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Keynote Talk: A total error approach to validating event data
that is transparent, scalable, and practical to implement

Scott Althaus
University of Illinois Urbana-Champaign

Abstract: There are at least two reasonable ways to make your way toward where you want to go:
looking down to carefully place one foot in front of the other, and looking up to focus on where you hope
to arrive. Looking up beats looking down if there’s a particular destination in mind, and for constructing
valid event data that destination usually takes the form of high-quality human judgment. Yet many
approaches to generating event data on protests and acts of political violence using fully-automated
systems implicitly adopt a “looking down” approach by benchmarking validity as a series of incremental
improvements over prior algorithmic efforts. And even those efforts that adopt a “looking up” approach
often treat human-generated gold standard data as if it was prima facie valid, without ever testing or
confirming the accuracy of this assumption. It stands to reason that if we want to automatically produce
valid event data that approaches the validity of human judgment, then we also need to validate the human
judgment tasks that provide the point of comparison. But because of obvious difficulties in implementing
such a rigorous assessment within the time and budget constraints of typical research projects, this more
rigorous double-validation approach is rarely attempted.
This presentation outlines a “looking up” approach for double-validating fully-automated event data
developed by the Cline Center for Advanced Social Research at the University of Illinois Urbana-
Champaign (USA), illustrates that approach with a test of the precision and recall for two widely-used
event classification systems (the PETRARCH-2 coder used in Phoenix and TERRIER, as well as the
BBN ACCENT coder used in W-ICEWS), and demonstrates the utility of the approach for develo-
ping fully-automated event data algorithms with levels of validity that approach the quality of human
judgment.
The first part of the talk reviews the Cline Center’s total error framework for identifying 19 types of error
that can affect the validity of event data and addresses the challenge of applying a total error framewo-
rk when authoritative ground truth about the actual distribution of relevant events is lacking (Althaus,
Peyton, and Shalmon, 2022). We argue that carefully constructed gold standard datasets can effectively
benchmark validity problems even in the absence of ground truth data about event populations. We pro-
pose that a strong validity assessment for event data should, at a minimum, possess three characteristics.
First, there should be a standard describing ideal data; a gold standard that, in the best case, takes the
form of ground truth. Second, there should be a direct “apples to apples” comparison of outputs from
competing methods given identical input. Third, the test should use appropriate metrics for measuring
agreement between the gold standard and data produced by competing approaches.
The second part of the talk presents the results of a validation exercise meeting all three criteria that is ap-
plied to two algorithmic event data pipelines: the Python Engine for Text Resolution and Related Coding
Hierarchy (PETRARCH-2) and the BBN ACCENT event coder. It then reviews a recent Cline Center
project that has built a fully-automated event coder which produces dramatic improvements in validity
over both PETRARCH-2 and BBN ACCENT by leveraging the total error framework and a reliance on
the double-validation approach using high-quality gold standard benchmark datasets.

Bio: Scott Althaus (https://pol.illinois.edu/directory/profile/salthaus): is Merriam Professor of Political
Science, Professor of Communication, and Director of the Cline Center for Advanced Social Research
at the University of Illinois Urbana-Champaign. He also has faculty appointments with the School of
Information Sciences and the National Center for Supercomputing Applications. His work with the
Cline Center applies text analytics methods and Artificial Intelligence algorithms to extract insights from
millions of news stories in ways that produce new forms of knowledge that advance societal well-being
around the world. His own research interests explore the communication processes that support political
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accountability in democratic societies and that empower political discontent in non-democratic societies.
His interests focus on four areas of inquiry: (1) how journalists construct news coverage about public
affairs, (2) how leaders attempt to shape news coverage for political advantage, (3) how citizens use
news coverage for making sense of public affairs, and (4) how the opinions of citizens are communicated
back to leaders. He has particular interests in popular support for war, data science methods for extreme-
scale analysis of news coverage, cross-national comparative research on political communication, the
psychology of information processing, and communication concepts in democratic theory. His current
projects include using data mining methods to help journalists cover terrorist attacks in responsible ways,
a solo-authored book manuscript to be published by Cambridge University Press about the dynamics of
popular support for war in the United States, and a co-authored book manuscript (with Tamir Sheafer and
Gadi Wolfsfeld) in press with Oxford University Press on understanding the role of media in supporting
governmental accountability and increasing the government’s responsiveness to citizen needs.
J. Craig Jenkins (https://sociology.osu.edu/people/jenkins.12) is Academy Professor Emeritus of Socio-
logy at The Ohio State University. He directed the Mershon Center for International Security Studies
from 2011 to 2015 and is now senior research scientist. Jenkins is author of more than 100 referred arti-
cles and book chapters, as well as author or editor of several books including The Politics of Insurgency:
The Farm Worker’s Movement of the 1960s (1986); The Politics of Social Protest: Comparative Perspec-
tives on States and Social Movements, with Bert Klandermans (University of Minnesota Press, 1995);
Identity Conflicts: Can Violence be Regulated?, with Esther Gottlieb (Transaction Publishers, 2007) and
Handbook of Politics: State and Society in Global Perspective, with Kevin T. Leicht (Springer, 2010).
He has received numerous awards, including the Robin M. Williams Jr. Award for Distinguished Contri-
butions to Scholarship, Teaching and Service from the Section on Peace, War and Social Conflict of the
American Sociological Association (2015), fellow of the American Association for the Advancement of
Science (2009), Joan Huber Faculty Fellow (2003), chair of the Section on Committees of the American
Sociological Association (1998-2000), chair of the Section on Political Sociology, ASA (1995-96), and
chair of the Section on Collective Behavior and Social Movements, ASA (1994-95). He was elected to
the Sociological Research Association in 1993 and was a national security fellow at the Mershon Center
for International Security at Ohio State in 1988, a Mershon Center professor from 2003-06 and chair
of the Sociology Department, 2006-2010. Jenkins has received numerous grants from funding agencies,
including the National Science Foundation, National Endowment for Humanities and Russell Sage Foun-
dation. In 2010-11, he received a Liev Eriksson Mobility Grant from the Norway Research Council. In
2011-12, Jenkins was a Fulbright Fellow to Norway and a visiting professor at the Peace Research Insti-
tute of Oslo (PRIO) in Oslo, Norway. In 2017, Jenkins and co-investigator Maciek Slomczynski received
a $1.4 million grant from the National Science Foundation for a four-year project on “Survey Data Re-
cycling: New Analytic Framework, Integrated Database and Tools for Cross-National Social, Behavioral
and Economic Research.” Jenkins has served as deputy editor of American Sociological Review (1986-
1989), and on the editorial boards of Journal of Political and Military Sociology, International Studies
Quarterly, Sociological Forum, and Sociological Quarterly.
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Keynote Talk: Event Extraction in the Era of Large Language
Models: Structure Induction and Multilingual Learning

Thien Huu Nguyen
University of Oregon

Abstract: Events such as protests, disease outbreaks, and natural disasters are prevalent in text from
different languages and domains. Event Extraction (EE) is an important task of Information Extraction
that aims to identify events and their structures in unstructured text. The last decade has witnessed
significant progress for EE research, featuring deep learning and large language models as the state-
of-the-art technologies. However, a key issue of existing EE methods involves modeling input text
sequentially to solve each EE tasks separately, thus limiting the abilities to encode long text and capture
various types of dependencies to improve EE performance. In this talk, I will present some of our recent
efforts to address this issue where text structures are explicitly learned to realize important objects and
their interactions to facilitate the predictions for EE.
In addition, current EE research still mainly focuses on a few popular languages, e.g., English, Chinese,
Arabic, and Spanish, leaving many other languages unexplored for EE. In this talk, I will also introdu-
ce our current research focus on developing evaluation benchmarks and models to extend EE systems
to multiple new languages, i.e., multilingual and cross-lingual learning for EE. Finally, I will highlight
some research challenges that can be studied in future work for EE.

Bio: Thien Huu Nguyen (https://ix.cs.uoregon.edu/ thien/) is an assistant professor in the Department
of Computer and Information Science at the University of Oregon. He obtained his Ph.D. in natural
language processing (NLP) at New York University (working with Ralph Grishman) and did a postdoc
at the University of Montreal (working with Yoshua Bengio). Thien’s research areas involve information
extraction, language grounding, and deep learning where he developed one of the first deep learning
models for entity recognition, relation extraction, and event extraction. His current research explores
multi-domain and multilingual NLP that aims to learn transferable representations to perform informa-
tion extraction tasks over different domains and languages. Thien is the director of the NSF IUCRC
Center for Big Learning (CBL) at the University of Oregon. His research has been supported by NSF,
IARPA, Army Research Office, Adobe Research, and IBM Research.
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Abstract

Hate speech consists of types of content (e.g.
text, audio, image) that express derogatory
sentiments and hate against certain people or
groups of individuals. The internet, particularly
social media and microblogging sites, have be-
come an increasingly popular platform for ex-
pressing ideas and opinions. Hate speech is
prevalent in both offline and online media. A
substantial proportion of this kind of content
is presented in different modalities (e.g. text,
image, video). Taking into account that hate
speech spreads quickly during political events,
we present a novel multimodal dataset com-
posed of 5680 text-image pairs of tweets data
related to the Russia-Ukraine war and anno-
tated with a binary class: ”hate” or ”no-hate”
The baseline results show that multimodal re-
sources are relevant to leverage the hateful in-
formation from different types of data. The
baselines and dataset provided in this paper
may boost researchers in direction of multi-
modal hate speech, mainly during serious con-
flicts such as war contexts.

1 Introduction

The internet has become an increasingly popular
communication medium to express the views of
people. People mostly express their opinions on
various topics using social media, microblogging
platforms, blogs, etc. With great internet pene-
tration even in the rural parts of the world and
ease of access to information in real-time, people
mostly rely on social media platforms (Naseem
et al., 2021). At times of political events and ten-
sion in any region, the users of such platforms be-
come more active than usual and post their thoughts
and updates regarding the issues. During the ex-
pression of such opinions and ideas, there can be
mixed emotions. Some opinions lean towards sup-
porting the people on the ground who are suffering
in such political events whereas some opinions are
about blaming each other, name-calling, exaggera-

tion of information, etc (Dimitrov et al., 2021). In
political situations pertaining to invasion, the situa-
tion becomes even worse. Social media sometimes
get polarized into the ones supporting the invasion
and the ones opposing the invasion. During such
polarization, a lot of content can be found which
uses extreme language, falsifies the information,
and spreads hate. Such content when directed to-
wards certain people or groups of individuals (race,
gender, nationality) with the intent to show anger
and hate is called hate speech (Parihar et al., 2021).
While the legal definitions of hate speech vary from
territory to territory, hate speech on the internet
sphere is taken as hateful content on the internet
that is directed toward certain individuals or groups
of individuals. The Cambridge Dictionary defines
hate speech as "public speech that expresses hate
or encourages violence towards a person or group
based on something such as race, religion, sex, or
sexual orientation" (Miller and Brown, 2013).

On February 24, 2022, Russia started a full-scale
invasion of Ukraine by land, sea, and air (Berninger
et al., 2022). The world was again polarized into
two, with one supporting the Russian invasion and
the other opposing it. Many countries condemned
the war, and sanctions were eventually imposed
on Russia. With the development of these events,
social media started getting active. People started
to express their opinions related to the humanitar-
ian crisis and economic crisis that was caused due
to the invasion. Amid the healthy and respectful
discourse and discussions, there was some hateful
content targeted at various people (Figure 1).

Hate speech can bring serious consequences to
society. Microblogging platforms and social me-
dia platforms put a lot of effort into managing the
hateful content on their platforms. Mostly, the
platforms use human mediators for the mediation
of posts related to hate speech. Despite being an
efficient method for regulating hate speech, it is
not always possible for human mediators to flag

1



(a) Tweet with No Hate (b) Tweet with Hate Speech
Figure 1: Examples of tweets with hate and no hate speech during Russia-Ukraine conflict

the posts provided that the volume of the hateful
content becomes extremely high in situations of
political events like an invasion. Thus, there has
always been a need for an automated system to
identify the contents related to hate speech. Our
contributions can be summarized as follows:

• We construct and release new multi-modal data
for identifying hate speech tasks on social me-
dia, consisting of 5,680 tweets (image-text pairs)
labeled across binary labels.

• Our experimental analysis shows that both modal-
ities (text and images) are important for the task.

• We experiment with several state-of-the-art tex-
tual, visual, and multi-modal models, which fur-
ther confirm the importance of both modalities
and the need for further research.

2 Related Works

Despite hate speech detection being a hard task,
much research is being done to address hate speech
on the internet. With advancements in the field
of deep learning, there is a multitude of problems
that are being solved by deep learning (Adhikari
et al., 2022). Hate speech is one of the tasks that
is being explored using deep learning techniques.
Most of the research on hateful content is focused
on leveraging the information from the textual con-
tent. Del Vigna et al. (2017) curated a dataset of
17,567 comments from Facebook posts and an-
notated for strong hate, weak hate, and no hate
categories. The proposed long-short term mem-
ory (LSTM) (Hochreiter and Schmidhuber, 1997)
and SVM models performed with an accuracy of
72.95% and 75.23% for hate and non-hate cate-
gories. Similarly, the accuracy of 64.61% and
60.50% were reported across all three categories.
Similarly, Gambäck and Sikdar (2017) had pro-
posed multiple CNN architectures in order to clas-
sify hate speech spanning across multiple classes,
viz. racism, sexism, both (racism and sexism), and

non-hate speech. The architecture with Word2Vec
embeddings was able to achieve an F1-score of
0.7829. Calderón et al. (2020) did a slightly differ-
ent task of hate speech classification by curating a
dataset (1977 tweets) of the hate speech directed to-
wards the immigrants in Spain and performing the
task of topic modeling and meticulously studying
linguistic cues of hate speech.

Apart from these, some research has been done
on multi-modal hate speech detection. For instance,
Shang et al. (2021) proposed Analogy-aware Of-
fensive Meme Detection (AOMD) that was able
to learn the implicit analogy from the multi-modal
contents of the meme and detect the offensive anal-
ogy. The model that used ResNet50 (He et al.,
2016) and Glove-based LSTM was able to achieve
the accuracy of 69% and 72% for Gab and Reddit
datasets. Similarly, Zhou et al. (2021) proposed a
method that integrates the image captioning pro-
cess into the memes detection process. The ap-
proach enhanced the cross-modality relationship
and helped achieve AUROC as high as 78.86. For
their study, they used the famous dataset from Hate-
ful Memes Challenge (Kiela et al., 2020). Similarly,
Dimitrov et al. (2021) presented a method to iden-
tify propaganda techniques in memes by leveraging
the multi-modal information and classifying them
into 22 propaganda techniques.

In recent days, the research relating to multi-
modal information has been growing (Sharma et al.,
2022). Most microblogging sites allow users to
post in various modalities like text, images, videos,
etc. which add a dimension of research in address-
ing all the modalities. One modality often pro-
vides supplementary information to another modal-
ity which makes multimodal models more robust.

3 Datasets

3.1 Data Collection

The Russian invasion of Ukraine started on 22
February 2022. We started to crawl tweets from
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Label Annotation Instructions

Hate A post (text or image or both) contains a hateful content such as
personal attack, homophobic abuse, racial abuse, or attack on minority

No Hate A post(text or image or both) reports the events or others’ opinions
objectively and contains no offensive or hateful content.

Table 1: Annotation instructions given to annotators.

22 February 2022 to 28 March 2022. Twitter API1

was used to collect the tweets from the given time
frame. We collected the tweets with certain list of
keywords namely ukraine, putin, russia, zelensky,
kyiv, kiev, kremlin, ukrainian, nato, russian, soviet,
moscow, kharkiv, and donbas. The tweets for key-
words kharkiv, and donbas were collected from 1
March 2022 whereas for all other keywords, tweets
were collected starting from 22 February 2022. The
tweets revolving around the Russia-Ukraine crisis
had the above-mentioned keywords very frequently.
Hence, the mentioned keywords were selected for
our study. For filtering the tweets, we took the
tweets which had media and were in the English
language. We discarded the tweets which had me-
dia as videos or animations. Our dataset contains
5,680 labeled tweets that had image and text pairs
with annotations.

3.2 Annotation

This subsection explains the annotation schema
that we followed to label the dataset.

Instructions: The annotation of the data was
done to label tweets into binary classes. The two
categories, i.e., hate speech and no hate speech,
were defined. Annotators were provided with the
instructions, following which they assigned the
labels to the tweets. If the annotators were not
sure about the labels for any tweet, it was labeled
as ‘Non-Informative,’ and such tweets were later
dropped. Annotators were provided with posts
that had tweets containing both image and text
pairs. The images were named as the tweet ID
in which they were present. The annotators thus
looked into the image and text pairs for performing
the annotation. Annotation instructions given to
annotators are presented in Table 1. For a tweet to
be labeled as hate speech, it needs to have at least
one component that represents hate.
Annotations: There was a team of four male
and female annotators with good fluency in the
English language. All annotators had varying
qualifications running from undergraduate to MS
and Ph.D. degrees, including the highly experi-

1https://developer.twitter.com/en/
docs/twitter-api

Labels No. of Tweets Avg. char/ tweet Avg word/ tweet
Hate 746 60.88 9.68
No Hate 4934 64.48 10.03

Table 2: Dataset statistics.

enced researchers in NLP research involving the
data collection and establishment of benchmarks.
This helped to frame clear instructions and ensure
the quality of annotations. In the literature, it
has been discussed that having a diverse range of
annotators is useful to mitigate bias (Vargas et al.,
2022). The annotators were volunteers and did not
receive any remunerations. Since labeling tweets
involving both text and image is challenging, we
made the annotations go through three phases.
In the first phase, we run a pilot annotation for
50 tweets to ensure that everyone understood the
instructions. Each of the four members annotated
the tweets. The instructions were revised to
clarify that they addressed all the confusion that
annotators had. In the second phase, all four
annotators were made to annotate 200 tweets. The
purpose of the second phase was to make sure that
the instructions revised after the first stage were
clear enough. In the third stage, a group discussion
was done regarding the conflicts in annotation
(Table 3). The instructions became apparent, and
the annotators annotated all of the datasets. For
example, Figure 1a shows that the text expresses
solidarity with Ukraine. The image, which is
the flag of Ukraine, also does not show any hate.
Thus, the tweet is labeled as No Hate. Similarly,
1b shows the tweet in which the text shows hate
towards the former president of the USA, Donald
Trump. He does not belong to Siberia. The tweet
text tries to demean Donald Trump by saying
that he belongs to Siberia and he should be sent
there. The image is also edited. It is demean-
ing and shows hate on multiple levels toward
Donald Trump. Thus, this is labeled as hate speech.

Dataset Statistics and Analysis: Our new multi-
modal dataset included 5680 tweets, with 746
(13.13%) tweets being labeled as ‘hate speech’ la-
bel whereas 4934 (86.87%) tweets are labeled as
‘no hate’ label (Table 2). The dataset statistics rep-
resent a true distribution in a real-world scenario
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Phase Annotators Kappa (κ)
α1 and α2 0.57
α1 and α3 0.50

Pilot α1 and α4 0.62
Annotation α2 and α3 0.53

α2 and α4 0.63
α3 and α4 0.51
α1 and α2 0.87
α1 and α3 0.90

Final α1 and α4 0.89
Annotation α2 and α3 0.89

α2 and α4 0.88
α3 and α4 0.90

Table 3: Cohen’s Kappa (κ) for annotation during dif-
ferent Phases by four annotators

where many posts are neutral, and only some are
related to hate speech.

4 Experimental Results

4.1 Baselines

We used various state-of-the-art unimodal and
multimodal-based state-of-the-art methods to es-
tablish baselines. Below, we discuss each in detail.

4.1.1 Unimodal Models

For single modality-based models, we used the
following unimodal methods:

• Unimodal-Text Only: For textual models, we
used long-short term memory (LSTM) (Hochre-
iter and Schmidhuber, 1997), Bidirectional En-
coder Representations (BERT) (Devlin et al.,
2018) and optimized variant of BERT, i.e.,
RoBERTa (Liu et al., 2019).

• Unimodal-Image Only: For the image-based uni-
modal baseline methods, we used 3 pretrained
convolutional networks based methods i.e., VGG-
19 (Simonyan and Zisserman, 2014), ResNet (He
et al., 2016) and DenseNet (Huang et al., 2017).

4.1.2 Multimodal Models

We used 3 multimodal models that have been
widely used in previous similar studies. (1)
We used (ResNet+BERT), where we pre-trained
ResNet and BERT to train text and image and then
fused the representations through the linear layer,
(2) We also used VisualBERT (Li et al., 2019),
a simple and flexible framework for modeling a
broad range of vision-and-language tasks and (3)
Besides, we have also used the current state-of-
the-art model Contrastive Language-Image Pre-
Training (CLIP) (Radford et al., 2021).

Modality Model Precision Recall F1-score
LSTM 0.74 0.86 0.79

Textual BERT 0.75 0.86 0.80
RoBERTa 0.78 0.88 0.83
VGG-19 0.79 0.70 0.74

Visual ResNet 0.80 0.74 0.77
DenseNet 0.82 0.72 0.77

ResNet+BERT 0.84 0.86 0.85
Multimodal VisualBERT 0.85 0.88 0.86

CLIP 0.88 0.90 0.89

Table 4: Performance of different unimodal and multi-
modal algorithms on our dataset.

4.2 Experimental Settings

We used grid-search optimization to derive the opti-
mal parameters of each baseline and used precision,
recall, and F1-score as evaluation metrics.

4.3 Results

Table 4 show the results for the classification of
hate and non-hate speech. We experimented with
both unimodal and multimodal models. When only
the text modality was used, the RoBERTa model
performed the best with an F1-score of 0.83. Simi-
larly, for the visual unimodal model, DenseNet and
ResNet had a nearly equal performance with an
F1-score of 0.77. Further, we can see that both mul-
timodal models had better results than unimodal
textual and visual models. The performance for the
CLIP model is as high as 0.89 (F1-score). Based
on our experiment, we observed that multi-modal
models plays important role in detecting hateful
content in comparison to uni-models.

5 Conclusion and Future Work

This paper presents a new multi-modal dataset for
identifying hateful content on social media, consist-
ing of 5,680 text-image pairs collected from Twit-
ter, labeled across two labels. Experimental analy-
sis of the presented dataset has shown that under-
standing both modalities is essential for detecting
these techniques. It is confirmed in our experiments
with several state-of-the-art multi-modal models.
In future work, we plan to extend the dataset in
size. We further plan to develop new multi-modal
models tailored explicitly to hate-speech detection,
aiming for a deeper understanding of the text and
image relation. It would also be interesting to per-
form experiments in a direction that explores what
social entities the given hate speech tweet targets.
Reproducibility: The dataset and resources for
this work are available at our GitHub repository2.

2https://github.com/therealthapa/emnlp-case2022
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Ethical Considerations: The dataset does not
contain direct identifiers. It contains tweet IDs.
Tweet IDs can be used to retrieve the tweets. The
tweet becomes unavailable if the user deletes the
tweet. This gives the original author of the tweet
full control over their content. All the tweets
presented in the examples have been anonymized
and obfuscated for user privacy and to avoid
misuse. Thus, no ethical approval is required. The
annotation is very subjective and hence we can
expect some bias in the annotation. To address
these issues, examples from various users and
groups are collected, along with clear instructions
for annotation. Due to excellent inter-annotator
agreement (κ score), we are confident that
annotation instructions are mostly valid.

Intended Use: We release our dataset in order to
accelerate research into identifying hate speech at
times of war on social media. We expect the dataset
to be a valuable resource when used appropriately.
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Abstract

Event extraction involves the detection and ex-
traction of both the event triggers and corre-
sponding event arguments. Existing systems
often decompose event extraction into multi-
ple subtasks, without considering their possible
interactions. In this paper, we propose Event-
Graph, a joint framework for event extraction,
which encodes events as graphs. We repre-
sent event triggers and arguments as nodes in a
semantic graph. Event extraction therefore be-
comes a graph parsing problem, which provides
the following advantages: 1) performing event
detection and argument extraction jointly; 2)
detecting and extracting multiple events from a
piece of text; and 3) capturing the complicated
interaction between event arguments and trig-
gers. Experimental results on ACE2005 show
that our model is competitive to state-of-the-art
systems and has substantially improved the re-
sults on argument extraction. Additionally, we
create two new datasets from ACE2005 where
we keep the entire text spans for event argu-
ments, instead of just the head word(s). Our
code and models are released as open-source.1

1 Introduction

Event extraction aims at extracting event-related
information from unstructured texts into structured
form (i.e. triggers and arguments), according to a
predefined event ontology (Ahn, 2006; Doddington
et al., 2004). In these types of ontologies, events
are characterized by event triggers, and comprise a
set of predefined argument types. Figure 1 shows
an example of a sentence containing two events,
an Attack event triggered by “friendly-fire” and
a Die event triggered by “died”; the two events
share the same arguments, but each plays a different
role in the specific event. For instance, “U.S.” is
the Agent in the Die event, but plays the role of
Attacker in the Attack event.

1https://github.com/huiling-y/
EventGraph

Victim Agent
Place

A Kurdish journalist died in a U.S.

Attacker

friendly-fire accident in the north

Die

Place
Target

Attack

Figure 1: Example of an Attack and a Die events
in the sentence “A Kurdish journalist died in a U.S.
friendly-fire accident in the north.”

As opposed to dividing event extraction into in-
dependent subtasks, we take advantage of recent
advances in semantic dependency parsing (Dozat
and Manning, 2018; Samuel and Straka, 2020) and
develop an end-to-end event graph parser, dubbed
EventGraph. We adopt intuitive graph encoding to
represent the event mentions of a piece of text in
a single event graph, and directly generate these
event graphs from raw texts. We evaluate our Event-
Graph system on ACE2005 (LDC2006T06).2 Our
model achieves competitive results with state-of-
the-art models, and substantially improves the re-
sults on event argument extraction. The main con-
tributions of this work are:

1. We propose EventGraph, a text-to-event
framework that solves event extraction as se-
mantic graph parsing. The model does not rely
on any language-specific features or event-
specific ontology, so it can easily be applied
to new languages and new datasets.

2. We design an intuitive graph encoding ap-
proach to represent event structures in a single
event graph.

3. The versatility of our approach allows for an
effortless decoding of full trigger and argu-
ment mentions. We create two novel and more
challenging datasets from ACE2005, and pro-
vide corresponding benchmark results.

2https://catalog.ldc.upenn.edu/
LDC2006T06
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2 Related work

Our work is closely related to two research direc-
tions, event extraction and semantic parsing.

Supervised event extraction is an established re-
search area in NLP. There are different methods to
obtain the structured information of an event, and
the mainstream methods can be divided into: 1)
classification-based methods: treat event extraction
as several classification subtasks, and either solve
them separately in a pipeline-based manner (Ji and
Grishman, 2008; Li et al., 2013; Liu et al., 2020;
Du and Cardie, 2020; Li et al., 2020) or jointly
infer multiple subtasks (Yang and Mitchell, 2016;
Nguyen et al., 2016; Liu et al., 2018; Wadden et al.,
2019; Lin et al., 2020); 2) generation-based ap-
proaches: formulate event extraction as a sequence
generation problem (Paolini et al., 2021; Lu et al.,
2021; Li et al., 2021; Hsu et al., 2022); 3) prompt
tuning methods: inspired by natural language un-
derstanding tasks, these approaches take advantage
of “discrete prompts” (Shin et al., 2020; Gao et al.,
2021; Li and Liang, 2021; Liu et al., 2022).

Meaning Representation Parsing has seen signif-
icant interest in recent years (Oepen et al., 2014,
2015, 2020). Unlike syntactic dependency repre-
sentations, these semantic representations are cru-
cially not trees, but rather general graphs, charac-
terised by potentially having multiple entry points
(roots) and not necessarily being connected, since
not every token is a node in the graph. There has
further been considerable progress in developing
variants of both transition-based and graph-based
dependency parsers capable of producing such se-
mantic graphs (Hershcovich et al., 2017; Dozat and
Manning, 2018; Samuel and Straka, 2020).

A recent and highly relevant development in the
current context has been the application of semantic
parsers to NLP tasks beyond meaning representa-
tion parsing. These approaches rely on the reformu-
lation of task-specific representations to semantic
dependency graphs. For example, Yu et al. (2020)
exploit the parser of Dozat and Manning (2018)
to predict spans of named entities, while Kurtz
et al. (2020) phrase the task of negation resolution
(Morante and Daelemans, 2012) as a graph parsing
task with promising results. Recently, Barnes et al.
(2021) proposed a dependency parsing approach
to extract opinion tuples from text, dubbed Struc-
tured Sentiment Analysis, and a recent shared task
dedicated to this task demonstrated the usefulness
of graph parsing approaches to sentiment analysis

Attack Transport

<root>

Instrument Attacker

pummeled

Origin Artifact

retreat

coalitioncoalition 
fighter jets

the hills above
Chamchamal

Place

Iraqi troops

Artificial root:

Triggers:

Arguments:

Figure 2: Event graph for the sentence “That’s because
coalition fighter jets pummeled this Iraqi position on
the hills above Chamchamal and Iraqi troops made a
hasty retreat.”

(Barnes et al., 2022). Most similar to our work is
the work by Samuel et al. (2022) which adapts the
PERIN parser (Samuel and Straka, 2020) to parse
directly from raw text into sentiment graphs.

3 Event graph representations

We adopt an efficient “labeled-edge” representa-
tion for event graph encoding within the scope of a
sentence. Each node in an event graph corresponds
to either an event trigger or an argument, which is
anchored to a unique text span in a sentence, ex-
cept for the top node, which is only a dummy node
for every event graph. The edges are constrained
only between the top node and an event trigger, or
between an event trigger and an argument, with the
corresponding edge label as an event type or argu-
ment role. The “labeled-edge” encoding has the
ability to represent: 1) multiple event mentions; 2)
nested structures (overlapping between arguments
or trigger-argument); 3) multiple argument roles
of a single argument. Taking the event graph from
Figure 2 as example, the sentence contains two
event mentions, which share the same argument

“the hills above Chamchamal” but as different roles,
and the argument “coalition” is nested inside the
argument “coalition fighter jets”.

4 Event parsing

EventGraph is an adaptation of PERIN (Samuel
and Straka, 2020), a general permutation-invariant
framework for text-to-graph parsing. Given the
“labeled-edge” encoding for event graphs, we cre-
ate EventGraph by customizing the modules of
PERIN as illustrated in Figure 3, which contains
three classifiers to generate nodes, anchors, and
edges, respectively. Each input sequence is pro-
cessed by four modules of EventGraph to generate
a final structured representation.
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They moved away

finetuned XLM-R

q1,1 q1,2 q2,1 q2,2 q3,1 q3,2

Transformer layers

linear

node classifier<root> <node> <node>

anchor biaffine attention

edge biaffine attention

1

2

3

4c

4b

4a

<root> They moved
away

Transport

<root> They

Artifact

moved
away

Figure 3: EventGraph architecture. 1) the input gets a
contextualized representation, 2) queries are generated
for every input token, 3) queries are further processed
with a decoder to predict 4a) node presence, 4b) node
anchors, and 4c) edge labels.

Encoder We use the large version of XLM-R
(Conneau et al., 2020) as the encoder to obtain con-
textualized representations of the input sequence;
each token gets a contextual embedding via a
learned subword attention layer over the subwords.

Query generator We use a linear transformation
layer to map each embebbed token onto n queries.

Decoder The decoder is a stack of Transformer
encoder layers (Vaswani et al., 2017) without po-
sitional encoding, which is permutation-invariant
(non-autoregressive); the decoder processes and
augments the queries of each token by modelling
the inter-dependencies between queries.

Parser head It consists of three classifiers: a)
the node classifier is a linear classifier that pre-
dicts node presence by classifying the augmented
queries of each token; since more than one query
is generated for each token, a single token can pro-
duce more than one node; b) the anchor biaffine
classifier (Dozat and Manning, 2017) uses deep
biaffine attention between the augmented queries
and contextual embeddings of each token to map
the predicted nodes to surface tokens; c) the edge
biaffine classifier uses two deep biaffine attention
modules to process generated nodes and predict
edge presence between a pair of nodes and the
edge label.

Given a piece of text, EventGraph generates its
corresponding graph, and it is effortless to extract

the structured information of event mentions from
the nodes and edges.3

5 Experimental setup

5.1 Datasets
We evaluate our system on the widely used bench-
mark dataset ACE20054 (LDC2006T06). The
ACE2005 dataset contains 599 English documents
annotated for several tasks, entities, values, rela-
tions, and events, with an event ontology of 33
event types, and 35 argument roles. Event argu-
ments come from both entities and values. The an-
notation of an entity also includes its head word(s);
for instance, from Table 1, entity “the Iraqi gov-
ernment’s key center of power” has “center” as its
head word. Following previous works (Wadden
et al., 2019; Lin et al., 2020; Wang et al., 2019), we
preprocess the dataset (details in Appendix B) and
obtain the following configurations:

1. ACE05-E: Wadden et al. (2019) keep 22 event
argument roles (excluding “time” and “value”
event arguments), ignore events with multi-
token trigger(s), and use only the head word(s)
of event arguments.

2. ACE05-E+: similar to Wadden et al. (2019),
Lin et al. (2020) only use 22 event argument
roles and keep only the head word(s) of event
arguments, but keep events with multi-token
trigger(s).

3. ACE05-E++: we create a new dataset that
keeps the full text spans for event triggers and
event arguments, but also keep 22 argument
roles for comparing with previous work.

4. ACE05-E+++: we create another dataset that
keeps all the 35 argument roles in ACE2005,
with full text spans for event triggers and ar-
guments.

Table 1 shows how an event mention is extracted
in ACE05-E+ and ACE05-E++, and the same
event is not present in ACE05-E. Although keeping
the full text spans for arguments makes the task
of argument extraction more difficult, we believe
that the extracted events are more informative and
self-contained.

3The tool for conversion between event mentions and event
graphs is included in our codes.

4https://catalog.ldc.upenn.edu/
LDC2006T06
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ACE05-E+ ACE05-E++

Trigger “push ahead” “push ahead”
Destination “center” “the Iraqi government’s key center of power”
Artifact “forces” “American forces”

Table 1: A Transport event in “Well, as American
forces do push ahead toward the Iraqi government’s key
center of power, British forces are keeping up their work
to the south of the Iraqi capital”, and corresponding
extracted events in ACE05-E+ and ACE05-E++.

Dataset Split # Sentences # Events # Roles

ACE05-E
Train 17 172 4 202 4 859
Dev 923 450 605
Test 832 403 576

ACE05-E+
Train 19 216 4 419 6 607
Dev 901 468 759
Test 676 424 689

ACE05-E++
Train 15 603 4 416 6 513
Dev 893 509 802
Test 729 424 685

ACE05-E+++
Train 15 603 4 416 7 844
Dev 893 509 945
Test 729 424 894

Table 2: Statistics of the preprocessed ACE2005
datasets.

Dataset Triggers Arguments
Avg. Len Avg. Len Single-token Multi-token

ACE05-E 1.00 1.18 86.2% 13.8%
ACE05-E+ 1.06 1.17 88.0% 12.0%
ACE05-E++ 1.05 2.86 43.5% 56.5%
ACE05-E+++ 1.05 2.82 43.2% 56.8%

Table 3: Statistics of event triggers and arguments. We
report the average lengths of triggers and arguments;
for arguments, we also report the percentages of single-
token and multi-token arguments.

5.2 Evaluation metric
We report Precision P, Recall R, and F1 scores for
each of the following evaluation criteria (Wadden
et al., 2019; Lin et al., 2020):

• Trigger classification (Trg-C): an event trig-
ger is correctly predicted if its offsets and
event type matches the gold trigger.

• Argument classification (Arg-C): an event
argument is correctly predicted if its offsets,
argument role, and event type match the gold
argument.

For argument classification, in order to have a
better insight into our models’ performance on
multi-token arguments, we include another met-

ric based on token-level span overlap for argument
identification, instead of perfect match.

• Token-level span overlap: an event argument
is correctly identified if its offsets have 80%5

overlap (token-level) with the gold argument,
and correctly predicted if its argument role
and event type match the gold argument.

5.3 System comparisons

We compare EventGraph to the following event
extraction systems: 1) DYGIE++ (Wadden et al.,
2019): a span-based framework capturing both
local and global contexts; 2) ONEIE (Lin et al.,
2020): an end-to-end framework for general infor-
mation extraction; 3) TEXT2EVENT (Lu et al.,
2021): a generation-based model for sequence-to-
event generation; 4) GTEE-DYNPREF (Liu et al.,
2022): a template-based method for text-to-event
generation.

5.4 Implementation details

Our code is built upon the official implementation
of the PERIN parser (Samuel and Straka, 2020).6

Details about our training setup and hyperparam-
eter settings are given in Appendix A. For each
dataset, we train 5 models with 5 different random
seeds, and report the means and standard deviations
of the corresponding results.

6 Results and discussion

In Table 4, we compare our results on ACE05-E
and ACE05-E+ with the previous systems. On
both datasets, EventGraph achieves SOTA results
on Arg-C over all metrics, with an improvement of
7 percentage points on ACE-E and more than 10
percentage points on ACE05-E+ in F1 scores. For
Trg-C, despite not beating the SOTA systems, our
results are still very competitive.

On the two new datasets that we created, Event-
Graph has achieved overall competitive results
(Table 4). On ACE-E++, despite having longer
and more complicated arguments, EventGraph has
generated comparable results to those of GTEE-
DYNPREF (current SOTA) on ACE-E+. On ACE-
E+++, even though the argument role set is ex-
panded from 22 to 35 argument roles, the results of
EventGraph on Arg-C remain stable.

5This metric only affects arguments longer than 5 tokens.
Arguments containing fewer than 5 tokens are still evaluated
with perfect match.

6https://github.com/ufal/perin
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Model Triggers (Trg-C) Arguments (Arg-C)
P R F1 P R F1

Dataset: ACE05-E

DYGIE++ 69.7 48.8
ONEIE 74.7 56.8
GTEE-DYNPREF 63.7 84.4 72.6 49.0 64.8 55.8
EventGraph 66.5±0.7 71.0±0.9 68.6±0.7 63.4±2.7 67.3±2.0 65.3±2.2

Dataset: ACE05-E+

ONEIE 72.1 73.6 72.8 55.4 54.3 54.8
TEXT2EVENT 71.2 72.5 71.8 54.0 54.8 54.4
GTEE-DYNPREF 67.3 83.0 74.3 49.8 60.7 54.7
EventGraph 70.0±1.1 70.0±1.2 70.0±1.1 64.5±1.0 66.4±2.6 65.4±1.7

Dataset: ACE05-E++

EventGraph 72.9±1.3 75.2±1.9 74.0±1.5 57.3±0.8 59.9±1.2 58.6±0.9

Dataset: ACE05-E+++

EventGraph 72.4±0.7 75.9±1.0 74.0±0.7 56.9±0.6 58.2±0.9 57.5±0.6

Table 4: Results on ACE05-E, ACE05-E+, ACE05-
E++, and ACE05-E+++. We report the average perfor-
mance of 5 runs with different random seeds, together
with the standard deviations. For clarity, we bold the
highest scores.

Results show that EventGraph performs well on
joint modelling of event triggers and arguments,
and benefits from longer text spans for event trig-
gers and arguments. When the full text spans of ar-
guments are used, the model receives more training
signals, so it has more information in differentiat-
ing sentences containing events from those without,
as shown in Table 6, and thus identifying event trig-
gers, which is also shown by the increasing Trg-C
scores from ACE-E and ACE-E+ to ACE-E++ and
ACE-E+++. For instance, as the example in Ta-
ble 1 shows, “the Iraqi government’s key center
of power” is less ambiguous than mere “center”.
As shown in Table 3, the average argument length
of ACE-E++ and ACE-E+++ is much longer, but
the average trigger length is very similar across the
four datasets; it is also evident that single-token
arguments make up a large proportion of all ar-
guments, even for ACE-E++ and ACE-E+++, so
there is a long tail in argument length distribution.
For longer arguments, it is more difficult to obtain
a perfect match with a gold argument, so we ob-
serve decreasing Arg-C scores when EventGraph
is evaluated on ACE-E++ and ACE-E+++.

To further look into our model’s performance
on identifying multi-token event arguments, espe-
cially those containing more than 5 tokens, we
further report Arg-C scores based on token-level
span overlap. As shown in Table 5, when we relax
argument identification from perfect match to 80%
token-level span overlap, the scores of Arg-C in-
crease consistently, especially those of ACE-E++

and ACE-E+++, now comparable to the results on
ACE-E and ACE-E+.

Dataset Perfect Match 80% Span Overlap
P R F1 P R F1

ACE05-E 63.4±2.7 67.3±2.0 65.3±2.2 63.9±2.4 68.5±1.7 66.2±1.9

ACE05-E+ 64.5±1.0 66.4±2.6 65.4±1.7 65.1±0.9 67.8±2.5 66.4±1.5

ACE05-E++ 57.3±0.8 59.9±1.2 58.6±0.9 63.9±1.1 66.2±2.1 65.0±1.6

ACE05-E+++ 56.9±0.6 58.2±0.9 57.5±0.6 64.0±0.7 64.4±1.3 64.2±0.9

Table 5: Results of EventGraph on Arg-C, evaluated
with perfect match and token-level span overlap.

ACE05-E ACE05-E+ ACE05-E++ ACE05-E+++

88.8±0.4 87.9±0.5 96.2±0.2 96.5±0.6

Table 6: Results of EventGraph correctly identifying
the presence of event(s) in a sentence.

7 Conclusion

In this paper, we have proposed a new method for
event extraction as semantic graph parsing. Our
proposed EventGraph has achieved competitive re-
sults on ACE2005 for the task of event trigger clas-
sification, and obtained new state-of-the-art results
for the task of argument role classification. We
also provide a graph representation for better visu-
alizing event mentions, and offer an efficient tool
to facilitate graph conversion. We create two new
datasets from ACE2005, with the full text spans
for both triggers and arguments, and offer the cor-
responding benchmark results. We show that de-
spite adding more and longer text sequences, Event-
Graph outperforms previous models tested on more
restricted datasets. For future work, we would like
to experiment with different pretrained language
models, and carry out more detailed error analysis.
Our codes and models are released as open-source.
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A Training details

We reuse the training settings from the original
PERIN system (Samuel and Straka, 2020) when-
ever possible. The model weights are optimized
with AdamW (Loshchilov and Hutter, 2019) fol-
lowing a warmed-up cosine learning rate sched-
ule. We use a pre-trained multi-lingual XLM-R
language model implemented by the HuggingFace
transformers library.7 The hyperparameter
configuration is shown in Table 7, please con-
sult it with our released code for context: https:
//github.com/huiling-y/EventGraph.

The training was done on a single Nvidia
RTX3090 GPU, the runtimes and model sizes (in-
cluding the fine-tuned language model backbone)
for each dataset are given in Table 8.

Hyperparameter EventGraph

batch_size 16
beta_2 0.98
decoder_learning_rate 1.0e-4
decoder_weight_decay 1.2e-6
dropout_transformer 0.25
dropout_transformer_attention 0.1
encoder "xlm-roberta-large"
encoder_learning_rate 4.0e-6
encoder_weight_decay 0.1
epochs 180
hidden_size_anchor 256
hidden_size_edge_label 256
hidden_size_edge_presence 256
n_transformer_layers 3
query_length 2
warmup_steps 1 000

Table 7: Hyperparameter setting for our system, all four
datasets use the same configuration.

