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Abstract

Natural language understanding tasks require a comprehensive understanding of natural language
and further reasoning about it, on the basis of holistic information at different levels to gain com-
prehensive knowledge. In recent years, pre-trained language models (PrLMs) have shown im-
pressive performance in natural language understanding. However, they rely mainly on extracting
context-sensitive statistical patterns without explicitly modeling linguistic information, such as
semantic relationships entailed in natural language. In this work, we propose EventBERT, an
event-based semantic representation model that takes BERT as the backbone and refines with
event-based structural semantics in terms of graph convolution networks. EventBERT benefits
simultaneously from rich event-based structures embodied in the graph and contextual semantics
learned in pre-trained model BERT. Experimental results on the GLUE benchmark show that the
proposed model consistently outperforms the baseline model.

1 Introduction

Recent years have witnessed deep pre-trained language models (PrLM) such as ELMo (Peters et al.,
2018), BERT (Devlin et al., 2019), XLNet (Yang et al., 2019) and ERNIE (Sun et al., 2020) signifi-
cantly prospering the performance of a wide range of natural language understanding (NLU) tasks. The
remarkable advancements brought by PrLM have shown the effectiveness of leveraging contextualized
representation. However, they mainly rest on extracting context-sensitive statistical patterns without
explicitly modeling linguistic information such as semantic relationships in natural language.

It is clear that natural language itself abounds with ample, multi-level linguistic information. Although
PrLMs like BERT implicitly represent linguistic knowledge more or less (Rogers et al., 2020), studies
disclose that linguistic knowledge is far from fully absorbed (Ettinger, 2020; Rogers et al., 2020). There-
fore, there emerges a series of derivatives of PrLM intending to fuse explicit linguistic knowledge so as
to acquire better language representation, including syntactic (Bai et al., 2021; Xu et al., 2021; Zhang et
al., 2020b) and semantic information (Zhang et al., 2020a; Guo et al., 2020b; Guan et al., 2021).

In cognition practice, human needs to distill semantics of different levels to gain a comprehensive
understanding, whereas neural language models learn semantic representation to deal with downstream
tasks (Geeraerts and Cuyckens, 2007). Thus, effective learning of semantic knowledge plays a crucial
role in NLU tasks and has gained growing attention recently. For instance, Zhang et al. (2020a) proposed
SemBERT, which directly connects multiple predicate-argument structures acquired by semantic role
labeler (SRL) to get the joint representation.

The essence of SRL (Shi and Lin, 2019) lies in that every sentence possesses multiple predicate-
specific structures which can represent different frames of events, while semantic roles express the ab-
stract role that arguments of a predicate can take in the event. Besides, the events inside a sentence have
interactions with each other that serve together to present the overall semantic knowledge. As shown
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in Figure 1, SRL parses every sentence with multiple predicate-specific structures which can serve as
events inferring who did what to whom, when and why. Each event has an inner structure centered on the
predicate to which several arguments are associated such as Hoy[ARG0], the woman’s age[ARG1] and
Tuesday[ARGM-TMP] connected to confirmed[V]. Meanwhile, the multiple events work together to give
a comprehensive meaning of a sentence, like the events centered on said, confirmed and left. With regard
to delving into the inner interactions between the events and effectively capturing multiple objects, we
are motivated to build a graph to reveal the intrinsic structures between and inside the events.
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left on 
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ARG1

V3
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Hoy confirmed the woman 's age Tuesday
and said she has left on vacation with her family .

Figure 1: An example showing how SRL parses sentences and the intuition of constructing event-based
graph.

Inspired by the above ideas, we propose EventBERT: an event-based semantic representation model
which takes BERT as the backbone and refines with event-based structural semantics. Our EventBERT
benefits simultaneously from rich event-based structures embodied in the graph and contextual semantics
learned in the pre-trained BERT.

Our proposed model works in three steps: it first applies an off-the-shelf SRL toolkit to parse every sen-
tence with semantic role labels; then it constructs event-based graphs and employs Graph Convolutional
Networks (GCNs) (Schlichtkrull et al., 2018) to propagate and aggregate information from neighboring
nodes on the graph; at last, it combines the contextualized representation acquired by BERT encoder
together with the graph-level representation to obtain an event-based contextualized representation.

