaged label vector of the
entire data and vi is a label vector of a single data
point in the group k that contains Nk of data points.
A low distance score means the group contains
patients whose label set is close to the global label
distribution of the entire data.

3.3 Medical code prediction model
In this study, we study one of the state-of-the-art
medical code prediction models proposed by Li
and Yu (2020). There are three important architec-
tural details in Li and Yu (2020)’s model: firstly,
it uses a convolutional layer with multiple filters
where each filter has a different kernel size (Kim,
2014). This multi-filter convolutional layer allows
a model to capture various text patterns with differ-
ent word lengths. Secondly, residual connections
(He et al., 2016) are used on top of each filter in the
multi-filter convolutional layer. This residual con-
volutional layer enlarges the receptive field of the
model. Thirdly, the label attention layer (Mullen-
bach et al., 2018) is deployed after the multi-filter
convolutional layer. More details on the model ar-
chitecture can be found in the original paper (Li
and Yu, 2020). For implementation, we re-trained
a model by using a script7 and followed the same
hyperparameter setting except the early-stopping
setting: we used a macro-averaged F1 score as an
early-stopping criterion with a patience value 10.

6We used cosine distance because it is widely used to
calculate the similarity between high-dimensional vectors and
the distance is always normalised between 0 and 1.

7https://github.com/foxlf823/Multi-Filter-Residual-
Convolutional-Neural-Network

3.4 Evaluation metrics

Performance metrics To evaluate the model’s
performance, micro-and macro-averaged F1 scores
are widely used in the literature (Shi et al., 2017;
Mullenbach et al., 2018; Li and Yu, 2020). Micro-
averaged scores are calculated by treating each
<text input, code label> pair as a separate predic-
tion. Macro-averaged scores are calculated by av-
eraging metrics computed per label. For recall, the
metrics are computed as follows:

Micro-R =

∑L
l=1 TPl∑L

l=1 TPl + FNl

(2)

Macro-R =
1

|L|
L∑

l=1

TPl

TPl + FNl
(3)

where TPl and FNl, denote true positive exam-
ples and false negative examples for a specific
ICD-9 code label l, respectively. Since we use
MIMIC-III 50 dataset, |L| equals 50

Since we focus on performance differences in
terms of data subject’s demographics, we addi-
tionally use sample-averaged F1 scores. Sample-
averaged scores are calculated by computing scores
at the instance level and averaging over all in-
stances in the data set. For sample-averaged recall,
the metric is computed as follows:

Sample-R =
1

|N |
N∑

n=1

|yn ∩ ŷn|
|yn|

(4)

where yn and ŷn denote the ground truth labels
and the predicted labels for the n-th test example,
respectively and N denotes the total number of
test samples. Precision is computed in a similar
manner.

For statistical analysis, we conducted the
Kruskal-Wallis tests to investigate differences be-
tween the average performance scores of each
group. Also, we computed the Pearson correlation
coefficient and p-value for testing the correlation
between the training data size of the group and the
model performance on the group and between label
distance of the group and the model performance
on the group. All statistical tests were done by
using sample-F1 scores.

Error metrics Following previous studies (Hardt
et al., 2016; Chouldechova, 2017), we consider two
metrics to quantify the error of a trained model:
false negative rate (FNR) and false positive rate
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Count (n) Percentage (%)
Total 8066
Gender
F 3593 44.5
M 4473 55.5
Age
0-17 440 5.5
18-29 300 3.7
30-49 1148 14.2
50-69 2931 36.3
70-89 2817 34.9
90+ 430 5.3
Ethnicity
WHITE 5651 70.1
OTHER 1097 13.6
BLACK 799 9.9
HISPANIC 311 3.9
ASIAN 208 2.6
Insurance
Medicare 4440 55.0
Private 2636 32.7
Medicaid 709 8.8
Other 281 3.5

Table 1: Sample size (absolute and relative) of the
groups of gender, age, ethnicity, and insurance type.