Dataset Runtime Model size

ACE05-E 20:39 h 341.3 M
ACE05-E+ 21:59 h 341.3 M
ACE05-E++ 20:06 h 341.3 M
ACE05-E+++ 20:03 h 342.0 M

Table 8: The training times and model sizes (number of
trainable weights) of all our experiments.

7https://huggingface.co/docs/
transformers/index

B Data preprocessing

Data splits All datasets use the same splits8 for
train/dev/test. Out of the 599 documents, 529 doc-
uments are used for training, 30 documents for
development, and 40 documents for testing.

ACE-E We use the preprocessing code9 of Wad-
den et al. (2019) to obtain the dataset, and they use
an older version (v2.0.18) of Spacy10 for prepro-
cessing.

ACE05-E+ We use the preprocessing code11

(v0.4.8) of Lin et al. (2020) to obtain the dataset,
and they use NLTK12 for preprocessing.

ACE05-E++ and ACE05-E+++ We use the pre-
processing code13 of Wang et al. (2019) to obtain
the two datasets, and they use Stanford CoreNLP14

for preprocessing.

8https://github.com/dwadden/dygiepp/
tree/master/scripts/data/ace-event/
event-split

9https://github.com/dwadden/dygiepp
10https://spacy.io/
11http://blender.cs.illinois.edu/

software/oneie/
12https://www.nltk.org/
13https://github.com/thunlp/HMEAE
14https://stanfordnlp.github.io/

CoreNLP/
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Abstract

We present our submission to Subtask 1 of the
CASE-2022 Shared Task 3: Event Causality
Identification with Causal News Corpus as part
of the 5th Workshop on Challenges and Ap-
plications of Automated Extraction of Socio-
political Events from Text (CASE 2022) (Tan
et al., 2022a). The task focuses on causal event
classification on the sentence level and involves
differentiating between sentences that include a
cause-effect relation and sentences that do not.
We approached this as a binary text classifica-
tion task and experimented with multiple train-
ing sets augmented with additional linguistic
information. Our best model was generated by
training roberta-base on a combination of
data from both Subtasks 1 and 2 with the addi-
tion of named entity annotations. During the
development phase we achieved a macro F1 of
0.8641 with this model on the development set
provided by the task organizers. When testing
the model on the final test data, we achieved a
macro F1 of 0.8516.

1 Introduction

Causal event classification can be categorized as
a part of the Natural Language Processing (NLP)
task of event extraction. When extracting event
information from text, the general aim is to iden-
tify answers to the 5W1H questions (WHO, WHAT,
WHEN, WHERE, WHY, HOW; Karaman et al., 2017).
Some of the questions can be answered easily by
means of open source NLP tools–a Named En-
tity Tagger can facilitate the extraction of locations
(WHERE) and times or dates (WHEN), for example.
However, some event information remains more
difficult to identify reliably in texts, such as an-
swers to WHY questions, which is also the type of
question that causal event classification addresses.
This task presents an opportunity to develop mod-
els that detect information about the reason behind
a particular event. For this process, a binary clas-
sifier is used to determine whether a cause-effect

relation is present in the input sentence. In an NLP
pipeline, the output of such a classification process
is often used as input for a span detection system,
which identifies the particular cause and effect text
spans in each causal sentence.

As described by Tan et al. (2022b), causality can
be expressed either explicitly or implicitly. The
authors illustrate this by providing the following
examples:

(1) The treating doctors said Sangram lost around
5 kg due to the hunger strike.

(2) Dissatisfied with the package, workers staged
an all-night sit-in.

Example 1 displays explicit causality, made appar-
ent by the presence of the causal marker "due to".
The organizers of the current shared task also refer
to this marker as the signal. In contrast, the causal
relation between the sit-in and worker dissatisfac-
tion in Example 2 is implicit, as the sentence does
not contain a causal marker.

In their survey of causal relation extraction in nat-
ural language texts, Yang et al. (2022) emphasize
the potential of domain-specific pre-trained models
in combination with graph-based models. They
also stress the importance of leveraging linguistic
information in order to identify both implicit and
explicit causal relations. For this reason, the current
study focuses primarily on experiments regarding
the integration of linguistic information in the train-
ing data, to be used as input for the fine-tuning of
pre-trained transformer models.

The remainder of this paper is structured as fol-
lows: Section 2 introduces the shared task and
the dataset. In Section 3, we describe the training
process, model configuration details, and the lin-
guistic dataset alterations that we tested. Results
are presented in Section 4 and discussed in Section
5, followed by concluding remarks and a summary
of our findings in Section 6.
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2 Dataset and Task

The CASE-2022 Shared Task 3 on Event Causality
Identification is divided into two subtasks. The
data provided by the organizers stems from the
Causal News Corpus, a collection of 3,559 English
annotated event sentences from 869 news articles
about protests (Tan et al., 2022b). The goal of Sub-
task 1 is to determine whether an event sentence
contains a cause-effect relation. Subtask 2 is con-
cerned with identifying the spans that correspond
to cause, effect, or signal in each causal sentence.
We developed and submitted models for the first of
these two subtasks.

For the development phase, the task organiz-
ers provided a training dataset consisting of 2925
training instances. Sentences with the label 0
(n = 1322) did not contain a causal relation, while
sentences with the label 1 included a causal relation
and were in the majority (n = 1603). In addition,
an unlabeled development set of 323 sentences was
made available in order to allow for model testing
via the CodaLab submission portal.

Preliminary exploratory analysis of the data pro-
vided for the development phase revealed an aver-
age inter-annotator agreement of 88.27% for causal
sentences, while sentences labeled as containing
no causal relation had an average agreement of
77.89%. Between 1 and 3 annotators labeled each
sentence, coming to a consensus of 100% agree-
ment for 70.31% (n = 1127) of the causal sen-
tences but only 47.35% (n = 626) of the non-
causal sentences.

For the test phase, the previously unlabeled de-
velopment set was re-released with annotations so
that it could be used as additional training data. An
unlabeled test set of 311 previously unseen sen-
tences was made available for the final testing and
scoring process.

3 Methodology

We fine-tuned pre-trained language models (PLMs)
on the training data and adjusted the model hyper-
parameters accordingly. We then tested four differ-
ent methods of augmenting the training data with
linguistic information and compared their efficacy.

3.1 Model settings
We used the Flair framework (Akbik et al., 2019)
for model configuration and training. For the
development phase, the original data was shuf-
fled and divided into train, validate, and test

sets (80/10/10). Using the roberta-base and
bert-base-cased PLMs for comparison, we
applied document embeddings to each sentence
and fine-tuned the learning rate and batch size
hyperparameters (Devlin et al., 2018; Liu et al.,
2019). Weights were assigned to the different
classes during training to account for the unbal-
anced distribution in the data with the help of
the Scikit-learn class_weight parameter (Pe-
dregosa et al., 2011). As the negative class was
slightly underrepresented, it was assigned a propor-
tionally higher weight.

3.2 Data Manipulation

In addition to adjusting model settings, we exper-
imented with manipulating the model input and
adding pertinent linguistic information during the
development phase of the shared task. During the
final testing phase, we retrained and tested our best
model again using the additional data provided by
the organizers. Regardless of the training data used,
the test instances were always in the form of indi-
vidual sentences, with no additional information
added.

Baseline dataset In order to have a baseline for
comparison, we used an unchanged version of
the training data to fine-tune both the BERT and
RoBERTa PLMs. This data consisted of individ-
ual sentences and corresponding binary labels (cf.
Example 3).

(3) Some protesters attempted to fight back with
fire extinguishers. 0

Flair NER We used the standard 4-class Flair
NER model (pre-trained on the English CoNLL-
03 task) to identify named entities of type Person
(PER), Location (LOC), Organization (ORG), and
Miscellaneous (MISC) in the training data, creat-
ing new training sets that contained all possible
combinations of the four named entity classes. The
identified text spans were replaced with the appro-
priate named entity tag (cf. Example 4).

(4) On Monday, the African National Congress
condemned the shooting of Malunga, the Os-
habeni branch chairman, and Chiliza, the
branch secretary.

On Monday, the ORG condemned the shoot-
ing of PER, the LOC branch chairmain, and
PER, the branch secretary.
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AllenNLP The AllenNLP library was used to
annotate the original training data with the seman-
tic role labels ARG0 (proto-agent), ARG1 (proto-
patient) and ARGM-CAU (cause clause) (Shi and
Lin, 2019). The annotations were then added to the
sentences as illustrated in Example 5.

(5) [ARG0: Mainland authorities] have launched
[ARG1: a massive crackdown against terror-
ism] [ARGM-CAU: in wake of a string of
violent attacks in the restive Xinjiang region
and other cities on the mainland].

The starting point for the semantic role annotations
was always the root of the sentence (e.g. the word
"launched" in Example 5), which was determined
with the help of the spaCy English dependency
parser (Honnibal and Montani, 2017). The inclu-
sion of explicit annotations for cause clauses in the
training data seemed promising in the context of
the given task. However, the AllenNLP model was
only able to identify cause clauses in 1.6% of the
training instances. We suspect that the model fails
primarily at recognizing cause clauses in sentences
that contain cause-effect relations only implicitly.
Due to the small amount of annotations, we deter-
mined that this feature was not meaningful enough
to improve classifier performance.

Cause-Effect-Signal Spans A further training
dataset was created by adding information from
the data provided for Subtask 2, which was iden-
tical to the Subtask 1 data, with the addition of
Cause-Effect-Signal (CES) span annotations. All
sentences from the negative class in the Subtask 1
data were added to the new training set without any
annotations.

(6) <ARG1>They then decided to call off
the protest</ARG1> <SIG0>as</SIG0>
<ARG0>the police had ceded to their
demand</ARG0> .

Sentences from the positive class were replaced
with the corresponding annotated version from the
Subtask 2 data (cf. Example 6). If the Subtask
2 data listed more than one possible annotation
option for a sentence, the first option was selected.

NER & Cause-Effect-Signal Spans After creat-
ing the training set with Cause-Effect-Signal span
annotations, we also used the 4-class Flair NER
model to identify named entities and replaced the
named entity text spans with the corresponding la-
bel (PER, LOC, ORG, MISC) in all training instances.

(7) <ARG1>Police took into custody fifteen
activists</ARG1> <SIG0>for</SIG0>
<ARG0>blocking the traffic in
LOC</ARG0>.

Example 7 shows a training instance from the posi-
tive class containing both NER and Cause-Effect-
Signal annotations. We experimented by including
all possible combinations of named entity classes
during training.

4 Results

4.1 Development phase

Models trained using roberta-base outper-
formed those trained with bert-base-cased.
For this reason, we choose to focus on the models
trained with the former architecture in the follow-
ing pages. Regardless of the data used, the fol-
lowing hyperparameters worked best for all mod-
els: a batch size of 8, a learning rate of 3e-5, and
the ADAM optimizer. The maximum number of
epochs was set to 20, but training was terminated
early if it became obvious that the model was over-
fitting the data, which could be observed as early
as epoch 3.

Three of the four methods for adding linguis-
tic information to the model input positively af-
fected model performance: 1) Flair NER annota-
tions; 2) Cause-Effect-Signal spans from the Sub-
task 2 data; or 3) a combination of both NER and
Cause-Effect-Signal spans. When training models
with data containing Flair NER annotations, we
found that including only the PER and LOC classes
(RoBERTa+PER+LOC) resulted in the best per-
formance. When the training data contained both
Cause-Effect-Signal spans and Flair NER classes,
however, performance was better when only the
PER class was included (RoBERTa+PER+CES).

The best performing model on the devel-
opment set provided by the organizers was
RoBERTa+PER+LOC with a macro F1 of 0.8802
(cf. Table 1). However, performance was incon-
sistent. When we tested the model on our self-

Model configuration Precision Recall Macro F1
RoBERTa baseline 0.8256 0.9045 0.8633
RoBERTa+PER+LOC 0.8729 0.8876 0.8802*
RoBERTa+CES 0.8571 0.8427 0.8499
RoBERTa+PER+CES 0.8368 0.8933 0.8641

Table 1: Results of development phase scoring. Best
performing model is marked with *.
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Model configuration Precision Recall Macro F1
BERT baseline (Tan et al., 2022a) 0.7801 0.8466 0.8120
LSTM baseline (Tan et al., 2022a) 0.7268 0.8466 0.7822
RoBERTa baseline 0.8000 0.9091 0.8511
RoBERTa+PER+LOC 0.7914 0.8409 0.8154
RoBERTa+CES 0.8239 0.8239 0.8239
RoBERTa+PER+CES 0.8245 0.8807 0.8516*
RoBERTa+PER+CES+FullDataset 0.8343 0.8580 0.8459

Table 2: Results of final test phase scoring. Best performing model is marked with *.

compiled test set during the training phase, the
macro F1 score peaked at 0.8578, leading us to
question the robustness of the model.

The RoBERTa baseline and the
RoBERTa+PER+CES models performed sim-
ilarly (macro F1 scores of 0.8633 and 0.8641,
respectively) with regard to the development set
and exhibited more robustness, i.e. the variance
between development and self-compiled test set
was comparatively small. The RoBERTa+CES
model scored slightly lower than the other models
with a macro F1 of 0.8499.

4.2 Test phase
Table 2 shows our results from the final test-
ing phase of the shared task, as well as the
baselines provided by the organizers. Hyper-
parameter settings used for development were
kept constant for the final testing phase, as
were the training datasets, with the exception of
RoBERTa+PER+CES+FullDataset. This model
was trained using the additional labeled data pro-
vided by the organizers for the final testing phase.

Models trained during the development phase
consistently achieved lower macro F1 scores on
the final testing data. The best model from the
development phase (RoBERTa+PER+LOC) per-
formed poorly with a macro F1 of 0.8154, support-
ing the idea that the model was not robust. The
RoBERTa+PER+CES model achieved the high-
est macro F1 score of 0.8516, outperforming the
RoBERTa baseline model by only 0.0005. Surpris-
ingly, re-training this best model with the additional
training data provided by the organizers did not im-
prove model performance, resulting in a macro F1
score of only 0.8459.

5 Discussion

The discrepancies between the scores for the de-
velopment and final testing phases call for a closer

investigation of the model input and output. The
results from the development phase suggest that
model performance increases when training data
includes linguistic information in the form of 1)
named entity annotations for the PER and LOC

classes, or 2) as a combination of both PER named
entity annotations and Cause-Effect-Signal spans.
Adding only Cause-Effect-Signal spans, however,
appears to have had a negative impact on model
test scores.

The fact that the RoBERTa+PER+LOC model
outperformed the RoBERTa+PER+CES model also
suggests that named entity information may prove
more useful than Cause-Effect-Signal spans. It is
frequently the case that named entities of type PER,
i.e. proper nouns, have the semantic role of AGENT

or PATIENT in a sentence. Replacing these nouns,
along with location names, with named entity tags
distills this important information and reduces the
number of superfluous words in the data. We sug-
gest that this creates a clearer pattern for the model,
which in turn improves performance.

In the final test phase, however, only
RoBERTa+PER+CES outperformed our estab-
lished RoBERTa baseline by a small margin, while
RoBERTa+PER+LOC and RoBERTa+CES had the
lowest macro F1 scores. According to these results,
it seems that adding linguistic information to the
training data in the form of named entity annota-
tions or Cause-Effect-Signal spans only leads to
minute increases in model performance. It may be
that our RoBERTa baseline model is able to extract
this particular linguistic information on its own
without the need for additional feature engineering.
Further experimentation with linguistic features is
needed in this area.

With only 2925 sentences, the size of the original
amount of training data is also a potential factor that
affected model performance. More training data
would most likely increase model performance.
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A closer investigation of the data revealed that
some annotations also leave room for discussion,
such as the sentence in Example 8:

(8) The house of a PDP MP was torched in south
Kashmir. 1

The sentence is labeled as belonging to the positive
class, but we were unable to identify a cause-effect
relation. This shows that identifying causality can
pose difficulties for expert human annotators. Such
instances may negatively influence the detection of
causal patterns during training.

Interestingly, re-training our best model with the
additional training data in the final testing phase
did not improve performance. Furthermore, the
testing data used for evaluation in the development
phase appears to consist of sentences from only two
news articles. The data basis for development was
accordingly very homogeneous and most likely did
not provide an accurate representation of all pos-
sible articles that the model might need to classify
in a real-world application. Optimization based on
homogeneous data can lead to a preference for mod-
els that work well with that specific data but fail to
generalize to more diverse data. The difference in
model performance between the development and
test phases might be evidence of this phenomenon.

6 Conclusion

Training data—including the source, domain,
amount, and any added features—plays an impor-
tant role when it comes to model optimization for
NLP tasks, and the subfield of event causality is no
exception. Our findings show that the generalizabil-
ity of a model depends heavily on the quality and
content of the model input. In our case, adding lin-
guistic information to the training data only led to a
minute increase in model performance as compared
to our established RoBERTa baseline. It is possible
that a larger training dataset would improve results.
In addition, a larger, more diverse testing dataset
is necessary in order to adequately evaluate the ro-
bustness of the model and predict its effectiveness
for real-world applications. Future directions might
also include a greater focus on strategies for the
identification of implicit cause-effect relations.
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Abstract

Event and argument role detection are fre-
quently conceived as separate tasks. In this
work we conceive both processes as one task
in a hybrid event detection approach. Its main
component is based on automatic keyword ex-
traction (AKE) using the self-attention mech-
anism of a BERT transformer model. As a
bottleneck for AKE is defining the threshold
of the attention values, we propose a novel
method for automatic self-attention threshold
selection. It is fueled by core event informa-
tion, or simply the verb and its arguments as the
backbone of an event. These are outputted by a
knowledge-based syntactic parser. In a second
step the event core is enriched with other se-
mantically salient words provided by the trans-
former model. Furthermore, we propose an au-
tomatic self-attention layer and head selection
mechanism, by analyzing which self-attention
cells in the BERT transformer contribute most
to the hybrid event detection and which linguis-
tic tasks they represent. This approach was in-
tegrated in a pipeline event extraction approach
and outperforms three state of the art multi-task
event extraction methods.

1 Introduction

Event extraction, argument and semantic role de-
tection are frequently conceived as separate tasks
(Ji and Grishman, 2008; Gupta and Ji, 2009; Hong
et al., 2011; Chen et al., 2015; Nguyen and Grish-
man, 2015; Liu et al., 2016a,b) where a multi-word
event is first split into a verb as single-word event
to process, after which its argument roles (subject,
direct and indirect object(s)) and semantic roles
(such as time and location) are extracted. These are
typically trained in a multi-task setup for event ex-
traction, which combines event span detection and
classification. In this work, we tackle multi-word
event extraction and conceive event span detection
and argument extraction as one task in a hybrid
knowledge and transformer-based event detection

method. The verb, subject and object(s) (SVO)
are first outputted by a knowledge-based syntactic
parser and combined with automatic keyword ex-
traction (AKE). In this latter step, the most relevant
keywords in a sentence or most salient semantic
information is selected, exploiting the attention
mechanism of a transformer, i.e., BERT (Bidirec-
tional Encoder Representations from Transform-
ers) (Devlin et al., 2018). A bottleneck for AKE
is defining the threshold of the attention values to
take into account (Tang et al., 2019). Hence, we
propose and outline a method for automatic atten-
tion threshold selection by exploiting the interac-
tion between self-attention based AKE and rule-
based event detection. As the main function of the
rule-based component is to provide the necessary
information for the automatic attention threshold
mechanism, it targets only minimal event informa-
tion, i.e., the core or backbone of the event or the
verb and its SVO arguments. This allows the trans-
former’s main component to complement it with
other semantic roles and semantically salient infor-
mation. However, the latter type of information
is often essential to constitute the core meaning
of the event. For example, omitting the adverb

“conditionally" in the event “He was conditionally
released from detention." changes its semantics
and causes a misunderstanding of it. This kind of
semantically salient information can only be pro-
vided by the transformer model, and not by the
knowledge-based component in our hybrid model.

Our hybrid event detection mechanism is em-
bedded in a pipeline event extraction approach that
goes beyond short event spans: in a first step, event
classification is applied to raw input sentences,
whereas in a second step, the event span is detected.
For a fair evaluation, we compare this approach
with three event detection approaches as part of
a multi-task event extraction method that jointly
predicts event spans and classes. The main contri-
butions of this paper are the following:
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• To the best of our knowledge, this is the first
work on hybrid event detection that conceives
event span detection and argument extraction
as one task. On top of that, AKE is integrated
and combined with a novel automatic atten-
tion threshold selection mechanism.

• We also propose an automatic self-attention
layer and head selection mechanism by in-
vestigating which layers and heads of the
BERT transformer model contribute most to
event detection, and which linguistic tasks
they perform. Identifying such tasks in the
transformer model can contribute to the cre-
ation of more domain-specific and tailor-made
BERT models. Our methodology is language-
independent. All experiments have been con-
ducted on a Dutch corpus only, mainly be-
cause we did not find data in other languages
with similar event prominence annotations
(Section 3.1).

Our approach is positioned with respect to the
state of the art in Section 2 and is presented in
Sections 3 and 4. An overview of the data is
given in Section 5. Section 6 presents the results of
experiments, followed by a thorough analysis and
discussion. The paper is concluded in Section 8.

2 Related Work

Knowledge-based event detection methods were
initially based on ontologies (Frasincar et al., 2009;
Schouten et al., 2010; Arendarenko and Kakko-
nen, 2012) or rule-sets (Valenzuela-Escárcega et al.,
2015) which represent expert knowledge. These
also include extracting candidate event words with
part-of-speech tags (Mihalcea and Tarau, 2004),
which can also satisfy predefined syntactic patterns
(Nguyen and Phan, 2009). Statistical methods spot
event spans using n-grams (Witten et al., 2005;
Grineva et al., 2009), term frequency inverse doc-
ument frequency (TF-IDF), word frequency and
word co-occurrence (Kaur and Gupta, 2010).

Early supervised machine learning approaches
recast event detection as a binary classification
problem (Hasan and Ng, 2014) to decide whether
an input word is part of an event or not. To that
end, maximum entropy (Yih et al., 2006), sup-
port vector machines (SVM) (Lopez and Romary,
2010) and conditional random fields (CRF) (Zhang,
2008) were applied. As the event detection field ini-
tially concentrated on fixed event types using single-

word or event spans with a short length (Mitamura
et al., 2015), these supervised machine learning ap-
proaches have successfully used the ACE 2005 cor-
pus (Walker et al., 2006) comprising single-word
event span length annotations. With feature engi-
neering approaches emerging, the scope became
larger than a one-word event span (Patwardhan and
Riloff, 2009). In Lefever and Hoste (2016) multi-
word events in Dutch news text are detected using
an SVM binary classifier combining lexical, syn-
tactic and semantic features. These feature-based
machine learning techniques, however, have been
superseded by deep learning techniques which are
able to learn hidden feature representations auto-
matically from data. In Wang et al. (2017), a multi-
word event detection approach using convolutional
neural networks (CNN) outperforms an SVM ap-
proach. Spearheaded by their success in dealing
with long-term dependencies in longer sequences,
the LSTM (long short-term memory) and attention
mechanism allow the decoder to learn which parts
of the sequence should be attended to in an encoder-
decoder architecture (Bahdanau et al., 2014; Luong
et al., 2015), hence taking more context informa-
tion into account. Zhao et al. (2018) presents a
supervised attention-based RNN event detection
approach that outperforms an RNN and CNN, both
without attention mechanism.

Deep learning approaches that were in recent
years combined with Word2Vec (Mikolov et al.,
2013), GLoVe (Pennington et al., 2014) and fast-
Text (Bojanowski et al., 2017) word embeddings
have led to the rise of the transformer architec-
ture (Vaswani et al., 2017). Its contextual language
models have been successfully integrated in a range
of NLP tasks using pre-trained contextual BERT
(Bidirectional Encoder Representations from Trans-
formers) word embeddings (Devlin et al., 2018).
On top of that, the BERT model fully exploits the at-
tention mechanism for multi-word event detection,
which is illustrated in Mehta et al. (2020), where a
multi-attention event detection tool, using BERT,
fine-tuned on the Civil Unrest Gold Standard Re-
port data (Ramakrishnan et al., 2014), outperforms
a CNN. The hybrid target event detection method
that is proposed here also fully benefits from the
BERT multi-head self-attention, but is combined
with subject, verb and object (SVO) information, as
outputted by a knowledge-based syntactic parser.

22



Figure 1: Example of EventDNA corpus event spans and Main, Background, None event prominence labels

3 Pipeline Event Extraction Approach

An event can be defined as the smallest extent of
text that expresses its occurrence (Song et al., 2015)
and is identified by a word or phrase called event
trigger, nugget, event span or mention. Event men-
tions can be single-word event triggers that are usu-
ally (main) verbs, nouns, adjectives and adverbs.
Multi-word event triggers can be consecutive to-
kens, complete sentences, or discontinuous when
on top of the verb, its participants, or argument
roles are also involved (Doddington et al., 2004).
Our hybrid event detection approach targets multi-
word continuous event spans. It goes beyond the
scope of approaches tackling single-word events
that are frequently using the ACE 2005 corpus
(Section 2). Hence our models are trained on the
(Dutch) EventDNA corpus, annotated with multi-
word event spans and class labels (Section 5).

3.1 Event Prominence Classification
Our hybrid model is part of a pipeline event extrac-
tion model which comprises an event classifier and
detection module. Event prominence classification
was chosen, other than the typically used event type
classification (Desot et al., 2021) that frequently
fails to handle the variety of events expressed in
real-world situations. To overcome this, we classify
new information into prominence classes. Hence,
the input sentence can be classified as Main event
when it exhibits new information and, for exam-
ple in a news context actually caused the reporter
to write the article; or as Background event
when it gives context or background to the Main
event. Raw sentences without events are classi-
fied as None events. Figure 1 presents an example
of an event span labeled as Background event,
preceded by a Main and None event.

For event classification a transformer-based
BERT model for the Dutch language, BERTje
(de Vries et al., 2019) has been pre-trained on
a dataset of 2.4 billion tokens from Wikipedia,
Twente News Corpus (Ordelman et al., 2007) and
SoNaR-500 (Oostdijk et al., 2013) with masked
language modeling and next sentence prediction.
BERTje has an architecture of 12 transformer

blocks (bidirectional layers) and 12 self-attention
heads and a hidden size of 768. This Dutch lan-
guage model has been fine-tuned for sequence
(event) classification on the raw sentences of the
EventDNA data set (Section 5). Only output sen-
tences with predicted Main prominence class or
Background class are accepted as input for hy-
brid knowledge- and transformer-based event detec-
tion, whereas sentences predicted as None events
are not further processed.

3.2 Knowledge and Transformer-Based Event
Detection with Automatic Attention
Threshold Selection

The main function of the rule-based part of our
hybrid event detection approach is to provide the
necessary information to the automatic attention
threshold selection mechanism. Hence, the back-
bone of the event, i.e., the subject (SUBJ), (head)
verb (VERB) and object (OBJ) information is out-
putted by a knowledge-based syntactic parser for
the Dutch language, namely Alpino. This parser
combines a rule-based head-driven phrase structure
grammar (HPSG) with a lexicon of 100,000 entries
and a part-of-speech (POS) tagger. On top of that,
dependency parse trees are generated, which are
disambiguated with a maximum entropy compo-
nent (Van der Beek et al., 2002; Van Noord et al.,
2006; Smessaert and Augustinus, 2010). For this
parser, an F1 score of 91.14% has been reported
on 1,400 manually annotated sentences from the
Twente News corpus (Ordelman et al., 2007). Start-
ing from these predicted tags a set of rules is then
used to align them with the corresponding words.

In a next step, the syntactic output is the cor-
nerstone of our automatic attention threshold se-
lection mechanism. To this purpose, automatic
keyword extraction (AKE) exploiting the attention
mechanism of BERTje (Section 3.1) is used. Key-
words are defined as the most relevant words in
an event span (Sarracén and Rosso, 2021), and are
extracted through attention weights obtained over
the 12 x 12 transformer self-attention layers and
heads from the BERTje model. In the study of
Tang et al. (2019) only 10% of the words with the

23



highest attention weights were kept as keywords.
Initially, and in a similar vein, given a sequence
of attention weights in Att = (Att1, ..., Attn), in
ascending weight value order, we identified the
words above a certain threshold. We iteratively
explored a range of threshold values between 0.1
and 0.9 per step of 0.1 to find an optimal thresh-
old (0.25). This was only a preparatory step in
order to estimate the feasibility of our approach, as
such a fixed threshold percentage is arbitrary and
not optimal over sentences with different lengths
and data sets. Hence, we defined an automatic
and variable threshold (Attthresh) as the minimum
value for the attention values to be selected. To this
purpose the percentage (p) of subject, verb, object
words (#SV O_words), as output from the previ-
ous step, in relation to the total number of words
per sentence (#Sentence_words) was calculated
as p = #SV O_words∗100

#Sentence_words . The threshold is the low-
est attention weight in the range of the p percent of
the top-ranked attention values per sentence, which
we calculate using the percentile, Attthresh =
percentile(Att, (100 − p)). Finally, the result-
ing top-ranked attention values Att exceeding the
threshold Attthresh are selected (Attsel), where
Attsel = (Attthresh, ..., Attn). The subtokens of
the words corresponding to these values are kept as
keywords, discarding the special separator [SEP]
and classification tokens [CLS]. The subtokens
are then again concatenated into words. With the
BERTje model, not all subtokens of a word have
equal attention weights. In that case, we extracted
the whole word as keyword if one of its subtokens
passes the threshold. The resulting attention-based
keywords are merged with the (SVO) combinations
of the event detection module. Finally, the origi-
nal word order is restored by aligning the merged
words with the original input sentence. Figure 2
depicts the complete event detection process for
the Dutch input sentence “(The company) XYZ
moet extra personeelsleden vinden wegens uitval
van werknemers."1

We want to emphasize that other argument roles,
such as time and place on top of the SVO words,
were not considered and are not outputted by the
knowledge-based parser. In our initial experiments,
these resulted in a too high percentage of selected
words and too low threshold values, which led to an
overgeneration of predicted event words. However,

1English translation:“(The company) XYZ has to find extra
staff due to employee absence."

part of these semantic roles do occur in the seman-
tically salient words predicted by the transformer
model (Section 7).

3.3 Automatic Self-Attention Layer and Head
Selection

Certain self-attention layers and heads of the trans-
former model exhibit linguistic notions, such as
syntax and coreference (Vig, 2019; Vig and Be-
linkov, 2019; Clark et al., 2019). According to sev-
eral studies (Goldberg, 2019; Hewitt and Manning,
2019; Jawahar et al., 2019; Vig and Belinkov, 2019)
on the BERT transformer, attention follows syntac-
tic dependency and subject-verb-object agreement
most strongly in the middle layers of the BERT
model. In order to automatically select the self-
attention layer and head that contribute most to
event detection performances, we exploit the in-
teraction between the transformer and knowledge-
based syntactic parser again and verify the number
of SVO words predicted by the transformer model.
We first apply our automatic threshold selection
technique per self-attention transformer cell by cal-
culating the attention values per isolated head per
layer (Vig and Belinkov, 2019), for each of the 12
x 12 transformer cells (144 times) on the test data
(Section 5). In a next step, per transformer matrix
cell we calculate the percentage of overlap between
selected event tokens with an attention value above
the automatically selected threshold and between
the knowledge-based predicted SVO words. We
finally consider the self-attention layer and cell that
output most SVO words, as exhibiting the linguis-
tic notion of syntactic dependency. We verify if it
improves event detection performance and analyse
the behaviour of this layer in Section 7.

4 Baseline Multi-Task Event Extraction
Approaches

We compare the target pipeline event extraction
model (Section 3) with three baseline multi-task
event extraction models. To the best of our knowl-
edge, we are not aware of other baseline approaches
applied to languages with a similar event promi-
nence annotation scheme (Section 3.1). In the
multi-task approach, event detection and classifi-
cation tasks are performed simultaneously to ben-
efit from their interplay (Li et al., 2013; Liu et al.,
2017). The first model is an attention-based RNN
model with LSTM from Liu and Lane (2016),
with an encoder-decoder architecture. Its atten-
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Figure 2: Overview of pipeline event extraction

Event span IOB labels: Event class:
B-EV I-EV I-EV I-EV I-EV O O O O Main

Raw input sentence
XYZ moet extra personeelsleden vinden wegens uitval van werknemers.

Table 1: Input raw sentence with event detection IOB labels and class

tion context vector provides information from parts
of the input sequence that the classifier pays at-
tention to. The second model is fine-tuned for
combined event detection and classification on the
same pre-trained BERTje model as our target ap-
proach (Section 3.1). For combining both tasks,
given the input token sequence x = (x1, ..., xT ),
the output hidden states of the BERTje model are
H = (h1, ..., hT ). For event detection the final
hidden states of (h2, ..., hT ) are fed into a softmax
layer to classify over the detected event subtokens s.
Based on the hidden state of the (first) special clas-
sification [CLS] token, denoted as h1, the event
y with weighted representations of query, key and
value vectors W is predicted as,

ysn = softmax(W shn + bs), n ∈ 1 . . . N (1)

and the detected event sequence as ys =
(ys1, ..., y

s
T ) which are then jointly modeled as,

p(yi, ys|x)) = p(yi|x)
N∏

n=1

p(ysn|x) (2)

which maximizes the probability p(yi, ys|x)).
We finally added a CRF on top of the multi-task

BERTje-based approach, resulting in our third base-
line model where the joint BERT+CRF replaces
the softmax classifier with CRF (Chen et al., 2019).
The target event sequence is labeled in IOB format.
Tokens at the begin of an event mention are labelled
as B-EV, tokens inside the mention as I-EV, and
tokens outside the mention as O. Table 1 includes
the same example sentence as in Figure 2.

5 Data

Both event extraction approaches (Sections 3 and
4) were trained and tested using the event span and

Events # Item #
Main 4175 Vocab. 13050
Backgr. 3100 Tokens 88530
None 1792 Sentences 6813
Total 9069 Documents 1740

Table 2: Overview of EventDNA corpus statistics

label annotations in the titles and lead paragraphs
of the EventDNA corpus. This corpus comprises
news articles and follows the ERE (Entities, Re-
lations, Events) annotation standards (Song et al.,
2015; Aguilar et al., 2014). For more detailed in-
formation about the corpus we refer the reader to
Desot et al. (2021) which outlines event classifi-
cation experiments, for validating the quality of
the corpus and to Colruyt et al. (2019, accepted
for publication) for the corpus design and anno-
tations. A high number (32%) of event types in
the EventDNA corpus do not correspond to the
event types specified in the ERE-based EventDNA
annotation protocol. Hence, event prominence clas-
sification was chosen, other than the typically used
event type classification (Desot et al., 2021), as
explained in Section 3.1 and Figure 1.

The EventDNA data set comprises raw sentences
with more than one event span. As a first step, only
unique sentences with one event span were kept
for our experiments. Table 2 exhibits information
about the data set used for our experiments (Section
6), with an overview of the event prominence class
distributions (first column). In order to train our
models, the (6813) sentences of the data set were
split into 80% train, 10% development (Dev.) and
10% held-out test partitions.
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6 Experiments and Results

6.1 Baseline Multi-Task Event Extraction
The raw sentences in the training data set were used
to train the baseline multi-task models and was au-
tomatically converted into IOB format (Section 4).
The attention-based RNN model was trained for
10 epochs with a batch size of 10, using Adam op-
timizer, and with the number of LSTM cell units
set as 128. Word embeddings of size 128 were ran-
domly initialized. For fine-tuning the BERT-based
models, optimal performances were obtained us-
ing the AdamW optimizer (Loshchilov and Hutter,
2017) with a learning rate of 1e-5 and a batch size
of 10 instances during 10 epochs. The maximum
sequence length is set to 82 tokens, which is the
maximum sequence token length of the training
data sentences. The special [CLS] (classification)
token and [SEP] (separator) tokens were inserted.

Table 3 shows that the attention-based RNN
model (Att-RNN.) is outperformed by the BERT-
based models. The combined BERTje and CRF
multi-task model (BERTje+CRF) outperforms the
BERTje model without CRF (BERTje) for both
event detection and classification. We compared
event detection with (Table 3, +class.) and without
(-class.) interaction with classification. Multi-task
event detection benefits from the interaction be-
tween event classification and detection and outper-
forms event detection without the impact of event
classification.

6.2 Target Pipeline Event Extraction
The target pipeline event extraction approach is
composed of a BERTje-based classifier and a hy-
brid knowledge- and transformer attention-based
event detection approach. Raw sentences that are
classified as Main and Background events are
fed to the hybrid event detection tool in order to
identify the event span in the raw sentence. Similar
parameters as used for the BERTje-based multi-
task baseline models (Section 6.1) have been ap-
plied, except for a lower number (3) of epochs in
order to obtain optimal performances. Event promi-
nence classification performance on the test set is
exhibited in Table 4, Event class, which outper-
forms classification of the baseline multi-task mod-
els (Table 3). As a next step, the sentences classi-
fied as Main or Background event, are fed to the
hybrid event detection module that combines rule-
based extraction of SVO words with self-attention
based extraction of keywords. Performances in

Table 4 are compared for:

• a fixed self-attention threshold (Section 3.2),
Fix. thresh. of 0.25

• automatic self-attention threshold selection
(Section 3.2), Aut. thresh.

• combined self-attention threshold, layer and
head selection (Section 3.3), Aut. thresh. +
layer.

These performances were calculated for raw sen-
tence words, predicted as inside, outside, or in ini-
tial position of the gold standard annotated event
spans of our data set. The model with a fixed thresh-
old (Fix. thresh.) outperforms the second atten-
tion model with an automatically selected thresh-
old (Aut. thresh.), although performances for the
latter model are methodologically more fair. Per-
formances on the gold standard event classes (Fix.
thresh. Gold.) are slightly better compared to de-
tection of events for the predicted event classes
(Fix. thresh. Pred.). Best results however are
shown for automatic threshold combined with self-
attention layer and head selection (Aut. thresh. +
layer) (layer 7, head 1). Event detection was also
performed using attention-based keywords without
knowledge-based predicted words (Att.) and vice
versa (SVO). These results demonstrate that event
detection performance increases, if knowledge- and
attention-based event detection are combined.

7 Results Analysis and Discussion

In spite of the interaction between event classi-
fication and event detection, the multi-task base-
line models could not outperform the classifier of
the target pipeline model. On top of that, the pre-
trained BERTje models of the BERT-based multi-
task baseline models outperform the attention-
based RNN multi-task model without BERT. This
shows that a pre-trained BERT transformer model
improves performances, when fine-tuning on a
small data set. For event detection with auto-
matic self-attention threshold selection, the target
pipeline event extraction model did not outperform
the BERT-based baseline models. However, com-
bined with automatic self-attention layer and head
selection, layer 7 and head 1 show the best event
detection performances.

Hence, we analysed the latter result by correlat-
ing the order of transformer block layers and heads
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Event extraction Event classification Event detection Class
Prec. Rec. F1 Prec. Rec. F1 +/-

Baseline multi-task models:
Att.-RNN 0.52 0.54 0.52 0.60 0.61 0.60 +class

- - - 0.58 0.59 0.58 -class
BERTje 0.60 0.61 0.60 0.66 0.65 0.65 +class

- - - 0.65 0.64 0.64 -class
BERTje+CRF 0.61 0.62 0.61 0.66 0.67 0.66 +clas s

- - - 0.65 0.65 0.65 -class

Table 3: Overview of baseline multi-task event extraction performances

Event extraction Prec. Rec. F1
Event class. 0.69 0.68 0.68
Event det.

Fix. thresh. Gold. 0.83 0.57 0.65
Pred. 0.79 0.58 0.64

Aut. thresh. 0.75 0.57 0.63
SVO 0.70 0.51 0.57
Att. 0.71 0.54 0.60

Aut. thresh. + layer 0.88 0.62 0.71

Table 4: Pipeline model event extraction performances

Correlation Pearson Spearman
Layer order -0.30∗ -0.36∗

Head order -0.13∗∗ -0.12∗∗
∗p < 0.05 ; ∗∗p > 0.05

Table 5: Layer/head order - event detection correlation

with event detection F1 scores. In a next step, at-
tention attributions of the transformer model are
visualised. Finally we check the impact on atten-
tion attribution stability by changing the word order
of the input sentences.

7.1 Correlation between Transformer Layers,
Heads and Event Detection Performances

Pearson’s correlation coefficient was calculated,
measuring the association strength between two
variables and Spearman’s rank correlation that
measures correlations between two ranked vari-
ables. We use the p-value to determine if the
resulting correlation coefficient is significant and
whether or not to reject a null hypothesis. We reject
the null hypothesis if the p-value is less than 0.05
(p < 0.05). Table 5 demonstrates weak, but signifi-
cant (p < 0.05) negative Pearson and Spearman’s
rank correlations, -0.3 and -0.36 respectively, be-
tween event detection F1 scores and layer depth,
unlike correlations between F1 scores and atten-

Figure 3: Transformer self-attention layer depth and
hybrid target model event detection F1 scores

Figure 4: Hybrid event detection F1 score - overlap
self-attention and knowledge-based model output SVO
tokens per self-attention layer

tion heads, which are not significant (p > 0.05).
Figure 3 presents F1 scores (F1) averaged over the
(12) heads per layer and shows a downward trend
for F1 scores: maximum F1 score is obtained for
middle layer 7 (0.71), whereas the minimum F1
scores are shown for the deepest layers 10 and 11.
A similar trend is shown in Figure 4. It presents
the percentages in overlap between the knowledge-
based predicted SVO words and event tokens with
an attention value above the automatically selected
threshold (averaged over the 12 attention heads
per layer), which we calculated for automatic self-
attention layer and head selection (Section 3.3).
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Figure 5: Self-attention values for SVO dependencies, layer 7 and head 1, without and with changed word order

The highest overlap is shown for layer 7, resulting
in the best event detection F1 scores (normalized to
percentage). This indicates that layer 7 can be iden-
tified most with the notion of SVO dependencies.
Furthermore, correlations in Table 5 show that lay-
ers are associated more with linguistic reasoning
tasks than heads. This supports the hypothesis in
the study of Hoover et al. (2019) that dependencies
are probably encoded by a combination of heads
rather than by a single head.

7.2 Attention Attribution and Stability

As attention follows SVO agreement most strongly
in layer 7, head 1 of the BERTje model we visu-
alise these attentions for the test set. For 100 ran-
domly selected test sentences, with SVO attention
values above the automatically selected threshold,
we changed the word order (without changing the
meaning). For the resulting sentences we found
that for 61%, the same dependencies and words
with most attention are preserved. This indicates
a consistent behaviour of the BERTje model w.r.t.
attention attributions. For the Dutch sentence “And
so she won the elections for the first time."2, the
circles in the left attention heatmap matrix (Figure
5) mark intersections in cells with a high attention
value that show a dependency between the verb
(“won") and object (“de verkiezingen"), and be-
tween the subject (“ze") and the verb (“won")
with their corresponding words on the X and Y
axis. Among the keywords with a weight > the
threshold, the keyword with most attention (0.91)

2Original Dutch sentence:“Daarmee won ze voor het eerst
de verkiezingen."

is “eerst"3 in the collocation “voor het eerst" 4,
a semantically very salient word in this context.

“voor het eerst", was moved to the end of the event
(Figure 5, right heatmap), and has still the highest
attention value (0.89), with the same SVO depen-
dencies.