The key contributions of our work are summarized as follows:
1) We extract event-based semantic knowledge from SRL to enrich language representation.
2) We employ GCNs to construct sentence-level graphs which better reveal interactions inside and

between the events in a sentence.

2 Related Work

2.1 Semantics in Language Representation
Recent studies show that current prominent pre-trained language models have already incorporated se-
mantic information to some extent (Clark et al., 2019), yet such implicit semantic information is far
from enough for comprehensive natural language understanding (Ettinger, 2020). Thus there emerges a
research line that focuses on fusing semantic information into contextualized language representation.
ERNIE2.0 (Sun et al., 2020) adopts three-stage masking in which entity-level masking helps to obtain a
word representation containing richer semantic information. SemBERT (Zhang et al., 2020a) makes use
of PropBank (Palmer et al., 2005) to fuse semantic role tags into language representation. FMSR (Guo
et al., 2021) utilizes FrameNet (Baker et al., 1998) to extract multi-level semantic information within
sentences. SS-MRC (Guo et al., 2020a) takes advantage of syntax and frame semantics in an attempt to
carve out information from two complementary perspectives to obtain richer language representation.
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Besides simply employing semantic knowledge, other recent works shift the focus to exploring deeper
structural semantics. Guan et al. (2021) leverage frame semantics and graph neural networks to model
sentences from both intra-sentence level and inter-sentence level. Wu et al. (2021) introduce SIFT to
inject predicate-argument semantic dependencies into pre-trained language models via R-GCNs. Xie
et al. (2022) introduce structured knowledge through multi-tasking to get a unified model, which in-
spires the potential of leveraging structural information. Unlike previous works that attempt to capture
shallow semantic structures by semantic tags, our model digs deeper into semantics itself and aims to
find the structured event-based information behind semantics, thus unveiling richer structural-semantic
information inside the sentence.

2.2 Graph Modeling for Language Understanding
As natural language itself abounds with dependencies and intricate relations between different levels of
language units, graph neural networks (GNNs), which model the units as nodes in the graph and learn
the weight via the message passing between nodes of the graph (Scarselli et al., 2008; Kipf and Welling,
2016; Velickovic et al., 2017), stand out by explicitly and intuitively capturing the relations. Besides,
a number of extensions to the original graph neural networks have been developed, the most notable of
which include graph convolutional networks (GCNs) (Kipf and Welling, 2016), graph attention networks
(GANs) (Velickovic et al., 2017) and the models from Li et al. (2015) and Pham et al. (2017) utilizing
gating mechanisms to facilitate optimization.

In response to the outstanding performance of GCNs, several efforts have been made in recent years
to improve performance on natural language understanding using GCNs, including GraphRel (Fu et
al., 2019) which considers the interaction between named entities and relations via relation-weighted
GCNs to better extract relations, NumNet (Ran et al., 2019) which utilizes a numerically-aware graph
to perform numerical reasoning, DFGN (Qiu et al., 2019) which dynamically builds the entity graph
by adding the edges with co-occurrence relations, HGN (Fang et al., 2019) which creates a hierarchical
graph by constructing nodes on different levels of granularity and social information reasoning (Li and
Goldwasser, 2019) which uses GCNs to capture the documents’ social context.

Moreover, R-GCNs (Schlichtkrull et al., 2018) have shown effectiveness in relational graph model-
ing. For example, Entity-GCN (De Cao et al., 2019) employs R-GCNs to link mentions of candidate
answers for multi-document question answering. DFGN (Qiu et al., 2019) dynamically builds the en-
tity graph by adding the edges with co-occurrence relations and softly masking out irrelevant entities.
DGM (Ouyang et al., 2021) constructs two discourse graphs and uses R-GCNs to fully capture interac-
tions among the elements. Ma et al. (2022) employs R-GCNs to enhance reference dependencies for
dialogue disentanglement. In contrast with previous works, our work proposes a sentence-level graph
that is finely designed to mine the relationships between multiple elements in a sentence, extract rich
structural semantics and facilitate information flow over the graph as well.

