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Abstract

Natural language sentence matching is the task of comparing two sentences and identifying the
relationship between them. It has a wide range of applications in natural language processing
tasks such as reading comprehension, question and answer systems. The main approach is to
compute the interaction between text representations and sentence pairs through an attention
mechanism, which can extract the semantic information between sentence pairs well. However,
this kind of methods fail to capture deep semantic information and effectively fuse the semantic
information of the sentence. To solve this problem, we propose a sentence matching method
based on deep interaction and fusion. We first use pre-trained word vectors Glove and character-
level word vectors to obtain word embedding representations of the two sentences. In the encod-
ing layer, we use bidirectional LSTM to encode the sentence pairs. In the interaction layer, we
initially fuse the information of the sentence pairs to obtain low-level semantic information; at
the same time, we use the bi-directional attention in the machine reading comprehension model
and self-attention to obtain the high-level semantic information. We use a heuristic fusion func-
tion to fuse the low-level semantic information and the high-level semantic information to obtain
the final semantic information, and finally we use the convolutional neural network to predict
the answer. We evaluate our model on two tasks: text implication recognition and paraphrase
recognition. We conducted experiments on the SNLI datasets for the recognizing textual entail-
ment task, the Quora dataset for the paraphrase recognition task. The experimental results show
that the proposed algorithm can effectively fuse different semantic information that verify the
effectiveness of the algorithm on sentence matching tasks.

1 Introduction

Natural language sentence matching is the task of comparing two sentences and identifying the relation-
ship between them. It is a fundamental technique for a variety of tasks. For example, in the paraphrase
recognition task, it is used to determine whether two sentences are paraphrased. In the text implica-
tion recognition task, it is possible to determine whether a hypothetical sentence can be inferred from a
predicate sentence.

Recognizing Textual Entailment (RTE), proposed by Dagan(Dagan and Glickman, 2004), is a study
of the relationship between premises and assumptions. It mainly includes entailment, contradiction, and
neutrality. The main methods for recognizing textual entailment include the following: similarity-based
methods(Ren et al., 2015), rule-based methods(Hu et al., 2020), alignment feature-based machine learn-
ing methods(Sultan et al., 2015), etc. However, These methods can’t perform well in recognition because
they didn’t extract the semantic information of the sentences well. In recent years, deep learning-based
methods have been effective in semantic modeling, achieving good results in many tasks in NLP(Jin et
al., 2021)(Li et al., 2021)(Yang et al., 2020). Therefore, on the task of recognizing textual entailment,
deep learning-based methods have outperformed earlier approaches and become the dominant recog-
nizing textual entailment method. For example,Bowman et al. used recurrent neural networks to model
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premises and hypotheses, which have the advantage of making full use of syntactic information(Bowman
et al., 2015a).After that, he first applied LSTM sentence models to the RTE domain by encoding premises
and hypotheses through LSTM to obtain sentence vectors(Bowman et al., 2015b). WANG et al.proposed
mLSTM model on this basis, which focuses on splicing attention weights in the hidden states of the
LSTM, focusing on the part of the semantic match between the premise and the hypothesis.The ex-
perimental results showed that the method achieved good results on the SNLI dataset(Wang and Jiang,
2016).

Paraphrase recognition is also called paraphrase detection.The task of paraphrase recognition is to
determine whether two texts hold the same meaning.If they have the same meaning,they are called
paraphrase pairs.Traditional paraphrase recognition methods focus on text features.However,there are
problems such as low accuracy rate.Therefore,deep learning-based paraphrase recognition methods have
become a hot research topic.Deep learning-based paraphrase recognition methods are mainly divided into
two types; 1) calculated word vectors by neural networks,and then calculated word vector distances to
determine whether they were paraphrase pairs.For example, Huang et al.used an improved EMD method
to calculate the semantic distance between vectors and obtain the interpretation relationship(Dong-hong,
2017). 2) Directly determining whether a text pair is a paraphrased pair by a neural network model,which
is essentially a binary classification algorithm.Wang et al.proposed the BIMPM model, which first en-
codes sentence pairs by a bidirectional LSTM and then matches the encoding results from multiple
perspectives in both directions(Wang et al., 2017).Chen et al.proposed an ESIM model that uses a two-
layer bidirectional LSTM and a self-attention mechanism for encoding, then it extracts features through
the average pooling layer and the maximum pooling layer, and finally performs classification(Chen et
al., 2017).