(FPR) in the sample level. FNR is the fraction
of ICD codes that are failed to be predicted by a
system but included in a ground truth label set. FPR
is the fraction of ICD codes that are erroneously
predicted by a system but not included in a ground
truth label set. High FNR scores imply low recall
scores and high FPR implies low precision scores.
Two metrics are computed as follows:

FNR =
1

|N |
N∑

n=1

1− |yn ∩ ŷn|
|yn|

(5)

FPR =
1

|N |
N∑

n=1

1− |yn ∩ ŷn|
|ŷn|

(6)

To assess the risk of errors, we use the worst-case
comparison method (Ghosh et al., 2021). Also, we
conducted Mann–Whitney U tests to investigate
the differences between the error scores of the best
and the error scores of the worst models.

(a) Percentage of Medicare
within each ethnic group

(b) Percentage of Medicaid
within each ethnic group

Figure 1: Relationship between insurance and demographic
variables. 95% confidence intervals are illustrated by lines.

4 Results

4.1 Data analysis results
Table 1 summarizes the sample sizes of the data
set. It is shown that only gender variables are well-
balanced. For age groups, patients who are 50-89
take up to 71.2% of the data. Also, the data set
includes more White patients than patients from
other ethnic groups. Also, more than half of the
entire patients in the data set are patients with Medi-
care insurance and only 8.8% of patients are with
Medicaid insurance.

Figure 2: Kernel density estimate plot for visualising
the age distribution of each insurance type

Figure 1 shows the relationship between insur-
ance types, Medicare and Medicaid, and ethnic-
ity variables. It is observed that insurance type
has a certain relationship with the patient’s race:
57.7% of White patients are paying with Medicare,
whereas 38.9% of Hispanic patients are paying with
Medicare. On the other hand, 26.4% of Hispanic
patients are paying with Medicaid, whereas only
0.63% of White patients are paying with Medicaid.

Figure 2 illustrate the age distribution of each
insurance type. Medicare and Medicaid are two
separate, government-run insurance in the United
States. Medicare is available for people age 65 or
above and younger people with severe illnesses and
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(a) #. tokens/note (b) #. ICD codes/note

(c) #. tokens/note (d) #. ICD codes/note

Figure 3: The distribution of the length of a discharge sum-
mary note (a) and the number of ICD codes assigned per note
(d). Relationship between the length of notes and age groups
(c) and between the number of ICD codes per note and age
groups (d). X-axes indicate the average number of tokens in a
note (a, c) and the average number of ICD codes per note (b,d
). 95% confidence intervals are illustrated by lines.

Medicaid is available to low-income individuals
under the age of 65 and their families. Because
of the eligibility criteria for Medicare, Medicare
includes more older patients compared to other
insurance types, as we can see from the Figure 2.

Figure 3a and Figure 3b show the distribution
of the length of a discharge summary note and the
number of ICD codes assigned per note, respec-
tively. The average length is 1529.7 (std=754.9)
and the average number of codes per note is 5.7
(std=3.3). Figure 3c and Figure 3d illustrate re-
lationship between patients age and the length of
note and the number of codes per note, respectively.
From Figure 3c, it is observed that the length of
note tends to increase until age group 50-69 and
starts to decrease afterwards. From Figure 3d, pos-
itive correlations between age and the number of
ICD codes per note are observed. Other noticeable
patterns are not observed in other demographic vari-
ables (i.e., gender, insurance, ethnicity) with the
respect to the length of a discharge summary note
and the number of ICD codes assigned per note.

Figure 4 illustrates ICD code distributions. Fig-
ure 4a shows the entire data set has long-tail distri-
bution. Between female and male patient groups,
no noticeable difference between the label distribu-
tions is not observed. In terms of insurance type
and ethnicity, each group shows slightly different

Distance
Gender
F 0.613 (0.137)
M 0.615 (0.133)
Age
0-17 0.737 (0.097)
18-29 0.746 (0.111)
30-49 0.684 (0.133)
50-69 0.610 (0.129)
70-89 0.564 (0.116)
90+ 0.560 (0.118)
Ethnicity
WHITE 0.610 (0.135)
OTHER 0.607 (0.131)
BLACK 0.633 (0.135)
HISPANIC 0.646 (0.135)
ASIAN 0.626 (0.143)
Insurance
Medicare 0.579 (0.124)
Private 0.653 (0.135)
Medicaid 0.658 (0.136)
Other 0.691 (0.139)

Table 2: Average label distribution distances between
each group and the global data. Standard deviations are
added in parentheses.