3 Model

Figure 2 gives an overview of our proposed EventBERT, which consists of two major components:

1. Context Encoder which acquires deep and contextualized representations for raw input sequences
by following BERT architecture;

2. Event-based Encoder which obtains richer structural-semantic representation by modeling event-
based intra-sentence graphs.

We omit the details of BERT which is widely used and ubiquitous and leave readers to resort to Devlin
et al. (2019) for more information.

3.1 Context Encoder
The raw input sentence X = {x1, . . . , xn} is a sequence of words in length n. It is first tokenized
to a sequence of sub-words with [SEP] inserted at the end as the end marker and [CLS] inserted at
the beginning to get a sentence-level representation: X ′ = {token1, . . . , tokenm}. Then we pass it
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Figure 2: The overall structure of EventBERT.

through the embedding block and encoder block of BERT to produce a context-informed representation
C = {c1, . . . , cm} ∈ Rm×dhs using the equation below:

C = BERT (X ′), (1)

where m denotes the length of sentence on sub-word level and dhs stands for the dimension of hidden
states.

3.2 Event-based Encoder
3.2.1 Semantic Role Labeler
The raw input sentence is simultaneously fed into Semantic Role Labeler (Shi and Lin, 2019) to fetch
multiple predicate-specific structures tagged by PropBank semantic roles:

T = {t1, . . . , td}, (2)

where d is the number of semantic structures for one sentence. Notably, ti can be represented under
the format {tagi1, tagi2, ..., tagin} and every tag span in ti is recorded with its corresponding index in the
context for further alignment.

3.2.2 Graph Construction
Figure 3 shows the process of graph construction: the predicates in the original input text are firstly
extracted and an event subgraph is constructed with each predicate as the center; then a super event node
(SEN) is applied to link all the predicates to collect the integral event information within the aggregated
sentence; the Levi graph is finally constructed with reference to the method of Levi (1942), which is used
to prepare the next stage of further computational operations on the graph.

For each sentence with the argument-predicate roles, we construct an event-based graph G =
(V, E ,R) with span-level nodes vi ∈ V and labeled edges (vi, r, vj) ∈ E , where r ∈ R a relation
type. Since every sentence has several semantic structures, here we take one structure as example and
show the modeling method. Given Seqtag = {tag1, tag2, ..., tagn} a word-level tag sequence,

1. We first transform it to a span-level sequence Seq′tag = {tag′1, tag′2, ..., tag′l} by aggregating the
same neighboring tags with l ≤ n representing the length of tags on span-level;
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Figure 3: The process of graph construction: from raw sentence text to event-based graph and corre-
sponding Levi graph.

2. Then, we add a Super Event Node (v = SEN ) to seize global graph information;

3. After that, we add other nodes and edges to G based on the following process:

(a) we first find tag′p which corresponds to predicate (Verb in e′),
(b) we add a node v = np and a directed edge e = (np, V erb, SEN) with r = V erb,
(c) for the rest tags referring to arguments of the predicate, tag′q for example, we add a node

v = nq and a directed edge linking to the predicate e = (nq, tag
′
q, np) with relation r = tagq;

4. Finally, the corresponding Levi graph (Levi, 1942) is extended from G to GL = (VL, EL,RL). For
nodes VL, we add the nodes representing relations to the original: VL = V ∪ R. For edges EL,
we transform each edge e = (nq, tag

′
q, np) in G into two corresponding edges: e1 = (nq, tag

′
q)

and e2 = (tag′q, np) in GL. For RL, we follow the setting of Ouyang et al. (2021) and refine it to
five types: default-in, default-out, reverse-in, reverse-out, self according to the direction of edges
towards the relation vertices, as is shown in Table 1.