These models mentioned above have achieved good results on specific tasks, but most of these models
have difficulty extracting deep semantic information and effectively fusing the extracted semantic infor-
mation,in this paper, we propose a sentence matching model based on deep interaction and fusion .We
use the bi-directional attention and self-attention to obtain the high-level semantic information.Then,we
use a heuristic fusion function to fuse the low-level semantic information and the high-level semantic
information to obtain the final semantic information.We conducted experiments on the SNLI datasets for
the recognizing textual entailment task, the Quora dataset for the paraphrase recognition task.,The results
showed that the accuracy of the proposed algorithm on the SNLI test set is 87.1%, and the accuracy of
the Quora test set is 86.8%. Our contributions can be summarized as follows:

• We propose a sentence matching model based on deep interaction and fusion. It introduces bidirec-
tional attention mechanism into sentence matching task for the first time.

• We propose a heuristic fusion function. It can learn the weights of fusion by neural network to
achieve deep fusion.

• We evaluate our model on two different tasks and Validate the effectiveness of the model.

2 BIDAF model based on bi-directional attention flow

In the task of extractive machine reading comprehension, Seo et al.first proposed a bi-directional
attention flow model BIDAF (Bi-Directional Attention Flow) for question-to-article and article-to-
question(Seo et al., 2016). Its structure is shown in Figure 1.

The model mainly consists of an embed layer, a contextual encoder layer, an attention flow layer, a
modeling layer, and an output layer. After the character-level word embedding and the pre-trained word
vector Glove word embedding, the contextual representations X and Y of the article and the question
are obtained by a bidirectional LSTM, respectively.The bi-directional attention flow between them is
computed, and it proceeds as follows:

a) The similarity matrix between the question and the article is calculated.The calculation formula is
shown in Eq.1.

Ktj = W T [X:t;Y:j ;X:t ⊙ Y:j ] (1)
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Figure 1: Bi-Directional Attention Flow Model

where Ktj is the similarity of the t-th article word to the j-th question word, X:t is the t-th column vector
of X , Y:j is the j-th column vector of Y , and W is a trainable weight vector.

b) Calculating the article-to-question attention. Firstly, the normalization operation is performed on
the above similarity matrix, and then the weighted sum of the problem vector is calculated to obtain the
article-to-problem attention, which is calculated as shown in Eq.2.

xt = softmax (K)

Ŷ:t =
∑
j

xtjY:j
(2)

c) Query-to-context (Q2C) attention signifies which context words have the closest similarity to one
of the query words and are hence critical for answering the query. We obtain the attention weights on the
context words by y = softmax(maxcol(K)) ∈ RT , where the maximum function maxcol is performed
across the column. Then the attended context vector is x̂ =

∑
t ytX:t.This vector indicates the weighted

sum of the most important words in the context with respect to the query. x̂ is tiled T times across the
column, thus giving X̂ ∈ R2d∗T .

d) Fusion of bidirectional attention streams. The bidirectional attention streams obtained above are
stitched together to obtain the new representation, which is calculated as shown in Eq.3.

L:t =
[
X:t; Ŷ:t;X:t ⊙ Ŷ:t;X:t ⊙ X̂:t

]
(3)

We builds on this work by looking at sentence pairs in a natural language sentence matching task as
articles and problems for reading comprehension.We use the bi-directional attention and self-attention to
obtain the high-level semantic information.Then,we use a heuristic fusion function to fuse the low-level
semantic information and the high-level semantic information to obtain the final semantic information.