8 Conclusion and Future Work

This study outlines a pipeline hybrid knowledge-
and transformer self-attention based event detec-
tion approach. It outperforms three state of the art
multi-task baseline event extraction models. For
keyword-based event detection, we solved the bot-
tleneck of defining the threshold of the attention val-
ues to take into account. Automatic self-attention
threshold, layer and head selection was applied, ex-
ploiting the interaction between a rule-based SVO
(subject-verb-object) extraction and self-attention
based automatic keyword extraction (AKE). Anal-
ysis of the BERTje transformer model shows that
syntactic dependencies are most active in the mid-
dle layers and contribute most to event detection.
We also found evidence for consistency of attention
attributions of the transformer model. As a next
step, the behaviour and stability of the surround-
ing layers, should be further investigated. Other
data sets in Dutch or other languages can be used,
comprising more than one event span per sentence.
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Abstract
The success of sites such as ACLED and Our
World in Data have demonstrated the massive
utility of extracting events in structured formats
from large volumes of textual data in the form
of news, social media, blogs and discussion
forums. Event extraction can provide a win-
dow into ongoing geopolitical crises and yield
actionable intelligence.

In this work, we cast socio-political conflict
event extraction as a machine reading compre-
hension (MRC) task. In this approach, extrac-
tion of socio-political actors and targets from
a sentence is framed as an extractive question-
answering problem conditioned on an event
type. There are several advantages of using
MRC for this task including the ability to lever-
age large pretrained multilingual language mod-
els and their ability to perform zero-shot extrac-
tion.

Moreover, we find that the problem of long-
range dependencies, i.e., large lexical distance
between trigger and argument words and the
difficulty of processing syntactically complex
sentences plague MRC-based approaches. To
address this, we present a general approach
to improve the performance of MRC-based
event extraction by performing unsupervised
sentence simplification guided by the MRC
model itself. We evaluate our approach on the
ICEWS geopolitical event extraction dataset,
with specific attention to ‘Actor’ and ‘Target’
argument roles. We show how such context
simplification can improve the performance of
MRC-based event extraction by more than 5%
for actor extraction and more than 10% for tar-
get extraction.

1 Introduction

With the proliferation of social media, microblogs
and online news, we are able to gain a real-time un-
derstanding of events happening around the world.

∗Work was done when the author was a student at Virginia
Tech

By ingesting large unstructured datasets and con-
verting them into structured formats such as (actor,
event, target) tuples we can make rapid progress in
systems for event forecasting (Ramakrishnan et al.,
2014), real-time event coding (Saraf and Ramakr-
ishnan, 2016) or other applications that can grant
organizations a strategic advantage. Historically,
this has been enabled by efforts such as ICEWS1

& GDELT2. These systems rely on event extrac-
tion technology to populate their knowledge bases.
Fig. 1 gives an example of an event ‘Bring law-
suit against’ from the ICEWS dataset. Extraction
involves identifying entities (businessman, employ-
ees) corresponding to argument roles ‘Actor’ and
‘Target’. The event is triggered by the predicate
‘sued’ in the figure. Traditional event extraction
technology relies on pattern-based approaches that

A businessman detained for his links to disgraced army 
general Xu Caihou has been sued by his former employees.

TARGET

ACTORPREDICATE

Figure 1: An example of an event of the type ‘Bring
lawsuit against’ from the ICEWS dataset.
use handcrafted patterns designed to extract enti-
ties and events (Boschee et al., 2013). Even though
pattern-based methods have high precision, they
fail to work on unseen event types and with new
event categories. Hence, there is a need to explore
extraction methods that can extend beyond fixed
domains and dictionaries. Modern approaches for
event extraction (Chen et al., 2015; Nguyen et al.,
2016; Wadden et al., 2019) rely on fine-grained an-
notations and suffer from data scarcity issues and
error propagation due to pipeline systems.

With the success of large scale pretrained language
models on machine reading comprehension (MRC)
tasks (Devlin et al., 2019a; Liu et al., 2019; Huang

1https://dataverse.harvard.edu/dataverse/icews
2https://www.gdeltproject.org/
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et al., 2018), a new paradigm for event extraction
based on MRC has surfaced (Du and Cardie, 2020;
Liu et al., 2020). In this approach, event argument
extraction is posed as a span extraction problem
from a context conditioned on a question for each
argument. This approach is promising because it
mitigates some of the issues faced by traditional
approaches, such as relying on upstream systems to
extract entities/triggers and hence sidestepping the
error propagation problem in pipeline systems. It
also gives rise to the possibility of zero-shot event
extraction and hence the ability to extend to new
domains which is traditionally hard due to difficul-
ties in collecting high-quality labeled training data.
However, MRC models struggle with long-range
dependencies and syntactic complexities. For in-
stance, Liu et al. (2020) observe that one typical
error from their MRC-based extraction system is
related to long-range dependency between an ar-
gument and a trigger, accounting for 23.4% errors
on the ACE-2005 event dataset (Doddington et al.,
2004) (here “long-range” denotes that the distance
between a trigger and an argument is greater than or
equal to 10 words). Du and Cardie (2020) observe
that one of the failure modes of their extraction sys-
tem is sentences with complex sentence structures
containing multiple clauses, each with trigger and
arguments. These observations make a promising
case for complexity reduction or context simplifi-
cation for MRC systems.

In this work, we pose the task of conflict event ex-
traction as a reading comprehension task by gener-
ating QA-pairs per argument to be extracted. Then
to mitigate the long-range dependency problem and
to reduce the syntactic complexity we propose an
unsupervised context simplification approach that
is guided by a scoring function that incorporates
syntactic fluency, simplicity and the confidence of
an MRC model(§ 2) Our key contributions are:

1. Framing conflict event extraction as a ma-
chine reading comprehension task and explo-
ration of context simplification to help miti-
gate the long-range dependency problem for
MRC based event extraction (§ 2).

2. We empirically show that context simplifica-
tion improves performance of MRC systems
on zero-shot and in-domain training settings.

2 Methodology

Given that an event has been detected in a sentence,
we focus on the problem of identifying the argu-
ments of the detected event. For instance, in Fig. 1
the task is to identify the arguments ‘Actor’ and
‘Target’ of the event ‘Bring lawsuit Against’. Corre-
sponding to each event type, we first generate QA
pairs corresponding to actor and target arguments.
The QA generation procedure for the dataset used
in this paper for evaluation is outlined in 4. Table 1
shows the generated QA-pair for the arguments
Actor and Target for the event shown in Fig. 1.

Reading comprehension models can be brittle to
subtle changes in context. They can be thrown-
off by syntactic complexity, especially when the
questions are not specific and do not include words
overlapping with the context. Moreover, long range
dependencies between the trigger/predicate and the
argument are a leading source of error for MRC
models applied to event extraction as described in
section 1. For this purpose, we propose an MRC-
guided Unsupervised Sentence Simplification algo-
rithm (RUSS), that iteratively performs deletions
and extractions from the context in search for a
higher-scoring candidate. The score function incor-
porates components that ensure sentence fluency,
information preservation and the confidence of the
target MRC model. Fig. 2 gives an overview of the
proposed approach.

Table 1: An example of a generated QA record for
an event "Bring Lawsuit Against" from the ICEWS
dataset shown in Fig. 1. The spans highlighted in red
correspond to "Actor" and "Target" arguments of the
event.

Sentence A businessman detained for his links to
disgraced army general Xu Caihou has
been sued by his former employees.

Q-Actor Who sued someone?
Q-Target Who was sued by someone?

2.1 Sentence Simplification Algorithm

Given an input sentence s and a list of questions
{q1, ..., qn} corresponding to different arguments,
our algorithm iteratively performs two operations
on the sentence – deletion and extraction, in search
for a higher-scoring sentence and outputs a candi-
date simplification c. For generating candidates,
the algorithm first obtains the constituency parse
tree of the context using a span-based constituency
parser (Joshi et al., 2018). It then sequentially per-
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    Input Sentence:

Baghdad security source said unknown
gunmen assassinated an employee
working in the secretariat of Baghdad
near her home in ur district northeast of
Baghdad

Simplification
Algorithm

Baghdad security source said unknown
gunmen assassinated an employee
working in the secretariat of Baghdad
near her home in ur district northeast of
Baghdad 

Q-Actor: Who assassinated someone? 
Q-Target: Who was assassinated by
someone?

MRC 
system

Invoke Question
Templates

MRC
Feedback

Syntactic LM

LM
Feedback

Event

    Edited Sentence:

unknown gunmen assassinated an
employee working in the secretariat  

Actor: gunmen 
Target: employee

Figure 2: The RUSS sentence simplification approach.

forms two operations on the parse tree – deletion
and extraction.

Deletion In this operation, the algorithm sequen-
tially drops subtrees from the parse tree correspond-
ing to different phrases. Note that the subtrees with
the NP (Noun-Phrase) label are omitted because it
is expected that many entities that form event argu-
ments will be noun phrases and deleting them from
the sentence would result in significant information
loss.

Extraction This operation simply extracts a
phrase, specifically corresponding to the the S and
SBAR labels as the candidate sentence. This al-
lows us to select different clauses in a sentence and
remove remaining peripheral information.

These operations generate multiple candidates.
Candidates with fewer than a threshold of t words
are filtered out. We heuristically determine t = 5.
From the remaining candidates, a highest-scoring
candidate is chosen based on the score function
described in the next section(§ 2.2). The algorithm
terminates if the maximum score assigned to a can-
didate in the current iteration does not exceed the
previous maximum score. The simplification al-
gorithm RUSS is outlined as Algorithm 1 and the
candidate generation algorithm is outlined as Algo-
rithm 2 in Appendix.

2.2 Scoring Function

We score a candidate as a product of different
scores corresponding to fluency, simplicity and its
amenability to the downstream MRC model.

LM Score (νlm) This score is designed to mea-
sure the language fluency and structural simplic-
ity of a candidate sentence. Instead of using
LM-perplexity we use the syntactic log-odds ra-
tio (SLOR) (Pauls and Klein, 2012; Carroll et al.,
1999) score to measure the fluency. SLOR was also
shown to be effective in simplification to enhance
text readability (Kann et al., 2018; Kumar et al.,
2020). Given a trained language model (LM) and a
sentence s, SLOR is defined as

SLOR(s) =
1

|s| (ln(PLM (s))− ln(PU (s)) (1)

where PLM is the sentence probability given by
the language model, PU (s) =

∏
w∈s P (w) is the

product of the unigram probability of a word w in
the sentence, and |s| is the sentence length. SLOR
essentially penalizes a plain LM’s probability by
unigram likelihood and the length. It ensures that
the fluency score of a sentence is not penalized by
the presence of rare words. A probabilistic lan-
guage model (LM) is often used as an estimate of
sentence fluency. In our work, instead of using a
plain LM we use a syntax-aware LM, i.e., in ad-
dition to words, we use part-of-speech (POS) and
dependency tags as inputs to the LM (Zhao et al.,
2018). For a word wi , the input to the syntax-
aware LM is [e(wi); p(wi); d(wi)], where e(wi) is
the word embedding, p(wi) is the POS tag embed-
ding, and d(wi) is the dependency tag embedding.
Note that our LM is trained on the original train cor-
pus. Thus, the syntax-aware LM helps to identify
candidates that are structurally ungrammatical.
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Entity Score (νentity) Entities help identify the
key information of a sentence and therefore are also
useful in measuring meaning preservation. The de-
sired argument roles are also entities. Thus, if any
entity detected in the original sentence is omitted
from a candidate the entity score for that candidate
is 0, else it is set to 1.

Predicate Score (νpred) This score preserves the
event predicates in a candidate. It checks if a candi-
date contains any predicate of interest correspond-
ing to the event detected (Table 5). If it does not
then νpred is set to 0, else it is set to 1.

MRC Score (νrc) Transformer-based MRC mod-
els can be brittle to subtle changes in context. To
make the context robust to the MRC model this
score allows us to control the complexity of con-
text with respect to the confidence of the MRC
model. It is computed separately for each role.
Each argument of an event is a span in the context.
νrcri

rolei

is the score of the best span in the context

for the argument role i, where the score of a candi-
date span is defined as STx +ETy where S ∈ RH

is a start vector and E ∈ RH is an end vector as
defined in Devlin et al. (2019b). Tx and Ty are the
final layer representations from the BERT model
of the xth and yth tokens in the context. Note that
for a valid span, y > x. This score is computed
separately for each argument role (Actor and Tar-
get in Example 1). The importance of the ith role
can be controlled by the exponent ri. The total
contribution of each role is computed as the prod-
uct of score corresponding to each role, given by∏

νrircrolei
. The final score of a candidate c is com-

puted as follows:

ν(c) = νlm(c)a ∗νb
entity(c)∗νc

pred(c)∗
∏

νri
rcrolei

(c) (2)

Note that b, c can be either 1 or 0 since νentity and
νpred are binary. In later sections, we evaluate how
the simplification can be controlled by varying the
constants ri’s.

3 Datasets and Metrics

We evaluate RUSS on the ICEWS event
dataset3 (Halkia et al., 2020) from years 2013 to
2016. In this dataset, event data consists of coded
interactions between socio-political actors (i.e., co-
operative or hostile actions between individuals,

3https://dataverse.harvard.edu/
dataverse/icews

groups, sectors and nation states) mapped to the
CAMEO 4 ontology. We preprocess the ICEWS
data to extract event triples consisting of a source
actor, an event type (according to the CAMEO tax-
onomy of events), and a target actor. An ICEWS
record contains an Event Sentence, Source and
Target Names (Actor and Target) and Event Text
amongst other metadata. However these Source
and Target names are normalized, i.e. the ex-
act Source and Target spans might not occur in
Event Sentence. For e.g. a source name in an
ICEWS record is “North Atlantic Treaty Organi-
zation” however, the event sentence contains its
abbreviation “NATO”. To retrieve the exact source
and target names corresponding to spans that occur
in the event sentence we perform denormalization
by using the ICEWS actors and agents dictionaries5

that contain aliases of different source and target
entities. For the "NATO" example above, the actor
dictionary contains the following aliases “North At-
lantic Treaty Organization, NATO, North Atlantic
Treaty Organisation". We resolve the source name
to the alias that occurs within the sentence, which in
this example is “NATO”. We also remove country
name from paranthesis of source and target names:
Citizen(Iraq)→ Citizen because of the format
in which they occur in the dictionaries. After dedu-
plication and cleaning of ICEWS data we obtain
actor, event, target tuples for each event sentence.
The next step is generating QA pairs for each tuple
depending on the event type.

4 QA Dataset Generation

We first grouped the preprocessed ICEWS event
records by event type. For each event type we
identified a list of most common predicates (trig-
gers) for that event type using a heuristic approach
since trigger labels are not available in the ICEWS
dataset. Using this approach we obtained a list of
common predicates corresponding to event types
and their CAMEO codes as shown in Table 5 in
Appendix. For example, for ‘Demonstrate or rally’
event type the predicates identified are ‘condemn’,
‘protest’, ‘demonstrate’ and for ‘Accuse’ event type
the predicates are ‘blame’, ‘blaming’, ‘accused’,
‘alleged’, ‘accusing’. For each of the predicates
identified for each event type we use one question
template for each of the two argument roles Actor

4https://parusanalytics.com/eventdata/
data.dir/cameo.html

5https://dataverse.harvard.edu/dataset.
xhtml?persistentId=doi:10.7910/DVN/28118
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and Target. For the Actor role, the template used
an active construction ‘Who $predicate$ someone?
and for the same event for the Target role the tem-
plate used a passive construction – ‘Who was $pred-
icate$ by someone?’. This results in total 37,894
records for years 2013-2015 and 2,953 records for
2016 with a sentence and two questions one each
for the Actor and Target roles and the Actor and Tar-
get names as their answers respectively distributed
over 9 event types. The train/test distribution of
the event records over the different event types is
shown in Table 6. We will release the splits we
used along with the generated questions, answers
and span offsets for reproducibility.

4.1 Evaluation

We perform two-fold evaluation – 1) we evaluate
the performance of an MRC system before and
after simplification in a zero-shot setting; 2) In-
Domain training: i.e. when we have labeled in-
domain training data available, we investigate if
simplification can help improve performance when
the MRC system has been trained on in-domain
data. In 1) we emulate a no-resource scenario,
i.e. using the MRC system out-of-the-box in a
target domain. We do not finetune a pretrained
MRC model with the generated QA dataset. Rather,
the aim is to assess the model performance in a
zero-shot setting, without using any training data
from the target domain whatsoever. We used the
pretrained BERT model finetuned on the SQUAD
2.0 dataset (Rajpurkar et al., 2016) and use the
predictor API provided here 6. We further conduct
follow-up analysis to study the controllability of
simplification by performing ablation analysis and
assessing model performance for different values of
score component coefficients. For setting 1) we use
the data from years 2013-2015 for evaluation and
for 2) we use data from years 2013-2015 for train
and 2016 for test. We extracted the best span(s)
predicted and computed an exact match F1 score
(Seo et al., 2017) matching the span against the
ground truth answer.

5 Results & Discussion

The results of zero-shot extraction on the ICEWS
dataset are outlined in Table 2. In the baselines
used, simplification is performed with score func-
tion exponents for νlm as a = 1.5 and νentity as

6https://docs.allennlp.org/models/v2.4.
0/models/rc/predictors/transformer_qa/

b = 1 held constant while varying c for νpred, r1
for νactor and r2 for νtarget. With no simplifica-
tion we get F1 scores of 0.412 and 0.354 for actor
and target roles respectively. For the most basic
setting for simplification with c = 0, r1 = 1 and
r2 = 1 scores improve by 4.6% for actor prediction
to 0.431 and by 10.4% to 0.391 for target prediction
respectively which shows that simplifying context
can further improve a powerful model like BERT in
a cross-domain zero-shot setting. For actor predic-
tion, out of 37,894 records we find that for 10.99%
records, F1 score improves after simplification, for
6.54% records F1 decreased after simplification
and for the rest the score remained unchanged.
For target prediction, for 17.4% records scores im-
prove where as for 7.9% records the scores de-
creased and for the rest of the records, the scores
remained unchanged. After introducing the predi-
cate score (c = 1) we see that these improvements
drop slightly. This is counter-intuitive, because
one would expect model performance to improve
when relevant predicates are present in the context.
We attribute this behavior to the MRC model lever-
aging the language priors in the training data to
predict the answers. For instance, the model could
predict the subject of the predicate as an answer for
‘Who’ type of questions.

Next, we increase the coefficients of Actor and Tar-
get roles from 1 to 3. The reason why we choose an
odd number for this exponent is because sometimes
for bad candidates the RC scores can be negative
and since all the scores are combined in a multi-
plicative way, raising a negative score to an even
power would reverse the desired effect. Observing
the results in rows 5 & 6 of Table 2 we can see
that percentage of sentences with same scores be-
fore and after simplification have increased. We
also observe that percentage of sentences for which
scores decrease after simplification have also de-
creased for both actor (row 5) and target (row 6)
respectively. We can conclude that by raising the
coefficients of role specific scores we can make
the simplification models more robust to inaccurate
simplifications for those roles. We also observe,
when r1 = 3, we get the highest F1 for actor pre-
diction, an improvement of 5.6% over no simpli-
fication and for r2 = 3 we get an F1 on-par with
the highest obtained in row 2. Our results clearly
indicate the benefit of simplification over no sim-
plification and also the gradual improvement in
scores when the argument coefficients r1, r2 are
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Table 2: Results of zero-shot event extraction on the ICEWS dataset. νlm coefficient a = 1.5 and νentity coefficient
b = 1 for all settings in which simplification is performed. ∆+ve indicates the % of records for which F1 improves
after simplification, ∆ −ve indicates the % of records for which F1 becomes worse after simplification and ∆ same
indicates the % of records for which F1 remains unchanged.

Actor Target
Method F1 ∆ +ve ∆ −ve ∆ same F1 ∆ +ve ∆ −ve ∆ same

1 No simplification 0.412 - - - 0.354 - - -
2 c = 0, r1 = 1, r2 = 1 0.431 10.99% 6.54 % 82.45% 0.391 17.35% 7.9% 74.9%
3 c = 1, r1 = 0, r2 = 0 0.429 10.81% 6.57 % 82.61% 0.390 16.54% 7.53% 75.93%
4 c = 1, r1 = 1, r2 = 1 0.424 10.5% 6.3 % 83.1% 0.387 16.29% 7.64% 76.05 %
5 c = 1, r1 = 3, r2 = 0 0.435 9.72% 5.67% 84.6% 0.391 16.89% 7.97% 75.12%
6 c = 1, r1 = 0, r2 = 3 0.427 10.54% 6.95% 82.5% 0.391 16.12% 7.29% 76.59%

varied from 0 to 3.

5.1 Long Range Dependencies

Mean length of the original sentences is 32 words
where as mean length of the sentences after simpli-
fication is 22 words (row 2 setting). This indicates
that simplification doesn’t make sentences too short
as is intuitive because cutting relevant information
would harm the performance.

Next, we investigate if simplification has addressed
the long-range dependency problem. We look at
statistics concerning the distance between the pred-
icate and its arguments (Actor and Target) for the
setting c = 0, r1 = 1, r2 = 1, that is, when the
predicate score(νpred) is not taken into account. As
Table 2(row 2) indicates for 11% of the records
performance increases after simplification for Ac-
tor and 17.35% for Target. We find that for those
records the average distance between the predicate
and its argument Actor is about 13 words and the
average distance between the predicate and target
in the simplified context is about 10 words. For the
argument Target the average distance between the
predicate and target is about 8 words for original
and about 6 words for the simplified context.

We see that RUSS cuts about 3 words for Actor
prediction and 2 words for Target prediction on
average. We conclude that a certain percentage
of improvement comes from cutting down the dis-
tance between the predicates and arguments hence
mitigating the long-range dependency problem.

5.2 Qualitative Analysis

Table 3 lists some cases in which simplification
helps MRC system perform better. In the first exam-
ple, the proposed method deleted the word ‘person-
ally’ from the original sentence (Sentence) to ob-
tain the simplified sentence (Simplified) as shown

in the Table. The question posed to RC model was
“Who is being apologized to by someone” and the
ground truth answer is “the opposition”. For the
original context the model extracts “Nawaz Sharif”
as the answer which is the wrong, whereas after re-
moving the adverb “personally”, it gets the correct
answer. Note, that this decreases the distance be-
tween the predicate apologized from its argument
Nawaz Sharif. In the second example, RC model
extracts the closest noun phrase “Xu Caihou” as
answer which is incorrect. Simplification deletes
the prepositional phrase “to disgraced army gen-
eral Xu Caihou” aiding the RC model in extracting
the correct answer. Note, that in this case it was
especially important to delete the above phrase due
to the inherent ambiguity of construction. This
case also highlights the limitations of the current
RC systems as the system was not able to success-
fully associate employees with businessman and
predicted the noun-phrase closest to the predicate
sued. In the third example, there was segmentation
error in the ICEWS dataset and two sentences were
strung together as seen in the Table. RUSS success-
fully deleted the unrelated sentence aiding the RC
system in extracting the correct answer.

5.3 Error Analysis

From 6.54% records for which the score decreased
after simplification for Actor prediction (row 2 of
Table 2), for 39.5% records, the prediction using
the original context is a substring of the prediction
using the simplified context. This means that for
some cases, both the original and the simplified
context facilitate the correct answer, but the answer
from the simplified context contains extra infor-
mation for which it is penalized during F1 score
computation. For example consider the context
“baghdad security source said unknown gunmen as-
sassinated an employee working in the secretariat
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Table 3: Qualitative examples of zero-shot performance of RC model before and after simplifying the context using
the proposed algorithm. Underlined words are ground truth answers, emphasized words are predicates(triggers) and
strikethrough indicates that words were removed by the algorithm.

Question Who is being apologized to by someone?
Sentence Islamabad prime minister Nawaz Sharif personally apologized to the opposition today for what he called

unfortunate comments made against PPP’s Aitzaz Ahsan
Answer Nawaz Sharif
Simplified Islamabad prime minister Nawaz Sharif personally apologized to the opposition today for what he called

unfortunate comments made against PPP’s Aitzaz Ahsan
Answer the opposition

Question Who is being sued by someone?
Sentence Scmp a businessman detained for his links to disgraced army general Xu Caihou has been sued by his

former employees
Answer Xu Caihou
Simplified Scmp a businessman detained for his links to disgraced army general Xu Caihou has been sued by his

former employee
Answer businessman

Question Who is being accused of something?
Sentence Thus after having attacked the two elected to his party ump Brice Hortefeux and Claude Goasguen it was

accused of pressure and insults. Rachida Dati has accused Claude Goasguen to take to her because she
had refused to sleep with him and this during an altercation proved by the Canard Enchan.

Answer Rachida Dati
Simplified Thus after having attacked the two elected to his party ump Brice Hortefeux and Claude Goasguen it was

accused of pressure and insults. Rachida Dati has accused Claude Goasguen to take to her because she
had refused to sleep with him and this during an altercation proved by the Canard Enchan.

Answer Claude Goasguen

of baghdad near her home in ur district northeast
of baghdad" which after running the simplifica-
tion algorithm is shortened to “in baghdad security
source said unknown gunmen assassinated an em-
ployee working in the secretariat of baghdad near
her home in ur district northeast of baghdad". (The
strikethrough text represents the text deleted by the
proposed algorithm.) For the question; “Who was
assassinated by someone?" when presented with
the original context the RC model extracts “an em-
ployee" whereas after removing the strikethrough
text, RC model extracts “an employee working in
the secretariat". The ground truth answer for this
is “employee". As can be seen both answers are
correct but the simplified contex is penalized for
extra words. Interestingly, such cases also make up
48% of records for which performance improves
after simplification, i.e. the prediction using the
original context contains the answer but is longer
and prediction using the simplified context is more
precise. This is intuitive, since context becomes
shorter and more precise after simplification and
hence one expects RC models to extract more pre-
cise answers.

5.4 In-Domain Training

In sections 5.1- 5.3 we saw how RUSS improved
performance in the zero-shot setting. In this section,

we consider the scenario when we have labeled
in-domain training data available and we wish to
investigate if simplification can help improve per-
formance when the MRC system has been trained
on in-domain data. We benchmark three baselines.
BiLSTM-CRF (Huang et al., 2015; Halkia et al.,
2020), BertForQuestionAnswering model from the
HuggingFace Transformers library7 using BERT-
base-cased model as our base model (BERT-RC),
and use the same model after simplification by the
RUSS algorithm (BERT-RC-Simple). For training
we use the ICEWS dataset described above from
years 2013-2015 and the year 2016 for testing.

BiLSTM-CRF For this baseline we convert the
actor and target spans using the IOB labeling
scheme into a sequence of tags. We use different
tags for actor and targets (e.g. B-ACT, B-TARG).
The problem becomes that of sequence labeling
over the tokens of the sentence.

BERT-RC For this baseline, we use the sen-
tence and QA-pairs for training. There are total
75,788 (37,894×2) examples for training and 5,906
(2,953×2) for test. We train all layers as opposed
to just the classification layer as we observe a large

7https://huggingface.co/transformers/
v4.9.2/model_doc/bert.html?
highlight=bertforquestionanswering#
bertforquestionanswering
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improvement in the former case compared to the
latter. We use an initial learning rate of 3e-5 and
use early stopping with patience = 5 to find the
best model. This model outputs span start and end
scores for each token. All tokens between and in-
cluding the tokens corresponding to max start and
end scores are extracted as the predicted span.

BERT-RC-Simple Next, we use the RUSS algo-
rithm to obtain simplifications of the test set and
report the performance of BERT-RC on this simpli-
fied test set.

Table 4 indicates the performance of the model
on the original test set. We report exact-match F1
for all baselines. It can be observed that BERT-
RC performs better than BiLSTM-CRF. Context
simplification brings about an additional improve-
ment(1.4%) even on a model that’s finetuned on
in-domain data (BERT-RC-Simple).

Table 4: Table shows the performance of a BERT-base-
uncased model finetuned on in-domain dataset. It can
be seen that even after finetuning, RUSS approach im-
proves model performance (BERT-RC-Simple).

Model F1

BiLSTM-CRF 0.764
BERT-RC 0.776
BERT-RC-Simple 0.787

6 Related Work

Event extraction(EE) has been an active area of
research in the past decade. In EE, supervised
approaches usually rely on manually labeled train-
ing datasets and handcrafted ontologies. Li et al.
(2013) utilize the annotated arguments and specific
keyword triggers in text to develop an extractor.
Supervised approaches have also been studied us-
ing dependency parsing by analyzing the event-
argument relations and discourse of event interac-
tions (McClosky et al., 2011). These approaches
are usually limited by the availability of the fine-
grained labeled data and required elaborately de-
signed features. Recent work formulates event ar-
gument extraction as an MRC task. A major chal-
lenge with this approach is generating a dataset
of QA pairs. Liu et al. (2020) propose a method
combining template based and unsupervised ma-
chine translation for question generation. Du and
Cardie (2020) follow a template approach and show
that more natural the constructed questions better
the event extraction performance. However, none

of these methods directly aim to address the long-
range dependency problem using simplification.

Automatic text simplification (ATS) systems aim
to transform original texts into their lexically and
syntactically simpler variants. The motivation for
building the first ATS systems was to improve the
performance of machine translation systems and
other text processing tasks, e.g. parsing, informa-
tion retrieval, and summarization (Chandrasekar
et al., 1996). In the context of extraction, Zhang
et. al. (Zhang et al., 2018) show that pruning de-
pendency trees to remove irrelevant structures can
improve relation extraction performance. Efforts
have been made to incorporate syntactic depen-
dencies into models in an effort to mitigate this
problem 2016; 2018; 2020. Recently, Mehta et al.
(2020) have used sentence simplification as a pre-
processing step for improving machine translation.
Edit-based simplification has been investigated to
a great degree to improve the readability of the
text (Kumar et al., 2020; Dong et al., 2019; Alva-
Manchego et al., 2017). To the best of our knowl-
edge this is the first work that studies sentence
simplification for improving MRC-based event ex-
traction.

7 Conclusion & Future Work

In this work, we motivated the need for MRC-based
socio-political/conflict event extraction paradigm
especially for zero-shot scenarios(§ 1). Next,
we discussed the long-range dependency problem
faced by event extraction systems. We proposed
a simplification algorithm to reduce the syntactic
complexity of the context aided by MRC-system
feedback to address the problem(§ 2). Our results
indicate that simplification can not only aid MRC
systems in a zero-shot setting(§ 5.1- 5.3) but also
when they’re finetuned on in-domain data(§ 5.4).

In future work, we plan to scale our QA genera-
tion approach to improve coverage over more event
types and languages. We can also make RUSS
simplification more efficient by generating paral-
lel training data for simplification using the RUSS
method offline and train a simplification model us-
ing the generated data. In this way we can obtain
guided simplifications via inference over a model.

Reproducibility: We release our code 8.
8https://github.com/

russ-event-extraction/russ_event_
extraction
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A RUSS Algorithm

Algorithm 1: Sentence Simplification Algo-
rithm – RUSS
Input: sentence := s, questions = {q1, ..qn}
Output: simplification := c
Function RUSS(s):
maxIter ←M
for iter ∈ maxIter do

candidates← generateCandidates(c)
scores← ∅
maxScore← 0
for cand ∈ candidates do

scores←
scores ∪ νa

lm ∗ νb
entity ∗ νc

pred ∗
∏

νrcri
rolei

end
currMax← max(scores)
if currMax > maxScore then

maxScore← currMax
c← candidates[argmax(scores)]

end
end
return c

Algorithm 2: Candidate Generation Algorithm
Input: sentence := s
Output: candidates
Function generateCandidates(s):
parseTree← getParseTree(s)
toRemove← ∅
extractions← ∅
candidates← ∅
phraseTags← getV alidPhraseTags()
for pos ∈ parseTree.positions do

if parseTree[pos] ∈ phraseTags then
toRemove←
toRemove ∪ parseTree[pos].leaves

end
if pos.label ∈ [S, SBAR] then

extractions←
extractions ∪ parseTree[pos].leaves

end
end
for phrase ∈ toRemove do

candidate← s.replace(phrase, ∅)
if candidate.length > t then

candidates← candidates ∪ candidate
end

end
for phrase ∈ extractions do

if phrase.length > t then
candidates← candidates ∪ candidate

end
end
return candidates

A Training Details

For training the RUSS algorithm we used the
TransformerQA model made available through the
allennlp library predictors API 9. Running the

9https://github.com/allenai/
allennlp-models/blob/main/allennlp_
models/rc/models/transformer_qa.py

algorithm takes 5 hours on 1 CPU core and 1
GPU. However when parallelizing the computa-
tion across 5 cores that time can be brought down
to 1 hour.

B Dataset Statistics

Table 6 outlines the distribution of different event
types used in the ICEWS dataset used.
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Table 5: Table lists the ICEWS event types used and their corresponding predicates that were identified for generating
question templates.

Event Type CAMEO Code Predicates

Abduct, hijack, or take hostage 181 kidnapped, abducting, abducted, captured

Accuse 112 blame, blaming, accused, alleged, accusing

Apologize 55 apologize, apology

Assassinate 186 carried out assassination of, assassinate

Bring lawsuit against 115 is suing someone, sued, has sued, filed a suit against

Demonstrate or rally 141 condemn, protest, demonstrate

Arrest, detain, or charge with legal action 173 arrested, sentenced, detained, nabbed, captured, arresting,
capture, jailed, routinely arrested, prosecuted, convicted

Use conventional military force 190 killed, shelled, combating, shells, strikes, strike, kill

Table 6: Table shows the distribution of event types in the ICEWS Train and Test datasets used.

Event Type #Records Train #Records Test

Abduct, hijack, or take hostage 3473 193
Accuse 8856 651
Apologize 181 11
Arrest, detain, or charge with legal action 9933 782
Assassinate 146 12
Bring lawsuit against 206 18
Demonstrate or rally 2890 175
Use conventional military force 12209 1111
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Abstract

Finding causal relations in texts has been a chal-
lenge since it requires methods ranging from
defining event ontologies to developing proper
algorithmic approaches. In this paper, we devel-
oped a framework which classifies whether a
given sentence contains a causal event. As our
approach, we exploited an external corpus that
has causal labels to overcome the small size
of the original corpus (Causal News Corpus)
provided by task organizers. Further, we em-
ployed a data augmentation technique utilizing
Part-Of-Speech (POS) based on our observa-
tion that some parts of speech are more (or less)
relevant to causality. Our approach especially
improved the recall of detecting causal events
in sentences.

1 Introduction

Nowadays, unprecedented amounts of data on so-
cial, political, and economic events offer a break-
through potential for data-driven analytics. It drives
and helps informed policy-making in the social and
human sciences. Data of those humanities and so-
cial sciences cover a broad range of materials from
structured numerical datasets to unstructured text
data. An event is a specific occurrence of something
that happens in a certain time and place involving
humans. The events in texts can be understood in
terms of causality, implies when one event, process,
state, or object (namely, “cause”) contributes to the
production of another one (namely, “effect”) where
the cause is responsible for the effect.

Event-relating studies in the NLP have been
growing, such as event extraction (EE), name entity
recognition (NER), and relation extraction (RE). In
particular, EE requires identifying the event, clas-
sifying event type and argument, and judging the
argument role to collect knowledge about incidents
found in texts (Li et al., 2021). Recent approaches
to EE have taken advantage of dense features ex-
tractions by neural network models (Chen et al.,

2015; Nguyen et al., 2016; Liu et al., 2018) as
well as contextualized lexical representations from
pre-trained language models (Wadden et al., 2019;
Zhang et al., 2019).

However, there exist few studies regarding iden-
tifying or classifying events, especially based on
causal relations. Phu and Nguyen (2021) stud-
ied Event Causality Identification (ECI) based on
graph convolutional networks to learn document
context-augmented representations for causality
prediction between events. Cao et al. (2021) devel-
oped a model to learn a structure for event causality
reasoning. Moreover, Man et al. (2022) introduced
dependency path generation as a complementary
task for ECI using causal label prediction.

In this study, we focus on causal event classi-
fication: whether a sentence contains any causal
relation. Our framework employed both recent and
traditional NLP techniques, which are pre-trained
large language model (i.e., ELECTRA (Clark et al.,
2020)) and POS tagging (Loper and Bird, 2002;
Bird et al., 2009). To enhance the performance of
detecting causality in each sentence, we attempted
not only to concatenate another corpus that has
causal labels but also to augment those corpora via
POS tagging. With our base model, ELECTRA,
those different combinations of datasets were com-
pared to one another.

This paper is organized as follows. We first ex-
plore and examine the task and datasets. Based on
the examination, we propose a new method in Sec-
tion 3. We then present experimental results and
discussion.

2 Task and Datasets

Causal event classification from natural language
texts is a challenging open problem since causality
in texts heavily relies on domain knowledge, which
requires considerable human effort and time for
annotating and feature engineering. In this study,
as Subtask 1 of CASE-2022 Shared Task 3 (Tan
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et al., 2022a,b), we implemented causal event clas-
sification with large language pre-trained models.

The offered dataset is ‘Causal News Corpus
(CNC)’ (Tan et al., 2022a). CNC contains sentences
randomly sampled and refined from socio-political
news. Each sentence in the dataset has a label,
which represents whether it has a cause-effect rela-
tionship. This dataset was successfully used in Au-
tomated Extraction of Socio-political Events from
News (AESPEN) at Language Resource and Eval-
uation Conference (LREC) in 2020 (Hürriyetoğlu
et al., 2020) and Challenges and Applications of
Automated Extraction of Socio-political Events
from Text (CASE) in 2021 (Hürriyetoğlu et al.,
2021). The number of training and validation data
are 2925 and 323, respectively. Additionally, the
organizers prepared the test set (which is only ac-
cessible through the task evaluation system) of size
311.

We additionally utilized an external dataset,
‘SemEval-2010,’ which was created for SemEval-
2010 Task 8 (Hendrickx et al., 2019). The
task was to classify semantic relations be-
tween pairs of nominals. One of the seman-
tic relations is a causal relationship. Hence, we
can directly infer whether a sentence in the
dataset contains a causal relationship or not,
allowing us to create another dataset to clas-
sify causality. "The complication arose
from the light irradiation." is an
example of a cause-effect labeled sentence from
SemEval-2010. The training and test (used as val-
idation) datasets contain 4450 and 786 sentences,
respectively.

3 Methodology

CNC has a relatively small number of sentences
to precisely detect whether any causal relation
is contained in a sentence. Thus, we consider
adding more sentences to CNC by (1) concatenat-
ing SemEval-2010 to CNC and (2) augmenting new
sentences generated through POS tagging, which
we will describe in the next section.

3.1 Data Augmentation via POS Tagging

A typical data augmentation is just attaching a
new dataset to an existing original dataset. After
augmentation, one may fine-tune the parameters
of a model in hopes of improving performance
of the model. Since a new dataset might come
from a different distribution and features from the

original one, it may negatively affect the perfor-
mance. Hence, we propose to augment causally
relevant information directly derived from the orig-
inal datasets.

We argue that the causality in a sentence can
be determined mainly by verbs and conjunctions,
which is responsible for describing underlying
causality, not nouns. That is, even if any nouns in a
sentence are replaced with other nouns, a causal
relation can still be preserved in the sentence.
Consider "There was a traffic jam as
the taxi industry embarked on a
protest" for an example. Even if we eliminate
the word "traffic", the effect of "protest"
is still "jam". Regardless of the true meaning,
there still exists a prominent causal relation. Hence,
we proceed to exploit the following observation
to devise our method: causal relationship is
primarily captured by syntactic elements rather
than semantics.

Against this background, we consider substitut-
ing words that are less likely to be related to causal-
ity (e.g., nouns, adjectives and adverbs) to their
parts-of-speech, as depicted in Figure 1. This trans-
formation preserves not only the original gram-
matical structure of the given sentence but also
the underlying causality. Those newly transformed
sentences were then concatenated to the original
dataset for data augmentation.

One may consider replacing those words with
any random words of the same POS as seen in coun-
terfactual augmentation (Zmigrod et al., 2019).
However, it could lead the model to learn wrong
relationships since counterfactual sentences can
cause spurious correlations with verbs or con-
junctions. Thus, we just replaced those causally-
irrelevant words with their corresponding POS tags.

3.2 Model

For our task, we initially considered three large pre-
trained language models to construct a causal event
classifier: Sentence-BERT, Span-BERT, and ELEC-
TRA (ELECTRA-Base). We implemented the task
with CNC for comparison among three models. Its
result showed that ELECTRA outperformed other
models. Therefore, we adopted our base model as
ELECTRA. ELECTRA is trained via next sentence
prediction similar to typical BERT models. Specifi-
cally, it learns through replaced token detection in-
stead of masked language modeling. We conjecture
that ELECTRA is effective especially for causal
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Figure 1: Examples of POS tag-based sentences: ‘NN’ is a noun tag, ‘JJ’ is an adjective tag, ‘RB’ is an adverb tag,
and ‘CD’ is a cardinal number tag. We have those transformed sentences added to the original dataset(s) to create
new datasets (3), (4), (5) and (6).

detection since the causality in a sentence can be
changed with just a single, crucial word change
(i.e., replaced to a POS tag).

3.3 Experimental Setup
In this section, we explain various datasets used to
train different ELECTRA models and hyperparam-
eters to train the models. To utilize SemEval-2010,
we pre-processed SemEval-2010 to make it similar
to CNC—“label” is 1 if there exists causality in the
sentence and 0 otherwise. To implement POS-tag
based data augmentation, we used NLTK (Loper
and Bird, 2002). We simply mention ‘noun-base
X’ for X dataset with noun replaced to NN. We
similarly define for adj/adv-base. We created six
different augmented datasets:

1. CNC (2925 sentences)

2. CNC + SemEval-2010 (7375)

3. CNC + noun-base CNC (5850)

4. CNC + adj/adv-base CNC (5850)

5. CNC + SemEval-2010 + noun-base SemEval-
2010 (11825)

6. CNC + SemEval-2010 + adj/adv-base
SemEval-2010 (11825)

While we initially constructed other combinations
of datasets, those six are interesting to compare and
discuss. We used the following metrics accuracy,
precision, recall and (Micro) F1 score to measure
the performance of trained models.

We used following hyperparameters to train
ELECTRA models across the above six datasets.1

The batch size is set to 32, and the epoch is set
to 20. Gradient clipping is performed to prevent
gradients from exploding, and the highest gradient
is set to 1. In the beginning, the learning rate is
set to 2e-5 so that it could learn in large steps. As

1Our hyperparameters were not fully optimized in order to
validate if our data augmentation method is effective so this is
not for yielding the best of our model.

(1) (2) (3) (4) (5) (6)

Accuracy 0.849 0.841 0.855 0.849 0.852 0.866
Precision 0.865 0.865 0.838 0.838 0.865 0.871

Recall 0.871 0.859 0.914 0.901 0.882 0.908
F1 0.866 0.862 0.874 0.868 0.874 0.889

Table 1: Performance of six models on the validation
dataset where the models are trained on the datasets
described in Section 3.3.

the epoch iterates, the learning rate decreases with
cosine annealing for the model to converge grad-
ually. The optimizer used is AdamW (Loshchilov
and Hutter, 2017) with a weight decay and a L2

regularization added. Cross-entropy is used as a
loss function. All models were neatly fit into a sin-
gle NVIDIA Tesla V100 (16GB) GPU and trained
efficiently and effectively.

4 Results & Discussion

The performances of different datasets are com-
pared (Table 1). Our results show that our proposed
data augmentation method was effective.