Table 1: Relation types in our extended Levi graph

RL in Levi graph Illustration

default-in the propagation path pointing to the node as the end point
default-out the propagation path pointing to the node as the starting point
reverse-in the propagation path in the opposite direction of default-in

reverse-out the propagation path in the opposite direction of default-out
self the propagation paths pointing to the node itself

3.2.3 Event-based Contextualized Representation
We adopt Relational Graph Convolutional Networks (R-GCNs) (Schlichtkrull et al., 2018) to implement
explicit event graphs since traditional Graph Convolutional Networks (GCNs) cannot handle graphs con-
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taining edge features with multiple relations. For predicate and argument nodes, we inject the corre-
sponding span-level encoding results obtained from Context Encoder in Section 3.1. For relation nodes,
we regard the relations as embeddings and use a lookup table to get the initial representation. Given that
the initial representation of each node vi is h0i , the propagation process can be written as:

h
(l+1)
i = ReLU

 ∑
r∈RL

∑
vj∈Nr(vi)

1

ci,r
w(l)
r h

(l)
j

 , (3)

where h
(l)
i ∈ Rd(l) is the hidden state of node vi in layer l with d(l) being the dimensionality of this

layer’s representations, Nr (vi) denotes the set of neighbor indices of node vi under the relation r, ci,r is
a problem-specific normalization constant equal to |N r

i |, w
(l)
r is the learnable parameters of layer l.

Since the importance of these relations cannot be treated the same, for example, the relation Verb is
much more important than the relation ARG2, we introduce the gating mechanism (Marcheggiani and
Titov, 2017). The basic idea is to compute a value between 0 and 1 for message passing control as is
shown in Equation 4. Finally, the propagation process of R-GCNs under the gating mechanism is as
follows:

g
(l)
j = Sigmoid

(
h
(l)
j W (l)

r,g

)
(4)

h
(l+1)
i = ReLU

 ∑
r∈RL

∑
vj∈Nr(vi)

g
(l)
j

1

ci,r
w(l)
r h

(l)
j

 , (5)

where W
(l)
r,g is the learnable parameter under the l-th level relation type r.

With R-GCNs model, we obtain a graph-level semantic representation:

R = {r1, . . . , rf} ∈ Rf×dhs (6)

where f is the number of nodes in the graph and dhs is the same dimension as the representation C in
Equation 1 obtained from the context encoder.

At last, we concatenate R with the contextual sub-word-level representation C provided by Con-
text Encoder and generate an event-based contextualized representation taking the mean value of both
sub-word-level and graph-level information, which is then used as the new sequence representation for
downstream tasks following the same way of Devlin et al. (2019).

4 Experiments

4.1 Setup

4.1.1 Datasets
We build EventBERT on the BERT backbone and fine-tune the model on GLUE (General Language
Understanding Evaluation) benchmark (Wang et al., 2018) to evaluate the performance, which includes
two single-sentence tasks CoLA (Warstadt et al., 2018), SST-2 (Socher et al., 2013)), three similarity and
paraphrase tasks MRPC (Dolan and Brockett, 2005), STS-B (Cer et al., 2017), QQP (Chen et al., 2018)
, three inference tasks MNLI (Nangia et al., 2017), QNLI (Rajpurkar et al., 2016), RTE (Bentivogli et
al., 2009). We exclude the controversial and problematic dataset WNLI (Levesque et al., 2012).

4.1.2 Evaluation Metrics
According to Wang et al. (2018), different datasets in GLUE correspond to different evaluation metrics,
which include accuracy (acc), Matthew’s correlation (mc) and Pearson correlation (pc). Among the eight
datasets, STS-B is reported by Pearson correlation, CoLA is reported by Matthew’s correlation, and other
tasks are reported by accuracy.

CC
L 
20
22

Proceedings of the 21st China National Conference on Computational Linguistics, pages 774-785, Nanchang, China, October 14 - 16, 2022.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

779



Computational Linguistics

Model CoLA SST-2 MNLI QNLI RTE MRPC QQP STS-B Avg
(mc) (acc) (acc) (acc) (acc) (acc) (acc) (pc) -

Base-size
BERTBASE 58.4 92.8 83.2 88.6 68.5 86.0 86.5 87.8 81.5
EventBERTBASE 59.6 93.3 83.9 91.8 69.7 89.7 89.8 88.9 83.3(↑1.8)

Large-size
BERTLARGE 60.3 93.1 85.2 91.5 70.3 88.5 90.2 89.3 83.6
EventBERTLARGE 63.1 94.0 85.3 92.6 71.4 89.5 90.6 89.5 84.5(↑0.9)

Table 2: Comparisons between our models and baseline models on GLUE dev set. STS-B is reported by
Pearson correlation, CoLA is reported by Matthew’s correlation, and other tasks are reported by accuracy.