3 Method

In this section, we describe our model in detail. As shown in Figure 2, our model mainly consists of an
embedding layer, a contextual encoder layer, an interaction layer, a fusion layer, and an output layer.
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Figure 2: Overview of the architecture of our proposed DIFM model.It consists of an embedding layer,
a contextual encoder layer, an interaction layer, a fusion layer, and an output layer.

3.1 Embedding Layer
The purpose of the embedding layer is to map the input sentence A and sentence B into word vectors.The
traditional mapping method is one-hot encoding.However,it is spatially expensive and inefficient, so we
use pre-trained word vectors for word embedding.These word vectors are constant during training.

Since the text contains unregistered words, we also use character-level word vector embedding.Each
word can be seen as a concatenation of characters and characters, and then we use LSTM to get character-
level word vectors. It can effectively handle unregistered words.

We assume that the pre-trained word vector for word h is hw,and character-level word vector is hc,we
splice the two vectors and use a two-tier highway network(Zilly et al., 2017) to get the word vector
representation of word h:h = [h1;h2] ∈ Rd1+d2 ,where d1 is the dimension of Glove word embedding
and d2 is the dimension of character-level word embedding.Finally,we obtain the word embedding matrix
X ∈ Rn∗(d1+d2) for sentence A and the word embedding matrix Y ∈ Rm∗(d1+d2) for sentence B, where
n,m represent the number of words in sentence A and sentence B.

3.2 Contextual Encoder Layer
The purpose of the contextual encoder layer is to fully exploit the contextual relationship features of the
sentences. We use bidirectional LSTM for encoding which can mine the contextual relationship features
of the sentences.Then,we can obtain its representation H ∈ R2d∗n and P ∈ R2d∗m , where d is the
hidden layer dimension.

3.3 Interaction Layer
The purpose of the interaction layer is to extract the effective features between sentences.In this mod-
ule,we can obtain low-level semantic information and high-level semantic information.

3.3.1 low-level semantic information
The purpose of this module initially fuses two sentences to get the low-level semantic information.We
first calculate the similarity matrix S of the context-encoded information H and P ,which is shown in
Eq.4.

Sij = Ws
T [h; p;h⊙ p] (4)

where Sij denotes the similarity between the i-th word of H and the j-th word of P , Ws is weight
matrices, h is the i-th column of H , and p is the j-th column of P . Then, we calculate the low-level
semantic information V of A and B,which is shown in Eq.5.

V = P · softmax(ST ) (5)
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3.3.2 high-level semantic information
The purpose of this module is mine the deep semantics of the text, and to generate high-level semantic
information.In this module,we frist calculate the bidirectional attention of H and P that is the attention
of H → P and P → H . It is calculated as follows.

H → P : The attention describes which words in the sentence P are most relevant to H .The calculation
process is as follows; firstly, each row of the similarity matrix is normalized to get the attention weight,
and then the new text representation Q ∈ R2d∗n is obtained by weighted summation with each column
of P ,which is calculated as shown in Eq.6.

αt = softmax(St:) ∈ Rm

q:t =
∑
j

αtjP:j
(6)

where q:t is the t-th column of Q.
P → H: The attention indicates which words in H are most similar to P .The calculation process

is as follows: firstly,the column with the largest value in the similarity matrix S is taken to obtain the
attention weight, then the weighted sum of H is expanded by n time steps to obtain C ∈ R2d∗n,which is
calculated as shown in Eq.7.

b = softmax(max
col

(S)) ∈ Rn

c =
∑
t

btHt: ∈ R2d (7)

After obtaining the attention matrix Q of H → P and the attention matrix C of P → H ,we splice
the attention in these two directions by a multilayer perceptron.Finally,we get the spliced contextual
representation G, which is calculated as shown in Eq.8.

G:t = β(C:t, H:t, Q:t)

β(c, h, q) = [h; q;h⊙ q;h⊙ c] ∈ R8d
(8)

Then,we calculate its self-attention(Vaswani et al., 2017) ,which is calculated as shown in Eq.9.

E = GTG

Z = G · softmax(E)
(9)

Finally, we pass the above semantic information Z through a bi-directional LSTM to obtain high-level
semantic information U .