4.1 Results

Our model trained on datasets with data augmen-
tation achieved higher scores in all four measures.
The recall increased remarkably: models with aug-
mented datasets (3), (4) and (6) have the recall as
0.9 or above. While precision and recall are some-
what balanced across the models but precision is
generally lower than recall. Due to the increase
in recall, F1 scores are all enhanced despite the
increases in precision are negligible.

Compared to pure CNC (1), CNC with POS tag-
base CNC (3, 4) produces better validation and test
performances2 than adding SemEval-2010 dataset
(2) that also has causal labels but from a different
distribution. Datasets (3) and (4) have recall above

2Based on the performance reported in the leaderboard.
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Figure 2: Training and validation F1 scores (left) and accuracy (right) of dataset (6)

0.9, whereas dataset (2) has only 0.859.
Furthermore, dataset (6), which has SemEval-

2010 and adj/adv-base SemEval-2010 added to the
original CNC, achieved the highest F1.

It is surprising given that adding SemEval-2010
itself (2) did not show improvements relative to (1).
When it comes to the choice of POS tags to replace
(noun (3, 5) vs. adj/adv (4, 6)), we do not have a
consistent result to tell which tags are better to be
replaced.

In Figure 2, we illustrate performance during
training our model on (6). The accuracy and F1

for the training dataset quickly reached 0.99 within
10 epochs in most of the experiments, and after
it converges, the accuracies and F1 scores were
fluctuated slightly for the validation dataset.

Our model (6) was also evaluated with the test
set through the task evaluation system. The model
attained accuracy of 0.814, recall of 0.903, preci-
sion of 0.795, and F1 of 0.848. The result is similar
to what we have observed for the validation dataset.

4.2 Discussion

In this experiment, our model (6) trained with both
SemEval-2010 and POS tag-base SemEval-2010
added to CNC attained the best performance in
terms of accuracy and F1 score. On account of the
recall-precision trade-off, our results have higher
recalls than precisions except for dataset (2). We
think our model performs better with the sentences
having causal relations since it seems to focus more
on the features (e.g., embedding vectors) represent-
ing causality.

In the same vein, having a higher precision using
the dataset with the SemEval-2010 added could be
due to the more number of sentences having non-
causal relations. Unlike other NLP corpora, not
only the size of CNC is relatively small, but also
there are not many causal-labeled datasets publicly
available to additionally utilize. Furthermore, the

ratio of the number of sentences that have causal
relations to ones that do not is unbalanced (i.e.,
there is a way more number of sentences with no
causal relations), so causal event classification is
even more challenging. Thus, the data augmenta-
tion using POS tagging was effective and success-
ful for this task. However, to increase the precision
in the future, it is better to consider adjusting a
threshold (i.e., decision boundary) for the results
obtained through the current argmax function so
that the model would not predict with certainty that
causality exists when it truly did not.

We believe that our data augmentation method
utilizing POS tagging can be generalizable and
applicable to other learning methods. For instance,
we found the benefit of the method for prompt-
based learning, which allows the language model
to be pre-trained on massive amounts of raw text to
adapt to new scenarios with few or no labeled data
(Liu et al., 2021). In our unreported experiment,
we tried both original CNC sentences (i.e., dataset
(1)) and their augmented one (i.e., dataset (3)) as
prompt. Although both results were not as good as
expected (i.e., the F1 score is near 0.7), the result
with having augmented dataset added had a higher
recall, which corresponds to our results.

5 Conclusion

In this work, we proposed a framework that de-
tects causal events from a sentence. In particular,
because of the scarce number of sentences having
causal relations, we devised a data augmentation
strategy utilizing POS tags in place of causally ir-
relevant words. By augmenting the datasets, we
indirectly increased the impact of verbs or con-
junctions since causality relies on specific parts-
of-speech in the context rather than the semantic
meaning. The data augmentation strategy enhanced
the performance of detecting causality especially
in terms of recall and F1. Given that the number of
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sentences having causal relations is small, detect-
ing causality in those sentences is considered much
more valuable than one in non-causal sentences.

Our contribution is that we provided an uncon-
ventional way of exploiting POS tags: previous
studies using data augmentation via POS tagging
enhanced the impact of specific words, such as
informing proper nouns and word order for trans-
lation (Ding et al., 2020; Maimaiti et al., 2021). In
contrast, we weaken the impact of specific words
to indirectly improve the impact of other important
words for detecting causality in sentences, such as
verbs and conjunctions. By replacing those super-
fluous words with corresponding tags and adding
those newly created sentences into the original cor-
pus, our model outperformed those without data
augmentation. This method can be a proper choice
when adding new datasets is too expensive or there
are few labeled datasets available.
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Abstract

Causality detection and identification is cen-
tered on identifying semantic and cognitive
connections in a sentence. In this paper, we
describe the effort of team LTRC for Causal
News Corpus - Event Causality Shared Task
2022 at the 5th Workshop on Challenges and
Applications of Automated Extraction of Socio-
political Events from Text (CASE 2022) (Tan
et al., 2022a). The shared task consisted of
two subtasks: 1) identifying if a sentence con-
tains a causality relation, and 2) identifying
spans of text that correspond to cause, effect
and signals. We fine-tuned transformer-based
models with adapters for both subtasks. Our
best-performing models obtained a binary F1
score of 0.853 on held-out data for subtask 1
and a macro F1 score of 0.032 on held-out data
for subtask 2. Our approach is ranked third in
subtask 1 and fourth in subtask 2. The paper de-
scribes our experiments, solutions, and analysis
in detail.

1 Introduction

A sizeable amount of text is generated every day
due to increase in the amount of news available
online from news portals and social media. Data
available on social, political, and economics has
the potential to revolutionise data-driven analysis
(Barik et al., 2016). Causality identification and
span detection (Do et al., 2011) is one such data-
driven task. It is one of the many natural language
processing (NLP) studies that attempts to address
inference and comprehension. A causal relation is
a semantic relationship between cause argument
and effect argument such that the occurrence of one
contributes to the occurrence of the other.

Cause is a span of text that results in the occur-
rence of an effect event. An effect is a span of text
that is the consequence of the cause event and a
signal is a span of text that binds both the cause and
effect events. Together the study of cause and effect
can help in understanding what agents contribute

to the causes and the effects they create. Causality
identification and span detection on climate sci-
ence domain helps in analysing the rapid climate
changes (Ionescu et al., 2020). Similarly analy-
sis on financial domain news (Mariko et al., 2022)
can help in improving trading strategies. Further
examples include social, economic, and political
sciences where the effects created by causes such
as a change in policy can be identified over a period
of time and analyzed.

Causal Text Mining have been shown to be
beneficial for downstream tasks like summariza-
tion (Izumi et al., 2021; Hidey and McKeown,
2016), question answering and making inferences.
Task 3 (Event causality identification) of CASE @
EMNLP 2022 (Tan et al., 2022a) aims at automati-
cally identifying sentences that have a cause-effect
event and extracting spans of text relating to cause,
effect, and signal events. The shared Task 3 is
divided into two sub-tasks:

Subtask 1: Causal Event Classification The
first subtask identifies if a given event sentence
contains any cause-effect.

Subtask 2: Cause-Effect-Signal Span Detec-
tion This subtask identifies the spans correspond-
ing to cause and effect per sentence.

The causal news corpus (Tan et al., 2021, 2022b)
comprises 3,559 event sentences, extracted from
protest event news, that have been annotated with
sequence labels on whether it contains causal re-
lations or not. Subsequently, causal sentences are
annotated with cause, effect, and signal spans. For
both tasks, we use a Transformer-based model
(Vaswani et al., 2017). We use adapters (Pfeif-
fer et al., 2020), a parameter-efficient fine-tuning
method, in conjunction with a pre-trained model
with strong language understanding and generation
abilities (Liu et al., 2019). Recent research has
shown that this method is robust to over-fitting in
low-resource settings (He et al., 2021). In this way,
the large pre-trained model RoBERTa, remains
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Labels
Causal Non-causal Total

Train 1603 1322 2925
Dev 178 145 323
Test 176 135 311
Total 1975 1602 3559

Table 1: Data split for sentences in subtask 1

frozen, and only small modules the model parame-
ters are optimized. This effectively retains acquired
knowledge in the pre-trained language model. The
first task was treated as a binary classification task
with a single label for the input sentence, while for
the second task, label was predicted for each input
word of the sentence.

2 System Description

2.1 Data
The data consists of English news in the socio-
political and crisis context, extracted from Auto-
mated Extraction of Socio-political Events from
News (AESPEN) in 2020 (Hürriyetoğlu et al.,
2020) and Challenges and Applications of Auto-
mated Extraction of Socio-political Events from
Text (CASE) in 2021 (Hürriyetoğlu et al., 2021) .

Figure 1 contains few annotated examples from
the causal news corpus. The causes are highlighted
in green, effects in purple and signals in cyan. Both
cause and effect must be present in a same sentence
to mark it as causal. The organizers made 3 datasets
available for both the subtasks: train, dev, and
test. Later UniCausal, a Causal Text Mining data
(Tan et al., 2022c) was released to be used for both
the subtasks. The labels for test data were not
announced for both subtasks.

For subtask 1, around 869 news documents and
3559 English sentences were annotated with labels
on whether they contained causal relations or not.
Table 1 presents the sentence counts per data split.

For subtask 2, positive causal sentences from
subtask 1 were retained and annotated with cause-
effect-signal spans. From the total positive sen-
tences, 180 sentences were annotated and there
could be multiple relations per sentence. The data
splits were: 130 train and 13 development.

After combining the causal news corpus and Uni-
Causal corpus, the total number of unique samples
on adding train and dev datasets are 6767 for sub-
task 1 and 1249 for subtask 2. We used 20% of the
combined dataset for validation.

Figure 1: Annotated examples from Causal News Cor-
pus. Causes are in highlighted in green, Effects in purple
and Signals in cyan.

2.2 Solutions

Transformer based language models models
(Vaswani et al., 2017) that have been pre-trained on
massive amounts of text data and then fine-tuned
on target tasks have resulted in significant advances
in NLP (Liu, 2019; Yang et al., 2019), with state-of-
the-art results across the board. However, models
like BERT (Devlin et al., 2019) and RoBERTa (Liu
et al., 2019) have millions of parameters, making
sharing and distributing fully fine-tuned models
for each individual downstream task prohibitively
expensive.

Adapters (Pfeiffer et al., 2020), which consist of
only a small set of newly introduced parameters at
each transformer layer, are a lightweight alternative
to full model fine-tuning. Because of their modu-
larity and compact size, adapters overcome several
limitations associated with full model fine-tuning:
they are parameter-efficient, they speed up training
iterations, and they are shareable and composable.
Furthermore, adapters typically outperform state-
of-the-art full fine-tuning (Rücklé et al., 2020).

2.2.1 Subtask 1
Three transformers-based language models
(Vaswani et al., 2017) were considered for the
subtask 1 and fine-tuned on the causal news
corpus dataset. The models experimented are
BART (large) (Lewis et al., 2020), RoBERTa
(base and large) (Delobelle et al., 2020) with an
additional linear layer on top, RoBERTa (base
and large) with adapter (Pfeiffer et al., 2020) and
a classification head. Adapters are small learnt
bottleneck layers inserted within each layer of a
pre-trained model to avoid full fine-tuning of the
entire model. The adapters framework enables
them to be small, and scalable, particularly in low
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resource scenarios. It freezes all weights of the
pre-trained model so only the adapter weights are
updated during training. It activates the adapter
and the prediction head such that both are used in
every forward pass. As NLP tasks become more
complex and necessitate knowledge that is not
readily available in a pre-trained model (Ruder
et al., 2019), adapters will provide a plethora of
additional sources of relevant information that
can be easily combined in a modular and efficient
manner. We added a task-specific layer which
is a classification head adapter. RoBERTa with
classification adapter head and a linear layer added
on top of RoBERTa (base) performed better than
the BART-large model.

2.2.2 Subtask 2
Subtask 2 was modeled as a token classification
task in the lines of named entity recognition (Li
et al., 2020; Nadeau and Sekine, 2007) and parts-of-
speech tagging (Schmid, 1994; Voutilainen, 2003).
Each token of the cause effect sentence should
be labeled as either cause, effect, signal or other.
In the annotated data shared, span of text for
cause was between ARG0 opening and closing
tags, span of text for effect was between ARG1
closing and opening tags and span of text corre-
sponding to signal enclosed between SIG0 open-
ing and closing tags. The labeled annotations
were pre-processed to be written in the Inside-
Outside-Beginning (IOB) format (Ramshaw and
Marcus, 1999) to aid in the identification of the
sequences during inference. BertForTokenClassi-
fication model from BERT (base) (Devlin et al.,
2019) was used for obtaining the contextual em-
beddings for the token and trained to predict the
most probable label sequence. Since we saw a
slight boost in performance on using adapters, we
added a adapter head to RoBERTa (base) to predict
the label sequence. In spite of using IOB format
and contextual embeddings of BERT in modelling
the problem as token labelling task, inference of
predicted labels is difficult. A limitation that the
model has is, that it can make an incorrect predic-
tion in the middle of a cause/effect sequence or
predict a cause/effect token in the middle of O tags.
Few heuristics were employed to address the issue:

1. If a cause or effect sequence has a length lower
than 2, it is ignored.

2. If a token is being preceded by a beginning-

tag1 and followed by either ’O’ (for other) or
the inside-tag 2, then the label is changed to
its corresponding inside-tag.

3. If a token is predicted as (other) ’O’, the se-
quence length of ’O’ is less than 2, and is
surrounded by beginning and inside tags of
a single kind, then the label is changed to its
corresponding inside-tag.

4. If a token is predicted as a beginning or inside
tag of a kind, the whole sequence length is less
than 2 and is surrounded by beginning and in-
side tags of another category, then the current
category is changed to match the surrounding
labels.

3 Evaluation

3.1 Experimental Setup
We fine-tune pre-trained transformers: BERT,
BART and RoBERTa provided by huggingface 3.
The maximum sequence length for base models
was 256 and for 512 for large model. The learning
rate was 1e-4 and the models were fine tuned for
10 epochs for subtask 1 and 20 epochs for subtask
2. Adam optimizer was used with a dropout of 0.2
in each transformer layers. The train and validation
batch sizes are 8 and 4 respectively.

3.2 Results

Model R P F1
BART-large 0.85 0.81 0.84
RoBERTa-large+Adapter 0.82 0.84 0.83
RoBERTa-base+Adapter 0.87 0.86 0.87
RoBERTa-base+linear layer 0.86 0.83 0.84
Baseline 0.86 0.80 0.83

Table 2: Performance on Devset for subtask 1

Model R P F1
BERT+Adapter 0.056 0.023 0.032
Baseline 0.003 0.009 0.005

Table 3: Performance on Devset for subtask 2

Table 2 shows the performance of our trans-
former based models for subtask 1 on the dev data

1The beginning-tags could be B-E for effect, B-C for cause
and B-S for signal

2The inside-tags could be I-E for effect, I-C for cause and
I-S for signal

3https://huggingface.co/docs/transformers
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set. All the transformer variants have surpassed
the baseline scores. RoBERTa (base) with adapters
was our best-performing model. The slight im-
provement in precision and F1 scores for RoBERTa
(base) with adapters over RoBERTa base with lin-
ear layer could be because, in the adapters frame-
work, the adapters are added within each trans-
former layer while in the other approach, the linear
layer is added to the output of the last layer of
RoBERTa.

Table 3 shows the results obtained by using
adapter on BERT (base). the predictions were post
edited employing the heuristics discussed above.
The results have improved marginally over the base-
line model.

3.3 Error Analysis

While reviewing and analyzing the errors made
by our models, we discovered few patterns where
the models failed. Table 4 shows a few samples
that were misclassified for subtask 1. We observed
that the model fails to identify effects and causes
that are not explicit. For the first example in Ta-
ble 4, the effect is“attracted a motley crowd” and
the cause “the one-day fast”. The cause phrase
contains polysemous word “fast”, that could be
misleading. In the second example “raining bombs”
is a simile and in NLP tasks similies, idioms and
proverbs have always been tough to comprehend.
The model fails to identify phrases with length
of less than four words without signal words. To
check this further, we reordered the phrases in the
second example and added a signal. The modified
sentence we tested our model on was “Mondal was
hit by one of the bombs because both sides were
raining bombs on each other, Murshidabad dis-
trict magistrate Pervez Ahmed Siddiqui said”. This
sample does not change the meaning of the original
sentence, but is reorganised and the conjunction
is changed from a joining conjunction (‘and’) to a
causal one (‘because’) and the model could clas-
sify the modified sentence as a causal sentence.
False positives were also observed, the third and
fourth examples contained an event or action, but
the cause is not explicitly mentioned in the sen-
tences. These incorrect predictions are a result
of frequently encountering similar sentence struc-
tures in causal sentences. Longer sentences, having
multiple clauses were also misclassified as causal
sentences even when they are missing a cause of
effect for the same reason.

Errors in subtask 2 were mainly because of in-
correct and inconsistent predictions of cause and
effect. The number of samples containing signals
are very few in the dataset and therefore not well
generalised by the model. As observed in Table 5,
either the complete sequence is not predicted, or
few tokens in the middle are incorrectly predicted.

4 Conclusion and Future Work

With the rapid growth in information from news
portals, automated solutions to analyse data and
draw inferences from the data play a pivotal role.
Our solution for the both the subtasks involved
adding an adapter layer which improves the per-
formance by avoiding full fine-tuning of the entire
model and instead adding additional newly initial-
ized weights at every layer of the transformer which
are trained during fine-tuning. Though the solu-
tions work well, they could be further improved
by using an ensemble model for subtask 1 and by
adding an LSTM (Hochreiter and Schmidhuber,
1997) and CRF (Ye et al., 2009; Huang et al., 2015;
Huang and Xu, 2015) on top of the contextual em-
beddings layer for proper alignment of tokens and
labels for subtask 2.

In our experiments on the causal news corpus
and on analyzing the misclassified samples we feel
that the models for both subtasks can also benefit
from having extra syntactic and semantic informa-
tion. For subtask 1, verbs and signal arguments like
conjunctions play a major role in determining if
the sentence is causal or non-causal. Similarly for
subtask 2, having part-of-speech tags information
for all the tokens along with contextual embed-
ding from BERT might work well. The current
models have good contextual representations, but
appending them with an extra embedding of the
main verbs, conjunctions and parts-of-speech tags
might steer the task inference in a better direction.
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Abstract

Most of today’s systems for socio-political
event detection are text-based, while an increas-
ing amount of information published on the
web is multi-modal. We seek to bridge this
gap by proposing a method that utilizes exist-
ing annotated unimodal data to perform event
detection in another data modality, zero-shot.
Specifically, we focus on protest detection in
text and images, and show that a pretrained
vision-and-language alignment model (CLIP)
can be leveraged towards this end. In particu-
lar, our results suggest that annotated protest
text data can act supplementarily for detecting
protests in images, but significant transfer is
demonstrated in the opposite direction as well.

1 Introduction

Information published on the web, and in particu-
lar social media, has become a crucial source for
understanding the world and how it develops. Sys-
tems for the automatic detection and extraction
of socio-political events are an important tool for
processing this stream of information at scale. Tra-
ditionally, these systems are primarily designed to
process information in the form of text, but with
the growing use of multimedia content (such as
images and video) on the web and social media
especially, there is a great potential for extending
the analysis to additional data modalities as well
(Joo and Steinert-Threlkeld, 2018). A question is
however how this can be done in the most efficient
manner, and whether existing data in one modality
can be reused for extending analysis to another.

In this work, we take a focused look at the task of
protest detection, and investigate whether data from
different modalities can act both supplementarily as
well as complementarily for this task. We do so by
seeking to answer the following research questions:

*Equal contribution.

RQ1 To which extent can the performance of a uni-
modal protest detection model transfer from
one modality to another?

RQ2 Can unimodal detection of protests be im-
proved by using a multi-modal protest detec-
tion model?

Considering the natural way text and images
complement each other, the hypothesis is that a
multi-modal model trained on both text and images
would have a broader understanding of the concept
of protests.

The investigation has been carried out by com-
bining two existing open datasets for protest event
detection, namely the textual CLEF 2019 Protest
News dataset (Hürriyetoğlu et al., 2019) and the
UCLA Protest Image dataset (Won et al., 2017).

Our contributions are:

1. We propose a modality-agnostic setup for
socio-political event detection, where anno-
tated data in one modality can be leveraged to
detect the same event in another modality.

2. We demonstrate significant zero-shot protest
detection performance when applying a model
on a modality not observed during training.

3. Whereas we show protest text and image data
to act supplementarily, our results do not sup-
port the hypothesis that the data can act com-
plementarily to the same degree.

2 Datasets

We took use of two open-source datasets: the
UCLA Protest Image dataset (Won et al., 2017)
for images and CLEF 2019 Protest News (Hür-
riyetoğlu et al., 2019) for texts. The UCLA dataset
consists of a training set of 32,612 images and a
test set of 8,154. In our experiments we only con-
sider the binary protest/not protest prediction task.
Meanwhile, for the Protest News dataset we only
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Figure 1: Our model setup. A sample is fed through its
respective CLIP encoder and the resulting feature vector
is fed through a classification layer that outputs a binary
prediction score.

consider the binary sentence-level classification
task in English. It comprises 22,825 sentences in
total, retrieved from news articles, which was split
into a training and test set with a 75-25 ratio.

3 Experiments

We begin by exploring RQ1, that is, whether text
and image representations can be interchanged in
the task of protest detection. In practice, this would
mean that a classifier trained on protest images is
tested on protest texts, and vice versa. This is made
possible by using a pretrained encoder that is able
to represent both modalities in a common feature
space. We denote such experiments as cross-modal,
where training and test data are of different modali-
ties, meaning zero-shot classification. The extent
to which this capability can be transferred between
modalities can then be evaluated by comparing to
a unimodal baseline, which essentially means we
train and test on the same modality. To get a lower
bound we also compare against a random classifier
baseline. In all experiments we evaluate using the
AUC-PR metric.

To adress RQ2, we consider the case where train-
ing data for both text and images are available and
investigate whether these datasets can synergisti-
cally complement each other. Specifically, we ex-
plore training a model jointly on the Protest News
and UCLA datasets, but evaluate on each modality
separately, similarly to the above experiments. We
denote this experiment multi-modal, because it is
trained on both modalities. This experiment is im-
plemented by combining sentences and images in
each training batch. To make use of all the image
data, each batch contained 65% images and the re-
maining 35% sentences. These results can then be
also compared to the unimodal baselines explained

Model

Test set IM TXT MM Random

Image 0.962 0.687 0.957 0.290
Text 0.458 0.734 0.707 0.187

Table 1: AUC-PR scores for the models trained on differ-
ent regimes, when testing over the different modalities.

above.

4 Model

CLIP (Radford et al., 2021) was used to gener-
ate feature representations of each text and image
in the datasets. CLIP is a pretrained visual-and-
language model that has been trained to align text
and images in a common feature space where sam-
ples containing similar textual or visual concepts
are pulled together while nonsimilar concepts are
pushed apart. Models like CLIP are suitable for the
investigation in this work since it should create sim-
ilar feature representations of protests regardless of
the modality. While little information is provided
about the pretraining data of CLIP, we hypothe-
size news, including protests, to be represented to
some extent. In such case, the representations of
CLIP should be somewhat aligned for this type of
data. The features generated by CLIP were used
as input to a linear classification layer, which was
trained to classify text or image samples as protest
or non-protest. This is visualized in Figure 1. We
train only the linear classification layer weights,
and keep the pretrained CLIP weights frozen dur-
ing training. This is to be able to swap the encoder
at test time in the cross-modal experiments.

The training was done on three different datasets,
as described in Section 2, resulting in three trained
classifiers: one trained on the pure image dataset
(henceforth refered to as IM), one on the pure text
dataset (henceforth refered to as TXT) and a third
trained jointly on both, i.e. the multi-modal mixed
dataset (henceforth refered to as MM).

For IM, the learning rate (LR) was set to 0.01,
and for both TXT and MM it was set to 0.001. The
LR-scheduler for IM and TXT was a lambda decay,
with λ = 0.95, and none for MM. In addition to
these hyperparameters, the Adam optimizer and
batch size of 128 were used for all three models.
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(a) IM model score: 0.99
TXT model score: 0.91
MM model score: 0.98
Label: protest

(b) IM model score: 0.99
TXT model score: 0.21
MM model score: 0.92
Label: protest

(c) IM model score: 0.097
TXT model score: 0.96
MM model score: 0.43
Label: protest

(d) IM model score: 0.0052
TXT model score: 0.51
MM model score: 0.097
Label: not protest

Figure 2: Three randomly chosen positive examples and one negative from the UCLA test data along with the three
models’ prediction scores. Subfigure 2a shows an example when the scores of the IM and TXT models coincide and
Subfigure 2b when the IM model scores high, but the TXT model does not. Subfigure 2c shows an example in which
the TXT model scores high and the IM model does not and Subfigure 2d shows a negative (i.e. not protest) example.

5 Results and Discussion

As seen from Table 1, the image and text baselines
both perform better than their cross-modal coun-
terparts, where the models are tested on the oppo-
site modality than they are trained on. However,
the cross-modal performance is significantly bet-
ter than the random baseline, which indicates that
the protest detection ability indeed can be trans-
ferred between modalities to some extent. One
interesting result is that the TXT model performs
almost equally well on images compared to when
testing on text. This indicates that the TXT model’s
understanding of protests can almost fully be trans-
ferred to images, since the performance between
the modalities only differs by a score of ∼ 0.05.
In contrast, the performance of the IM model de-
creases by more than half when testing on text com-
pared to images. Considering these two outcomes,
it seems reasonable to conclude that training a clas-
sifier on texts provides a more general understand-
ing of protests, which can be transferred to images,
while training on images gives the model a way
of interpreting protests that cannot be found to the

same extent in the texts used for testing.

When comparing the unimodal baselines, it is
clear that the IM model performs much better with
an AUC-PR score of 0.962 compared to the TXT
baseline of 0.734. This could be a consequence of
the image data being more homogenous in terms
of how they represent protests. This also follows
the reasoning above: that the texts contain a wider
range of representations of protests.

An aspect that would be interesting to further
investigate is which characteristics in the data that
are significant for the separate models when classi-
fying protests, by carrying out an even more thor-
ough data analysis. When inspecting some samples
that the IM model scores high on, see Figure 2,
many of them contains concepts such as banners
and placards, full-body humans, roads and cities
as well as buildings. As for the text-model, some
words that often occured in samples that recieved
high scores include protest, traffic, roads, bodies
of power (ie. government, police), bomb, students,
injured, crowd. Neither the list of visual concepts
or words are exhaustive, but they could give an

Fragment PIM PMM PTXT Label

"Taxi operators marching in protest against the government’s taxi
recapitalisation scheme reached the Union Buildings in Pretoria on Friday." 0.87 0.82 0.93 protest

"(SUBS: Pics will be available later on www.sapapics.co.za) South African
rape laws still blame the survivor of rape, People Opposing Woman Abuse
(Powa) said on Friday at a protest outside the Johannesburg High Court."

0.85 0.77 0.63 protest

"Workers at the company’s Zondereinde mine, near Amandelbult in
Limpopo, went on strike on November 3." 0.30 0.67 0.87 protest

Table 2: Three randomly chosen positive examples from the Protest News test data. The first row shows an example
for which both IM and TXT give high scores of it being a protest. The second row shows an example that recieves
high scores from IM, but not from TXT. The last row shows an example that recieves a high score from TXT, but
not from IM.
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indication of what the models recognize when iden-
tifying protests. These lists also show that different
aspects of protests are captured in the data due
to the nature of the modalities and the sources of
the data, which could be an aspect that affects the
performance. Figure 2d shows one image with a
negative label that recieves low scores from the
IM model, despite the fact that it pictures a crowd.
It does however lack placards and several of the
other characteristics that are described above as
possible factors that trigger the IM model to give
high scores. The TXT model on the other hand,
gives an intermediate score which indicates that the
model is inferior at distinguishing between casual,
friendly crowds and protest related crowds in im-
ages. This behaviour is seen for multiple similar
samples that aren’t displayed here.

When it comes to the case of the multi-modal
(MM) model we see two things. Firstly, when com-
paring performance to the unimodal baselines it is
clear that the MM model performs slightly worse in
both cases. When testing on images, the difference
in performance is∼0.013, whereas for text∼0.034.
In contrast to our hypothesis, this indicates that
training on both modalities does not provide the
model with a broader understanding of the con-
cept of protests, and consequently the performance
on unimodal test sets is not improved. We spec-
ulate this is partly due to the fact that texts and
images come from different source types (main-
stream news vs social media), whereas CLIP has
been trained to align text and image pairs from the
same source. There is a possibility that the results
would be different if the data used for testing was
collected from a wider range of sources than the
data used for training, since new data sources may
represent protest in slightly different ways.

What one does see however, is that when com-
paring the MM model to both the IM and TXT
models in the cross-modal set up, the MM model
performs noticeably better. This is an indication
that the multi-modal model in fact learns a repre-
sentation of protests that succesfully incorporates
information from both modalities.

6 Related work

Our work is a contribution to the field of event de-
tection, that is, identifying mentions of whether a
certain event has occurred. Early data-driven ap-
proaches to this task based on machine learning re-
lied heavily on hand-designed lexical and syntactic

features e.g. (Li et al., 2013; Patwardhan and Riloff,
2007). However, since then approaches based on
deep learning indicate better performance can be
achieved using less feature engineering by training
on “raw” (textual) data (Nguyen et al., 2016; Chen
et al., 2015; Boros, 2018). Specifically for the ex-
traction and detection of socio-political events such
as protests, some recent works have taken a pure
visual approach. For example, Joo and Steinert-
Threlkeld (2018) demonstrated that a visual analy-
sis can contribute protest related features that might
be harder to extract from pure text, such as violence,
crowd size as well as demographic composition.
Won et al. (2017) further investigated the ability
to extract protest related information from images,
where the UCLA Protest Image dataset is presented
along with experiments for the detection of protests
and related attributes.

Previous works taking a multi-modal approach
to socio-political event detection also exist. Petkos
et al. (2012) used a clustering method of textual as
well as visual features to discover events in social
media data. Qian et al. (2015) proposed a boosted
multi-modal extension to LDA for training a su-
pervised event classification model. More recently,
Zhang and Pan (2019) take a deep learning ap-
proach to the detection of collective action events
based on text and potentially an image from social
media posts in China. Similarly to CLIP, they use a
late-fusion dual encoder for the processing of text
and image modalities.

Our work differs in that we investigate using non-
parallel data, e.g. where protest texts and images
are labeled and classified individually. We also dif-
fer in that we use data from different sources (im-
ages from social media and text from mainstream
news), as well as using state-of-the-art pretrained
visual-and-language representations.

7 Conclusions

From the results and discussion carried out, we
can conclude that the performance of a unimodal
protest detection model trained on text can trans-
fer almost fully to do zero-shot classification of
protests in images. This means that a protest classi-
fier trained on texts can be used directly on images
without any further training or fine-tuning involved,
and without significant decrease in performance.
The benefit of this would naturally be that an im-
age protest classifier can be put in use without the
need of annotating any image data. On the other
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hand, we observe that the transfer from images to
text implies a loss of performance while it is still
significant compared to the random baseline. Fur-
thermore, the investigation shows that multi-modal
training for protest detection can be used almost
interchangeably to a unimodaly trained model, as
performance does not differ substantially.

Ethical statement

Socio-political analysis is important for understand-
ing society at large, and to be able to report on how
it develops. It is however of utmost importance that
the development of tools and methods is performed
with ethical considerations in mind. For example,
risks include misuse for large scale surveillance by
authoritarian regimes as well as discriminatory per-
formance against minorities due to hidden system
biases.

The underlying data used for training protest
detection models will inevitably contain spurious
correlations that the model might learn to base a
protest/not protest decision on. For text based de-
tection, this could be names of organizations, ge-
ographical locations or other entities prominent
in protests occuring when the data was collected.
For image based detection, visual traits such as the
etnicity of individual protestors might also be a
source of bias.

While these aspects of the model were not ex-
plicitly addressed by our research questions in this
work, they are important to investigate further as a
prerequisite for application of these systems.
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and Arda Akdemir. 2019. Overview of clef 2019
lab protestnews: Extracting protests from news in a
cross-context setting. In Experimental IR Meets Mul-
tilinguality, Multimodality, and Interaction, pages
425–432, Cham. Springer International Publishing.

Jungseock Joo and Zachary C. Steinert-Threlkeld. 2018.
Image as data: Automated visual content analysis for
political science.

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 73–82, Sofia, Bulgaria.
Association for Computational Linguistics.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Grish-
man. 2016. Joint event extraction via recurrent neural
networks. In Proceedings of the 2016 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 300–309, San Diego, California.
Association for Computational Linguistics.

Siddharth Patwardhan and Ellen Riloff. 2007. Effective
information extraction with semantic affinity patterns
and relevant regions. In Proceedings of the 2007
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pages 717–
727.

Georgios Petkos, Symeon Papadopoulos, and Yiannis
Kompatsiaris. 2012. Social event detection using
multimodal clustering and integrating supervisory
signals. In Proceedings of the 2nd ACM Interna-
tional Conference on Multimedia Retrieval, ICMR
’12, New York, NY, USA. Association for Computing
Machinery.

Shengsheng Qian, Tianzhu Zhang, Changsheng Xu, and
M. Shamim Hossain. 2015. Social event classifica-
tion via boosted multimodal supervised latent dirich-
let allocation. ACM Trans. Multimedia Comput. Com-
mun. Appl., 11(2).

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
Gretchen Krueger, and Ilya Sutskever. 2021. Learn-
ing transferable visual models from natural language
supervision.

Donghyeon Won, Zachary C. Steinert-Threlkeld, and
Jungseock Joo. 2017. Protest activity detection and
perceived violence estimation from social media im-
ages.

Han Zhang and Jennifer Pan. 2019. Casm: A deep-
learning approach for identifying collective action
events with text and image data from social media.
Sociological Methodology, 49(1):1–57.

60

https://doi.org/10.3115/v1/P15-1017
https://doi.org/10.3115/v1/P15-1017
https://doi.org/10.1007/978-3-030-28577-7_32
https://doi.org/10.1007/978-3-030-28577-7_32
https://doi.org/10.1007/978-3-030-28577-7_32
https://doi.org/10.48550/ARXIV.1810.01544
https://doi.org/10.48550/ARXIV.1810.01544
https://aclanthology.org/P13-1008
https://aclanthology.org/P13-1008
https://aclanthology.org/P13-1008
https://doi.org/10.18653/v1/N16-1034
https://doi.org/10.18653/v1/N16-1034
https://doi.org/10.1145/2324796.2324825
https://doi.org/10.1145/2324796.2324825
https://doi.org/10.1145/2324796.2324825
https://doi.org/10.1145/2659521
https://doi.org/10.1145/2659521
https://doi.org/10.1145/2659521
https://doi.org/10.48550/ARXIV.2103.00020
https://doi.org/10.48550/ARXIV.2103.00020
https://doi.org/10.48550/ARXIV.2103.00020
https://doi.org/10.48550/ARXIV.1709.06204
https://doi.org/10.48550/ARXIV.1709.06204
https://doi.org/10.48550/ARXIV.1709.06204
https://doi.org/10.1177/0081175019860244
https://doi.org/10.1177/0081175019860244
https://doi.org/10.1177/0081175019860244


Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE), pages 61 - 69
December 7-8, 2022 ©2022 Association for Computational Linguistics

IDIAPers @ Causal News Corpus 2022: Efficient Causal Relation
Identification Through a Prompt-based Few-shot Approach

Sergio Burdisso∗,1,2, Juan Zuluaga-Gomez1,3, Esaú Villatoro-Tello1,5, Martin Fajcik1,4

Muskaan Singh1, Pavel Smrz4, Petr Motlicek1

1Idiap Research Institute, Martigny, Switzerland
2Universidad Nacional de San Luis (UNSL), San Luis, Argentina

3Ecole Polytechnique Fédérale de Lausanne, Switzerland
4Brno University of Technology, Brno, Czech Republic

5Universidad Autónoma Metropolitana Unidad Cuajimalpa, Mexico City, Mexico
∗corresponding author: sergio.burdisso@idiap.ch

Abstract

In this paper, we describe our participation in
the subtask 1 of CASE-2022, Event Causal-
ity Identification with Casual News Corpus.
We address the Causal Relation Identification
(CRI) task by exploiting a set of simple yet
complementary techniques for fine-tuning lan-
guage models (LMs) on a small number of
annotated examples (i.e., a few-shot config-
uration). We follow a prompt-based predic-
tion approach for fine-tuning LMs in which
the CRI task is treated as a masked language
modeling problem (MLM). This approach al-
lows LMs natively pre-trained on MLM prob-
lems to directly generate textual responses to
CRI-specific prompts. We compare the perfor-
mance of this method against ensemble tech-
niques trained on the entire dataset. Our best-
performing submission was fine-tuned with
only 256 instances per class, 15.7% of the all
available data, and yet obtained the second-best
precision (0.82), third-best accuracy (0.82),
and an F1-score (0.85) very close to what was
reported by the winner team (0.86).1

1 Introduction

Causal relation identification aims to predict
whether or not there exists a cause-effect relation
between a pair of events mentioned in a given text.
For example, in the sentence “Protests spread to 15
towns and resulted in the destruction of property”,
the automatic causal identification system must be
able to realize that there is cause-effect relation
between the events “protest” and “destruction”.

Hence, understanding causal relations within a
text is an essential aspect of natural language pro-
cessing (NLP) and understanding (NLU) (Ayyanar
et al., 2019a; Li et al., 2021; Tan et al., 2022c).
Once the causal information is identified within a

1Code available at https://github.com/idiap/cncsharedtask.

text, such knowledge becomes beneficial for many
other downstream NLP tasks, e.g., Information Ex-
traction, Question Answering, Text Summarization
(Ayyanar et al., 2019a; Man et al., 2022). How-
ever, due to the ambiguity and diversity in written
documents, causality identification is not easy and
remains a challenging problem.

The Event Causality Identification with Causal
News Corpus (CASE-2022) shared task (Tan et al.,
2022b) addresses this problem on a recently cre-
ated corpus named the Causal News Corpus (CNC)
(Tan et al., 2022a). Contrary to previous existing
causality corpora, the CNC dataset, manually an-
notated by experts, incorporates a broader set of
causal linguistic constructions, i.e., not only lim-
ited to explicit constructions, resulting in a more
challenging dataset.

In this paper, we describe our followed method-
ology for addressing the causal event classifica-
tion shared task (subtask 1) during the CASE-2022
competition (Tan et al., 2022b).2 Our primary
method, based on a few-shot configuration, fol-
lows a prompt-based approach for fine-tuning the
language model (LM). The intuitive idea of this ap-
proach is to allow the LM to directly auto-complete
natural language prompts. Following this tech-
nique, we leverage the LM’s knowledge and let
it decide the correct label of the input sequence.
Additionally, we evaluate the performance of en-
semble techniques trained using the entire dataset
available. Our results demonstrate that our few-
shot, prompt-based, fine-tuning approach can gen-
eralize well even when using as few as 256 samples
per class for training, outperforming ensemble tech-
niques trained with the entire dataset, as well as
most of other teams’ submissions.

The rest of the paper is organized as follows.

2We refer the reader to our standalone publication (Fajcik
et al., 2022) to know our results for subtask 2.
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Section 2 describes relevant related work, Section
3 describes the components of our main method,
namely the prompt-based approach. Section 4 de-
scribes the experimental setup, i.e., datasets, ad-
ditional baselines, experiments configuration and
obtained results. Finally, Section 5 depicts our
main conclusions and future work directions.

2 Related Work

Previous work on causal relation identification
varies from knowledge-based to deep neural net-
work approaches (Deep-NN). Knowledge-based
systems rely on linguistic patterns extracted us-
ing an exhaustive exploration of the data, where
lexico-semantic and syntactic analysis lead to the
identification of relevant structures and keywords
that depict the presence of a causal relation in the
text (Garcia, 1997; Khoo et al., 2000). Although
interpretable, these methods require a lot of human
effort to generate relevant patterns and result in
models that are not readily applicable in different
domains.

Statistical machine learning (ML) approaches
leave to the selected algorithm to find patterns in
the data on the basis of the manual annotation. Tra-
ditionally, using different NLP tools, it is possible
to compute various features for a given collection
and apply any ML pipeline to train a causality re-
lation classifier, e.g., (Rutherford and Xue, 2014;
Hidey and McKeown, 2016). However, one main
disadvantage of these techniques is the language
dependency and error propagation of the NLP tools,
e.g., syntactic parsers.

Finally, recent approaches based on Deep-NN
have become popular, given their powerful rep-
resentation learning ability. Typical approaches
include convolutional neural networks (Ayyanar
et al., 2019b), long short-term memory networks
(Li et al., 2021), and pre-trained transformer-based
LMs such as BERT (Devlin et al., 2019), where fol-
lowing a standard fine-tuning approach makes pos-
sible the detection of causality relations (Tan et al.,
2022c; Khetan et al., 2022; Fajcik et al., 2020). Nor-
mally, these methods involve high computational
costs and large amounts of labeled data. However,
in this work, we show that pre-trained LMs can
still be effective even when fine-tuned with very
few instances.

Contrary to previous work, we evaluate the effec-
tiveness of very recent prompt-based prediction ap-
proaches under a few-shot configuration for causal

relation identification.

3 Prompt-Based Approach

In the “pre-train, prompt, and predict” paradigm,
unlike the standard “pre-train and fine-tune”
paradigm, instead of adapting pre-trained LMs
to downstream tasks via objective engineering,3

downstream tasks are reformulated to look more
like those solved during the LM pre-training
phase (Liu et al., 2021). More precisely, prompt-
based prediction treats the downstream task as a
masked language modeling problem, where the
model directly generates a textual response (re-
ferred to as a label word) to a given prompt de-
fined by a task-specific template (Gao et al., 2021).
For instance, when identifying the sentiment of a
movie review like “I love this movie.” we may
continue with “Overall, it was a [MASK] movie.”
and ask the LM to fill the mask with a sentiment-
bearing word. In this example, the original input
text x (“I love this movie.”) is modified using the
template “[x] Overall, it was a [MASK] movie.”
into a textual string prompt x′ in which the mask
will be filled with a label word. Some examples of
label words for this example could be “fantastic”
or “boring”.

In the case of classification tasks, in addition to
defining a set of possible label words, it is neces-
sary to define a mapping between each one and
the actual output labels. For instance, if labels +
and − refer to positive and negative sentiment, re-
spectively, “fantastic” in previous example could
be mapped to output label +, and “boring” to −.