4.1.3 Implementation Details
For the experiments, we use an initial learning rate in {1e-5, 2e-5, 3e-5} with warm-up rate of 0.1 and
L2 weight decay of 0.01. The batch size is selected in {16, 32}. The maximum number of epochs is set
in [2, 5] depending on tasks. Texts are tokenized with maximum length of 256 for the tasks. We use 2
layers of R-GCNs in our model.

4.2 Results
Table 2 presents the results on the GLUE benchmark, which show that EventBERT achieves consistent
gains over all the subtasks under both base and large models.

The results indicate that our model performs better on longer sentences as shown in Section 5.3.
Furthermore, our analysis shows that EventBERT can effectively benefit from the fine-grained graph-
like event-based structures, as illustrated in case studies in Section 5.4. The results also disclose that
modeling intrinsic structures between and inside events is crucial for language understanding.

In addition, the experimental results show that EventBERT has a significant performance gain on small
datasets such as CoLA and MRPC, which indicates that semantic information involving event modeling
is more advantageous and competitive in smaller datasets. In practice or industry, large-scale annotated
data is rare and scarce due to the high cost and required expensive human resources, so language models
that dominate in small-scale datasets are more valuable and important for most NLP tasks.

5 Analysis

5.1 Ablation Study

Model CoLA MRPC RTE
(mc) (acc) (acc)

Ablation study
EventBERTbase 59.6 89.7 69.7

w/o gating 58.6 86.8 69.0
w/o global node 58.4 87.0 67.9

Aggregation methods
BERTbase 58.4 86.0 68.5

w/ max-pooling 59.1 86.8 68.2
w/ mean-pooling 59.6 89.7 69.7

Table 3: Ablation study and comparison of aggrega-
tion methods on three datasets.

We conduct the ablation study to investigate the
effects of the gating mechanism and the addition
of global nodes in the event-based encoder mod-
ule. Results in Table 3 show that both the gating
mechanism and global nodes are non-trivial.

5.2 Methods of Aggregation
During the period of concatenating and aggre-
gating the graph level semantic representation
R and the contextual representation C, we fur-
ther analyze the influence of different meth-
ods of aggregation such as max-pooling and
mean-pooling by comparing the models with the
same hyper-parameters on three datasets CoLA,
MRPC and RTE respectively. Results in Ta-
ble 3 demonstrate that employing mean-pooling
presents better performance.
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5.3 Effectiveness of semantic structures

In order to dig deeper into the rationale behind the effectiveness of the model, we select two datasets
QNLI and MRPC, representing large-scale and small-scale datasets respectively. We statistically cal-
culate the accuracy of the corresponding models on different word-level sequence length intervals for
EventBERT and baseline. Figure 4 shows that our model outperforms the baseline especially when the
sequence is relatively long and our model performs better on longer sentences compared with shorter
ones, which implies that modeling intrinsic semantic structures is potential to guide the model to learn
richer structural semantics more than contextualized information. Thus, the analysis of word sequence
lengths shows that EventBERT performs better on data with longer sequence lengths, which indicates
that event-level modeling is promising and competitive for understanding long texts. Under many prac-
tical situations where available data are long texts, the idea of extracting event-level structural-semantic
information is promising in many NLP tasks.
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Figure 4: Accuracy of different sequence word lengths on QNLI and MRPC.

5.4 Interpretability: Case Study

We select three cases in Classification, Sentence Similarity and Language Inference from SST-2, MRPC
and QNLI respectively which are shown in Figure 5, aiming to further explore the mechanism. It can be
seen that our model can perceive explicit structural meaning to better understand the language. We will
analyze each of the three cases in detail so as to analyze the advantages of EventBERT more intuitively.

5.4.1 Classification
In the case from SST-2, our model succeeds in capturing and understanding the event Friel and william’s
exceptional performances[ARG0] anchored[V] the film’s power[ARG1], whereas the baseline does not
manage to capture this meaning, thus leading to the failure.