3.4 Fusion Layer
The purpose of the fusion layer is to fuse the low-level semantic information V and the high-level se-
mantic information U . We innovatively propose a heuristic fusion function, it can learn the weights
of fusion by neural network to achieve deep fusion.We fuse V and U to obtain the text representation
L = fusion(U, V ) ∈ Rn∗2d , where the fusion function is defined as shown in Eq.10:

x̃ = tanh(W1[x; y;x⊙ y;x− y])

g = sigmoid(W2[x; y;x⊙ y;x− y])

z = g ⊙ x̃+ (1− g)⊙ x

(10)

Where W1 and W2 are weight matrices, and g is a gating mechanism to control the weight of the inter-
mediate vectors in the output vector. In this paper, x refers to U and y refers to V .

3.5 Output Layer
The purpose of the output layer is to output the results.In this paper, we use a linear layer to get the
results of sentence matching. The process is shown in Eq.11.

y = softmax(tanh(ZW + b)) (11)

where both W and b are trainable parameters. Z is the vector after splicing its first and last vectors.
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4 Experimental results and analysis

In this section,we validate our model on two datasets from two tasks.We first present some details of
the model implementation, and secondly, we show the experimental results on the dataset. Finally, we
analyze the experimental results.

4.1 Experimental details

4.1.1 Loss function
In this paper, the cross-entropy loss function can be chosen as shown in Eq.12.

loss = −
N∑
i=1

K∑
k=1

y(i,k) log ŷ(i,k) (12)

where N is the number of samples, K is the total number of categories and ŷ(i,k) is the true label of the
i-th sample.

4.1.2 Dataset
In this paper, we use the natural language inference datasets SNLI, and the paraphrase recognition dataset
Quora to validate our model. The SNLI dataset contains 570K manually labeled and categorically bal-
anced sentence pairs. The Quora question pair dataset contains over 400k pairs of data that each with
binary annotations, with 1 being a duplicate and 0 being a non-duplicate.The statistical descriptions of
SNLI and Quora data are shown in Table 1.

Table 1: The statistical descriptions of SNLI and Quora

dataset train validation test

SNLI 550152 10000 10000
Quora 384290 10000 10000

Table 2: Values of Hyper Parameters

Hyper Parameters Values

Glove dimension 300
Character embedding dimension 100

Hidden dimension 200
learning rate 0.0005
Optimizer Adam
Dropout 0.2

activation function ReLU
Epoch 30

Batch size 128

4.1.3 parameter settings
This experiment is conducted in a hardware environment with a graphics card RTX5000 and 16G of video
memory.The system is Ubuntu 20.04, the development language is Python 3.7, and the deep learning
framework is Pytorch 1.8.

In the model training process, a 300-dimensional Glove word vector are used for word embedding,
and the maximum length of text sentences is set to 300 and 50 words on the SNLI and Quora datasets,
respectively. The specific hyperparameter settings are shown in Table 2.
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4.2 Experimental results and analysis
We compare the experimental results of the sentence matching model based on deep interaction and
fusion on the SNLI dataset with other published models.The evaluation metric we use is the accuracy
rate.The results are shown in Table 3. As can be seen from Table 3, our model achieves an accuracy
rate of 0.871 on the SNLI dataset, which achieves better results in the listed models.Compared with
the LSTM, it is improved by 0.065. Compared with Star-Transformer model,it is improved by 0.004.
Compared with some other models, it is observed that our model is better than the others model.

Table 3: The accuracy(%) of the model on the SNLI test set.Results marked with a are reported by
Bowman et al.(Bowman et al., 2016),b are reported by Han et al.(Han et al., 2019), c are reported by
Shen et al.(Shen et al., 2018), d are reported by Borges et al.(Borges et al., 2019), e are reported by Guo
et al.(Guo et al., 2019), f are reported by Mu et al.(Mu et al., 2018).