ICD code distributions. Clear differences are ob-
served between age groups: patients whose ages
are younger than 30 (0-17, 18-29) show less spread
ICD code distributions with fewer ICD codes than
other age groups. The label distribution distances
between each group and the global data are sum-
marised in Table 2. Similar to the observations
from Figure 4, age groups 0-17 and 18-29 have the
bigger distance scores.

4.2 Performance & error analysis results

Table 3 summarises the prediction results on the
test set. It is observed that a re-trained model slight
underperforms compared to the original model (Li
and Yu, 2020). The different early-stopping set-
tings might cause this difference. Both models
achieve higher scores in micro-averaged metrics
than macro-averaged metrics, which means the
model’s performance on rare labels is worse than
on frequent labels. The sample-averaged metrics
are higher than macro-averaged metrics but lower
than micro-averaged metrics.

Noticeable performance differences are observed
between age groups, especially between patients
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(a) Entire data set

(b) Gender (c) Insurance type

(d) Age group (e) Ethnicity

Figure 4: ICD code distribution. X-axis indicates the sorted ICD code class label and Y-axis indicate the percentage of labels
observed in the training set.

younger than 30 years (18-29) and older than 90
(90+). The percentages of both groups in the train-
ing set are low but patients younger than 30 years
get distinctively worse predictions in terms of all F-
1 scores. Between different ethnic groups, it is ob-
served that Hispanic and Asian patients get worse
predictions compared to other patients. Between in-
surance types, it is also observed that patients with
other types of insurance and Medicaid insurance
get worse predictions compared to patients with
Medicare and Private insurance in sample-averaged
F-1 scores.

As the result of the Kruskal-Wallis test,
we found statistically significant differences in
sample-averaged F1 scores according to age
group (H(4)=46.57, p<0.001) and insurance type
(H(3)=18.58, p<0.001), separately. Close to be-
ing statistically significant is found according to
gender (H(1)=3.65, p=0.056) and no statistically

significant difference is found according to ethnic-
ity (H(4)=2.657, p=0.657).

Error metrics per group are summarised in Ta-
ble 4. Error metrics between groups show a similar
trend as the performance metrics: differences be-
tween age groups are the most pronounced. It is
observed that FNR scores tend to decrease as age
increases. However, the largest difference between
age groups is not significant (p=0.06). FPR also
tends to increase as the age increases in the age
groups under 90 and the largest difference between
the younger group (18-29) and the older group (70-
89) is significant (p<0.001). Patients with other
types of insurance take significantly worse scores
compared to Medicare patients in terms of FNR
scores. Interestingly, FPR shows different patterns.
For example, patients with Medicare get the worst
FPR scores and patients with Private insurance get
the best FPR scores.
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F-1 (%)
Micro Macro Sample

Total
Li and Yu (2020) 67.3† 60.8† -
Reproduced 64.4 59.2 60.6
Gender
F (44.5) 63.2 58.1 59.7
M (55.5) 65.3 59.4 61.4
Age
18-29 (3.7) 53.9 36.1 48.2
30-49 (14.2) 58.9 58.2 52.4
50-69 (36.3) 64.2 57.7 60.9
70-89 (34.9) 65.6 59.2 63.6
90+ (5.3) 67.1 55.9 65.0
Ethnicity
WHITE (70.1) 64.3 59.2 60.8
OTHER (13.6) 64.3 60.9 60.7
BLACK (9.9) 66.2 60.2 61.7
HISPANIC (3.9) 62.0 54.6 56.0
ASIAN (2.6) 64.7 51.2 59.3
Insurance
Medicare (55.0) 65.3 58.4 62.5
Private (32.7) 63.4 58.8 59.0
Medicaid (8.8) 62.9 59.3 57.8
Other (3.5) 56.0 49.3 50.5

Table 3: Performances on the MIMIC-III 50 test set. †

indicates performances reported in the paper by Li and
Yu (2020). Other results are obtained from a reproduced
model. The percentage of training samples (%) is added
in parentheses after the group labels. Best performances
are boldfaced and worst performances are underlined.