5.4.2 Sentence Similarity
The case from MRPC demonstrates that our model grabs the distinct semantic structures centered on
is and has and thus gives the right answer not equivalent. The event centered on the predicate donate
belongs to the same structure, which contains the arguments ARG0, ARG1 and ARGM-TMP having the
same contents (i.e., the woman donated blood). Nevertheless, the remaining events which center on the
predicate is and the predicate has in the sentence pair are semantically different as one structure includes
the arguments ARG1 and ARG2 while the other contains only ARG0 and ARG1.

In Sentence Similarity tasks, two sentences in a sentence pair are likely to have one or several events in
common, such as the event centered donate in this case. However, a subtle difference in a key element in
the semantic structure of the sentence may also lead to a very different semantics of the whole sentence,
such as the events centered on is and has. Our proposed model EventBERT precisely appreciates the
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Figure 5: Examples selected from the dev set of SST-2, MRPC and QNLI where baseline fails but our
model succeeds.

value of abstracting structural semantics, benefiting from capturing event-based semantic knowledge to
perceive the differences between sentences and thus make more accurate judgments.

5.4.3 Language Inference
Referring to the case from QNLI, as can be seen from Figure 5, the question and paragraph texts are
broadly similar in terms of sell-centered structure, both containing the arguments labeled ARG0, ARG1,
and ARGM-TMP. However, by means of graph modeling, it can be clearly and explicitly observed that
the structures centered on force are distinct, with the structure in the interrogative sentence containing the
argument ARGM-CAU and the corresponding structure in the paragraph texts containing the argument
ARGM-LOC instead. It is worth noting that one of the most crucial steps in determining whether a
paragraph entails the correct answer to a question is whether the corresponding semantic structure in
paragraph texts has the span labeled with the semantic role referring to the interrogative in the question.
For example, in this case, the interrogative Why is exactly the ARGM-CAU of the predicate force; whereas
the structure centered on force in the paragraph lacks the corresponding argument content and is replaced
by ARGM-LOC instead. Therefore, it can be easily inferred that the paragraph focuses on the location
(i.e., in Japan and Latin America) while the question concentrates on the cause (i.e., Why), which exactly
reflects that there is no answer span for the interrogative of the question.

It is known that interrogative in the question and corresponding answer span should belong to the same
semantic role. EventBERT takes full advantage of extracting abstracted semantics based on predicates,
thus conducting language inference tasks more efficiently.

5.5 Error Analysis

We select bad cases of the baseline model and further investigate the ones of which our EventBERT also
fails to predict the correct answers. We study two cases respectively from MRPC and QNLI as is shown
in Table 4. The first error is caused by EventBERT’s identification of the argument in a written statement
of the predicate said in the first sentence, which is not entailed in the second sentence. However, the lack
of this argument does not affect the main semantic information. The second error is due to argument
reference confusion for the special predicate is. For instance, the interrogative What is labeled as ARG2
whereas the correct answer Hypersensitivity is labeled as ARG1. From the above error cases, it may
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suggest that our model needs to have a more accurate perception of semantic relationships, which is left
for future studies.

Example EventBERT Golden Answer

This decision is clearly incorrect , ” FTC Chairman Timothy Muris
said in a written statement. The decision is ” clearly incorrect , ”
FTC Chairman Tim Muris said.

Not equivalent Equivalent

What is the name for a response of the immune system that dam-
ages the body’s native tissues? Hypersensitivity is an immune re-
sponse that damages the body’s own tissues.

Not entailment Entailment

Table 4: Errors in predictions for cases in MRPC and QNLI dev set. The words in magenta indicate the
key predicate. The words in blue indicate the key arguments referred to the predicate.

6 Conclusion

In this work, we propose EventBERT, an event-based semantic representation model that builds on BERT
architecture and incorporates event-based structural semantics in terms of graph network modeling for
fine-grained language representation. Experiments on a wide range of NLU tasks show the effectiveness
of our model by consistently surpassing the baseline. While most existing works focus on fusing accurate
semantic signals to enhance semantic information, we open up a novel perspective to model intrinsic
structural semantics for deeper comprehension and inference in an intuitive and explicit way.
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