Formally, let L be a pre-trained language model,
ft(x) a function that converts the input x into a
prompt by instantiating template t which contains
one [MASK] token, mask. Let word : Y → W
be a mapping from the task label space, Y , to the
label words set,W . Then, the classification task is
converted to a masked language modeling (MLM)
task in which the probability of predicting class
y ∈ Y is modeled as:

p(y|x) = p(mask = word(y)|ft(x)) =

=
exp(wword(y) · hmask)∑

y′∈Y exp(wword(y′) · hmask)
,

(1)

where hmask is the hidden vector of [MASK] and
wv denotes the vector encoding word v. Note that

3Objective engineering referes to both the pre-training and
fine-tuning stages of LMs (Liu et al., 2021).
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[CLS]Soldiers were hurt in the attacks. This is [MASK].[SEP] Protesters were injured in the firing. This is causal.[SEP]13 bombs went off. This is random.[SEP]

[CLS]Soldiers were hurt in the attacks. This is [MASK].[SEP]A person charged for its murders . This is causal.[SEP]Victim of labour unrest. This is random.[SEP]

[CLS]Soldiers were hurt in the attacks. This is [MASK].[SEP]The bombing created panic. This is causal.[SEP]The strike is still on. This is random.[SEP]

RoBERTa's
MLM head

Input instance x:"Soldiers were hurt in the attacks."            Template t:[x]This is [MASK][SEP]

logits
average 

causal (output positive class) ✓ 
random (output negative class) 

Template instantiated with x Demonstration for positive class Demonstration for negative class 
ft'(x) =             ft ("Soldiers were hurt in the attacks.")             +                       ft←causal (a positive instance)                      +        ft←random (a negative instance)

Figure 1: Augmented prompt-based classification for causality identification task. First, the input instance
x = “Soldiers were hurt in the attacks” is converted into three different input prompts by applying f ′

t(x) three
times. Then, these three prompts are given to a RoBERTa model, and one logit vector is obtained for each. These
vectors are then averaged, and the word with the highest score, “causal”, is selected. Finally, this word is mapped
to its corresponding class, and x is classified as positive. Note that, in this example, we have the following word-to-
class label mapping word(positive) = “causal” and word(negative) = “random”.

when fine-tuning L to minimize the cross-entropy
loss, the pre-trained weights wv are re-used, and
there’s no need to introduce any new parameter.
On the contrary, with standard fine-tuning a task-
specific head, softmax(Woh[CLS]), has to be
added, with new task-specific learnable parameters
Wo ∈ R|Y|×d, which increases the gap between
pre-training and fine-tuning.

Hereafter we will refer to the "causal" and "non-
causal" classes as “positive” (+) and “negative”
(−) respectively. In addition, and following previ-
ous work by Gao et al. (2021), we append one an-
swered prompt for each class to the input prompt as
demonstrations.4 More precisely, let Y = {+,−}
be the set of labels for the binary causality identi-
fication task, let t← v be the template t in which
its [MASK] token has been filled with word v, and
wy = word(y) the word label for class y ∈ Y ,
then we redefine ft(x) in Equation 1 as f ′t(x) de-
fined as:

f ′t(x) = ft(x) ∥ ft←w+(x+) ∥ ft←w−(x−) (2)

where ∥ is the string concatenation operator, and
xy is an instance of class y randomly sampled from
the training set. Figure 1, depicts an example of
three different input prompts are shown by applying
f ′t(x) three times to the input instance x.
Classification process: the process is illustrated
in Figure 1. First, the input instance x is converted

4These demonstrations (Gao et al., 2021) are used to
demonstrate the LM, in-context, how it should provide the
answer to the input prompt.

into d different input prompts by applying f ′t(x), d
times. Then, each input prompt is given to the LM
to obtain d logit vectors holding the word scores
for the mask in each prompt. A simple ensemble
scheme is then applied by averaging all d logit vec-
tors, and the word label with the highest score is
selected, which is finally mapped to its correspond-
ing class y using mapping word(y).
Training and model selection: for developing our
prompt-based models, we performed a simplified
version of the process described in previous work
by Gao et al. (2021). Namely, we carried out the
following six steps:

Step 1: we created a new training set, τk, by
extracting k instances per class from the original
train partition, and used the remaining 2925−2×k
instances as a large evaluation set δT−k (dataset
stats are given in Table 2).

Step 2: in order to add demonstrations to a given
input x (see Equation 1), we uniformly sampled x−

and x+ from the top-50% most similar instances in
τk.5 To do so, we pre-computed the sentence em-
beddings of training instances using a pre-trained
SBERT (Reimers and Gurevych, 2019) model, and
cosine distance was used as a similarity metric.

Step 3: using “causal” and “random” as word
labels,6 the next step was to generate candidate

5We tested different percentages, however 50% was the
best-performing one.

6We performed some simple preliminary tests using
different words like “coincidence”, “choice”, “causal”,
“cause”, with few trivial hand-crafted templates (e.g.
“[x] It was [MASK]”), from which “random” and “casual”
where selected.
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Precision Recall Accuracy F1-Score
Submission dev test dev test dev test dev test

Ensemble-10m 88.46 82.78 90.45 84.66 88.26 81.35 89.44 83.70
Prompt-256 85.49 82.80 92.70 87.50 87.30 82.64 88.95 85.08
Prompt-356e 82.72 80.41 88.76 88.64 83.60 81.35 85.63 84.32
Prompt-1000 84.56 81.08 91.57 85.22 86.07 80.39 87.87 83.10
Ensemble-8p 86.10 81.15 90.44 88.07 86.69 81.67 88.22 84.47

Table 1: Official performance metrics in percentages (%) from the selected methods in dev and test partitions of the
Causal News Corpus.

templates automatically using T5. First, each train-
ing instance x of class y in τk was converted to
“[x]<P>word(y)<S>” where <P> and <S> are
T5 mask tokens, and used a 100 wide beam search
to decode multiple template candidates by filling
<P> and <S> tokens.

Step 4: next step was sorting all 100 final candi-
date templates by F1 score. However, since this is
a time-consuming step, a subset of the evaluation
set was used by sampling 256 unique positive and
negative instances from δT−k. Note that no fine-
tuning is used at this point, just the out-of-the-box
pre-trained LM.

Step 5: we selected the top-10 best-performing
templates as final candidates. For each candidate
template we fine-tuned the LM as a MLM task (see
Equation 1) on the training set, τk, evaluating it on
the complete evaluation set, δT−k.

Step 6: finally, the model with the best F1 score
on the official dev set was selected as a candidate
for submission —we also checked that the F1 score
on δT−k was among the first ones too (if not first).
Note that in this step we’re evaluating the model
on unseen data since the official dev set is being
used as an unofficial test set.

The above process was repeated varying the num-
ber k of training instances, with k = 256, 356,
512, and 1000;7 the number d of input prompts
to ensemble during classification stage, with d
from 1 to 9; and using RoBERTa (large and base),
and DeBERTa V3 (base) as pre-trained LMs. In
step 5, models were fine-tuned for a maximum of
1000 steps using AdamW (Loshchilov and Hut-
ter, 2019) optimizer (β1=0.9, β2=0.999, ϵ=1e−8)
with a learning rate of γ=1e−5 with no weight de-

7Inspired by evidence showing a performance saturation
when k = 256 (Figure 3 in Gao et al. (2021)), compared to
standard fine-tuning on the entire dataset, we decided to start
from this value.

Label Train Dev Test Total

Causal 1603 178 176 1957
Non-causal 1322 145 135 1602
Total: 2925 323 311 3559

Table 2: Number of positive (causal) and negative (non-
causal) instances in the train, dev, and test sets of the
shared task. We refer the interested reader to (Tan et al.,
2022b) to know more details about the data and the
labeling process.

cay (λ=0). Models were evaluated every 100 steps
and check-pointed when new best F1 scores were
obtained.

4 Results & Discussion

In this section we provide the details of the em-
ployed dataset, a set of additional experiments
based on recent ensemble techniques, and the final
configuration of our submitted runs to the subtask
1 of CASE 2022.

4.1 Dataset

As mentioned earlier, the main goal of subtask 1 of
CASE-2022 is to classify whether or not a given
sentence contains a cause-effect relation. Thus,
systems have to be able to predict Causal or Non-
causal labels per sentence. Table 2 contains a few
statistics regarding the distribution of the classes in
the train, dev, and test partitions.

4.2 Ensemble-based Approach

We also performed several ensembles of different
fine-tuned LMs to increase the generalization and
compensate for the overfitting of the models. We
followed the approach described in Fajcik et al.
(2019), called TOP-N fusion. In this formulation,
we first define a set of M pre-trained LMs, varying
the training seed. TOP-N fusion starts by choosing
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one uniformly random model from the set, which is
added to the ensemble. Next, it randomly shuffles
the rest of the models and tries adding them into the
ensemble once, as long as the F1 score improves.
Each time a model is added to the ensemble, its
performance gets measured. The model would stay
in the ensemble only and only if it improved the
overall performance. This aims at an iterative opti-
mization of the ensemble’s F1 score by averaging
the output probabilities. As the selection process is
stochastic, we repeat the process N=10000 times.
We construct a new ensemble for each iteration,
independently of the previous ones. Finally, we se-
lect the best performing ensemble for submission.
Further details are given in Appendix B (Figure 2).

4.3 Official Submissions

Next, we describe each one of our submissions:
Ensemble-10m: ensemble model described in sub-
section 4.2 with 10 final models obtained from a set
of 150 initial ones (50 fine-tuned bert-base-cased,
roberta-base, and deberta-v3-base models).
Prompt-256: prompt-based roberta-large model
with k=256 training instances per class, d=3 input
prompts to ensemble during classification stage;
and template t = “[x] This is not [MASK]”.
Prompt-1000: The same previous model but with
t = “[x] There were no [MASK]ities in this”,
k=1000, and d=1.
Ensemble-8p: ensemble model described in sub-
section 4.2 with 8 final models obtained from the
top-50 best performing prompt-based models as
the initial set.
Prompt-356e: three prompt-base models trained
with k=356 instances. The first two models have
the same template as Prompt-1000 but with d=2
and 3, respectively. The third one uses the tem-
plate t = “[x] The incident is not [MASK]” with
d=1.8 Finally, a simple majority voting ensemble
among these three models generates the output.

4.4 Results

Table 1 shows the official results, both in dev and
test partitions, for our five submissions. As ex-
pected, the ensemble of several LMs (Ensemble-
10m) was able to obtain outstanding performance
across several metrics during the validation phase
(i.e., dev partition9). However, the performance

8Note that these prompts, as well as previous ones, were
automatically generated as described in section 3.

9We further performed a 5-cvf experiment on six different
architectures, see the results on Table 3 in Appendix A.

dropped significantly in the test partition (F1=
89.44→ F1= 83.70). On the contrary, our prompt-
based approach trained on 256 instances per class
(Prompt-256) could generalize better on the test par-
tition. Such submission obtained 2nd place in terms
of precision (82.80%), 3rd in accuracy (82.64%),
and 5th in F1 (85.08%) —the best F1 was 86.19%.
However, the main advantage of our approach is
that it allows the LM to be trained in a few-shot
setting, making it harder for the model to overfit
the data. Moreover, most of the available data can
be kept and used for measuring the generalization
power of the model instead. For instance, our best-
performing model (Prompt-256) was fine-tuned
only on 15.7% of all available data,10 allowing
the remaining 84.3% to be used for evaluation and
model selection (74.3% as evaluation set and 10%
as our own test set). Therefore, model selection
choice is more robust since the risk of performance
drop on unseen data, such as the official test set, is
expected to be lower.

5 Conclusions

This paper describes our participation in the CASE-
2022 subtask 1. Our proposed approach uses a few-
shot configuration in which a prompt-based model
is fine-tuned using only 256 instances per class and
yet was able to obtain remarkable results among all
16 participant teams. The comparison against tradi-
tional fine-tuning techniques, ensemble approaches,
as well as the other participating models, show the
potential of the proposed approach for better gener-
alizing the posed task.

For future work, we plan to perform further abla-
tion studies when we have access to test set ground
truth labels. For instance, measuring the dev-to-test
performance drop in relation to k or the robustness
against different training and demonstration sam-
pling given a fixed k.
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A Baseline results

We performed standard cross-entropy fine-tuning
on six different pre-trained LMs (see first column
in Table 3) to produce baselines. We perform 5-fold
cross-validation for each architecture following the
partitions proposed in Tan et al. (2022a). Each sys-
tem is fine-tuned on the sequence classification task
to discriminate between casual and non-causal text
input sequences. We report the mean and standard
deviation (mean ± std) on the official development
set over several metrics, see Table 3.

During experimentation, we use the same learn-
ing rate of γ = 5e−5 with a linear learning rate
scheduler. Dropout is set to dp = 0.1 for the
attention and hidden layers, while Gaussian Er-
ror Linear Units (GELU) is used as activation
function (Hendrycks and Gimpel, 2016). We
fine-tune each model with an effective batch size
of 32 for 50 epochs with AdamW (Loshchilov
and Hutter, 2019) optimizer (β1=0.9, β2=0.999,
ϵ=1e−8). We noted that deberta-v3-base per-
formed systematically better in all metrics as shown
in Table 3.

B Ensembling

We compose ensembles before sub-
mission to leaderboard in two man-
ners. Ensembling-type-1 and
Ensembling-type-2:

• Ensembling-type-1: we define a set of
models, which contains only baseline LMs
fine-tuned on the sequence classification task
(see Table 3). We fine-tune 50 LMs for each
architecture from first column of Table 3.
Next, we run our TOP-N fusion algorithm
(see subsection 4.2) with the set of models
previously defined. The model submitted with
Ensembling-type-1 is Ensemble-10m,
reporting its performance in Table 1.

• Ensembling-type-2, we define a set
of models containing prompt-based LMs.
We select the top models for leaderboard
submission. The overall process for en-
sembling is illustrated in Figure 2. Even
though the figure only depicts our first ap-
proach (explained above), we perform exactly
the same with the prompt-based models ex-
plained in section 3. The model submitted
with Ensembling-type-2 is Ensemble-
8p, reporting its performance in Table 1.

Details about the ensemble: we select the best
ensembles based on its F1-score performance on
the dev set. For example, in Table 4 we list the per-
formance of the Ensembling-type-1 system
(i.e., Ensemble-10m) we used for our submission
in the leaderboard.
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Figure 2: Our proposed method to ensemble N fine-tuned LMs, based on Fajcik et al. (2019) approach. We fine-tune
several LMs by modifying only the training seed. Our implementation uses the sequence classification task from
HuggingFace toolkit (Wolf et al., 2020; Lhoest et al., 2021).

Model Precision Recall Accuracy F1-score Reference

bert-base-cased 83.52 ± 1.01 87.88 ± 3.08 79.68 ± 1.83 81.03 ± 1.20 (Devlin et al., 2019)

bart-base 84.21 ± 0.88 87.80 ± 2.26 80.99 ± 2.19 81.98 ± 0.95 (Lewis et al., 2020)

roberta-base 85.13 ± 1.11 87.86 ± 2.41 82.66 ± 2.35 83.21 ± 1.10 (Liu et al., 2019)

distilroberta-base 84.41 ± 1.20 88.05 ± 1.69 81.12 ± 2.09 82.22 ± 1.12 (Sanh et al., 2019)

deberta-base 82.67 ± 2.76 85.74 ± 2.72 80.32 ± 6.49 80.31 ± 3.44 (He et al., 2021b)

deberta-v3-base 85.87 ± 1.18 88.88 ± 1.74 83.18 ± 3.16 84.00 ± 1.18 (He et al., 2021a)

Table 3: Mean and standard deviation (mean ± std) of different metrics on the dev set using a 5-fold cross validation
scheme on the CNC dataset. We report results for six different architectures of pre-trained LMs.

Model F1-score (%)

bert-base-cased 85.15
roberta-base 86.76
deberta-v3-base 89.69

Ensemble-10m† 89.7

Table 4: Obtained F1-scores on the dev partition of
subtask 1 of the Causal News Corpus. Results depict
the top performance of three models that belong to the
Ensemble-10m configuration. The last row corresponds
to an ensemble model composed of ten independent
LMs, namely, six deberta-v3-base, two bert-base-cased,
and two roberta-base. More details about the ensemble
construction are described in subsection 4.2 and Fajcik
et al. (2019).
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Abstract

In this paper, we describe our shared task sub-
missions for Subtask 2 in CASE-2022, Event
Causality Identification with Casual News Cor-
pus. The challenge focused on the automatic de-
tection of all cause-effect-signal spans present
in the sentence from news-media. We detect
cause-effect-signal spans in a sentence using
T5 — a pre-trained autoregressive language
model. We iteratively identify all cause-effect-
signal span triplets, always conditioning the
prediction of the next triplet on the previously
predicted ones. To predict the triplet itself, we
consider different causal relationships such as
cause→effect→signal. Each triplet component
is generated via a language model conditioned
on the sentence, the previous parts of the cur-
rent triplet, and previously predicted triplets.
Despite training on an extremely small dataset
of 160 samples, our approach achieved com-
petitive performance, being placed second in
the competition. Furthermore, we show that
assuming either cause→effect or effect→cause
order achieves similar results.1

1 Introduction

Causality links the relationship between two ar-
guments — cause and effect (Barik et al., 2016).
Figure 1 shows examples extracted from the Causal
News Corpus (CNC) (Tan et al., 2022b). Cause
clauses appear in yellow, Effect in green, and Sig-
nals in pink; hereafter referred to as CES triplets.
As shown in the example, “the bombing created
panic among villagers”, illustrates that the event
“bombing” caused the event “panic among villagers”
termed as effect. The linkage among the cause and
effect, i.e., the word “created”, is termed as sig-
nal and can be expressed explicitly or implicitly.

1Code at https://github.com/idiap/cncsharedtask.

(A) Casual segment:
The treating doctor said . . . . . . . . . .Sangram.. . . .lost. . . . . . . . .around. . . . . .5kgs due to

:
the

:::::
hunger

:::
strike .

::
The

:::::
bombing created . . . . . .panic. . . . . . . . .among. . . . . . . . . .villagers .

::::::
Dissatified

::
with

::
the

:::::
package , . . . . . . . . .workers. . . . . . . .staged. . . .an . . . . . . . . . .all-night. . . . . . .sit-in .

(B) Non Casual Segment: Thus . . . .we . . . .too. . . . . . . .joined . . . .the. . . . . . . . . . . . . . .sloganerring .

The alliance claimed 4,000 took part last year.

Figure 1: Examples from the Causal News Corpus,
causes are in

::::::
yellow, effects in . . . . . .green, and signals in

pink. If a sentence has both — cause and effect — it is
referred to as casual (A), otherwise, as non-casual (B).

Automatically detecting and extracting causality
relations plays a vital role in many natural lan-
guage processing (NLP) works to tackle inference
and understanding (Dunietz et al., 2020; Fajcik
et al., 2020; Jo et al., 2021; Feder et al., 2021a). It
has applications in various down-streaming NLP
tasks, namely, causal question-answering genera-
tion, explaining social media behavior, political
phenomena, effective education, and gender bias
in the research community (Tan et al., 2014; Wood-
Doughty et al., 2018; Sridhar and Getoor, 2019;
Veitch et al., 2020; Zhang et al., 2020; Feder et al.,
2021b).

In this paper, we describe our methodology
for CASE-2022 cause-effect-signal span detection
shared task (Subtask 2). Overall, our main contri-
butions are listed below:

1. We show that cause-effect-signal spans can be
extracted by a simple pre-trained generative
seq2seq model trained on just 160 instances.

2. We develop a method for extracting all causal
triplets from the sentence in an iterative man-
ner.

3. We investigate how language models deal with
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the causal order of the cause and effect spans
to answer the research question “should cause
be identified first, and only then effect, or vice-
versa?”.

4. We show that an efficient F1 best-substring
matching algorithm, known for question an-
swering, can be applied to deal with rare cases
when a language model (LM) does not gener-
ate part of the input sequence.

2 Related Work

The problem of causality extraction from text is a
challenging task as it requires semantic understand-
ing and contextual knowledge. There were many at-
tempts in the domain of linguistics for corpora cre-
ation for event extraction but with limited size such
as CausalTimeBank (CTB) (Mirza et al., 2014)
from news with 318 pairs, CaTeRS (Mostafazadeh
et al., 2016) from short stories with 488 casual
links, EventStoryLine (Caselli and Vossen, 2017)
from online news articles with 1,770 casual event
pairs, semantic relation corpora PDTB-3 (Webber
et al., 2019) with over 7, 000 causal relations and
CNC corpus (Tan et al., 2022b,c) with 1,957 ca-
sual events with multiple event pairs. Compared
to previous datasets, CNC differs by focusing on
event sentences, accepting arguments which does
not need to form a clause, and not limiting itself
to pre-defined list of connectives, but instead in-
cluding causal examples in more varied linguistic
constructions. The previous work in this domain
can be broadly classified into knowledge-based ap-
proaches, statistical ML, and deep-learning-based
approaches. The knowledge-based approach uses
linguistic patterns by predefining hand-crafted or
keywords (Garcia et al., 1997; Khoo et al., 2000;
Radinsky et al., 2012; Beamer et al., 2008; Girju
et al., 2009; Ittoo and Bouma, 2013; Kang et al.,
2014; Khoo et al., 1998; Bui et al., 2010).

Statistical techniques (Girju, 2003; Do et al.,
2011) rely on building probabilistic models over
features extracted via third-party NLP tools such as
Wordnet (Miller, 1994). Deep-learning techniques
map words and features into low-dimensional
dense vectors, which may alleviate the feature spar-
sity problem. The most frequent used sequence to
sequence models are feed-forward network (Ponti
and Korhonen, 2017), long short-term memory net-
works (Kruengkrai et al., 2017; Dasgupta et al.,
2018; Martínez-Cámara et al., 2017) convolutional
neural networks (Jin et al., 2020; Kruengkrai et al.,

2017; Wang et al., 2016), recurrent neural networks
(Yao et al., 2019), gated recurrent units (Chen et al.,
2016) which embed semantic and syntactic infor-
mation in local consecutive word sequences (Yao
et al., 2019). Later unsupervised training model
such as BERT (Devlin et al., 2018; Sun et al., 2019),
RoBERTa (Becquin, 2020), graph convolution net-
work (Zhang et al., 2018), graph attention networks
and joint model for entity relation extraction (Li
et al., 2017; Wang and Lu, 2020; Zhao et al., 2021;
Bekoulis et al., 2018).

In this work, we base our model on T5 (Raffel
et al., 2020), a sequence-to-sequence transformer
model, pre-trained on a mixture of denoising objec-
tive and 25 supervised tasks such as machine trans-
lation, linguistic acceptability, abstractive summa-
rization or question answering. The unsupervised
denoising objective randomly replaces spans of
the input with different mask tokens, and gener-
ates contents of these masked spans prefixed with
these special mask tokens. Furthermore, our work
shares similarities with pointer-network (Vinyals
et al., 2015) based generative framework for vari-
ous NER subtasks introduced by Yan et al. (2021).
Contrastively, our work is more adapted to low-
resource scenarios, as no extra parameters were
added to our system, at the cost of errors, which
can happen in the postprocessing matching step.

3 Problem Description

CASE-2022 shared task challenge (Tan et al.,
2022a) aimed for event causality identification, and
extraction in casual news corpus (Tan et al., 2022b).
It comprised of two subtasks, namely casual event
classification (Subtask 1) and cause-effect-signal
span detection (Subtask 2)2. Subtask 2 aims on
extracting the spans corresponding to cause-effect-
signal (CES) triplets, as shown in Figure 1. We
trained a generative seq2seq model to address this
challenge and extracted the CES triplets using an
iterative procedure (see Section 4.1).

The dataset statistics are presented in Table 1.
The number of total sentences is given by the col-
umn #Sentences, whereas a total number of CES
triplets is in column #Relations. Column #Signals
shows how many signal annotations were present
in the total number of CES triplets.

2We participated in both subtasks, but report on Subtask 2
in this paper. For Subtask 1, we refer reader to our standalone
publication (Burdisso et al., 2022).
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Split #Sentences #Relations #Signals

Train 160 183 118 (64%)
Dev 15 18 10 (56%)
Test 89 119 98 (82%)

Table 1: Dataset statistics. See text for details.

4 Methodology

4.1 Language Model Training

We utilize T5 (Raffel et al., 2020), a pre-trained
autoregressive transformer-based language model
trained on a mixture of unsupervised and super-
vised tasks that require language understanding.
The model is conditioned n×3 times for each exam-
ple, as there can be n CES triplets in one sentence
(up to n = 4 triplets in training data). Each time,
we condition the language model 3 times for every
example and its corresponding CES triplet, generat-
ing a different triplet component (cause, effect, and
signal) to learn to generate the entire CES triplet.
As these triplets are unordered, we uniformly sam-
ple a random path among them (e.g., 2-3-1-4, for
sample with four triplets) during training. We only
train with as many triplets, as available in the train-
ing data. We now describe the input format, further
illustrated in Appendix B.

Firstly, the model’s encoder is conditioned with
sentence tokens <sentence> followed by the his-
tory of already generated CES triplets for this ex-
ample (empty if there was none) as

<sentence> _history : <history>.

The history is always prepended with _history:

tokens. The content of the history are the al-
ready generated triplets. Each part of the triplet
is prepended with its corresponding _cause:, or
_effect:, or _signal: sequence. Concurrently,
model’s decoder is prefixed with _cause: se-
quence. In this case, the probability of cause se-
quence is maximized.

Secondly, the model is conditioned with
sentence tokens <sentence> and cause tokens
<cause>, prepended with _cause: token as

<sentence> _cause : <cause>

_history : <history>.

This time, the decoder is prompted with _effect:

prefix, and the probability of effect sequence is
maximized.

Thirdly, the model is conditioned with sen-
tence tokens <sentence>, cause tokens <cause>,
and effect tokens <effect> with _effect: token
prepended as

<sentence> _cause : <cause> _effect

: <effect> _history : <history>.

Analogically, decoder is prompted with _signal:

prefix and probability of signal sequence is maxi-
mized. As the signal might not always be part of
the CES triplet, we let the model generate _empty

token in these cases.

4.2 Experimental Details
We use cross-entropy (CE) loss to train the T5. We
firstly average CE loss over tokens, then over in-
puts per example (for all CES triplets), and then
across mini-batch. We use greedy search to gen-
erate the sequences. In inference time, we always
generate 4 CES triplets for each sentence, as that is
the maximum we observed in the training data.

As we don’t constrain the decoding, the gen-
erated sequence does not have to match certain
sub-string in the input. However, the extractive
task requires inserting tags around a cause, effect,
or signal span inside the input sentence. There-
fore we map the generated sequences back to the
input sentence via F1 matching. In particular, for
each generated sequence, we find the most simi-
lar substring in the input, where the similarity is
measured via token-level F1 score. We utilize an
efficient F1 matching technique, which prunes out
a significant part of the search space, presented
in the Appendix C.1 of Fajcik et al. (2021)3. We
base our implementation on PyTorch (Paszke et al.,
2019), Transformers (Wolf et al., 2020) libraries
and use AdamW (Loshchilov and Hutter, 2017) for
optimization. We tune hyperparameters via Hy-
perOpt (Bergstra et al., 2015) and report the exact
hyperparameters in Appendix A.

4.3 Evaluation Metrics
In this section, we describe the metrics we used to
evaluate the system.

F1: F1 score was the official main evaluation met-
ric in the challenge. It is computed over B, and I
tags in sequence following the BIO tagging scheme
for every example and every CES triplet compo-
nent separately, using seqeval4. The F1 is then

3Implemented at https://shorturl.at/kxEVW.
4https://github.com/chakki-works/seqeval.
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System CE Cause Effect Signal Overall

Baseline - - - - 2.2
T5-NoHistory .181 - - - 67.7±2
T5-ECS .168 75.9±5 71.3±4 76.1±5 73,5±2
T5-CES .183 81.0±4 67.8±2 66.7±5 73.0±2
T5-CESLARGE .159 73.5±8 74.1±4 77.2±7 74.8±2

Table 2: Main results, in terms of Cross-Entropy (CE)
and F1, with ± standard deviations on dev data.

averaged firstly across dataset examples, obtain-
ing F1 for each component (Cause F1, Effect F1,
Signal F1). Overall F1 is computed as a weighted
average of component examples by their frequency.

CE: is an average token cross-entropy, computed
as described in Section 4.2.

ES Acc: is an empty-signal accuracy, i.e., an ac-
curacy of the model predicting no signal span in
the CES triplet when given golden cause and effect.

4.4 Baseline Model

As a baseline model, we used the CASE-2022 or-
ganizers’ provided model for Subtask 2: a random
generator that uniformly samples a cause, effect,
and signal spans5 from the sentence. This baseline
guarantees the cause and the effect do not overlap.

5 Results & Discussion

We now report the results obtained from averag-
ing at least ten measured performances from 10
checkpoints trained with different seeds6. We stud-
ied 4 different variants of our system. System T5-
CES is our vanilla model described in 4.1, based
on T5-base. System T5-CESLARGE is the same
model based on T5-large. Unlike T5-CES, system
T5-ECS reverses the generation order by generat-
ing the first effect and cause, followed by the sig-
nal (assuming causal order effect→cause→signal,
hence the suffix ECS). Lastly, we studied the effect
of conditioning the model on the history of already
generated triplets. We remove the history from the
input at all times in training and predict the four
identical CES triplets for each example in test time.
Our ablated results are available in Table 2.

Firstly, the model with no history at input per-
forms significantly worse, validating our hypothe-
sis that the model can learn to decrease the prob-
ability of the triplets already contained within the

5Available at https://shorturl.at/msY04.
6Dev set predictions from our best t5-base model are avail-

able at https://shorturl.at/bjVZ9.

System Dev Dev1 Dev2 Dev Test
F1 F1 F1 ES Acc F1

T5-ECS 77.7 80.9 71.1 82 43.4
T5-CESLARGE 78.3 77.4 80.0 70 43.7
T5-CES 77.5 79.6 73.3 70 48.8

Table 3: Top checkpoints submitted to the leaderboard.

input, even from just 160 samples. Secondly, we
observed a general trend that in the Cause F1 T5-
CES outperforms T5-ECS and in Effect F1, T5-ECS
outperforms T5-CES. This leads to the hypothesis
that whichever part of the triplet, cause or effect, is
generated first, the language model performs bet-
ter in its case. Thirdly, we observed that the large
model achieved the best results on average. It also
achieved our best single-checkpoint performance
on the dev set (78.3 Overall F1). However, given
the sample size of the dev set, the differences be-
tween T5-CES, T5-ECS, and T5-CESLARGE can
hardly be deemed significant.

Next we present our results on the test set in
Table 3. We submitted checkpoints with the best
overall F1 score on the dev set (Dev F1) to the
leaderboard while varying the model types. We
observed a significant drop in performance on the
test data. As the annotation on the test data is not
released at the time of writing, the causes of this
performance drop remain unknown. We hypothe-
size it could have been caused by a covariate shift
in the test data, as supported by #Signals statistics
in Table 1.

Additionally, we include extra statistics
(Dev0 F1, Dev1 F1, Dev ES Acc) for our best
checkpoints. We expected the performance on the
dev subset with two triplets (Dev2 F1) per example
to be worse than on the dev subset with one triplet
per sentence (Dev1 F1). Performance-wise this
does not always seem to be the case. Upon manual
analysis, we found that the model often failed in
the second round of triplet extraction. We found
2 LM hallucinations out of 18 dev samples in the
second generation round.

6 Inference Speed

Measuring the inference speed on test set, we used
Intel i5-based 2080Ti GPU workstation. The infer-
ence of 4 CES triplets without postprocessing per
1 sentence example took 1.46 seconds on average.
The postprocessing runtime was negligible, taking
0.025 seconds per sentence example on average.
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7 Conclusion

In this work, we have analyzed our CASE-2022
2nd place submissions on Subtask 2. We showed
that a generative model could extract cause-effect-
signal triplets at the competitive level using just
160 annotated samples. We investigated causal
assumptions about the generation order of cause
and effect to answer the research question “should
cause be identified first, and only then effect, or
vice-versa?” and found that while the Overall F1
won’t change significantly, whichever component
was generated first achieved better performance
on average (Cause first achieved better Cause-F1,
and Effect first Effect-F1 respectively). Finally, we
showed the F1 difference between the dev subset
with 1 or 2 causal triplets per sentence is negligible.
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Nelleke Oostdijk, Tadashi Nomoto, Hansi Het-
tiarachchi, Iqra Ameer, Onur Uca, Farhana Ferdousi
Liza, and Tiancheng Hu. 2022b. The causal news
corpus: Annotating causal relations in event sen-
tences from news. In Proceedings of the Language
Resources and Evaluation Conference, pages 2298–
2310, Marseille, France. European Language Re-
sources Association.

Fiona Anting Tan, Xinyu Zuo, and See-Kiong Ng.
2022c. Unicausal: Unified benchmark and model
for causal text mining.

Victor Veitch, Dhanya Sridhar, and David Blei. 2020.
Adapting text embeddings for causal inference. In
Conference on Uncertainty in Artificial Intelligence,
pages 919–928. PMLR.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. Advances in neural infor-
mation processing systems, 28.

Jue Wang and Wei Lu. 2020. Two are better
than one: Joint entity and relation extraction
with table-sequence encoders. arXiv preprint
arXiv:2010.03851.

Linlin Wang, Zhu Cao, Gerard De Melo, and Zhiyuan
Liu. 2016. Relation classification via multi-level
attention cnns. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1298–1307.

Bonnie Webber, Rashmi Prasad, Alan Lee, and Aravind
Joshi. 2019. The penn discourse treebank 3.0 annota-
tion manual. Philadelphia, University of Pennsylva-
nia, 35:108.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Zach Wood-Doughty, Ilya Shpitser, and Mark Dredze.
2018. Challenges of using text classifiers for causal
inference. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing.
Conference on Empirical Methods in Natural Lan-
guage Processing, volume 2018, page 4586. NIH
Public Access.

Hang Yan, Tao Gui, Junqi Dai, Qipeng Guo, Zheng
Zhang, and Xipeng Qiu. 2021. A unified generative
framework for various ner subtasks. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 5808–5822.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 7370–7377.

Justine Zhang, Sendhil Mullainathan, and Cristian
Danescu-Niculescu-Mizil. 2020. Quantifying the
causal effects of conversational tendencies. Proceed-
ings of the ACM on Human-Computer Interaction,
4(CSCW2):1–24.

Yuhao Zhang, Peng Qi, and Christopher D Manning.
2018. Graph convolution over pruned dependency
trees improves relation extraction. arXiv preprint
arXiv:1809.10185.

Shan Zhao, Minghao Hu, Zhiping Cai, and Fang Liu.
2021. Modeling dense cross-modal interactions for
joint entity-relation extraction. In Proceedings of the
Twenty-Ninth International Conference on Interna-
tional Joint Conferences on Artificial Intelligence,
pages 4032–4038.

76

https://aclanthology.org/2022.lrec-1.246
https://aclanthology.org/2022.lrec-1.246
https://aclanthology.org/2022.lrec-1.246
https://doi.org/10.48550/ARXIV.2208.09163
https://doi.org/10.48550/ARXIV.2208.09163
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6


Hyperparameter Value
learning rate .0002
hidden dropout .1436
attention dropout .4719
weight decay .0214
minibatch size 8
warmup proportion .1570
scheduler constant (no lr decrease)
max steps 10,000
max gradient norm 1

Table 4: Hyperparameter setting used in this work.

A Hyperparameters

In Table 4, we report the exact hyperparameters
used when fine-tuning T5. Warmup proportion,
weight decay, and dropouts are in the (0,1) range
(for instance, .4719 means 47.19%).

B Example of Inputs

The input format and label format for a single train-
ing example, a sentence with 2 CES triplets, are
illustrated in Figure. 2.
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ENCODER INPUT: ▁“ ▁I ▁think ▁independent ▁film ▁producers ▁have ▁the ▁responsibility ▁to ▁document ▁what ▁mainstream ▁media
▁failed ▁to ▁report ▁on . ▁ ” ▁But ▁on ▁the ▁ e ve ▁of ▁the ▁protest s ▁ ’ ▁second ▁anniversary ▁ , ▁Chan ▁claims ▁all ▁of ▁Hong ▁Kong ▁
’ ▁ s ▁major ▁cinema s ▁are ▁refus ing ▁to ▁show ▁his ▁film ▁ , ▁the ▁result ▁ , ▁ he ▁suspect s ▁ , ▁of ▁creep ing ▁self - censor ship ▁as
▁businesses ▁shy ▁away ▁from ▁off ending ▁Beijing ▁ . ▁history :  
DECODER PREFIX: ▁cause :
DECODER TARGET: ▁cause : ▁businesses ▁shy ▁away ▁from ▁off ending ▁Beijing  

ENCODER INPUT: ▁“ ▁I ▁think ▁independent ▁film ▁producers ▁have ▁the ▁responsibility ▁to ▁document ▁what ▁mainstream ▁media
▁failed ▁to ▁report ▁on . ▁ ” ▁But ▁on ▁the ▁ e ve ▁of ▁the ▁protest s ▁ ’ ▁second ▁anniversary ▁ , ▁Chan ▁claims ▁all ▁of ▁Hong ▁Kong ▁
’ ▁ s ▁major ▁cinema s ▁are ▁refus ing ▁to ▁show ▁his ▁film ▁ , ▁the ▁result ▁ , ▁ he ▁suspect s ▁ , ▁of ▁creep ing ▁self - censor ship ▁as
▁businesses ▁shy ▁away ▁from ▁off ending ▁Beijing ▁ . ▁cause : business e s ▁shy ▁away ▁from ▁off ending ▁Beijing ▁history : 
DECODER PREFIX: ▁effect :
DECODER TARGET: ▁effect : ▁creep ing ▁self - censor ship  

ENCODER INPUT: ▁“ ▁I ▁think ▁independent ▁film ▁producers ▁have ▁the ▁responsibility ▁to ▁document ▁what ▁mainstream ▁media
▁failed ▁to ▁report ▁on . ▁ ” ▁But ▁on ▁the ▁ e ve ▁of ▁the ▁protest s ▁ ’ ▁second ▁anniversary ▁ , ▁Chan ▁claims ▁all ▁of ▁Hong ▁Kong ▁
’ ▁ s ▁major ▁cinema s ▁are ▁refus ing ▁to ▁show ▁his ▁film ▁ , ▁the ▁result ▁ , ▁ he ▁suspect s ▁ , ▁of ▁creep ing ▁self - censor ship ▁as
▁businesses ▁shy ▁away ▁from ▁off ending ▁Beijing ▁ . ▁cause : business e s ▁shy ▁away ▁from ▁off ending ▁Beijing ▁effect : cre e ping
▁self - censor ship ▁history :  
DECODER PREFIX: ▁signal :
DECODER TARGET: ▁signal : ▁as  

ENCODER INPUT: ▁“ ▁I ▁think ▁independent ▁film ▁producers ▁have ▁the ▁responsibility ▁to ▁document ▁what ▁mainstream ▁media
▁failed ▁to ▁report ▁on . ▁ ” ▁But ▁on ▁the ▁ e ve ▁of ▁the ▁protest s ▁ ’ ▁second ▁anniversary ▁ , ▁Chan ▁claims ▁all ▁of ▁Hong ▁Kong ▁
’ ▁ s ▁major ▁cinema s ▁are ▁refus ing ▁to ▁show ▁his ▁film ▁ , ▁the ▁result ▁ , ▁ he ▁suspect s ▁ , ▁of ▁creep ing ▁self - censor ship ▁as
▁businesses ▁shy ▁away ▁from ▁off ending ▁Beijing ▁ . ▁history : ▁cause : ▁businesses ▁shy ▁away ▁from ▁off ending ▁Beijing ▁effect :
▁creep ing ▁self - censor ship ▁signal : ▁as
DECODER PREFIX:  ▁cause :
DECODER TARGET: ▁cause : ▁creep ing ▁self - censor ship  

ENCODER INPUT: ▁“ ▁I ▁think ▁independent ▁film ▁producers ▁have ▁the ▁responsibility ▁to ▁document ▁what ▁mainstream ▁media
▁failed ▁to ▁report ▁on . ▁ ” ▁But ▁on ▁the ▁ e ve ▁of ▁the ▁protest s ▁ ’ ▁second ▁anniversary ▁ , ▁Chan ▁claims ▁all ▁of ▁Hong ▁Kong ▁
’ ▁ s ▁major ▁cinema s ▁are ▁refus ing ▁to ▁show ▁his ▁film ▁ , ▁the ▁result ▁ , ▁ he ▁suspect s ▁ , ▁of ▁creep ing ▁self - censor ship ▁as
▁businesses ▁shy ▁away ▁from ▁off ending ▁Beijing ▁ . ▁cause : cre e ping ▁self - censor ship ▁history : ▁cause : ▁businesses ▁shy
▁away ▁from ▁off ending ▁Beijing ▁effect : ▁creep ing ▁self - censor ship ▁signal : ▁as 
DECODER PREFIX: ▁effect :
DECODER TARGET: ▁effect : ▁all ▁of ▁Hong ▁Kong ▁ ’ ▁ s ▁major ▁cinema s ▁are ▁refus ing ▁to ▁show ▁his ▁film  

ENCODER INPUT: ▁“ ▁I ▁think ▁independent ▁film ▁producers ▁have ▁the ▁responsibility ▁to ▁document ▁what ▁mainstream ▁media
▁failed ▁to ▁report ▁on . ▁ ” ▁But ▁on ▁the ▁ e ve ▁of ▁the ▁protest s ▁ ’ ▁second ▁anniversary ▁ , ▁Chan ▁claims ▁all ▁of ▁Hong ▁Kong ▁
’ ▁ s ▁major ▁cinema s ▁are ▁refus ing ▁to ▁show ▁his ▁film ▁ , ▁the ▁result ▁ , ▁ he ▁suspect s ▁ , ▁of ▁creep ing ▁self - censor ship ▁as
▁businesses ▁shy ▁away ▁from ▁off ending ▁Beijing ▁ . ▁cause : cre e ping ▁self - censor ship ▁effect : all ▁of ▁Hong ▁Kong ▁ ’ ▁ s
▁major ▁cinema s ▁are ▁refus ing ▁to ▁show ▁his ▁film ▁history : ▁cause : ▁businesses ▁shy ▁away ▁from ▁off ending ▁Beijing ▁effect :
▁creep ing ▁self - censor ship ▁signal : ▁as 
DECODER PREFIX: ▁signal :
DECODER TARGET: ▁signal : ▁the ▁result ▁ , ▁ he ▁suspect s ▁ , ▁of

Figure 2: Example of tokenized inputs for a sentence with two annotated CES triplets. Phrases "ENCODER
INPUT". "DECODER PREFIX" and "DECODER TARGET" are not parts of the input, and are included for illus-
trative purposes only. Special sequences (_cause:, _effect:, _signal:, _history:) used between
concatenated parts of the input are in bold.
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Abstract

The paper describes the work that has been
submitted to the 5th workshop on Challenges
and Applications of Automated Extraction of
socio-political events from text (CASE 2022).
The work is associated with Subtask 1 of
Shared Task 3 that aims to detect causality in
protest news corpus. The authors used different
large language models with customized cross-
entropy loss functions that exploit annotation
information. The experiments showed that bert-
based-uncased with refined cross-entropy out-
performed the others, achieving a F1 score of
0.8501 on the Causal News Corpus dataset.

1 Introduction

A causal relationship in a sentence implies an un-
derlying semantic dependency between the two
main clauses. The clauses in these sentences are
generally connected by markers which can have
different parts of tags in the sentence. Moreover,
the markers can be either implicit or explicit and
for these reasons, one cannot rely on regex or
dictionary-based systems. Thus, there is a need
to investigate the context of the sentences. For the
given task, we exploited different large language
models that provide a contextual representation of
sentences to tackle causality detection.

Shared task 3 in CASE-2022 (Tan et al., 2022a)
aims for causality detection in news corpus, which
can be structured as a text classification problem
with binary labels. Pre-trained transformer-based
models (Vaswani et al., 2017) have shown success
on tackling a wide range of NLP tasks including
text generation, text classification, etc. The authors
look into inter-annotation agreements and number
of experts and how they can be included in the
loss to improve the performance of the pre-trained
models.