Figure 5: Label distance of each group and the model
performance on each group. Linear relationships are
illustrated by lines determined through linear regression.

4.3 Correlation test result.

As the result of correlation tests, we found a weak
positive correlation (0.43, p=0.09) between training
set size and performance. This result shows that
even though the model performs well for groups

FNR (%) FPR (%)
Total 40.6 3.8
Gender
F (44.5) 39.7 4.3
M (55.5) 38.0 4.2
largest diff. (↓) 1.7 0.1
smallest ratio (%) (↑) 95.8 98.2
Age
18-29 (3.7) 46.2 2.9
30-49 (14.2) 45.9 3.3
50-69 (36.3) 39.5 3.9
70-89 (34.9) 35.7 5.0
90+ (5.3) 34.1 4.4
largest diff. (↓) 12.2 2.1∗ ∗ ∗

smallest ratio (%) (↑) 73.7 57.7
Ethnicity
WHITE (70.1) 38.7 4.2
OTHER (13.6) 39.3 4.5
BLACK (9.9) 37.0 4.2
HISPANIC (3.9) 42.5 4.2
ASIAN (2.6) 40.3 3.8
largest diff. (↓) 5.4 0.8
smallest ratio (%) (↑) 87.2 83.3
Insurance
Medicare (55.0) 37.0 4.7
Private (32.7) 40.7 3.4
Medicaid (3.5) 41.0 3.6
Other (8.8) 46.9 4.2
largest diff. (↓) 9.8∗ 1.3∗ ∗ ∗

smallest ratio (%) (↑) 79.0 71.5

Table 4: Errors on the MIMIC-III 50 test set. The
percentage of training samples (%) is added in paren-
theses. Best performances are boldfaced and worst per-
formances are underlined. ∗ and ∗ ∗ ∗ indicate the er-
ror of the worst model is greater than the error of the
best with statistical significance of p=0.05 and p=0.001
(Mann–Whitney U test), respectively.

with more training data in general, the relation-
ship is not statistically significant. Contrary to this
result, we found a very strong negative correla-
tion (-0.95, p<0.001) between label distance and
performance. This result implies that the model
performs poorly in the groups containing many pa-
tients whose label set is different from the global
label distribution of the entire data. The group-
specific correlations between label distances and
the performances are illustrated in Figure 5. It is
observed that the negative correlation is much more
pronounced between different age groups than in
other groups.
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5 Discussion

Impact of the study. The MIMIC-II dataset for
medical code prediction provides opportunities to
develop and benchmark models and facilitates nat-
ural language processing research in the clinical
domain. Since it is one of the most frequently used
benchmark datasets for medical code prediction,
it has a huge impact on the quality of the devel-
oped models. For example, previous studies (Mul-
lenbach et al., 2018; Li and Yu, 2020; Kim and
Ganapathi, 2021; Vu et al., 2021; Ji et al., 2021)
have shown that the ICD code distribution in the
MIMIC-III dataset is imbalanced and it results in
performance differences between ICD codes. In
this study, we investigated the data imbalance of
the MIMIC-III 50 data, in terms of the data sub-
ject’s demographic factors, and its effect on the
model performance for ICD code prediction.