Model Acc

300D LSTM encodersa 80.6
DELTAb 80.7

SWEM-maxc 83.8
Stacked Bi-LSTMsd 84.8

Bi-LSTM sentence encoderd 84.5
Star-Transformere 86.0

CBS-1+ESIMf 86.7
DIFM 87.1

We conduct experiments on the Quora dataset, and the evaluation metric is accuracy. The experimen-
tal results on the Quora dataset are shown in Table 4. As can be seen from Table 4,the accuracy of our
method on the test set is 0.868.The experimental results improve the accuracy by 0.054 compared to the
traditional LSTM model.Compared with the enhanced sequential inference model ESIM,it is improved
by 0.004. The experimental results achieved good results compared to some current popular deep learn-
ing methods.Our model achieve relatively good results in both tasks, which illustrates the effectiveness
of our model.

Table 4: The accuracy(%) of the model on the Quora test set.Results marked with g are reported by Yang
et al.(Yang et al., 2021), h are reported by He et al.(He and Lin, 2016) , i are reported by Zhao et al.(Zhao
et al., 2021), j are reported by Chen et al.(Chen et al., 2017).

Model Acc

LSTM 81.4
RCNNg 83.6
PWIMh 83.4

Capsule-BiGRUi 86.1
ESIMj 85.4
DIFM 86.8

4.3 Ablation experiments
To explore the role played by each module, we conduct an ablation experiment on the SNLI dataset
.Without using the fusion function, which means that the low-level semantic information are directly
spliced with the high-level semantic information. The experimental results are shown in Table 5.

We first verify the effectiveness of character embedding. Specifically,we remove the character em-
bedding for the experiment, and its accuracy drops by 1.5 percentage points, proving that character
embedding plays an important role in improving the performance of the model.
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Table 5: Ablation study on the SNLI validation dataset

Model Acc(%)

DIFM 87.1
w/o character embedding 85.6 (↓1.5)

w/o low-level semantic information 85.9 (↓1.2)
w/o high-level semantic information 79.5 (↓7.6)

w/o fusion 86.1(↓1.0)
w/o self-attention 58.8(↓1.3)

w/o P → H 84.6(↓2.5)
w/o H → P 86.2(↓0.9)

In addition,we verify the effectiveness of the semantic information and fusion modules. We removed
low-level semantic information and high-level semantic information from the original model, and its
accuracy dropped by 1.2 percentage points and 7.6 percentage points. At the same time, we remove
the fusion function, and its accuracy drops by about 1.0 percentage points. It shows that the different
semantic information and the fusion function are beneficial to improve the accuracy of the model, with
the high-level semantic information being more significant for the model.

Finally,we verify the effectiveness of each attention on the model.We remove the attention from P to
H , the attention from H to P , and the self-attention module respectively. Their accuracy rates decreased
by 2.5 percentage points, 0.9 percentage points, and 1.3 percentage points. It shows that all the various
attention mechanisms improve the performance of the model, with the P to H attention being more
significant for the model.

The ablation experiments show that each component of our model plays an important role, especially
the high-level semantic information module and the P to H attention module, which have a greater
impact on the performance of the model. Meanwhile, the character embedding and fusion function also
play an important role in our model.

5 Conclusion

we investigate natural language sentence matching methods and propose an effective deep interaction
and fusion model for sentence matching. Our model first uses the bi-directional attention in the machine
reading comprehension model and self-attention to obtain the high-level semantic information.Then,we
use a heuristic fusion function to fuse the semantic information that we get.Finally, we use a linear layer
to get the results of sentence matching .We conducted experiments on SNLI and Quora datasets. The
experimental results show that the model proposed in this paper can achieve good results in two tasks.In
this work,we find that our proposed interaction module and fusion module occupie the dominant position
and have a great impact on our model.However,Our model is not as powerful as the pre-trained model
in terms of feature extraction and lacks external knowledge.The next research work plan will focus on
the following two points: 1) we use more powerful feature extractors, such as BERT pre-trained model
as text feature extractors; 2) the introduction of external knowledge will be considered. For example,
WordNet, an external knowledge base, contains many sets of synonyms, and for each input word, its
synonyms are retrieved from WordNet and embedded in the word vector representation of the word to
further improve the performance of the model.
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