The main contributions of the paper are as fol-
lows:

1. Extensive experimentation with different large
language models.

2. Incorporation of additional annotation infor-
mation, i.e inter-annotation agreement and the
number of annotators, to the loss.

The remaining paper is formulated as follows:
Section 2 reviews the related work, section 3 de-
scribes the dataset on which the work has been
done, section 4 discusses the methodology used
in the paper, the following section discusses the
results and provides an ablation of the various loss
functions introduced and finally, section 6 con-
cludes the paper and suggests future works.

2 Related Work

Multiple annotations on a single sample reduce
the chances of the labelling to be incorrect or bias
being incorporated into the dataset (Snow et al.,
2008). Including multiple annotators also leads
to disagreement among the labels that have been
provided by them. The final or gold annotation is
then usually determined by majority voting (Sabou
et al., 2014) or by using the label of an "expert"
(Waseem and Hovy, 2016). There are also different
methodologies which do not use majority voting to
select the "ground truth".

Expectation Maximization algorithm has been
used to account for the annotator error (Dawid and
Skene, 1979). Entropy metrics have been devel-
oped to identify the performance of the annota-
tors(Waterhouse, 2012; Hovy et al., 2013; Gordon
et al., 2021). Multi-task learning is also used to deal
with disagreement in the labels (Fornaciari et al.,
2021; Liu et al., 2019; Cohn and Specia, 2013;
Davani et al., 2022). There are methods which
include the annotation disagreement into the loss
function for part of speech tagging (Plank et al.,
2014; Prabhakaran et al., 2012) on SVMs and per-
ceptron model. The present work considers the
inter-annotator agreement as well as the number
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of annotators into the loss function for any model.
The work also compares the performance when the
annotators who disagree with the majority voting
has been ignored.

3 Dataset

The Causal News Corpus dataset (Tan et al., 2022b)
consists of 3,559 event sentences extracted from
protest event news. Each sample in the dataset con-
tains the text, the corresponding label, the number
of experts who annotated the label and the degree
of agreement among the experts. Figure 1 shows a
sample from the provided training set. The training
data is fairly balanced, containing 1603 sentences
with a causal structure and 1322 sentences without
a causal structure. Also, the number of causal and
non-causal sentences in the validation set does not
differ significantly. Finally, 311 news articles have
been used as test set for evaluation.

Figure 1: A datapoint from the provided training data.

Besides the binary labels, the Causal News Cor-
pus dataset also provides additional information
regarding the number of experts who labeled the
sentence and the percentage of agreement between
them. Figure 1 shows that the number of experts
who annotated the text "The farmworkers’strike re-
sumed on Tuesday when their demands were not
met." is 3 (num_votes = 3). Also, all of the ex-
perts labeled the sentence to be causal so the agree-
ment is 1.0 (100% agreement) and the label is 1. In
case only one of three experts assigned label 1 to
the previous text, the three predictors num_votes,
agreement, label would now become 3, 2

3 ,
0 respectively. In this paper, the authors exploit
this information to give the model more prior and
thus potentially improve the model’s performance,
which has been described in more detail in section
4.

4 Methodology

The section discusses the pipeline, the different
types of loss functions that were implemented, and

the experimental details that have been used in the
third shared task for CASE 2022 (Tan et al., 2022a).

4.1 Pipeline
The authors finetuned large language models with
different loss functions to tackle Subtask 1 in
Shared Task 3 of CASE@EMNLP-2022, causality
detection in a given sentence. The problem can be
reformulated as a binary classification where the
model predicts whether the sentence is causal or
not. Since contextual awareness plays an essential
role in handling this specific task, the authors used
several transformer-based models, namely, BERT
(Devlin et al., 2019), FinBERT (Liu et al., 2020),
XLNET (Yang et al., 2019) and RoBERTa (Zhuang
et al., 2021).

The given sentence is first tokenized by a tok-
enizer from the corresponding pretrained model
architecture provided by HuggingFace (Wolf et al.,
2020). The vector output from the tokenization
stage is then fed as input to the model. The most in-
formative token is the classification token ([CLS]),
which is a special token that can be used as a
sentence representation. The [CLS] token is then
passed through a feed-forward network to gener-
ate logits. The softmax over the logits gives us
the probability of whether the sentence is causal or
not. For each model, the authors experimented with
cross-entropy loss and proposed two loss functions
described in detail in subsection 4.2.

4.2 Loss Functions
Cross Entropy Loss The loss of the classifica-
tion task can be represented by a simple cross-
entropy loss, as shown in Equation 1:

L =
1

M

M∑

i=1

(−ytruei log(ypredi )

− (1− ytruei )log(1− ypredi ))

(1)

where ytruei and ypredi denote the true label and the
predicted label for the ith input in a batch of M
sentences.

Noisy Cross Entropy Loss The dataset not only
provides the standard information about {text,
label}, but also contains the information about
the number of experts who annotated the sentence’s
label, and proportion of agreement between them.
The authors have considered the annotation by
each of the experts to be the true label for the sen-
tence. For a sentence with n expert annotations
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(num_votes = n) and r percent of agreement
(agreement = r), the loss for each sentence can
be written as shown in Equation 2.

L =





(−rlog(ypred)
−(1− r)log(1− ypred)), if ytrue = 1 ,

(−(1− r)log(ypred)

−rlog(1− ypred)), if ytrue = 0 .
(2)

The equations can be combined and the loss for a
batch of M sentences can be rewritten as:

L =
1

∑M
i=1 ni

M∑

i=1

(−ytruei ni(rilog(y
pred
i )

+ (1− ri)log(1− ypredi ))

− (1− ytruei )ni(rilog(1− ypredi )

+ (1− ri)log(y
pred
i )))

(3)

.
The different annotations from all the experts

has been considered, adding more information to
the model. Equation 3 takes the n votes from the
different experts into account, out of which n× r
times it is assigned the correct label, and the incor-
rect label has been used the other n× (1− r) times.
If the labels from the different experts are taken
directly, there will be conflicts in the labels when
the experts disagree. Considering the loss for one
sentence when the true label is 1, the derivative of
the loss is shown in Equation 4. Figure 2 shows
that the loss is minimized when ypred is equal to
r and its minima shifts from 1 to 0 as the level of
agreement decreases when the true label is 1. A
similar profile is obtained when the true label is
considered to be 0. The formulation pushes the
solution to a distribution where the ideal output
is not a one-hot encoding, which is similar to the
label smoothing method. Label smoothing was ini-
tially proposed by Szegedy et al. (Szegedy et al.,
2016) to improve the performance of the Inception
architecture on the ImageNet dataset (Deng et al.,
2009). In label-smoothing, the ground truth sent
to the model is not encoded as a one-hot represen-
tation. Since there are conflicts in the annotations
and the loss considers all of the noisy data, it has
been referred as noisy cross-entropy loss.

∂L

∂ypred
=

ypred − r

ypred(1− ypred)
(4)

Refined Cross Entropy Loss The ideal output
of the model should be close to the ground truth

label. Thus, a modification to loss function should
be done to improve the performance. The error
occurs when the annotators who have not agreed
for a particular label have also been taken into con-
sideration. The number of experts who provided
the correct label can also be an important signal to
the model. If a sentence has been given a label by
a more significant number of experts, the model
should be penalized more if the sentence is misclas-
sified. The new loss, over a batch of M sentences,
can thus be written as :

L =
1

∑M
i=1 niri

M∑

i=1

(−ytruei nirilog(y
pred
i )

− (1− ytruei )nirilog(1− ypredi ))

(5)

.
The number of causal and non-causal sentences

is almost the same and there is no significant class
imbalance. The authors have thus not considered
weight penalization to the class with the higher
number of samples.

Figure 2: Loss for noisy cross-entropy

4.3 Experimental Details

The experiments have been performed in PyTorch
(Paszke et al., 2019) and the authors used the Hug-
gingFace (Wolf et al., 2020) library to generate the
pipeline for the different experiments. Each model
has been trained for 10 epochs with a learning rate
of 5 × 10−5 and a seed of 42 for reproducibility.
Various models have been considered and trained
with the same set of hyperparameters. The code is
made publicly available on Github 1.

1https://github.com/jyanqa/
case-2022-causual-event
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Model name Cross
Entropy

Noisy
Cross
Entropy

Refined
Cross
Entropy

bert-based-cased (Devlin et al., 2019) 0.8251 0.8225 0.8235
bert-base-uncased (Devlin et al., 2019) 0.8283 0.8313 0.8501
bert-large-cased (Devlin et al., 2019) 0.7105 0.7549 0.7105
xlnet-based-cased (Yang et al., 2019) 0.7953 0.8216 0.8199
roberta-base (Zhuang et al., 2021) 0.8279 0.8279 0.8280

Table 1: Evaluation of models on different loss functions. The best F1 score of each model is marked in bold.

5 Results and Discussion

In this section, the results of the different models
and the different losses are discussed.

Table 1 shows the evaluation of the different
models on the validation set. Performances of four
in five models, excepting the bert-base-uncased
case, are enhanced by leveraging the modified
cross-entropy loss. In fact, the F1 scores of four
models are significantly increasing when we re-
placed vanilla cross-entropy loss with noisy cross-
entropy loss and refined cross-entropy loss. Specif-
ically, model fine-tuned from bert-base-uncased
investigating Refined cross-entropy loss function
yields the best performance in all experimented
models with F1 score of 0.8501. On the other hand,
bert-base-cased is the only pretrained model that
does not benefit from customized cross-entropy
losses. Adapting vanilla cross-entropy function on
bert-base-cased model results in its best F1 scores
of 0.8251.

The models with noisy and refined cross-entropy
loss utilizes the annotated information and thus per-
forms better. The noisy cross-entropy loss is similar
to restricting the highest probability output that a
model can predict. However, in almost all cases,
the degree of agreement was either 1 or 2

3 . In gen-
eral, the smooth labelling has a value in the range
of 0.9 to 1. Different contradicting annotations of
labels might make the model face difficulties in
learning and yielding an accurate prediction for
each sentence. The refined cross-entropy solely
considers the labels that do not contradict each
other, thus it performs the best.

Moreover, the experiments show that roberta-
based models achieve lower performance com-
pared to BERT-based models, especially bert-base-
uncased models. The model pretrained on bert-
large-cased has been fine-tuned for only one epoch
due to computation limitations. Their F1 scores are

worse than those of bert-base-cased and bert-base-
uncased models. bert-base models result in better
performance, as compared to models fine-tuned on
roberta-base. The reason could be that RoBERTa-
based models had not been trained on next sentence
prediction (NSP) while BERT-based models were.
Causality detection can benefit from NSP. A sen-
tence can be considered to be two relevant clauses
that are joined by a causal effect. Thus, knowing if
the clauses are relevant or not benefits the task of
causality detection.

(a) Vanilla CE (b) Noisy CE

(c) Refined CE

Figure 3: Confusion matrix for the different losses

Figure 3 shows the confusion matrix resulting
from bert-base-uncased models which result the
best F1 scores in all implemented models. Models
are generally good at predicting non-causal sen-
tences regardless of the loss function used. In fact,
true negatives and true positives are always the
highest measures compared to the others. On the
other hand, there is a clear trend in the number of
true positives when we shift the loss function from
vanilla to noisy and refined cross-entropy. In par-
ticular, the model yields 145 true positives and is
improved to 152 and 149 true positives when we
replaced vanilla cross-entropy loss with noisy and
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refined cross-entropy loss function.

6 Conclusion

This paper presents our work on detecting causal
effect relationships in news corpus by fine-tuning
Transformers-based models and adapting multiple
loss functions. The experiments showed that con-
sidering annotation information using customized
loss functions significantly improved the model per-
formance in four out of five experimented models.
Besides, the experiments show that BERT outper-
formed RoBERTa, which can be attributed to the
fact that RoBERTa is not trained on NSP. Last but
not least, the bert-base-uncased obtained the best
performance amongst all 15 models with an F1-
score of 0.8501 in validation set and 84.930 in the
test set using the refined cross-entropy loss that
takes account of the annotation information pre-
sented in the dataset.

The authors plan to look into exploiting the un-
certainty of the annotator’s information and param-
eterizing the loss function to further enhance the
model’s performance.
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Abstract

The discovery of causality mentions from text
is a core cognitive concept and appears in
many natural language processing (NLP) ap-
plications. In this paper, we study the task
of Event Causality Identification (ECI) from
social-political news. The aim of the task is
to detect causal relationships between event
mention pairs in text. Although deep learning
models have recently achieved a state-of-the-
art performance on many tasks and applications
in NLP, most of them still fail to capture rich
semantic and syntactic structures within sen-
tences which is key for causality classification.
We present a solution for causal event detection
from social-political news that captures seman-
tic and syntactic information based on gated
graph neural networks (GGNN) and contex-
tualized language embeddings. Experimental
results show that our proposed method outper-
forms the baseline model (BERT (Bidirectional
Embeddings from Transformers) in terms of
f1−score and accuracy.

1 Introduction

Causality is a core cognitive concept and appears
in many natural language processing (NLP) tasks.
We can define causality in generic terms as a se-
mantic relationship between two arguments known
as cause and effect. The occurrence of one argu-
ment (cause argument) causes the occurrence of
the other (effect argument) (Feder et al., 2021; Tan
et al., 2022b).

Event Causality Identification (ECI) is a task
that identifies causal relationships between events
from a given text (Zuo et al., 2021). To understand
how documents containing causal relationships are
identified, we present a sample of 5 sentences high-
lighting causes, effects and causal-markers leading
to the rationale for classifying different documents
in Figure 1 . Let us take an example of two sen-
tences; Sentence 1: "The protests spread to 15 other
towns and resulted in two death and the destruc-

tion of property" and sentence 5: "The properties
including houses, banks were destroyed" as shown
in Figure 1. Sentence 1 is causal and sentence 5 is
non-causal. The first sentence is regraded as causal
because it has the cause (in blue color) and effect
(in green color) linked by a causal-marker (in red
color) unlike the 5-th sentence which only has the
effect.

Figure 1: Examples of different text statements indi-
cating whether they contain causal relationships or not.
The causal markers are in red color, causes are in blue
color and effects are in green color

In general, an expression is regarded as non-
causal if any of the following conditions are satis-
fied; (1) the reader is unable to construct a "why"
question regarding the effect, (2) the cause does not
precede the effect in time, (3) the effect is equally
likely to occur or not without the cause and (4) the
cause and effect can be swapped without change in
meaning (Tan et al., 2022b).

Event Causality Identification has been actively
studied in information retrieval with deep learning
as the dominant approach delivering state-of-the-
art performance (Chen et al., 2015; Lai et al., 2020;
Zuo et al., 2021). BERT (Devlin et al., 2019) has
been utilized for automatic event causality detec-
tion on the Causal News Corpus (a dataset used
in this study) (Tan et al., 2022b,a). The challenge
with deep learning models is that they represent
documents as a sequence of tokens either using
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the traditional count based methods or embedding
based methods yet the task of causality detection re-
quires understanding rich structures and reasoning
within a sentence. The main contribution of this
work is the use of the gated graph neural networks
(GGNN) initialized with contextualized language
representations on the task of causal event detection
from social-political news.

2 Related Work and Background

In this section, we highlight some of the related
work and background information relevant to our
proposed methodology.

2.1 Document Representations

The nature in which words are represented directly
influences the performance of models trained us-
ing them on downstream tasks. Traditionally, doc-
uments were represented using bag of word ap-
proaches that base on co-occurrence statistics of
terms within documents (Salton et al., 1975). The
key challenge with this approach is that it does
not easily capture semantic relationships among
words. An alternative approach to bag of words
is word embeddings (Mikolov et al., 2013). Word
embeddings represent words as real-valued vectors
rather than counts capturing semantic and syntactic
information. Word embeddings are classified into
static word embeddings and contextualized word
embeddings.

Static word embeddings obtain stand-alone rep-
resentations of words without considering the con-
text in which these words are used . Popular models
in this category are Word2Vec models (Skip-gram
and CBOW (Continuous bag of Words) ) (Mikolov
et al., 2013). Skip-gram uses center words to pre-
dict contextual words while CBOW uses contextual
words to predict central words. GloVe (Global Vec-
tors for Word Representation) (Pennington et al.,
2014) is a log bi-linear regression model which
leverages co-occurrence statistics of the corpus to
represent documents. Contextual embeddings such
ELMO (Peters et al., 2018) (Embeddings from Lan-
guage Models) and BERT move beyond global rep-
resentations like Word2Vec and assign each word
a representation basing on its context hence achiev-
ing a better performance compared to static word
embeddings.

2.2 Graph Neural Networks

Deep learning models especially those based on
the recent transformer architecture have become
dominant strategies for NLP tasks because of their
impressive performance. One of the most popular
transformer models is BERT (Devlin et al., 2019;
Vaswani et al., 2017). BERT is a language repre-
sentation model that pre-trains deep bi-directional
representations from unlabeled text by jointly con-
ditioning on both left and right contexts in all layers.
It is pre-trained with two objectives: masked lan-
guage modeling and next sentence prediction using
the bookcorpus (800 million words) and English
wikepedia (2,500 million words).

Despite the impressive performance, transformer
models represent documents as a sequence of to-
kens which is a limitation for some NLP problems
that can be naturally expressed with a graph struc-
ture. There is now a growing interest to perform
deep learning on graphs using graph neural net-
works. Graph neural networks exploit the global
features in text representations learning by aggre-
gating information from neighbors through edges.
Convolutional neural networks were first extended
to handle graphs for text classification (Defferrard
et al., 2016). Graph Neural Networks have since
been extended to other architectures like Recurrent
Neural Networks and Gated Recurrent Unit (Wu
et al., 2021). In our work, we apply models graph
neural networks in an application context for event
causality classification from social-political news.

2.3 Event Causality Identification

The task of event causality detection from text is
a semantically challenging task since it involves
understanding the complex structure, relationships
and dependencies within text. Traditional meth-
ods have used lexical and syntactical patterns
(Hashimoto, 2019; Gao et al., 2019), co-occurrence
statistics of events (Hu et al., 2017), causality mark-
ers like "due" and "because" (Hidey and McKeown,
2016) and temporal semantics of events (Ning et al.,
2018). Our proposed model uses GGNN to auto-
matically extract and induce more abstract repre-
sentations.

Advanced deep learning methods based on the
transformer architecture (Vaswani et al., 2017) like
BERT (Bidirectional Embeddings from Transform-
ers) (Devlin et al., 2019) have also been applied for
this task (Al-Garadi et al., 2022; Nan et al., 2020).
Even-though these models have achieved good per-
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Figure 2: We first obtain contextualized embeddings of the news articles which we use to build a graph representation.
A gated graph neural encoder (GGNN) and recurrent neural network decoder were used for graph neural network
encoding. Finally, a fully connected neural networks was used for Event Causality Identification binary classification
task

formance on event causality detection, they repre-
sent text as sequences which may not be sufficient
to capture the long dependencies that are required
for this event causality detection task.

Graph neural networks which extract rich struc-
tures and represent text as graph have also been ex-
plored. Graph convolutional Network (GCN) have
been proposed for document level event causality
detection that captures inter-sentence event men-
tion pairs (Tran Phu and Nguyen, 2021).

Our model is different from such related work in
that we use a gated graph neural network on a novel
dataset; Causal News Corpus where such models
have not yet as of writing the paper not explored
(Tan et al., 2022b).

3 Methodology

In this section, we describe our proposed method-
ology for the task of Event Causality Identification
from social-political news.

3.1 Document Representation

Formally, let us denote a corpus of N documents
we would like to classify as D = {xi, yi}N where
xi is the i-th document with a co-responding la-
bel yi ∈ Y for Y ∈ {1, ...,K}. Each document
xi ∈ D is represented by a sequence of words
{w1, ..., wnt}(wi ∈ v) where nt is the number of
words in document xi and v is the vocabulary size.

We encode words wi ∈ xi into a continu-

ous vector representation using contextualized lan-
guage representations produced by BERT (De-
vlin et al., 2019). Each document xi in the cor-
pus is represented in one token sequence which
may contain a single sentence or a pair of sen-
tences. The first token of every sequence is al-
ways a special classification token ([CLS]) and
different sentences are separated by a special to-
ken ([SEP]). Documents are represented as follows
[[CLS],w1, ...wn,[SEP],wt,[SEP]] for an input into
pre-trained BERT. We concatenate vectors of the
top layers of the pre-trained BERT to obtain con-
tinuous vector representations of each word de-
noted as E = {ei, ...en}. The embedding vectors
in E are fed into a bidirectional LSTM (Hochre-
iter and Schmidhuber, 1997) (Long Short Term
Memory) to produce a sequence of hidden vectors
h0 = {h0n, ..., h0n} that will be used as initialization
to the graph encoder (Wu et al., 2021).

3.2 Gated Graph Neural Encoder

After representing each word in the corpus C with
a corresponding word embedding, we build a graph
representation of all documents in the corpus and
their associated dependencies. To apply our en-
coder, we represent our documents as G = (V,E),
where V indicates a set consisting of different word
embeddings for each word in the vocabulary and
E indicates a set of edges (relationships) formed
between documents.
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We use a Gated Graph Neural network (GGNN)
which is a modification of the vanilla Graph Neural
Network by adding Gated Recurrent Unit filters
(Chung et al., 2014). Our GGNN encoder con-
sists of L stacked GGNN layers operating over a
sequence of hidden vectors at the i−th layer h(i).
The hidden vector hli at the l−th layer is computed
by averaging the hidden vectors of neighboring
nodes xi at the (l − 1)−th layer: Gated Recurrent
Unit (GRU) is used to update node embeddings
by incorporating the aggregated information taking
into consideration of edge type and edge direction:

h
(0)
i = [xTi , 0]

T

a
(l)
i = AT

i: [h
(l−1)
i , ..., h(l−1)n ]T

h
(l)
i = GRU(a

(l)
i , h

(l−1)
l )

(1)

where A ∈ R is a matrix determining how nodes
in the graph are communicating with each other, xi
are the initial node features, a(l)i is the aggregation
of information from different nodes and h

(l)
i is the

i−th hidden state at the l−th layer.

3.3 Recurrent Neural Network Decoder
The graph-level embeddings C obtained by the
Graph Encoder are fed into a sequence decoder as
heuristic information. In the decoding stage, an
embedding layer is used to embed all the previ-
ous sequences. We used graph embedding C and
sequence embedding et at time step t using a recur-
rent neural network:

ht =RNN(Concat(e(t), C), h(t−1))

yt =FC(e(t), h(t), C)

where h(t) represents hidden state at time step t,
FC(.) represents fully connected layer and we ini-
tialize the hidden state with global graph represen-
tation C i.e h(0) = C.

4 Experimental Results

4.1 Data
The dataset used for experiments in this paper
was provided by the organizers of the shared task
on Causal Event Classification organized at 5th
Workshop on Challenges and Applications of Au-
tomated Extraction of Socio-political Events from
Text (CASE) at EMNLP 2022. The training data
consists of 2925 news articles, validation set con-
tained 323 news articles and test data consisted of
311 news articles (Tan et al., 2022b,a).

4.2 Experimental Setup
We conduct experiments with pre-trained BERT
(Devlin et al., 2019) and gated graph neural net-
works . Experiments are done with 50 epochs, max
length of 512, batch size of 50 and the learning
rate was set at 0.0005. The final submissions are
evaluated using f1-score. Transformers are im-
plemented using hugging-face transformer library
(Wolf et al., 2020) and graph neural networks were
implemented using graph4nlp library (Wu et al.,
2021). Our code implementation can be found on
the this link (https://github.com/TrustPaul/
ggnn.git).

4.3 Discussion

Model f1 Accuracy
BERT (Baseline) 80.06 81.11
GGNN-W2V 81.01 75.23
GGNN-B(Ours) 84.78 84.52

Table 1: f1−score and accuracy on the development
set of the baseline model (BERT (Bidirectional Em-
beddings from Transformers) and our proposed model
(GGNN(Gated Graph Neural Network (Li et al., 2016;
Devlin et al., 2019; Tan et al., 2022b))

Experimental results demonstrate that the perfor-
mance of our proposed method (GGNN-B) com-
pared to the baseline method that uses BERT
(Devlin et al., 2019; Tan et al., 2022b) proposed
by Tan et al.,(2022) as shown in Table 1. Our
method improves over the baseline in terms of
precision (84.78% versus 80.06%), f1 (86.19 ver-
sus 83.47%) and accuracy (84.52% versus 81.11).
However fine-tuned BERT outperforms GGNN-
W2V (83.47% against 76.19%) in terms of f1-
score, a gated neural network of the same archi-
tecture as GGNN-B but with the graph constructed
with Word2Vec embeddings.

Model f1 Accuracy
BERT (Baseline) 78.01 77.81
GGNN-W2V 75.72 72.03
GGCN-B(Ours) 81.67 80.06

Table 2: f1−score and accuracy on the test set of the
baseline model (BERT (Bidirectional Embeddings from
Transformers) and our proposed model (GGNN(Gated
Graph Neural Network (Li et al., 2016; Devlin et al.,
2019; Tan et al., 2022b))

Experimental results on the test set demonstrate
that our proposed method GGNN-B achieves an
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accuracy of 80.06% compared to an accuracy of
77.81% achieved by the baseline model (BERT).
GGNN-B (our model) achieves a better f1-score
compared to the baseline (82.58% against 81.12%)
but BERT outperforms the same graph neural net-
work architecture initialized with Word2Vec em-
beddings (Mikolov et al., 2013).

We hypothesize that the performance difference
observed between our model which is based on
graph neural networks and the baseline model
based on only BERT is due to the superiority
of graphs in representing complex structures re-
quired for understanding causal relationship against
BERT that represents text as sequences. The fact
that BERT outperforms Graph Neural networks
when initialized with Word2Vec reinforces the role
played by graph initialization of graph neural net-
works on performance and also demonstrates the
advantages of contextualized embeddings extracted
by BERT to downstream tasks over static embed-
dings extracted by Word2Vec.

5 Conclusion

In this work, we propose a novel deep learning
approach for event causality detection from social-
political news articles. Our proposed approach
use gated graph neural networks and contextu-
alized language representations which represent
text documents as a graph and model complex
semantic relationships ideal for causality detec-
tion. Experimental results reveal that our proposed
model improves performance over the baseline
comparison model (BERT) in terms of accuracy
(80.06% versus 77.81%) and f1−score (82.58%
versus 81.12%).
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Abstract

This paper details our participation in the Chal-
lenges and Applications of Automated Ex-
traction of Socio-political Events from Text
(CASE) workshop @ EMNLP 2022, where
we take part in Subtask 1 of Shared Task 3
(Tan et al., 2022a). We approach the given
task of event causality detection by proposing
a self-training pipeline that follows a teacher-
student classifier method. More specifically,
we initially train a teacher model on the true,
original task data, and use that teacher model
to self-label data to be used in the training
of a separate student model for the final task
prediction. We test how restricting the num-
ber of positive or negative self-labeled exam-
ples in the self-training process affects classi-
fication performance. Our final results show
that using self-training produces a comprehen-
sive performance improvement across all mod-
els and self-labeled training sets tested within
the task of event causality sequence classi-
fication. On top of that, we find that self-
training performance did not diminish even
when restricting either positive/negative exam-
ples used in training. Our code is be pub-
licly available at https://github.com/Gzhang-
umich/1CademyTeamOfCASE.

1 Introduction

Task 1 of the CASE workshop @ EMNLP 2022
works to identify and classify event causality in
socio-political event (SPE) data, with subtask 1 be-
ing a binary classification of causality. In other
words, participants are tasked with answering:
Does an event sentence contain cause-effect mean-
ing? The workshop provides data from Causal
News Corpus (CNC) (Tan et al., 2022b) for train-
ing and evaluation of the subtask. Causality itself
aims to identify a semantic relationship between

∗ The two authors contributed equally to this work.
† Corresponding Author

two events where one event (the cause) is responsi-
ble for the production of the other event (the effect).
Utilizing the CNC dataset serves as a benchmark
for participants to evaluate the ability of a given
model or process to identify causality in event data.

We approach the problem of causality sequence
classification by applying self-training (Ouali et al.,
2020; Van Engelen and Hoos, 2020; Triguero et al.,
2015) as a means to improve the performance of
language models in this task. The goal of self-
training is to generate proxy labels for previously
unlabeled data to enhance the learning process. The
self-training process works by iteratively labeling
previously unpredicted data, and then using the
new pseudo-labels as truthful labels in the next
training stage. The intuition behind self-training
comes from the fact that it can pseudo-expand the
training space to basically an unlimited size in a
very cheap manner, as no hand-labeling is required
in the process.

Additionally, we run supplementary experiments
to test the effectiveness of self-training against
various transformer-based data augmentation tech-
niques (Feng et al., 2021) and separate multi-task
learning approaches (Caruana, 1997) that we origi-
nally designed for the competition. The description
and results of these additional experiments can be
found in the Appendix.

In summary, our main contributions are as fol-
lows.

1) We propose a self-training pipeline for the task
of causality detection in SPE data for the purposes
of competing in Subtask 1 of Shared Task 3 of the
CASE workshop @ EMNLP 2022. Our best model
achieved 0.8135 accuracy and a 0.8398 F1 score on
the competition’s test set.

2) We evaluate our self-training pipeline with col-
lected self-labeled datasets of highly positive sam-
ples, highly negative samples, and even distributed
positive and negative samples. We show that using
self-labeled datasets improves performance across
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Unlabeled Text from  
Wikipedia

Collected Example
Sentences

The plane was en route to a
regional cup football game

between Palmas and Vila Nova,
for the Brazilian Copa Verde

championship

When energy moves from one
form to another, the amount of

energy always remains the same

In October 2010, Boston
Properties bought the John

Hancock Tower for $930 million

Teacher Model
(BERT Classifier  

fine-tuned on CNC
training data) 
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[0.0755, 0.9245]
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Figure 1: A) Self-training pipeline with Teacher Model. B) We use the self-labeled examples as part
of the training when training in Student Models for the task of causality classification

the board on all tested models, and that the perfor-
mance increase provided by self-training did not
significantly change based on the ratio of positive
to negative self-labeled samples used in training.

For all implementations of our code, we use
the HuggingFace Transformers library (Wolf et al.,
2020) (version 4.21.2) and all models are built us-
ing PyTorch (Paszke et al., 2019) (version 1.12.1).

Organization. As for how the rest of the paper
is outlined, §2 describes the data used in the train-
ing, evaluation, and final testing of our models, §3
recounts the procedures used in our self-training
approach, §4 discusses our findings, and §5 wraps
up the paper with our final remarks and ideas for
future direction.

2 Data

2.1 Causal News Corpus

The CNC dataset (Tan et al., 2022b) is a cor-
pus of 3,559 event sentences from protest event
news labeled on whether a given sentence con-
tains causal relations or not. The data of the
CNC comes from two workshops focused on min-
ing socio-political data: Automated Extraction of

Socio-political Events from News (AESPEN) (Hür-
riyetoğlu et al., 2020) in 2020 and the CASE 2021
workshop @ ACL-IJCNLP (Hürriyetoğlu et al.,
2021). For the purposes of subtask 1, the data is
split into a training set of 2925 examples, a develop-
ment set of 323 examples, and a final test set of 311
examples that is used as an evaluation benchmark
for the competition.

2.2 Self-labeled Training Data

Sample sentences used in the self-labeling phase
of self-training are gathered from 205,328 articles
on Wikipedia. The Wikipedia dataset is built from
the Wikipedia dump 1 and is available as on Hug-
gingFace Dataset library (Lhoest et al., 2021). We
use the 20220301.simple training split to generate
our self-labeled examples.

3 Methodology

In this section, we review the methods we used in
our approach to the sequence causality classifica-
tion subtask.

1https://dumps.wikimedia.org
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3.1 Self-Training

We follow a similar teacher-student pipeline as Yal-
niz et al., 2019 that includes using a teacher model
to generate a new labeled dataset D′ from the origi-
nal datasetD and then training a new student model
on both the new labeled dataset D′ and the original
dataset D. We use the training split provided of
2925 CNC samples (Tan et al., 2022b) as the orig-
inal dataset D, and fine-tune a BERT base-cased
model (Devlin et al., 2019) for sequence classifi-
cation, which serves as our teacher model. Figure
1a shows the full pipeline from Wikipedia data
collection to saving self-labeled samples. These
self-labeled examples are used as training data for
the separate student models later in the experimen-
tation process, as shown in Figure 1b.

3.1.1 Data Preprocessing

To preprocess Wikipedia data (§ 2.2), we first split
the articles into individual sentences and discarded
all sentences of less than 50 characters and more
than 500 characters. To self-label the sentences,
we feed the sentences into the teacher model and
keep all examples with a softmax classifier over a
predetermined threshold T . For the purposes of
our experiments, we choose a T of 0.9. In total, we
collect a pool of 77,748 positive (causal) examples
and 77,940 negative (non-causal) examples. The
large total number of examples collected for this
data pool is done to minimize the overlap of exam-
ples between the later created self-labeled training
splits.

3.1.2 Training Splits

From the pools of self-labeled Wikipedia exam-
ples, we collect 5 different training sets, all with
the size of 10,000 samples but with varying ratios
of positive to negative self-labeled examples. We
collect sets with positive to negative proportions of
1:3, 1:1, and 3:1 (that is, for a positive to negative
proportion of 1:3, we include 2,500 self-labeled
positive examples in the training set and 7,500 neg-
ative samples). We design this set-up to test how
the different polarity proportions of self-labeled
data used in training affect not only overall model
accuracy, but also if there is a discrepancy between
model precision and recall with the varying polarity
splits. We chose a training split size of 10,000 ex-
amples as we notice that self-training performance
does not continue to improve with training with

splits larger than this 2. When formulating each set,
we randomly reshuffle the positive and negative
self-labeled sets and chose the first s and t positive
and negative samples for a training set that require
s positive examples and t negative examples. From
there, we combine the s positives and the t nega-
tives and again shuffle the concatenated training
set.

3.1.3 Fine-tuning on Self-labeled data
For each self-labeled dataset, we fine-tune a
classifier—which serves as our student model—on
one epoch of the self-labeled dataset and then five
epochs of the CNC provided training data. The pre-
dictions generated after the final epoch of training
are used for evaluation. We run our experiments
with student classifiers built on BERT base-cased
(Devlin et al., 2019), RoBERTa base (Liu et al.,
2019), and Google ELECTRA-base-discriminator
(Clark et al., 2016) pre-trained models.

3.2 Transformer-based Data Augmentation
and Multi-task Learning

In our participation of the CASE workshop, we also
explore both Transformer-based data augmentation
and multi-task learning as a means to improve per-
formance on causality classification. While our
both of these approaches are out-performed by
our self-training approaches and thus are not the
main focus of this paper, we still find significant
results with these methods and implement both a
Transformer-based data augmentation technique
and a multi-task architecture that comprehensively
outperform the baseline classifier for the given task.
The full methodology and experimentation of our
Transformer-based data augmentation and multi-
task learning approaches are available in the Ap-
pendix.

4 Experiments and Results

4.1 Experiment Set up
In our experimentation setup, we test all three back-
bone models (BERT, RoBERTa, and Google ELEC-
TRA Discriminator) with both the self-training
pipeline and a simple fine-tuning process that only
uses the provided CNC training set that served as
the baseline. In the baseline experiments, the clas-
sifiers are trained solely on five epochs of the CNC
training data. We conduct five trials of each setup,
each trial having a randomly initialized seed. We

2Observed in our initial internal testing phase
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Baseline Training vs. Self-Training Results

Baseline Training
(simple fine-tuning,

no self-training)

Accuracy F1 Recall Precision MCC
BERT 0.8204 0.8394 0.8516 0.8276 0.6363
RoBERTa 0.8390 0.8543 0.8561 0.8525 0.6745
Google ELECTRA Discriminator 0.8365 0.8535 0.8640 0.8432 0.6689

Self-Training

Ratio of Positive to Negative Self-Labeled
Examples used in training

Accuracy F1 Recall Precision MCC

BERT 1:3 0.8380 0.8531 0.8539 0.8525 0.6726
1:1 0.8225 0.8377 0.8315 0.8468 0.6425
3:1 0.8380 0.8526 0.8502 0.8552 0.6728

RoBERTa 1:3 0.8576 0.8715 0.8764 0.8671 0.7123
1:1 0.8586 0.8711 0.8670 0.8755 0.7149
3:1 0.8586 0.8719 0.8727 0.8711 0.7142

Google ELECTRA Discriminator 1:3 0.8400 0.8579 0.8764 0.8415 0.6760
1:1 0.8524 0.8665 0.8689 0.8641 0.7016
3:1 0.8421 0.8580 0.8652 0.8510 0.6806

Table 1: Results of the evaluating the CNC development set on both simple fine-tuning with only CNC training data
(top) and fine-tuning classifiers on training sets of self-labeled data in addition to CNC training data (bottom). Bold
indicates highest performance across all splits and model types, underline indicates the highest performance of the

specific model type.

use the CNC development set as our testing bench-
mark due to the limited number of allowed work-
shop testing phase submissions.

4.2 Classifier Set up

In our experiments, we run all trials on a Tesla
V100-SXM2-16GB GPU device. We use an
AdamW optimizer with β1 = 0.9, β2 = 0.999, a
learning rate of 5e− 5, and a linear decay rate. Fi-
nally, all experiments are run with a batch size of
8.

4.3 Findings

Table 1 displays the results from our experiments,
which include the averages of 5 trials for each set-
up. From the table, we can see that every self-
training setup outperforms the baseline classifier
in terms of accuracy, with an average accuracy im-
provement of 1.33% across all models and polarity
splits. Furthermore, for all but one self-training
set-up, there is an improvement of the F1 score
from the baseline, with an average improvement of
0.011.

Other key takeaways from our results are that 1)
there is very little overall performance degradation
across the polarity splits (1:3, 1:1, 3:1) in the self-
labeled datasets (only the BERT model shows a
range of F1 scores above 0.01) and 2) there is low
discrepancy between recall and precision among
the splits (only the 1:3 split with an ELECTRA
backbone shows a recall-precision discrepancy >
0.015.)

4.4 Competition Results

Our best-performing prediction set of the final com-
petition testing comes from a RoBERTa classifier
trained on a self-labeled training set with a polarity
ratio of 1:1. The results of our all of our compe-
tition submissions 3 are shown in Table 2. All of
our competition submissions comprehensively out-
perform the provided baseline, and our best overall
performing submission achieve competition rank-
ings of 6th in accuracy, 10th in F1, 7th in recall,
7th in precision, and 10th in MCC.

5 Conclusion and Discussion

This paper explores how training a classifier on
self-labeled data can improve the performance of
sequence classification tasks. In our case, we exam-
ine the effect of self-training on the task of event
causality in socio-political event data as part of
Subtask 1 of Shared Task 3 of the CASE workshop
@ EMNLP 2022.

Our results show that training a classifier on self-
labeled data using a teacher-student approach com-
prehensively improves task performance. Further-
more, we find that performance improvement from
self-training did not differ significantly between
self-labeled training sets with varying levels of ex-
ample polarity. This indicates that the model is
capable of reaping the full benefits of self-training
despite having limited access to positive or negative
samples. One thing that could help explain this is
our relatively high threshold T of 0.9 which deter-
mines whether or not to keep an example during the

3Workshop competition limited participants to five submis-
sions for the testing phase
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Competition Results (CNC Test Set)
Ratio of Positive to Negative

Self-Labeled Examples
Accuracy F1 Recall Precision MCC

RoBERTa 1:3 0.8071 0.8256 0.8068 0.8452 0.6108
1:1 0.8135 0.8398 0.8636 0.8172 0.6185
3:1 0.7974 0.8215 0.8239 0.8192 0.5873

ELECTRA
1:1 0.8135 0.8324 0.8181 0.8471 0.6228
3:1 0.7942 0.8107 0.7784 0.8457 0.5886

Provided Competition Baseline
(BERT baseline model)

0.7781 0.8120 0.8466 0.7801 0.5452

Table 2: Results of competition submissions on CNC test set. Bold indicates highest performer.

initial self-labeled process. Further research should
explore whether a lower T could alter the bene-
fits of self-training, especially when self-labeled
examples would have a higher chance of being in-
correctly labeled.

Next, given that our self-labeled examples are
gathered from an assortment of articles from
Wikipedia, it should be well noted that the benefits
of self-training are apparent even when the self-
labeled examples are not domain specific to the
original labeled data. We decide to use Wikipedia
as the source of our self-labeled examples as we
view it as a more accessible source with far greater
amounts available unlabeled data. Thus, our find-
ings indicate that performance improvements from
self-training work with non-domain specific data,
which alleviates us from the restriction of confining
our self-labeled data to the single domain of the
original labeled data.

Finally, one more aspect of our experiments that
should be further explored is the classifier’s ac-
tual dependence on the self-labeled data versus the
originally provided training data. In our setup, we
choose to train our models on one epoch of self-
labeled data and then on five epochs of the original
training data in order to prioritize the true labeled
training data. We believe that it would be worth-
while to explore training classifiers with a higher
training priority on the self-labeled data, or even to
test the performance of classifiers trained solely on
the self-labeled data, without the original true data.
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Figure 2: Multi-task learning architectures used in supplementary testing.

6 Appendix

Here, we outline the supplementary experimenta-
tion we conducted to compare our self-training
results with other methods we explored in the
CASE event causality competition. These methods
include a few popular transformer-based textual
data augmentation techniques and two multi-task
learning-based classifier architectures.

6.1 Transformer-based Data Augmentation

In general, data augmentation—within the con-
text of textual data—works by altering a given
labeled example and attaching the label of the orig-
inal example to the augmented one. Each of the
transformer-based data augmentation techniques
is considered with the same goal of increasing the
training data space to improve the model perfor-
mance on the task of causality classification. We
use the CNC training split of 2925 as the original
data to be augmented in our experiments.

6.1.1 Sequence to Sequence Data
Augmentation

Sequence-to-sequence text augmentation works by
taking the sentence of the original example (all of
our data examples are English examples), translat-
ing the sentence into a foreign language, and then

finally translating the rendered sentence back to
the original language. This works by altering some
words or clusters of words in a sentence while pre-
serving the original structure and semantics. For
the purposes of our experiments, we use two for-
eign languages to augment the data, German and
Russian, using HuggingFace’s ported versions of
the Facebook FAIR’s WMT19 News Translation
Task Submission (Ng et al., 2019). The sequence-
to-sequence augmented training set has 8,775 ex-
amples; 2,925 from the original training set and
5,850 augmented examples.

6.1.2 Random Fill-mask Data Augmentation

In random fill-mask augmentation, we first ran-
domly select a word from the original. From there,
we replace the selected word with a masking token
and use the new sentence with masking as input to
a pre-trained RoBERTa fill-mask language model
(Liu et al., 2019) to select the three most likely
fill-mask options for the masked word. With the
three selected substitutions for the masked word,
we create three new sentences by replacing each re-
spective substitution with the original masked word
and keeping the original label of the sentence with
the new augmented examples. The final random
fill-mask augmented set has 11,700 total samples.
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6.1.3 NER Fill-Mask Data Augmentation
The NER fill-mask data augmentation functions
in a similar fashion to the random fill-mask data
augmentation, but instead of selecting a single ran-
dom word to replace, we make substitutions to any
named entities identified by Named Entity Recog-
nition (NER) (Mikheev et al., 1999; Mohit, 2014).
Specifically, we use the EntityRecognizer module
from spaCy 4 to identify which tokens in a sentence
corresponded to named entities. For each example
sentence from the original training data that con-
tained named entities, we create three augmented
sentences by substituting the best unused fill-mask
option for each named entity in the text. The fi-
nal NER augmented dataset has 10,443 example
sentences in total.