Evaluation metrics for fairness. In this paper,
we proposed metrics that can correctly evaluate
the model’s performance in terms of individual pa-
tients’ benefits and potential harms. Especially,
we formulated the medical code prediction task
as a multi-label classification task. From a ma-
chine learning perspective, sample-based metrics
and label-based metrics are used to evaluate the
performance of a model in a multi-label classifica-
tion task (Zhang and Zhou, 2013). Sample-based
and label-based metrics focus on different aspects
of model performance, one in sample-wise perfor-
mance and the other in label-wise performance.
However, label-based metrics are more frequently
used in the literature (Xiao et al., 2018; Mullenbach
et al., 2018; Li and Yu, 2020; Kim and Ganapathi,
2021; Vu et al., 2021; Ji et al., 2021). Considering a
healthcare application setting where all patients are
expected to receive an equal quality of service, we
argue that using sample-based metrics is required
to evaluate the model performance. Also, we pro-
pose to use disaggregated metrics (Barocas et al.,
2021), which are metrics evaluated on each group
of data, to ensure that a model is equally accurate
for patients from different demographic groups (Ra-
jkomar et al., 2018; Gichoya et al., 2021).

Correlation between demographic variables
We analysed the MIMIC-III dataset to identify the
underlying data imbalance of demographic vari-
ables. Our data analysis results show that the
MIMIC-III dataset is imbalanced in terms of the
data subject’s demographics. However, we also

found a correlation between demographic variables.
For example, age is correlated with insurance type:
patients older than 65 are likely to be insured with
Medicare. This confounding factor across demo-
graphic variables makes it complicated to interpret
the main effects of the data subject’s demographics
on the model performance.

Correlation between label distance and perfor-
mance Based on the previous study arguing the
performances of models tend to decrease when the
ICD codes have fewer training samples (Ji et al.,
2021), we hypothesised that the performance of the
model on a demographic group is correlated with
the number of data of that group in the training
data set. However, the analysis results do not sup-
port this hypothesis: even though the performance
differences are observed across some demographic
groups (i.e., across age groups and insurance types),
the correlation between the number of training data
of the group and the performance of the group is
weak. Instead, we found that the label distance of
the group is negatively correlated with the perfor-
mance of the group. This result suggests that when
the group contains patients whose label set is differ-
ent from the global label distribution of the entire
data, it is likely that the model performs poorly in
that group.

In terms of machine learning perspective, this
issue can be seen as a label shift: the train and test
label distribution is different while the feature dis-
tribution remains the same (Lipton et al., 2018; Guo
et al., 2020). To address this issue, one interesting
area for future work may be in re-training the classi-
fier with adjusted training sample weights (Lipton
et al., 2018) or adapting the predictions of a pre-
trained classifier (Saerens et al., 2002; Du Plessis
and Sugiyama, 2014; Alexandari et al., 2020).

Limitations and future directions There are
several limitations to this study. Firstly, we used a
subset of MIMIC-III data with the top 50 most fre-
quent ICD codes to simplify the analysis. Since the
full MIMIC-III dataset contains more than 47,000
ICD codes, further study is required. Secondly,
we only studied the model proposed by Li and Yu
(2020). One potential direction is to investigate
the performance of models using pre-trained lan-
guage models (Zhang et al., 2020; Ji et al., 2021).
Thirdly, we found an issue of confounding across
demographic variables, which makes it complicates
the interpretation of the main effects of the data
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subject’s demographic factors on the model perfor-
mance. To address this issue, further analysis of
multiple intersectional groups or causal analysis is
required. In future work, we will also investigate
how to build a model that can perform equally well
on across all demographic groups.

6 Conclusion

In this study, we performed an empirical analysis to
investigate the data imbalance of the MIMIC-III 50
dataset and its effect on the model performance for
ICD code prediction. We found that demographic
imbalance exists in the MIMIC-III 50 dataset and a
medical code prediction model performs differently
across some demographic groups. Interestingly, the
correlation between the number of training data of
the group and the performance of the group is weak.
Instead, we found a negative correlation between
the label distance of the group and the performance
of the group. This result suggests that the model
tends to perform poorly in the group whose la-
bel distribution is different from the global label
distribution. Potential future research direction in-
cludes further analysis of the main effects of the
data subject’s demographic factors on the model
performance and investigation of building a robust
and fair model that can perform equally well across
demographic groups with different label distribu-
tions.
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