@inproceedings{nie-etal-2022-ji,
title = "基于相似度进行句子选择的机器阅读理解数据增强(Machine reading comprehension data Augmentation for sentence selection based on similarity)",
author = "Nie, Shuang and
Ye, Zheng and
Qin, Jun and
Liu, Jing",
editor = "Sun, Maosong and
Liu, Yang and
Che, Wanxiang and
Feng, Yang and
Qiu, Xipeng and
Rao, Gaoqi and
Chen, Yubo",
booktitle = "Proceedings of the 21st Chinese National Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Nanchang, China",
publisher = "Chinese Information Processing Society of China",
url = "https://preview.aclanthology.org/fix-sig-urls/2022.ccl-1.51/",
pages = "569--579",
language = "zho",
abstract = "``目前常见的机器阅读理解数据增强方法如回译,单独对文章或者问题进行数据增强,没有考虑文章、问题和选项三元组之间的联系。因此,本文探索了一种利用三元组联系进行文章句子筛选的数据增强方法,通过比较文章与问题以及选项的相似度,选取文章中与二者联系紧密的句子。同时为了使不同选项的三元组区别增大,我们选用了正则化Dropout的策略。实验结果表明,在RACE数据集上的准确率可提高3.8{\%}。''"
}
Markdown (Informal)
[基于相似度进行句子选择的机器阅读理解数据增强(Machine reading comprehension data Augmentation for sentence selection based on similarity)](https://preview.aclanthology.org/fix-sig-urls/2022.ccl-1.51/) (Nie et al., CCL 2022)
ACL