6.2 Multi-Task Learning Approaches

Multi-task learning (MTL) (Caruana, 1997; Zhang
and Yang, 2021; Ruder, 2017) is a paradigm of
machine learning that improves the performance
of a model in a given task by leveraging simulta-
neous learning of other distinct but related tasks.
Our MTL architectures learn the distinct tasks of
entailment classification (binary classification of
whether the meaning of one sentence can be in-
ferred from another sentence) and event detection
(whether a sentence contains information about
a socio-political event), then combine the prior
knowledge of those two tasks to help supplement
the classifier’s prediction to the task of causality
classification.

6.2.1 MTL Datasets
We used two distinct datasets for the multi-task
learning of entailment detection and event detec-
tion.

Entailment Detection Dataset We evaluate us-
ing the Recognizing Textual Entailment (RTE) task
provided in the GLUE Benchmark (Wang et al.,
2018) for the entailment detection task. In train-
ing, we used the given training set that consisted
of 2490 examples. Each example from the RTE
dataset consisted of two sentences and a binary
label on whether or not one of the two sentences
holds logical entailment to the other. To better fit
the structure of the other data, we concatenated the
two provided sentences into a single text to be used
as input into the models.

Event Detection Dataset In order to learn the
4https://spacy.io/

task of event detection, we used data provided in
the second shared task of CASE @ ACL-IJCNLP
2021 (Hürriyetoğlu et al., 2021), which provided
data to the object of sentence-level event classifica-
tion. The data provided from subtask 2 of CASE
2021 included 1023 examples sentences of socio-
political events, labeled using the Armed Conflict
Location & Event Data Project (ACLED) (Raleigh
et al., 2010) event taxonomy, which consists of 25
fine-grained event subtypes. These 1023 example
sentences are concatenated with 720 non-event-
specific English sentences to create an event detec-
tion dataset, with all sentences coming from the
event classification receiving a label of ’1’, denot-
ing that the sentence contained information about
an event.

6.2.2 MTL Pre-training

Prior to fine-tuning our models for the task of
causality classification, we train a shared encoder
(Guo et al., 2021)-a RoBERTa pre-trained model-
on the separate tasks of event detection and entail-
ment detection by fine-tuning the shared encoder
on the respective datasets for each task. We fine-
tune three epochs for both tasks.

6.2.3 MTL Architectures

We experiment with two similar but different archi-
tectures in MTL testing. In both architectures, we
first simultaneously fine-tune a classifier on the two
tasks of entailment detection and event detection.
Because we have distinct datasets for each respec-
tive task, we implement this by using the shared
encoder approach, where model parameters are
hard-shared and each task has its own task-specific
classification head.

The distinction between our two MTL architec-
tures comes from how we choose to combine prior
knowledge. The architectures we build are shown
in Figure 2. Both architectures include task-specific
classification heads for the tasks of entailment de-
tection and event detection. The distinction be-
tween the two architectures comes in where Ar-
chitecture no. 2 also includes a causality-specific
classification head; the outputs of all three task
heads are combined and inputted into a final linear
layer to output the final logits prediction. Architec-
ture no. 1 omits the causality-specific classification
head and simply combines the outputs of the en-
tailment detection and event detection heads before
the linear layer.
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Supplementary Experiments Results
Accuracy F1 Recall Precision MCC

Baseline 0.8390 0.8543 0.8561 0.8525 0.6745
Self-Training (1:1 polarity) 0.8586 0.8711 0.8670 0.8755 0.7149

Sequence to Sequence 0.8235 0.8430 0.8596 0.8270 0.6424
Random Fill-Mask 0.8406 0.8562 0.8574 0.8556 0.6778Transformer-based

Data Augmentations
NER Fill-Mask 0.8452 0.8571 0.8427 0.8721 0.6888
Architecture 1 0.8498 0.8655 0.8764 0.8548 0.6960Multi-Task Learning
Architecture 2 0.8313 0.8489 0.8596 0.8385 0.6583

Table 3: Results from supplementary testing done on CNC development set. All runs use a RoBERTa backbone
model. The baseline and self-training results are taken from the main experiments of the paper. Bold indicates

outperforming the baseline.

AdamW Optimizer w/ Linear Decay
β1 0.9
β2 0.999
Per device batch size 8

Table 4: Classifier hyperparameter settings.

6.3 Supplementary Experiments and Results

6.3.1 Set up

For the supplementary experiments, we follow the
same setup as in the main study to maintain con-
sistency. Thus, models trained on a transformer-
augmented dataset are trained on five epochs of
the respective dataset, and each MTL architecture
is trained on five epochs of the CNC training set.
The evaluations are calculated on the predictions
made after the final epoch of training. Likewise,
we use the same hyperparameter setup as the main
experiments, meaning that we run all trials on a
Tesla V100-SXM2-16GB GPU device. Hyperpa-
rameters are listed in Table 4. For purposes of the
supplementary experiments, we run all trials using
a RoBERTa backbone.

6.3.2 Results

Table 3 displays the results of our supplementary
tests. Consistent with the main study, the results
are the averages over five trials for each of the se-
tups on the CNC development set. Between the
transformer-augmented experiments, the random
fill-mask and NER fill-mask experiments outper-
formed the baseline in terms of both accuracy and
F1 score. Similarly, Architecture no. 1 of the MTL
approaches also outperformed the baseline in terms
of accuracy and F1.

6.3.3 Discussion
We include the supplementary experiments to 1)
show how our self-training results compared to pop-
ular state-of-the-art data augmentation techniques
using contemporary NLP, and 2) propose the multi-
task learning architectures we originally developed
for the Subtask 1 of the competition. Although
the final results of the MTL approaches did not
reach the same level of performance as the self-
training approaches and therefore did not belong in
the main paper, we believe the MTL experiments
and results are still notable and worth mentioning
for further investigation.
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Abstract

In this paper, we present our approach and
empirical observations for Cause-Effect Sig-
nal Span Detection—Subtask 2 of Shared task
3 (Tan et al., 2022a) at CASE 2022. The
shared task aims to extract the cause, effect,
and signal spans from a given causal sentence.
We model the task as a reading comprehen-
sion (RC) problem and apply a token-level
RC-based span prediction paradigm to the task
as the baseline. We explore different training
objectives to fine-tune the model, as well as
data augmentation (DA) tricks based on the lan-
guage model (LM) for performance improve-
ment. Additionally, we propose an efficient
beam-search post-processing strategy to due
with the drawbacks of span detection to ob-
tain a further performance gain. Our approach
achieves an average F1 score of 54.15 and
ranks 1st in the CASE competition. Our code
is available at https://github.com/
Gzhang-umich/1CademyTeamOfCASE.

1 Introduction

Event extraction has long been a challenging and
popular area for natural language processing (NLP)
researchers. There are known classic benchmarks,
including ACE-2005 (Christopher et al., 2005) and
ERE (Song et al., 2015). In recent years, more
and more interesting corpora about event detection
and extraction have emerged based on different
specific source corpora, including biomedical lit-
erature (Kim et al., 2003), scientific knowledge
resources (Jain et al., 2020), Wiki (Li et al., 2021),
and trade-related news (Zhou et al., 2021). In sharp
contrast, Cause-Effect Signal Span Detection aims
to extract the cause, effect, and signal spans from
sentences that have cause-effect relations. Cause-
Effect Signal Span Detection is an innovative and
important event detection/extraction task that as-

∗ The two authors contributed equally to this work.
† Corresponding Author

sists in understanding causal relationships from
comprehensive sentence samples.

As a new corpus with great potential in event
extraction challenges, the Causal News Corpus
(CNC) (Tan et al., 2022b) contains socio-political
event (SPE) text data with annotated causal spans.
The CNC event extraction challenge1 is the first
Cause-Effect Signal Span Detection challenge on a
social political news corpus. The challenge itself
provides a limited number of annotated samples
for supervision, making it more difficult compared
to other challenging event extraction tasks. The
exploration of causality in news data and the detec-
tion of corresponding spans is helpful in reading
comprehensive language expressions, making CNC
attractive to NLP researchers.

In this paper, we describe our RC-based model
with a carefully designed post-processing strat-
egy. We also conduct ablation studies to analyze
the influence of both different training objectives
and different hyper-parameter settings of the post-
processing strategy on our model. In addition, we
apply an LM-based data augmentation strategy to
further better performance gains, given the low-
resource challenge. Our approach improves per-
formance by a large margin in Cause-Effect Signal
Span Detection compared to any other competitors.

The main contributions of our paper are as fol-
low:

• We propose an RC-based model with an origi-
nal post-processing strategy.

• We achieve state-of-the-art performance on
the new Cause-Effect Signal Span Detection
competition on the CNC.

• We apply an LM-based data augmentation
technique to the challenge and prove its posi-
tive effect on the challenge of low resources.

1https://github.com/tanfiona/
CausalNewsCorpus
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Table 1: Dataset statistics. Avg. Signal represents the
average number of Signal spans in each split of dataset.

Train Valid Test Total

# Sentences 160 15 89 264
# Relations 183 18 119 320
Avg. Signal 0.67 0.56 0.82 0.72

2 Causal News Corpus

The corpus we used in our model training and eval-
uation is the CNC dataset (Tan et al., 2022b). This
dataset is built on the extraction of social-political
events from News (AESPEN) (Hürriyetoğlu et al.,
2020) in 2020 and the CASE 2021 workshop @
ACL-IJCNLP (Hürriyetoğlu et al., 2021). Each
sample in the dataset is annotated with causal la-
bels, that is, whether a sentence contains a causal
event. Furthermore, some sentences are annotated
with the span of the specific Cause and Effect
of a causal event, as well as the signal markers
that imply the causality. The spans are labeled by
<ARG0>, <ARG1>, and <SIG> annotations to rep-
resent the cause, effect, and causal signal in the
sentence, respectively. Note that it is possible to
have multiple annotations for the same sentence in
the dataset if the sentence contains multiple casual
relationships of events. The dataset statistics are
shown in Table 1.

3 Methodology

In this section, we describe in detail the method-
ology we used in the task. To begin, we intro-
duce the baseline model established from a pre-
trained language model for the task. Next, a beam-
search-based post-processing method is introduced
to solve the overlap span detection problem in the
baseline model. To address the problem that not all
examples have signal markers within the sentence,
we propose training a signal classifier to determine
whether we need to find the signal span of the tar-
get test sample. Finally, a pre-trained paraphrasing
model is applied for data augmentation.

3.1 Baseline

To solve the task, we first fine-tune the pre-trained
language model based on the reading comprehen-
sion training fashion proposed by BERT (Devlin
et al., 2019). Specifically, assume that we need
to predict a span within sentence x = {t1, ..., tn},
where ti is the ith token of sentence x. We can ob-

Algorithm 1 beam-search-based span selector
Input: Psc , Pec , Psef , Peef , n, k,m.

Output: H = {(s1, e1, s2, e2, ti =
CBeforeE/CAfterE) : i ≤ m}
1: CBeforeE = {pisc + pjeef : 1 ≤ i, j ≤ n}.
2: CAfterE = {pisef + pjec : 1 ≤ i, j ≤ n}.
3: Find position pairs with Top-k largest score from both

CBeforeE and CAfterE.
4: Denote the gotten position pairs set as PS =
{(spi, epi, ti = CBeforeE/CAfterE) : spi ≤ epi}.
ti implies whether the pair is retrieved from CBeforeE or
CAfterE.

5: Initialize a min heap H .
6: for psp = (spp, epp, tp) in PS do
7: if tp = CBeforeE then
8: Find the position pair (i, j) with the largest piec +

pjsef , which satisfies spp ≤ i ≤ j ≤ epp.
9: Calculate sc(spp,i,j,epp) = p

spp
sc + piec + pjsef +

p
epp
eef .

10: else
11: Find the position pair (i, j) with the largest pieef +

pjsc , which satisfies spp ≤ i ≤ j ≤ epp.
12: Calculate sc(spp,i,j,epp) = p

spp
sef + pieef + pjsc +

p
epp
ec .

13: Push {(spp, i, j, epp), tp, sc(spp,i,j,epp)} into H .
14: if len(H) > m then
15: heappop(H) based on sc(spp,i,j,epp).
16: return H

tain a contextualized representation hi of ti using
the pre-trained language model:

H = {h1, ..., hn} = BERT (x) (1)

Next, we define two parameterized vectors:
vs, ve ∈ Rd to calculate the probability that the
ith token is the start / end position:

Ps = {p(1)s , ..., p(n)s } = Softmax(vTs H) (2)

Pe = {p(1)e , ..., p(n)e } = Softmax(vTe H) (3)

We select the positions with maximum probabil-
ity as the prediction of the model:

s = argmax
1≤i≤n

p(i)s , (4)

e = argmax
1≤j≤n

p(j)e , (5)

where s, e represent the predicted start/end position,
respectively.

The prediction of the spans of cause, effect, and
signal are all similar to the span prediction task
described above. For convenience, we will denote
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the start/end position of cause, effect, and signal
as sc, ec, sef , eef , ssig, esig, respectively, to spec-
ify which span we are detecting. Therefore, the
training objective is to maximize the probability of
ground-truth positions in the model.

3.2 Beam-search-based Span Selector

The proposed baseline model has two drawbacks.
First, it is possible that the end position is right be-
fore the start position. Second, it is possible to gen-
erate spans that overlap each other, which is not al-
lowed in the challenge. Thus, we need to introduce
constraints in post-processing to ensure that: 1) the
predicted end position must be after the start posi-
tion of the same span, and 2) the predicted spans
of cause and effect do not overlap with each other.
In this sub-section, we describe our modified beam
search-based algorithm to address the overlapping
issue. The beam search algorithm is widely used to
find the most possible output with tractable mem-
ory and time usage in text generation tasks (Xie,
2017). In reading comprehension or question an-
swering, it is also used to introduce constraint infor-
mation (Hu et al., 2019), and therefore encourage
more accurate predictions. Given a paragraph with
length n, we can calculate Psc = {p(1)sc , ..., p

(n)
sc }

based on the process introduced in § 3.1. Similarly,
we can calculate Pec , Psef , and Peef accordingly.
Formally, given the input probability vectors Psc ,
Pec , Psef , Peef , a hyper-parameter m denoting the
requested answer number, and a hyper-parameter
k denoting the beam search size, the span selec-
tor is expected to output position pairs sc, ec, sef
and eef . We describe the span selector in detail in
Algorithm 1. We denote the proposed span selec-
tor as BSS. It should be noted that the proposed
BSS post-processing algorithm can also generate
multiple predictions for cases containing multiple
causal relations. For example, we could change
the hyperparameter m to retrieve the prediction of
cause/effect spans combinations with the top-m
highest scores as our predictions of multiple causal
relations. For the signal span, we always use the
span with the highest score as our prediction (if it
presents).

3.3 Signal Classifier

We observe that some samples do not have signal
markers (spans) within the sentence even while the
baseline model predicts ssig, esig for each target
sample. Therefore, we propose to train a classifier

to address this issue. Specifically, we first automat-
ically annotate training samples based on whether
signal markers appear within the samples. Then,
we fine-tune the pre-trained language model to train
a binary classifier. Note that we can share the lan-
guage model parameters between signal classifier
and span detection, i.e. we optimize both train-
ing objectives during our fine-tuning process. In
addition, we can also train a signal classifier with
a separate language model. In our experiments,
we apply the two methods separately and compare
their effectiveness.

3.4 Data Augmentation with Pre-trained
Paraphrasing Model

Considering that only 183 training samples are
available for subtask 2, it is important to intro-
duce the data augmentation trick to increase the
size of the training dataset. Therefore, in this work,
we propose using language models to paraphrase
the existing data. Specifically, we use a PEGA-
SUS model (Zhang et al., 2020) fine-tuned for para-
phrasing 2 to re-write the phrases of Cause, Effect
in each sample. For example, for a training sam-
ple "<ARG1>The farmworkers ’ strike resumed on
Tuesday</ARG1> when <ARG0>their demands
were not met</ARG0>.", we paraphrase the cause
and effect spans within the sample, then obtain
the augmented sample "<ARG1>On Tuesday, the
farmworkers resumed their strike</ARG1> when
<ARG0>their demands weren’t met</ARG0>.". In
this case, the semantic meaning of the original sen-
tence is preserved. Hence, the annotation of the
original sample is still reasonable and can continue
to be used in the augmented sample. In our imple-
mentation, n new phrases were generated for each
span. Namely that each sample will end up with n2

augmented samples. We denote the trick as DA.

4 Experiments

In this section, we present the experimental details
of training the model and discuss the performance
of our proposed approach.

4.1 Experimental Details

In our experiment, we use Albert (Lan et al., 2019)
as our LM backbone. We perform hyper-parameter
searching to find the best hyper-parameter set-
ting. Specifically, we select the learning rate l

2We directly use fine-tuned checkpoint in
https://huggingface.co/tuner007/pegasus_paraphrase

102



Table 2: Experimental results and related ablation study on subtask 2. The evaluation metric of all the results is F1.
Note that n represents the hyper-parameter of data augmentation described in § 3.4.

Methods Cause Effect Signal Overall

Baseline 77.8 66.7 53.5 68.2
Baseline-NER 57.8 57.4 10.8 47.4

Baseline + DA (n = 2) 72.2 77.8 60.9. 71.9
Baseline + BSS + DA (n = 2) 77.8 83.3 60.9 74.1
Baseline + ES + DA (n = 2) 72.2 77.8 76.7 75.4
Baseline + JS + DA (n = 2) 72.2 72.2 71.3 69.8
Baseline + BSS + ES + DA (n = 2) 77.8 83.3 76.7 77.5
Baseline + BSS + ES + DA (n = 3) 83.3 77.8 80.0 80.4

from {1e − 5, 2e − 5, 5e − 5}, batch size b from
{1, 2, 4, 8, 16, 32}. We fine-tune the pre-trained
model for 30 epochs, and select the checkpoint
with the best performance on the development set
to conduct evaluation on the test set. Our imple-
mentation is based on Huggingface (Wolf et al.,
2019).

In terms of the signal classifier, we consider two
settings: 1) We fine-tune the signal classifier in
conjunction with the main training objective as
described in § 3.3. We denote this approach as
Joint Sig. (JS); 2) We additionally fine-tune a
language model to specifically decide whether to
predict the span of Signal. We denote this approach
by Extra Sig. (ES)

We also include another implementation of the
baseline recommended by the organizers, where
the fine-tuning process is carried out in the end-to-
end fashion of Named Entity Recognition (NER).
We denote this baseline by Baseline-NER.

4.2 Main Results and Ablation Study

Here, we present and discuss the experimental re-
sults of our best-performing method for this task,
together with the corresponding ablation study.
Note that all results are evaluated on the dev set,
due to the inaccessibility of the test dataset. We
present the score of different approaches F1 on all
three span detection in Table 2.

The results clearly show that the reading compre-
hension style of the training significantly improves
the effectiveness of the approach. We can also ob-
serve that it is better to apply the reading compre-
hension training fashion than token-level tagging
for the causal span detection task. Regarding our
proposed approaches, the LM-based paraphrasing
data augmentation technique improves the perfor-

mance of the approach by a large margin compared
to the baseline. The improvement is consistent,
that is, there is an improvement in the prediction
of all types of spans. In addition, our proposed
BSS post-processing algorithm further improves
our approach. However, it can be seen that the im-
provement of the approach by BSS mainly comes
from the prediction of cause and effect. This is
reasonable because the algorithm does not post-
process the predictions of Signal. As for the signal
classifier, both ES and JS make an improvement,
which comes mainly from the better prediction of
Signal. However, note that the improvement in ES
is larger. We conjecture that it might be because of
a new training objective introduced by JS, which
is harmful to the proposed approach to learning to
predict the spans better. Finally, we mix all of the
approaches together with our approach and ended
up with the best performance. Here, we also com-
pared the impact of data augmentation at different
scales. Specifically, we compare the results when
n = 2 (4× dataset size) with n = 3 (9× dataset
size). We find that higher data augmentation sizes
lead to better results in the validation dataset.

4.3 Case Study of Data Augmentation

In this subsection, we provide a case study on the
effectiveness of data augmentation proposed in the
system. The comparisons between generated texts
and the original texts are shown in Table 3.

From the results, the expressions in the data-
augmented texts are more diverse while remaining
semantically consistent with the original sentence.
Furthermore, the data-augmented texts are com-
petitive with the original in terms of fluency and
grammatical correctness.
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Table 3: Case Study of Data Augmentation. Note that we generate two sentences for Cause and Effect, respectively.
Therefore, there are in total 4 outcomes sentences via combinations.

Ori. <ARG1>The farmworkers ’ strike resumed on Tuesday</ARG1>when <ARG0>their demands were not met</ARG0>

DA

<ARG1>On Tuesday, the farmworkers resumed their strike</ARG1>when <ARG0>their demands weren’t met</ARG0>.
<ARG1>On Tuesday, the farmworkers resumed their strike</ARG1>when <ARG0>their demands didn’t get met</ARG0>.
<ARG1>On Tuesday, the farmworkers went on strike</ARG1>when <ARG0>their demands weren’t met</ARG0>.
<ARG1>On Tuesday, the farmworkers went on strike</ARG1>when <ARG0>their demands didn’t get met</ARG0>.

Table 4: Overall performance of the proposed approach
on the test set. The numbers in parentheses represent
the rankings.

Final Competition Results

Recall 0.5387 (1)
Precision 0.5509 (2)
F1 0.5415 (1)
Accuracy 0.4315 (1)

4.4 Competition Result

We reveal and discuss the final results of our pro-
posed approach competition on a test set. The
results are shown in Table 4.

As shown in the table, our proposed approach
achieves state-of-the-art results in 3 out of 4 evalua-
tion metrics on subtask 2. This shows the excellent
performance of the proposed approach in solving
the task of causal spans detection.

5 Conclusion

This paper introduces a reading comprehension-
based method, an original post-processing strategy,
and an LM-based data augmentation trick for the
new Cause-Effect Signal Span Detection compe-
tition. We compare the RC-based method with
the NER-based one and prove that the RC-based
method gets an observing performance gain com-
pared to the NER-based one. We provide exper-
imental results and ablation studies of our beam-
search-based Span Selector and LM-based data
augmentation tricks to analyze their efficiency and
prove their compatibility with other tricks. Our
approach achieves state-of-the-art performance in
the new competition.
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Nelleke Oostdijk, Tadashi Nomoto, Hansi Het-
tiarachchi, Iqra Ameer, Onur Uca, Farhana Ferdousi
Liza, and Tiancheng Hu. 2022b. The causal news cor-
pus: Annotating causal relations in event sentences
from news.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2019. Huggingface’s transformers: State-of-
the-art natural language processing. arXiv preprint
arXiv:1910.03771.

Ziang Xie. 2017. Neural text generation: A practical
guide. arXiv preprint arXiv:1711.09534.

Jingqing Zhang, Yao Zhao, Mohammad Saleh, and Pe-
ter Liu. 2020. Pegasus: Pre-training with extracted
gap-sentences for abstractive summarization. In In-
ternational Conference on Machine Learning, pages
11328–11339. PMLR.

Zhihan Zhou, Liqian Ma, and Han Liu. 2021. Trade
the event: Corporate events detection for news-based
event-driven trading. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 2114–2124, Online. Association for Computa-
tional Linguistics.

105

https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.18653/v1/2021.naacl-main.69
https://doi.org/10.3115/v1/W15-0812
https://doi.org/10.3115/v1/W15-0812
https://doi.org/10.3115/v1/W15-0812
https://doi.org/10.48550/ARXIV.2204.11714
https://doi.org/10.48550/ARXIV.2204.11714
https://doi.org/10.48550/ARXIV.2204.11714
https://doi.org/10.18653/v1/2021.findings-acl.186
https://doi.org/10.18653/v1/2021.findings-acl.186
https://doi.org/10.18653/v1/2021.findings-acl.186


Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE), pages 106 - 116
December 7-8, 2022 ©2022 Association for Computational Linguistics

Hybrid Knowledge Engineering Leveraging a Robust ML Framework to
Produce an Assassination Dataset

Abigail Sticha and Ernesto Verdeja and Paul Brenner
University of Notre Dame

Notre Dame, IN 46556
{asticha, everdeja, paul.r.brenner}@nd.edu

Abstract

Social and political researchers require robust
event datasets to conduct data-driven analysis,
an example being the need for trigger event
datasets to analyze under what conditions and
in what patterns certain trigger-type events in-
crease the probability of mass killings. Fortu-
nately, NLP and ML can be leveraged to create
these robust datasets. In this paper we (i) out-
line a robust ML framework that prioritizes
understandability through visualizations and
generalizability through the ability to imple-
ment different ML algorithms, (ii) perform a
comparative analysis of these ML tools within
the framework for the coup trigger, (iii) lever-
age our ML framework along with a unique
combination of NLP tools, such as NER and
knowledge graphs, to produce a dataset for the
the assassination trigger, and (iv) make this
comprehensive, consolidated, and cohesive as-
sassination dataset publicly available to provide
temporal data for understanding political vio-
lence as well as training data for further socio-
political research.

1 Introduction

Peace and conflict researchers have identified sev-
eral large-scale structural conditions that make
state-led mass killings more likely, such as ongo-
ing political instability or histories of state violence
against vulnerable groups (Verdeja, 2016). How-
ever, the timing of mass killing onset is less under-
stood. Burley et al. (2020) identifies nine potential
triggering events for state mass killings, such as
coups and assassinations, but before socio-political
researchers can conduct systematic analysis to ex-
amine whether, and if so when, certain patterns
of trigger-type events actually increase the proba-
bility of mass killings, it is necessary for political
researchers to obtain political event datasets for
each of these potential triggering events.

Processing the massive amount of information
in available data in order to create socio-policial

event (SPE) datasets for events such as the triggers
described above takes extensive time, money, and
human power. Fortunately, natural language pro-
cessing (NLP) and related machine learning (ML)
tools can be harnessed to classify the rapidly grow-
ing, but often poorly structured and unlabeled, data
as to whether they contain an event or not. ML clas-
sification tools have been increasing combined with
other NLP tools such as Named Entity Recognition
(NER) and Knowledge Graphs (KGs) to engineer
these datasets. Although these ML and NLP tools
have become more robust, it is important for the AI
research community to acknowledge that each tool
comes with limitations and a scope of use. With
this in mind, our project seeks to uniquely leverage
a combination of these tools in order to mitigate
their drawbacks to create an SPE dataset.

The most cited challenge for political event ex-
traction is small labeled training datasets (Büyüköz
et al., 2020; Ramrakhiyani et al., 2021; Caselli
et al., 2021) which become an issue when work-
ing with ML classification algorithms. Therefore,
our first task is to provide a clear, efficient, and
accessible machine learning framework that future
social scientists may utilize when implementing
NLP-focused algorithms to classify large quanti-
ties of text documents given a small labeled training
dataset. We prioritize a framework that is repro-
ducible, understandable, and generalizable by both
including essential visualizations of the input data
and results and structuring the framework in such a
way that fellow researchers can implement different
ML algorithms, such as support vector machines
(SVMs) or bidirectional encoder representations
from transformers (BERT). We demonstrate that
different ML algorithms are most suitable for a
given optimization problem by performing a thor-
ough comparative analysis of these different ML
algorithms for the coup trigger in the process of
refining our framework.

After explaining our ML framework, we demon-
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strate how we implement this framework to create
a dataset for a new trigger: assassinations. We de-
scribe the process of deciding which ML tool to
implement within the framework and subsequently
leverage our robust ML framework along with a
combination of additional NLP tools, such as NER
and KGs, to create the SPE dataset. By mitigating
the drawbacks and uniting the strengths of both
machine-based and human-centric approaches we
create the most comprehensive (targeting all known
assassination events), consolidated (a single dataset
solely focused on assassination events), and cohe-
sive (easily filterable and readable) assassinations
dataset to provide temporal data for understanding
political violence as well as training data for further
socio-political research 1.

2 Related Work

2.1 Existing Assassinations Datasets

To date, there is no dataset created with the sole
intent of targeting all global assassinations of lead-
ership figures. There are pre-existing datasets that
either include assassination events as a small por-
tion of the data entries or small scale case stud-
ies focusing on specific assassination events in a
given country. Nevertheless, there are two previ-
ously existing dataset that we explored for assassi-
nation events: (1) the Archigos dataset (Goemans
et al., 2009) and (2) the Global Terrorism Database
(GTD) (LaFree and Dugan, 2007).

Created in 2009, Archigos serves primarily as a
data set of political leaders in 188 countries from
1875 to 2015 and has 1,287 entries in its latest ver-
sion (4.1). Each entry contains the political leader’s
name, age, gender, term start date and end date, and
fate a year after leaving office. The GTD is more
comprehensive, as it contains over 200,000 terror-
ism event entries from 171 countries in the years
1970 to 2019. This data was retrieved from approx-
imately four million global news articles. Each
entry contains the date, location, weapons used,
target, number of casualties, and group or individu-
als responsible; but unfortunately, often includes a
position description (i.e. mayor) as opposed to the
name for the assassination target (’target1’ column
in dataset).

1Upon the completion of the blind review process our
dataset will be released publicly at the conference through our
university curation system.

2.2 Existing Tools for SPE Extraction

Although no comprehensive assassination dataset
is available, building robust SPE databases is not
a new task of interest and the tools used to cre-
ate these databases have varied. Many of these
more established databases, as well as some newer
databases, are manually coded by humans (Raleigh
et al., 2010; Gleditsch et al., 2002; Kriesi et al.,
2020). These human in the loop projects require
full-time permanent employees and extensive sup-
port and funding due to the large amount of data
to code. For example, Gleditsch et al. (2002) staff
processes nearly 50,000 news items and other re-
ports yearly. To mitigate these challenges, many
SPE projects have relied on automated event coders
like KEDS (Schrodt et al., 1994) or PETRARCH
(Schrodt et al., 2014) to record political events (Lee-
taru and Schrodt, 2013; Halterman et al., 2017).
Although these tools provide increased automa-
tion, they produce further challenges, such as bias
due to human-curated dictionaries, the inability for
replication, and issues with aggregating multiple
reports into a single event (Rød and Weidmann,
2013). Therefore, many SPE projects have shifted
focus to new ML frameworks.

Some projects leverage a hybrid approach of hu-
man coding and ML such as Nardulli et al. (2015)
to curate a Social, Political and Economic Event
Database and Pavlick et al. (2016) to curate a gun
violence database. Other projects focus strictly on
ML, such as using BERT-based models to extract
protest events (Caselli et al., 2021; Celik et al.,
2021; Hanna, 2017; Büyüköz et al., 2020). Re-
searchers have also incorporated NER and pre-
existing databases along with the ML tools to per-
form distant supervision such as Reschke et al.
(2014) to create a plane crashes database and Keith
et al. (2017) to create a police killings dataset. Fi-
nally, KGs have been leveraged by Rudnik et al.
(2019) to create an event search engine and other
researchers have began combining ML and KG
for engineering datasets (Guo et al., 2020; Suba-
sic et al., 2019) but to our knowledge there are no
examples of this specific combination in the SPE
domain.

These hybrid ML methodologies either rely on
the availability of many trained human readers,
large training datasets, or structured and dense ex-
isting datasets for distant supervision. Our project,
on the other hand, is focused on minimizing hu-
man labor, leveraging a small training dataset, and
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building off incomplete datasets and therefore calls
for a novel hybrid approach to dataset engineering
that leverages a ML framework for small training
sets, NER, KGs, and human-centric approaches.

2.3 Choosing a ML Tool

Researches have implemented traditional ML tools,
such as SVMs, K-nearest neighbor, Decision Trees,
and Naive Bayes for text classification. From these
tools, we selected SVMs as the baseline for our
project based on background research that shows
that SVMs often outperform other text machine
learning tools due to their “simple structure, com-
plete theory, high adaptability, global optimization,
short training time, and good generalization perfor-
mance” (Liu et al., 2010; Gayathri and Marimuthu,
2013; Kwok, 1998; Wright et al., 2013). We
also experimented with neural network architecture
such as CNNs, RNNs, and LSTMs, but whereas
SVMs are equipped to train on smaller datasets
(Díaz Rodríguez et al., 2004; Gao and Sun, 2010;
Zhang et al., 2008), these models require larger
training sets than were available 2.

Newer NLP neural network tools include word
embedding tools such as word2vec (Mikolov et al.,
2013) and transformers (Vaswani et al., 2017) such
as BERT (Devlin et al., 2019). BERT is a trans-
former based NLP tool that was pre-trained through
masked language modeling and next sentence pre-
diction tasks using 3.3 Billion words total with
2.5B from Wikipedia and 0.8B from BooksCorpus
(Devlin et al., 2019). The model can be fine-tuned
using labeled text for different downstream NLP
tasks, such a classification (González-Carvajal and
Garrido-Merchán, 2020). Since this is such a pow-
erful and efficient model, there have been countless
variants of BERT which can be viewed on the Hug-
gingface library (Wolf et al., 2020). In this study we
will focus on 1) BERT-base, a smaller version of the
BERT model released by Google, which we will
refer to as our ‘BERT model’ and 2) Longformer,
a BERT-based model that aims to handle inputs of
longer length by using segment-level recurrence
mechanisms to capture information from all the
tokens of a document (Beltagy et al., 2020). With
Longformer each document can be represented by
up to 4,096 tokens, as opposed to 512 for BERT,
so we hoped leveraging Longformer would rescue

2Models only reached scores of 66.4% (CNN), 76.3%
(RNN), and 61.8% (LSTM) with validation losses stagnat-
ing above 50 percent or rising dramatically during training for
coups

information from our long text inputs that was po-
tentially lost when implementing BERT.

There have been several studies comparing
SVMs and pre-trained BERT models for SPE ex-
traction. Olsson et al. (2020); Büyüköz et al. (2020)
find that BERT-based models outperform tradition
ML algorithms while Piskorski and Jacquet (2020)
finds that tf-idf-weighted character n-gram SVM
models outperform BERT-based models. It is im-
portant to note that Olsson et al. (2020); Büyüköz
et al. (2020) and other SPE projects that focus
solely on pre-trained models, such as Caselli et al.
(2021); Celik et al. (2021), have significantly larger
training sets available than our project.

2.4 Wikidata

Knowledge graphs leverage graph structure to rep-
resent data where edges capture the relations be-
tween entities within the data which allows re-
searchers to extract knowledge, such as events,
from the structure (Hogan et al., 2021). The KG
that we leverage is Wikidata, which contains over
96 million data items that are expressed through
property-value pairs, so each item can have many
different properties associated with it. Vrandečić
and Krötzsch (2014) discuss some of the applica-
tions of Wikidata, including browsing and querying
the data it contains. Wikidata also provides an inter-
face for access as a directed labeled graph using the
RDF data model and SPARQL query language 3.
Some of the most cited issues with large knowledge
graphs like Wikidata include “maintaining their
coverage, correctness, and freshness" (Hur et al.,
2021), challenges that will be mitigated through
our hybrid engineering approach.

3 A Robust ML Framework

3.1 Dataset for Refining Framework: Coups

In order to refine a robust machine learning frame-
work and highlight challenges along the way we
chose to focus on one trigger, namely coups. We
chose this trigger because it had the highest overlap
in classification by humans at the time with an inter-
coder reliability score of 87.50% agreement. The
coup data consists of the English-translated text
of news articles retrieved via LexisNexis queries
based on several search parameters: a date filter
from 1989-2017, a source filter for our list of 20
sources, and keywords, such as ’coup’ and ’over-

3https://query.wikidata.org
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Figure 1: Article counts for countries that comprise >1%
of the total articles pulled down across each trigger.

throw’, based on trigger definition4. The corpus
that we hope to classify contains 647,989 unclas-
sified articles. This large magnitude of queried
articles (Fig 1), even for a trigger with high in-
tercoder scores and simple keywords, highlights
the importance of defining the event of focus with
amazing clarity to enable a precise query. In addi-
tion to the unclassified dataset, we used a training
set consisting of 551 articles (117 positive and 434
negative) retrieved in the same manner and labeled
by a team of researchers trained to identify articles
that qualify as a coup event.

3.2 Event Coding with PETRARCH

In the beginning stages of the project we lever-
aged the PETRARCH (Schrodt et al., 2014) event
coding software to search for specific key word
associations that are defined within a custom defi-
nition file fed to the PETRARCH software. These
dictionary files are unique to a given trigger and
follow the CAMEO standard for political event ex-
traction (Gerner et al., 2002). We employed the
trigger coding definitions from Burley et al. (2020)
which included the specific key words for coups.
During the dictionary creation process, we found
that creating new dictionaries for each refinement
of a search is labor intensive and risks added bias.
This motivated us to shift towards newer machine
learning methods to develop an inference engine to
gather articles that fit our trigger definitions.

3.3 Classification with SVMs

Our overall ML framework (Fig 2) is split into two
phases: the development phase and the production
phase. The development phase involves training,

4Please contact authors for robust trigger definitions and
associated keyword

Figure 2: ML framework for article classification.

testing, and iteratively tuning the machine learning
algorithm which allows each model to ‘learn’ the
patterns in the data that separate an instance of
a potential trigger versus a non-trigger. Once a
model is sufficiently optimized, we classify our
larger, unlabeled data set in the production phase.

Our SVM workflow script was initially modeled
off of a concise text classification example written
by Gungit Bedi (Bedi, 2019). The workflow be-
gins with robust visualizations of the data, as these
can aid in understanding the textual relationships
from which the machine learning algorithms will
produce insights. Next, the text is preprocessed:
blank rows removed, text lowercased, stopwords
removed, and text tokenized and lemmatized. Af-
ter these steps, and once the labels are encoded,
the processed text is transformed into a numeri-
cal vector that can be understood and utilized in
the SVM algorithm. The tf-idf vectorizer builds
a vocabulary by transforming the articles into a
tf-idf-weighted document-term sparse matrix of
size (n_articles, m_features). Within the matrix,
a higher tf-idf value denotes a stronger relation-
ship between a term and the document in which it
appears (Lilleberg et al., 2015). Finally, both the
encoded labels and text vectors are inputted into
the SVM model where the model trains and learns
from the data. After finding optimal training hyper-
parameters via a grid-search, we ultimately set the
training percentage = 80%, C-value = 1, and kernel
type = linear.

3.4 Classification with BERT and Longformer
The framework for training our BERT and Long-
former is the same as Figure (2), making our
pipeline understandable and reproducible. The
scripts for BERT and Longformer are based on a
tutorial provided by Venelin Valkov (Valkov, 2020).
We decided to train the Longformer in addition to
BERT due to the high percentage of articles over
the 512 token limit for BERT (Fig 3).

The BERT-based preprocessing begins similarly
to our SVM as the data is imported and blank
rows are removed. Conveniently, the Hugging-
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Figure 3: Distribution of training word counts by class.

Face Library provides tokenizers for each model
which pre-process the text. Under the hood, these
tokenizers lowercases all words and decomposes
the input into individual words. More precisely,
the BERT tokenizer decomposes inputs into word-
pieces (Wordpiece tokenization) while the Long-
former tokenizer decomposes words via byte-pair
encoding. Since the BERT model uses the original
text data to gain understanding of long-term depen-
dencies between words, vectorizing with tf-idf is
unnecessary. Rather, the tokenizer simply trans-
forms the tokens to their corresponding integer ids.
There are several special tokens added to each in-
put, such as [PAD] which is added to the end of
inputs to make each entry the same length, but all
other tokens are integer IDs given to each word
based on the WordPiece embeddings vocabulary.
These input IDs, along with an attention mask are
passed to each of the BERT-based models.

The training of the BERT model is more ab-
stract than the SVM. The BERT and Longformer
pre-trained weights were downloaded from the
pretrained models named ‘bert-base-uncased’ and
‘allenai/longformer-base-4096’ on the Hugging-
Face library, respectively. Then a dropout layer and
a final linear layer for classification was added to
each of these models. We closely followed the orig-
inal BERT hyperparameters in our script, specifi-
cally, sparse categorical cross-entropy as the loss
function, ADAM for the optimization algorithm,
a batch size of 6, a learning rate of 2e-5, and 50
epochs. A maximum token length of 512 was used
for the BERT model and a length of 1,250 was
used for the Longformer model (based on counts
in Fig 3) which reduces long inputs down to this
maximum length for each model and leaves out
remaining tokens.

Figure 4: Timeline of articles describing coup events
for a subset of countries as classified by each model.

Table 1: Acccuracy Comparison of SVM, BERT, and
Longformer Models

SVM BERT Longformer
Number of Positive Coups 28,552 74,871 73,580

Accuracy Score 96.39 96.34 91.67
Precision Score 98.0 95.0 92.0

Human Validation Score 78.93 78.05 77.56

3.5 Comparative Analysis of Models

We used the trained SVM kernels, BERT, and Long-
former models to classify the 647,989 unlabeled
coup articles and performed a comparative analysis
of the results. We created Fig 4 to visualize the
classified data and quickly identify differences in
how each of the model classify different articles.

Number of Articles Classified as a Coup
Event Figure 4 highlights the issue that all mod-
els seem to over-specify articles as positive coups
(a high false positive rate), shown by the deceiv-
ing appearance of constant coup events occurring
in each country across 1989-2017. Therefore, we
record the total number of articles classified as a
coup event (Fig 1, row 1). Evidently, the SVM
outperformed BERT and Longformer in terms of
refraining from over-specifying articles as coups.

Accuracy Score on Test Data - We compared
the predicted labels on the test data to their correct
labels (Fig 1, row 2). These scores were extremely
promising given our small training dataset.

Precision on Test Data - We produced confu-
sion matrices and classification reports which out-
put precision, recall, and F1 scores. Precision was
the most important metric for our project due to the
problem of false positives and preference for Type
II errors over Type I errors. Maximizing precision
minimizes false positive errors. The precision of
each model are shown in row 3 of Table 1.

Accuracy Score on Subset of Human Valida-
tion Data - A subset of the classification results
were validated/coded by the political science re-
searchers. There were 622 articles in this subset,
15 labeled “yes” by the human coders and 607 la-
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Figure 5: Overlap in model predictions of positively-
classified coup articles

beled “no.” We compared these labels to the labels
that each model gave to these same 622 articles.
These percentages are given in row 3 of Table 1.

Similarity Percentage Between Models In ad-
dition to statistical accuracies, it is also useful to an-
alyze the similarities between our 3 models. Specif-
ically, we focused on reporting the overlap of the
positive coup articles as shown in Figure 5. We
found a 93.72% overlap between SVM and BERT,
59.04% between BERT and Longformer, and 77%
between SVM and Longformer. We also found
that the "yes" articles could be further decreased
from 28,552 to 20,984 articles by taking the over-
lap of SVM, BERT, and Longformer results where
all agree on a positive classification (as opposed to
focusing on the SVM classified coup events.)

Resource Restraints The SVM model showed
no time or resource restraints. The BERT-based
models, on the other hand, took 15 times longer
to train than the SVM, and required a GPU for
training. Additionally, the batch sizes for both
BERT-based models could not exceed the size of 6
due to memory constraints.

Interpretability The SVM proved more inter-
pretable than the BERT-based algorithms. We were
able to visualize the most significant tokens for
classification as measured by tf-idf scores (Fig 6).
We also used a dimensionality reduction algorithm,
UMAP (McInnes et al., 2020) to reduce each tf-idf
document vector to 2-dimensional vectors and plot
these vectors. In the resulting plot the ’yes’ and
’no’, or coup and non-coup, articles are roughly
clustered together (Fig 7). The line added to the fig-
ure to separate these two clusters is a hypothetical
representation of the SVM. These types of tangible
representations are not as readily available for the
BERT-based models due to their complexity and

Figure 6: The most significant tokens towards classifi-
cation of the training set, measured by tf-idf score.

