@inproceedings{xie-etal-2022-gu,
title = "古汉语嵌套命名实体识别数据集的构建和应用研究(Construction and application of classical {C}hinese nested named entity recognition data set)",
author = "Xie, Zhiqiang and
Liu, Jinzhu and
Liu, Genhui",
editor = "Sun, Maosong and
Liu, Yang and
Che, Wanxiang and
Feng, Yang and
Qiu, Xipeng and
Rao, Gaoqi and
Chen, Yubo",
booktitle = "Proceedings of the 21st Chinese National Conference on Computational Linguistics",
month = oct,
year = "2022",
address = "Nanchang, China",
publisher = "Chinese Information Processing Society of China",
url = "https://preview.aclanthology.org/fix-sig-urls/2022.ccl-1.37/",
pages = "406--416",
language = "zho",
abstract = "``本文聚焦研究较少的古汉语嵌套命名实体识别任务,以《史记》作为原始语料,针对古文意义丰富而导致的实体分类模糊问题,分别构建了基于字词本义和语境义2个标注标准的古汉语嵌套命名实体数据集,探讨了数据集的实体分类原则和标注格式,并用RoBERTa-classical-chinese+GlobalPointer模型进行对比试验,标准一数据集F1值为80.42{\%},标准二F1值为77.43{\%},以此确定了数据集的标注标准。之后对比了六种预训练模型配合GlobalPointer在古汉语嵌套命名实体识别任务上的表现。最终试验结果:RoBERTa-classical-chinese模型F1值为84.71{\%},表现最好。''"
}
Markdown (Informal)
[古汉语嵌套命名实体识别数据集的构建和应用研究(Construction and application of classical Chinese nested named entity recognition data set)](https://preview.aclanthology.org/fix-sig-urls/2022.ccl-1.37/) (Xie et al., CCL 2022)
ACL