Figure 7: 2D projection of the training set documents
with an example SVM classification line.

the pre-trained aspects.

4 Hybrid Knowledge Engineering to
Create a SPE Dataset: Assassinations

After refining our ML framework, our next step
was to implement the framework on one of SPE
of interest in order to create the desired dataset.
We switched to assassination events to create our
SPE dataset because we saw a lack of assassina-
tion datasets in literature (Section 2.1) and assas-
sinations are the most clearly defined trigger5 for
the triggers laid out in (Burley et al., 2020) with
one keyword (’assassination’). We leveraged our
flushed out machine learning pipeline, along with
existing assassination datasets, KGs, and NER to
enhance our new assassinations dataset (Fig 8).

5Please contact authors for robust trigger definitions and
associated keyword
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Figure 8: Methodology for linking disparate datasets to
build a robust assassinations dataset.

4.1 Existing Assassination Datasets

The Archigos and GTD datasets were the initial
contribution to our new assassination dataset. Of
the 1,287 entries in the Archigos dataset, 22 of
them had “irregular” exits from political office and
a post tenure fate marked as “death” with their
death year also being the same as their final year of
office. It is important to note that natural deaths are
marked as regular exits from office, meaning that
these irregular exits are actually assassinations.

The GTD contains 6,064 assassination events
over the same period of time but includes far more
assassinations than simply those of well-known
political leaders. The three largest categories for
assassinated individuals includes government offi-
cials, private citizens, and police. Overall, the GTD
contains 6,064 assassinations where 4,442 are suc-
cessful (target is killed) and 1,622 are unsuccessful
(target is not killed).

4.2 Linking in Wikidata

Neither existing database was comprehensive in
nature, namely Archigos contained very few assas-
sinations and GTD did not always contain names
of the assassinated. We therefore turned to Wiki-
data to create a stronger baseline for our dataset.
For initial exploration of Wikidata, we queried for
assassination events, political murders, and delib-
erate murders using the SPARQL interface. Filters
were constructed for the dates ranges and countries
of interest, generating 77 results, of which only 55
had a victim associated with them in Wikidata.

After querying for events, we queried for vic-
tims. We queried for 3 different properties shown
in Fig 9: (1) Instance of human (Q5), (2) Date of

Figure 9: SPARQL Query to retrieve Wikidata entries.

death (P570) between 1970 and 2017, (3) Manner
of death of homicide (Q149086). This resulted
in 4,765 individuals. Politician was the most fre-
quent occupation, with 736 individuals, followed
by journalist, but there was a large decrease in
the frequency of subsequent occupations. We ul-
timately decided to move forward with just the
politician and journalist entries, which gave us 953
victims. Note that these were successful assassina-
tions as the Wikidata methodology does not allow
for querying attempted assassinations.

Once we recorded the individual Wikidata “Q”
identifiers for the assassination victims, we re-
trieved the data about each victim using the qwiki-
data6 library that populates a python dictionary for
each Wikidata entity. This allowed us to filter for
5 attributes about the victim: (1) Name, (2) Death
Date, (3) Occupation (i.e. politician), (4) Position
Held (i.e. Prime Minister of Israel), and (5) Coun-
try of Citizenship. Once these Wikidata identifiers
were retrieved, we again utilized qwikidata to get
the Wikidata label strings associated with these
entities to populate our dataset.

4.3 Leveraging our ML Framework

To complete our dataset we implemented our ML
framework to identify and record all assassination
events found in our assassination news data which
was pulled with the same LexisNexis query as
coups but used assassination keywords. The un-
classified corpus consisted of 169,637 unique en-
tries and our training set consisted of 165 humanly
labeled articles (76 positive and 89 negative). We
trained an SVM, BERT, and Longformer models
with our framework since it was necessary to eval-
uate all models before choosing one or a combina-
tion of the models. Both BERT and Longformer
performed poorly, with accuracy scores of 64% and
44%, and showed extreme cases of overfitting. The
SVM reached an accuracy score of 72.67% which
was sufficient considering the human readers only
reached 75% in intercoder reliability checks. These

6qwikidata: https://qwikidata.readthedocs.
io/en/stable/index.html
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Figure 10: Pipeline for reducing the number of articles
read by human readers.

results, along with the high accuracy and precision,
smaller number of ’yes’ articles, lower resource
restraints, and better interpretability shown in Sec-
tion 3.5, resulted in the use of SVMs to classify the
assassination articles.

The trained SVM classified 28,532 articles as as-
sassination events. Similar to Section 3.5, the large
magnitude of positively classified assassination ar-
ticles was a limitation to our ML methodology. So,
although ML was leveraged to reduce the num-
ber of human read articles, we were still left with
nearly 30,000 articles to read through. To rectify
this, NER and clustering algorithms were used so
reduce the number of human read articles without
the need for a larger training dataset (Fig 10).

We first explored SpaCy to refine our assassi-
nation event extraction by uploading a pre-trained
English pipeline (Honnibal and Montani, 2017) and
extracting all names and dates from each positively
classified article. This did not assist us in directly
identifying assassination events due to the length,
complexity, and quantity of names in each article,
but during this process, we pinpointed 3 ways to
further clean the positively labeled articles: (1) re-
moved articles with text extraction errors (articles
with less than 25 words), (2) removed articles with
no extracted names, and (3) removed any articles
that were nearly duplicates of another by dropping
articles that were published within 1 week of an-
other article that had the same subset of extracted
names. After this, 11,572 articles remained.

Next, a team of political scientists read 1,000
articles from our original positively labeled articles.
The readers classified these articles and recorded
all identified assassination events. Based on these
events, Wikidata, and Archigos, we removed all
articles that contained the person’s name of already
recorded events. This produced a corpus of 4,771
articles. Next, we clustered articles based on year
published and country mentioned in the article and
randomly selected one article from each cluster
since many articles from a country published in

Figure 11: Dataset Summary (For each tool, a given
information category was extracted for either all (X),
the majority (\), or none (blank) of the extracted events)

the same year reference the same assassination.
Readers read through the remaining 746 articles.

5 Results: The Assassination Dataset

By uniting the strengths of each tool within our hy-
brid approach we created an assassination dataset
with 7,457 assassination events. For each entry
we collected available information on Name, Date,
Country, Position, and Success status (successful
vs. attempted) of each assassination event along
with the unique identifiers from the source(s) it was
identified from. Figure 11 highlights the unique
information and number of assassination events
contributed by each tools. This shows that despite
each method’s limitations, ambiguous event defi-
nitions for humans, incomplete datasets, missing
Wikidata properties, and small training datasets for
ML, it is evident that each tool benefited the dataset.
Existing databases provided a starting point for
our dataset, Wikidata enhanced our repository, and
the ML pipeline allows us to extract assassination
events from 169,637 articles with only a 165 article
training set.

6 Conclusion & Future Work

We have contributed to ongoing SPE research by
providing a robust ML framework for small train-
ing datasets, performing a comparative analysis
of ML tools, presenting a novel hybrid knowledge
engineering approach to curate a dataset, and releas-
ing our comprehensive, consolidated, and cohesive
assassination dataset which will provide temporal
data for understanding political violence as well
as training data for further socio-political research.
Although our framework and hybrid knowledge
engineering approach will not perfectly transfer
for every SPE dataset curation task, our focus on
understandability visualizations, replicable frame-
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works, and explanation of challenges will allow
future researches to incorporate our work for a va-
riety of SPE extraction tasks. In future work, we
hope to apply the knowledge engineering approach,
encompassing our ML framework, to the remain-
ing triggers of interest while continuing to improve
and automate our ML framework.
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Abstract
We report on the current status of an effort to
produce political event data from unstructured
text via a Transformer language model. Com-
pelled by the current lack of publicly available
and up-to-date event coding software, we seek
to train a model that can produce structured po-
litical event records at the sentence level. Our
approach differs from previous efforts in that
we conceptualize this task as one of text-to-text
sequence generation. We motivate this choice
by outlining desirable properties of text genera-
tion models for the needs of event coding. To
overcome the lack of sufficient training data,
we also describe a method for generating syn-
thetic text and event record pairs that we use to
fit our model.

1 Introduction

Political event records that are automatically de-
rived from text are an important source of struc-
tured data for researchers in social science. Exist-
ing approaches to generating event data often rely
on dictionary methods, which are brittle and go
obsolete, or classifiers trained on hand-labeled text
that required large amounts of expensive data. This
paper introduces a new proof of concept model for
generating structured event data from news text
that does not require dictionaries or hand-labeled
document. We generate synthetic news stories us-
ing a novel combination of rules based generation
and a paraphrasing model and train a text-to-text
Transformer to produce event records from text.
When evaluated on synthetic test data, the model
correctly identifies high-level event types 83% of
the time and reaches accuracies of 63% and 56.9%
on the source and target actors, respectively. The
article concludes with a brief real-world evaluation
and a discussion of the model’s limitations.

1.1 Political Event Data
Political event data describe who did what to whom
and, usually, where and when that action occurred.

While the actors and actions themselves are derived
directly from source texts, locations and times are
often determined via the textual metadata. There-
fore, the core component of political event data is
the source actor, target actor, action three-tuple.

Precisely what actors and actions are included
in an event dataset varies; some tend to be
specific to certain classes of events while oth-
ers seek to capture the full range of politically-
relevant interactions. Examples of the latter include
the Global Database of Events, Language, and
Tone (GDELT)1, the Integrated Crisis Early Warn-
ing System (ICEWS)2, and the various Phoenix
datasets.3

1.2 Generating Event Data

Historically political event data have been made
by hand (Azar, 1980; McClelland, 2006), by rules-
based software tools (Schrodt, 1998, 2001, 2011;
Schrodt et al., 2014; Norris et al., 2017), and via
machine learning. Rules based software typically
relies on large hand-curated dictionaries to per-
form pattern matching. These dictionaries will
conform to a predetermined event ontology like
that defined by CAMEO, the Conflict and Medi-
ation Event Observations (Schrodt, 2012). Neu-
ral networks have been used in conjunction with
PETRARCH, one rules based coding software, to
generate event data by (Radford, 2021a) and to clas-
sify events into quad-class categories by (Beieler,
2016). Recently, workshops like ProtestNews at
CLEF 2019, AESPEN at LREC 2020, and CASE
have prompted even more work on machine learn-
ing approaches to coding event data from text (Hür-
riyetoğlu et al., 2020; Hürriyetoğlu et al., 2020;

1https://gdeltproject.org
2https://dataverse.harvard.edu/

dataverse/icews
3https://clinecenter.

illinois.edu/project/
machine-generated-event-data-projects/
phoenix-data
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Hürriyetoğlu, 2021). Transformer models were
used for zero-shot classification of previously un-
seen event types and for cross-context and multi-
lingual protest detection (Haneczok et al., 2021;
Barker et al., 2021; Kent and Krumbiegel, 2021;
Radford, 2021b). These zero-shot methods rely
primarily on textual entailment formulations of the
event data coding task (Yin et al., 2019).

2 Methodology

2.1 Training Data
The ideal training data for our model would be a
dataset of source texts and their associated coded
events, produced by an existing event coder. How-
ever, due to copyright restrictions, there are no pub-
licly available large scale event datasets that include
event’s associated source texts. We therefore pro-
pose generating synthetic news stories from coded
events. The use of synthetic text is growing in polit-
ical science (Halterman, 2022), but we introduce a
novel technique using a combination of rule-based
generation and a paraphrase model to generate syn-
thetic text that contains the content we require. To
generate positive examples, we generate synthetic
stories through a rule-based process. We parse the
CAMEO and Petrarch dictionaries available from
the Open Event Data Alliance and piece together
pseudo-sentences by substituting random actors,
agents, and word synonyms in the placeholders
denoted within the CAMEO verbs dictionary.

To ensure that our model learns to refrain from
returning coded events when no event is reported,
we also include negative samples, drawn randomly
from sentences published in the New York Times
(NYT) between 1970 and 2022 and assumed to
have no event present.4 From these two sources,
we draw 4.08 million samples (4,000,000 training,
40,000 validation, and 40,000 test set) with a ratio
of 39 positive to 1 negative. One sample represents
approximately a single sentence.

Because the heuristic approach to generating
positive examples often results in bizarre, poorly-
formed, and repetitive sentences, we post-process
50% of all samples (positive and negative) by run-
ning them through a Transformer model for para-
phrase generation.5 This model attempts to output

4It is likely that these sentences from the NYT contain a
small number of relevant socio-political events. We have not
attempted to remove these false negatives from the corpus and
therefore admit that the negative examples in our training data
likely contain a small proportion of errors.

5https://huggingface.co/

a sentence that is not identical to, but semantically
similar to, an input sentence. The paraphraser is
set by default to produce a sentence of no more
than 30 tokens in length.6 Unfortunately, this in-
duces a bias in our model towards coding shorter
and simpler sentences than are typical for new text
and we intend to adjust the paraphraser parameters
in future iterations.7 Our target values are comma-
delimited three-tuples of action category, source
actor, and target actor. An example of a raw syn-
thetic story, a paraphrased story, and the associated
event code is given below.

Raw synthetic story: “Ministries For Public
Health And Social Welfare Rossija said could beat
Jibouti within Unmanned Aircraft.”

Paraphrased text: “Rossija said that he could
beat Jibouti with Unmanned Aircraft”.8

Event record: 138 (Threaten with military
force), RUSGOVHLH (Russian government health-
care), DJIMIL (Djibouti military).

In the raw synthetic story, the randomly-drawn
actors are “Ministries for Public Health and Social
Welfare Rossija,” and “Jibouti,” the verb phrase
is “[SOURCE ACTOR] said could [VERB] [TAR-
GET ACTOR],” the verb is “beat,” and “Unmanned
Aircraft” is a synonym for “aircraft.” “Within” is
one of a set of available random prepositions.

To minimize the leakage of actors or phrases
from the training set into the (out-of-sample) vali-
dation or test sets, we partition the dictionaries prior
to generating synthetic samples. Specifically, we
partition the NYT sentences, verb phrases, agents,
countries, and actors into their own training, vali-
dation, and test sets prior to constructing our three
respective data partitions. We then construct syn-
thetic samples for each of the training, validation,
and test sets by sampling only from those words
and phrases found in the corresponding partitions

ramsrigouthamg/t5_sentence_paraphraser
6This is likely too short and we recommend longer max-

imum sequence lengths be used in future work. However,
producing longer paraphrased sentences requires greater com-
putational resources or computation time than were available
for this study. We therefore leave the paraphraser set to the
default 30 tokens maximum output.

7An open-ended text generation model like GPT-2, applied
after the paraphraser, could expand the paraphrase in such a
way that results better simulate the target distribution of news
texts (Radford et al., 2019).

8It is possible that the paraphraser model changes the con-
tent of some texts such that they no longer correspond to the
codes associated with their original associated synthetic event
records. Nonetheless, paraphrase-based data augmentation is
becoming common in NLP applications (Kumar et al., 2019;
Corbeil and Abdi Ghavidel, 2020; Beddiar et al., 2021).
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of dictionaries. Synsets, words that are effectively
synonyms of one another, are not partitioned in
such a way.

2.2 Model

Text-to-Text Transfer Transformer (T5) is a lan-
guage model tailored for text generation (Raffel
et al., 2020). It comes in a variety of sizes, of
which we select T5-Base version 1.1 with 250m
parameters. T5 was trained on a variety of natural
language tasks, distinguished by prepending a key-
word describing the task to the input (“context”)
to the model. We fine tune T5 on our synthetic
dataset for a single epoch with a learning rate of
5.6× 10−6 and all other hyperparameters held at
their default values. We decode our output using
the default configuration for T5 in HuggingFace’s
pipeline (greedy search).9 Alternative configura-
tions may lead to different output values.

Continuing with the example from Section 2.1,
the input to our model would be the Sentencepiece-
tokenized version of either the raw synthetic story
or the paraphrased story, drawn with equal prob-
ability (50% each) (Kudo and Richardson, 2018).
The desired output of the model is the comma-
delimited, semicolon-terminated event record “138,
RUSGOVHLH, DJIMIL;”.

3 Results

This section provides descriptions of our results in
two experimental settings: an out-of-sample test set
evaluation using data generated via the same pro-
cess as the training data and an out-of-distribution
case study using a small sample of real world news
text.

3.1 Within Distribution Performance

We evaluate the test set accuracy of the model on
the event category, actor coding, and exact match
accuracy on the full event triple. At the coarser
level of 20 event types, the model achieves 83.4%
accuracy and reaches 77.8% accuracy for the full
set of 295 fine-grained action codes. Source and tar-
get actor exact match accuracy are 63% and 56.9%,
respectively. Because actors are represented by sets
of three-character sub codes, we can compute the
precision, recall, and F1-score of these sub codes.
We find values of 0.73, 0.78, and 0.75, respectively.
Evaluating against the complete event record, our

9https://huggingface.co/docs/
transformers/main_classes/pipelines

model achieves 30.7% exact match accuracy in the
test set.

The model only fails to code events for 15 in-
put samples that contain events and erroneously
codes events for 53 samples that should not con-
tain events, corresponding to an F1-score of 0.999.
These scores likely reflect the differences in sam-
ples generated by our synthetic process versus
those drawn from the NYT more so than they do
strong model performance. Overall, we find these
results promising but acknowledge that synthetic
data often fail to sufficiently mimic their real world
targets. For this reason, we turn now to a small case
study with real world data that are representative of
data that would typically be used in event coding
applications.

3.2 Real World Performance

While we reserve a full real-world evaluation of
our neural event coder for a follow-up paper, here
we demonstrate its use in a very short case study:
the top ten articles on the Associated Press’s World
page as retrieved on September 6, 2022. We first
attempt to code the introductory sentence from
each of the ten articles to no success: not a sin-
gle sentence produced an event. However, as we
noted before, these sentences are far longer and
more complex than those generated by our heuris-
tic process. If we first use the paraphraser model
to paraphrase these sentences such that they better
resemble the distribution of the training data, we
find three events.10 Furthermore, if we code the
headlines rather than the introductory sentences,
six out of the ten produce event data records. See
Table 1 for the headlines and coded events. Most
of the event records produced from headlines are at
least partially correct. The verb codes correspond
to “make pessimistic comment,” “threaten with mil-
itary force,” “express intent to cooperate militarily,”
“praise or endorse,” “investigate,” and “reduce rela-
tions,” in order. Example 2 (“UN agency calls for
safety zone around Ukraine nuclear plant”) was cor-
rectly coded as 0256 “appeal for de-escalation of
military engagement” when using the paraphrased
introductory sentence but incorrectly coded as a
threat when using the headline. While the actor
countries tend to match those described in the head-
lines, the model is ambitious about inferring un-
stated actor affiliations. For instance, in example 9,
the target actor (“cabinet”) is incorrectly assumed

10Sentences, paraphrases, and events given in the Appendix.
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Headline Headline Event
1. New UK leader vows to tackle energy crisis, ailing economy 012 (Statement), GBR, NGOENV

2. UN agency calls for safety zone around Ukraine nuclear plant 138 (Threaten), IGOUNODEV, UKRUNR

3. EXPLAINER: Why Truss went to Scotland to become UK leader –

4. US: Russia to buy rockets, artillery shells from North Korea 0312:0312 (Intent to cooperate), RUS, PRK

5. Rallies show Pakistan’s ex-PM Khan remains political force 051 (Diplomatic cooperation), NGOHRI, PAKOPP

6. ‘This is it, folks’: Boris Johnson bids an ambiguous goodbye –

7. Fears high as Canadian police search for stabbing suspect 090 (Investigate), CAN, CAN

8. UN: Tribal clashes in Sudan kill 380 in Jan.-Aug. period –

9. Chile’s Boric shakes up cabinet after constitution loss 160 (Reduce relations), CHL, HRVGOV

10. Tension rises as Turkey, Greece voice festering grievances –

Table 1: World section headlines from the AP on September 6, 2022 and associated predicted event records.
Top-level CAMEO action categories are given in parentheses; specific action codes can be found in the CAMEO
codebook (Schrodt, 2012).

by the model to be the Herzegovina government.
However, sometimes these assumptions are war-
ranted: the model correctly identifies “Pakistan’s
ex-PM Khan” as a Pakistani opposition figure. In
fact, inspection of the CAMEO actors dictionary re-
veals that Imran Khan is not ever coded as PAKOPP
in the dictionary and therefore cannot be coded as
such in the training data–this label is inferred by
the model entirely out-of-sample.

4 Conclusion

Text-to-text is a flexible modeling task that is
amenable to complicated output data types. Us-
ing multiple classification heads is an alternative
method for event coding text via large language
model, but it offers less flexibility for future im-
provements. For example, a text-to-text model
can be trained to generate an arbitrary number of
events from a single input text.11 A more tradi-
tional classification-based approach is suitable for
coding only up to a predefined number of events.
We also appreciate that the open-ended nature of
text output means that we do not need to generate
all possible actor combinations prior to training
as we would in a multiclass classification setup.
The text-to-text model can simply append actor
codes to one another as necessary, even if it has not
previously seen a sample with the particular given
combination.

We leave a more formal evaluation of our
methodology and model to a follow-up paper in
which we plan to employ expert human annotators
to generate comparable event data against which

11We have preliminary work in which we generate up to
four events per input paragraph.

we can benchmark our model. Nonetheless, we
believe the results presented here are promising
for future development of text-to-text models for
political event data coding.

4.1 Limitations

We regret that we cannot distribute the entirety of
our datasets due to copyright issues. A portion
of our samples are drawn from a corpus derived
from the New York Times and we therefore lack the
ability to redistribute them. We do make available
the samples generated via our heuristic and para-
phrase approach, though. In future iterations of
this work, we plan to replace the NYT derived data
with samples drawn from open sources.12

Our actor resolution step is also limited by our
reliance on the existing CAMEO dictionaries and
the world knowledge built into T5. Without access
to an external data set such as Wikipedia, our accu-
racy for obscure political entities or people whose
roles change frequently will be limited.

Our model exhibits a strange sensitivity to punc-
tuation, especially periods. The model appears
to more readily code events when the sentence in
question does not end with a period. We have been
unable to identify a source of this bias in our train-
ing data.

We append a semicolon to the end of every event
record. In our next version of this model, we
will train on paragraph-length texts and allow the
model to output an arbitrary number of semicolon-
delimited event records per input example.

We hope to compare our model’s performance

12For example, we are considering Voice of America and
Common Crawl as substitute text sources.
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directly with that of Petrarch or TABARI. Unfor-
tunately, this will require a functional instance of
the software in question which we do not currently
possess.

4.2 Broader Impacts
Political event coding software has been publicly
available for decades now, as have been the dictio-
naries of actors and verb phrases that they require.
As such, we do not believe that our work poses any
additional risk for misuse. Furthermore, we rely on
a synthetic data generation technique that allows us
to train our model with limited access to real-world
text data that may contain sensitive information or
reflect undesirable societal biases. As always, we
implore others interested in our work to not use it
for evil.
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A Appendix

Below are the headlines, introductory paragraphs,
and automatically paraphrased paragraphs drawn
from the Associated Press World section.

Example 1
Headline: New UK leader vows to tackle energy

crisis, ailing economy
First paragraph: “Liz Truss became U.K.

prime minister on Tuesday and immediately faced
up to the enormous tasks ahead of her: curbing
soaring prices, boosting the economy, easing la-
bor unrest and fixing a national health care system
burdened by long waiting lists and staff shortages.”

Paraphrase: “Liz Truss became the Prime Min-
ister of the United Kingdom on Tuesday and imme-
diately faced the”

Example 2
Headline: UN agency calls for safety zone

around Ukraine nuclear plant

First paragraph: “The U.N. atomic watchdog
agency urged Russia and Ukraine on Tuesday to
establish a “nuclear safety and security protection
zone” around the Zaporizhzhia power plant amid
mounting fears the fighting could trigger a catas-
trophe in a country still scarred by the Chernobyl
disaster.”

Paraphrase: “the United Nations nuclear watch-
dog group urged Russia and Ukraine to establish a
"n”

Paraphrase code: (0256, IGOUNOKID,
RUS)

Example 3
Headline: EXPLAINER: Why Truss went to

Scotland to become UK leader
First paragraph: “Liz Truss, a onetime accoun-

tant who has served in Parliament for the past 12
years, became Britain’s prime minister on Tuesday
after Queen Elizabeth II formally asked her to form
a government.”

Paraphrase: “Liz Truss, a one-time accountant
who has served in Parliament for the”

Example 4
Headline: US: Russia to buy rockets, artillery

shells from North Korea
First paragraph: “The Russian Ministry of De-

fense is in the process of purchasing millions of
rockets and artillery shells from North Korea for
its ongoing fight in Ukraine, according to a newly
downgraded U.S. intelligence finding.”

Paraphrase: “according to a recently down-
graded US intelligence report, the Russian Ministry
of Defense is in”

Example 5
Headline: Rallies show Pakistan’s ex-PM Khan

remains political force
First paragraph: “Since he was toppled by par-

liament five months ago, former Prime Minister
Imran Khan has demonstrated his popularity with
rallies that have drawn huge crowds and signaled
to his rivals that he remains a considerable political
force.”

Paraphrase: “former Prime Minister Imran
Khan has resurrected his popularity since being
deposed”

Paraphrase code: (051, ELI, PAKGOV)
Example 6

Headline: ‘This is it, folks’: Boris Johnson bids
an ambiguous goodbye

First paragraph: “Boris Johnson’s term as
British leader was a mix of high drama and low
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disgrace. But he left office Tuesday with a casual
shrug of a farewell: “Well, this is it, folks.””

Paraphrase: “Boris Johnson’s term as British
leader was a mix of high drama and low”

Example 7
Headline: Fears high as Canadian police search

for stabbing suspect
First paragraph: “Fears ran high Tuesday on

an Indigenous reserve in the Canadian province of
Saskatchewan after police warned that the suspect
in a deadly stabbing rampage over the weekend
might be nearby and officers surrounded a house
with guns drawn.”

Paraphrase: “fear erupted on an Indigenous
reserve in the Canadian province of Saskatchewan
on Tuesday,”

Paraphrase code: (012, CAN, CVL)
Example 8

Headline: UN: Tribal clashes in Sudan kill 380
in Jan.-Aug. period

First paragraph: “Around 380 people were
killed in tribal clashes in Sudan between January
and August, most of them in the conflict-wracked
Darfur region, the U.N. said Tuesday.”

Paraphrase: “380 people were killed in tribal
clashes in Sudan between January and August, the
bulk”

Example 9
Headline: Chile’s Boric shakes up cabinet after

constitution loss
First paragraph: “Chile’s President Gabriel

Boric shook up his cabinet Tuesday in an effort to
relaunch his government less than 48 hours after
he was dealt a resounding blow when citizens over-
whelmingly rejected a new progressive constitution
he had championed.”

Paraphrase: “Chile’s President Gabriel Boric
shook up his cabinet Tuesday in an attempt to”

Example 10
Headline: Tension rises as Turkey, Greece voice

festering grievances
First paragraph: “Troubled relations between

regional rivals Turkey and Greece worsened Tues-
day, with Turkey’s president doubling down on a
thinly veiled invasion threat and Athens responding
that it’s ready to defend its sovereignty."

Paraphrase: “tensions between regional rivals
Turkey and Greece worsened on Tuesday, with
Turkey”

123



Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE), pages 124 - 132
December 7-8, 2022 ©2022 Association for Computational Linguistics

Zero-Shot Ranking Socio-Political Texts with Transformer Language
Models to Reduce Close Reading Time

Kiymet Akdemir
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Abstract

We approach the classification problem as an
entailment problem and apply zero-shot rank-
ing to socio-political texts. Documents that are
ranked at the top can be considered positively
classified documents and this reduces the close
reading time for the information extraction pro-
cess. We use Transformer Language Models
to get the entailment probabilities and inves-
tigate different types of queries. We find that
DeBERTa achieves higher mean average preci-
sion scores than RoBERTa and when declara-
tive form of the class label is used as a query,
it outperforms dictionary definition of the class
label. We show that one can reduce the close
reading time by taking some percentage of the
ranked documents that the percentage depends
on how much recall they want to achieve. How-
ever, our findings also show that percentage of
the documents that should be read increases as
the topic gets broader.

1 Introduction

For the information retrieval process positively la-
beled documents in a dataset are important and
should not be missed, therefore achieving high re-
call is extremely important. However, there is gen-
erally a large number of documents that are rele-
vant or not to the concerned topic and doing close
reading for all documents and annotating them re-
quires lots of time and resources (Hürriyetoğlu
et al., 2016; Hürriyetoǧlu et al., 2017). Therefore,
ranking documents according to relevance to the
investigated class may help to reduce close reading
time and decrease the likelihood of missing critical
information.

Baeza-Yates and Ribeiro-Neto (1999) propose
ranking documents in decreasing order of being rel-
evant to a given query to accelerate the information
retrieval process. Halterman et al. (2021) apply
this method with Natural Language Understanding
(NLU) models for binary classification problems
using the entailment probabilities of a document

and a declarative form of the label. Therefore, to
catch a high percentage of positively labeled doc-
uments, reading some percentage of documents
would be enough since documents that are relevant
would be at the top with a high probability. How-
ever, their dataset India Police Events focuses on
a relatively specific task in information retrieval
that is police actions like killing, arresting, failing
to intervene, etc. Besides, they apply this method
at the sentence level and as they also stated their
model suffers from understanding multi-sentence
context that increases the false negative rate.

We apply this approach to ProtestNews dataset
(Hürriyetoğlu et al., 2021) along with the India Po-
lice Events dataset (Halterman et al., 2021) and
investigate whether sentence level evaluation or
document level evaluation ranks positive docu-
ments at the higher level measured by different
evaluation metrics. We further investigate whether
using the dictionary definition of a class or the
declarative form of a class for the query performs
this task better. We compare two NLU mod-
els DeBERTa-Large-MNLI (He et al., 2020) and
RoBERTa-Large-MNLI (Liu et al., 2019) in terms
of recall and mean average precision.

We present the related work in Section 2. Next,
we introduce two datasets we used in our experi-
ments in Section 3. Then we explain our methodol-
ogy and list all queries used in this work in Section
4. We detail our experiments for both datasets and
present results in Section 5. Finally, we conclude
this work in Section 6 and state what can be done
as future work in Section 7.

2 Related Work

Protest Event Detection Protest event extraction
holds an important place in political social sciences
and detection of protest events is generally the first
step of the extraction. Due to the cost of man-
ual event extraction, besides the presence of digi-
tal news articles and enhancing machine learning
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methods; automated event extraction comes into
play.
Hanna (2017) presents MPEDS, an automated sys-
tem for protest event extraction that contains an
ensemble of shallow machine learning classifiers
(SVM, SGD and Logistic Regression) to detect
protest-related documents. Caselli et al. (2021) pro-
poses Domain Adaptive Retraining for Transformer
Language Models and shows that further training
BERT with domain-specific dataset improves the
performance. They present PROTEST-ER by re-
training pre-trained BERT with protest related data
from TREC Washington Post Corpus. Wiedemann
et al. (2022) classifies protest related documents
in German local news using Pretrained Language
Models. They attempt to improve performance and
generalizability by eliminating protest-unrelated
sentences with keyword search and also by mask-
ing named entities with the idea of models may
overfit on data by recognizing actors, organizatons
and places.
Elsafoury (2019) focuses on both protest events and
police actions i.e. protest repression events in Twit-
ter with Machine Learning models with the claim
of news articles suffer from bias, censorship and
duplication. Won et al. (2017) detects and analyze
protest events in geotagged tweets and associated
images with Convolutional Neural Networks.

Ranking Documents with Transformer Lan-
guage Models Yates et al. (2021) presents a com-
prehensive survey of how BERT (Devlin et al.,
2019) works, ranking documents with BERT, re-
trieve and rerank approach with monoBERT, rank-
ing metrics, etc. One of the most remarkable works
in the survey is monoBERT and duoBERT, a multi-
stage ranking approach with transformer language
models proposed by Nogueira et al. (2019). The
first stage retrieves the candidate documents with
BM25 by treating the query as a bag of words and
later, documents are reranked with their relevance
score with BERT. DuoBERT also takes into ac-
count one document being more relevant than the
other at a third stage. However, we rank the docu-
ments with a language model at one stage.

Halterman et al. (2021) rank documents with
RoBERTa-Large-MNLI (Liu et al., 2019) on sen-
tence level by being relevant to a police activity.
Yet sentence level evaluation does not take into con-
sideration the relationship between the sentences.
Moreover, the task of extracting police events is a
relatively specific topic in political event extraction.

We apply this method with different document sizes
and test on datasets in different topic specificities.

Transformer Language Models DeBERTa and
RoBERTa DeBERTa-Large-MNLI (DLM) (He
et al., 2020) and RoBERTa-Large-MNLI (RLM)
(Liu et al., 2019) are pre-trained language models
that improve BERT. Both models are pre-trained
on Wikipedia (English Wikipedia dump3; 12GB),
BookCorpus (6GB), OPENWEBTEXT (38GB),
and STORIES (a subset of CommonCrawl (31GB)
and fine-tuned for MNLI task. RLM has a token
limitation of 512 whereas DLM has a limitation
of theoretically 24,528. We limit the inputs to 512
tokens for both models to be able to compare them
fairly. Ye and Manoharan (2021) find that DLM
achieves a better performance in different sentence
similarity tasks with respect to RLM and BERT.
He et al. (2020) also show that DeBERTa outper-
forms RoBERTa in a variety of NLP tasks even
when DeBERTa is trained on half of the training
data. Therefore, we use DLM and compare it with
RLM for our task.

Transferring Question Answering to Entailment
Problem Khot et al. (2018) and Demszky et al.
(2018) transfer the question answering problem to
the entailment problem by forming the question
into a declarative form. Clark et al. (2019) trans-
fer yes/no question answering to entailment prob-
lem by training supervised models on entailment
datasets and treating entailment probabilities as the
probability of the answer being yes. They also
use pre-trained ELMo, BERT, and OpenAI GPT
as unsupervised models and show that fine-tuning
BERT on entailment dataset MultiNLI boosts the
performance. The problem of any binary classi-
fication can be also transferred to an entailment
problem similar to the yes/no question answering,
by considering the probability of entailment as the
probability of data belonging to the positive class.

3 Data

We carried out the experiments on two different
datasets: India Police Events dataset1 (Halterman
et al., 2021) and the ProtestNews dataset of the
workshop CASE @ ACL-IJCNLP 20212 (Hür-
riyetoğlu et al., 2021).

1Data and code are provided at https://github.
com/slanglab/IndiaPoliceEvents.

2Information and data are provided at
https://github.com/emerging-welfare/
case-2021-shared-task.
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Event type Question
kill Did police kill someone?
arrest Did police arrest someone?
fail Did police fail to intervene?
force Did police use force or violence?
any action Did police do anything?

Table 1: Question form of each event type.

Event type Positive Documents
kill 50 (3.98%)
arrest 128 (10.17%)
fail 114 (9.05%)
force 90 (7.15%)
any action 457 (36.24%)

Table 2: Number of positive documents for each event
class (India Police Events Dataset).

India Police Events dataset includes 1,257 arti-
cles about the Indian state Gujarat from The Times
of India and from March 2002. The articles are
in English and contain 21,391 sentences in total.
Each sentence is classified into 5 different labels re-
garding police activity: kill, arrest, fail, force, and
any action. Question form of the each event type
is given in Table 1. A document belongs to a class
if any of its sentences belongs to that class. Table
2 illustrates the number of positive documents and
the proportion of the positive documents for each
event class. Note that one document may belong to
one class, several classes or none of them.

ProtestNews dataset includes local news articles
of countries India, China, Argentina, and Brazil.
These articles are in English, Spanish, Portuguese,
and Hindi. For this work, we have only used En-
glish articles. There are 9,327 English documents
but to equalize data sizes with the India Police
Events Dataset we randomly selected 1,257 articles
among those. Documents that contain past or ongo-
ing protest events are labeled as positive (Duruşan
et al., 2022). Number and proportion of positive
documents are given in Table 3.

Dataset Positive Documents
ProtestNews Dataset 1,912 (20.51%)
ProtestNews Subset 268 (21.32 %)

Table 3: Number of positive documents for ProtestNews
Dataset and its subset.

4 Method

First, the probability of entailment for each docu-
ment and a query is calculated with NLU models
from Huggingface3, and documents are ranked by
the decreasing probability of being relevant to the
query. Thus we expect the documents that are more
relevant are ranked at the top.

Entailment probabilities are evaluated on both
sentence and document levels. At sentence level
evaluation, entailment probabilities of sentences in
a document with the given query are calculated and
the largest probability among the sentences is con-
sidered as the probability of the document being
relevant. For the document level evaluation since
RLM is limited to 512 tokens, we divided docu-
ments into parts such that each part does not exceed
512 tokens. Similar to the sentence-level approach,
probabilities of each part are calculated and the
one with the largest probability is considered as
the probability of the document. After getting the
probabilities for all documents, they are ranked in
the decreasing probability.

We compare the results by checking how much
recall is achieved when a specified proportion of
data is read from the ranked documents following
Halterman et. al. (2021) and also by calculating
the mean average precision. We release our code
publicly4.

4.1 Models

We focused on the performances of two multilin-
gual NLU models that are RLM5 (Liu et al., 2019)
and DLM6 (He et al., 2020) which are pre-trained
on the same datasets (Wikipedia and BookCorpus).
We conduct experiments with both models and
compare the results.

4.2 Queries

We have experimented with different types of
queries: definitional queries, extended definitional
queries and declarative queries.

We used the Cambridge Dictionary7 and form
the definitional queries by using the definitions of
the class name (protest, kill, arrest, etc.). Annota-

3http://huggingface.co
4https://github.com/kiymetakdemir/

zero-shot-entailment-ranking
5https://huggingface.co/

roberta-large-mnli
6https://huggingface.co/microsoft/

deberta-large-mnli
7https://dictionary.cambridge.org
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Query type Query
Declarative query There is a protest.
Definitional query There is a strong complaint expressing disagreement,

disapproval, or opposition. (definition of protest9)
Social protest definition (Annotation
Manual)

Individuals, groups, or organizations voice their ob-
jections, oppositions, demands or grievances to a
person or institution of authority.

Contentious politics event definition
(Annotation Manual)

There is a politically motivated collective action
event.

’protest’ + definitional query Protest, there is a strong complaint expressing dis-
agreement, disapproval, or opposition.

Protest definition + opposition defini-
tion

There is a strong complaint expressing disagreement,
disapproval, or opposition. Disagreement with some-
thing, often by speaking or fighting against it, or (esp.
in politics) the people or group who are not in power.
(definition of opposition10)

Protest definition + disapproval defini-
tion

There is a strong complaint expressing disagreement,
disapproval, or opposition. The feeling of having a
negative opinion of someone or something. (defini-
tion of disapproval11)

Table 4: Queries used for the ProtestNews dataset.

Event type Declarative query Definitional query
kill Police killed someone. Police caused someone or something to die. (defini-

tion of kill12)
arrest Police arrested someone. Police used legal authority to catch and take someone

to a place where the person may be accused of a
crime. (definition of arrest13)

fail Police failed to intervene. Police failed to have an effect. (definition of act14)
force Police used violence. Police used actions or words that are intended to hurt

people. (definition of violence15)
any action Police did something. Police have an effect. (definition of act)

Table 5: Queries for the India Police Events dataset.

tion manual may possibly be a good resource to
find the definition of the investigated class. For this
reason, we also experimented with definitions from
Annotation Manual8 (Duruşan et al., 2022). On
the other hand, a declarative query is a sentence
that simply describes the class. For instance, we
use “There is a protest.” as the declarative query
for the ProtestNews dataset. For the India Police
Events dataset, we use declarative queries proposed
by Halterman et al. (2021).

We also extended protest dictionary definition
by concatenating it with the definitions of words
that pass in the query (see last 3 rows in Table 4).

8https://github.com/emerging-welfare/
general_info/tree/master/
annotation-manuals

In one of the queries, the ‘protest’ word is added to
the beginning of the protest definition. In the other
one, definition of opposition is concatenated with
the protest definition. In the third one, definitions
of protest and definition of disapproval are concate-
nated and used as a query. Note that we used the
definitions of opposition and disapproval since they
occur in the protest definition. All queries used for
both datasets are listed in Table 4 and 5.

5 Experiments & Results

ProtestNews Dataset is tested with declarative
queries, definitional queries and extended defini-
tions on models DLM and RLM and results are
presented in Figure 1a for the sentence level evalu-
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Figure 1: ProtestNews dataset tested on two models: RLM and DLM.

ation. The x-axis represents what percentage of the
data is read and the y-axis represents how much
recall is achieved at that stage. One can investi-
gate what percentage of the data should be read to
achieve a specified recall. We see that both mod-
els yield similar results when the same query is
given but positive documents are accumulated at
more top with the declarative query compared to
the definitional query.

For document level evaluation, Figure 1b illus-
trates the comparison of the models. DLM achieves
higher recall scores than RLM, however, the query
type does not affect the performance of the model
at the document level significantly.

We compare the extended and Annotation Man-
ual definitions at document level using the DLM
model since the DLM achieves higher recall com-
pared to RLM at the document level as in Figure
1b. However, from Figure 1c we see that extending
the protest definition performs slightly worse than
using the only dictionary definition. Also, Annota-
tion Manual definitions do not perform better than
the dictionary definition as we see from Figure 1d.

India Police Events Dataset is tested with
declarative and definitional queries on RLM and
DLM as in ProtestNews dataset. For all event types,

we see from Figure 2 and Figure 3 that DLM with
declarative query gives the best result that is posi-
tive documents are accumulated at more top-level,
whereas RLM with a definitional query stays be-
hind other combinations of model and queries.

Mean Average Precision (mAP) is calculated
for each ranking and reported in Table 6. Query
and document length combination that gives the
highest mAP is marked in bold for each dataset and
event type.

For the ProtestNews dataset we observe that us-
ing models DLM or RLM, and document lengths
do not differ significantly. Whereas using a declar-
ative query gives much better mAP than the defini-
tional query. For the India Police Events dataset for
all event types DLM and declarative query with the
sentence level evaluation yield the highest score
rather than the definitional or document level eval-
uation. Besides, note that there is a large difference
with the other combinations. For example for event
type force, sentence level evaluation with DLM
and the declarative query gives 0.91 mAP whereas
document level evaluation with RLM and the defi-
nitional query yields 0.11 mAP.
As the topic gets broader, we see that performance
gets worse in Table 6. For instance, kill is a more
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ProtestNews India Police Events
- kill arrest fail force any action

DLM decl-sent 0.64 0.96 0.94 0.65 0.91 0.89
DLM decl-doc 0.60 0.80 0.75 0.25 0.75 0.80
DLM def-sent 0.35 0.89 0.63 0.47 0.71 0.69
DLM def-doc 0.41 0.62 0.42 0.21 0.21 0.65
RLM decl-sent 0.65 0.55 0.91 0.34 0.66 0.42
RLM decl-doc 0.51 0.18 0.44 0.18 0.27 0.36
RLM def-sent 0.38 0.36 0.26 0.23 0.18 0.38
RLM def-doc 0.34 0.11 0.15 0.16 0.11 0.37

Table 6: mAP scores for DLM and RLM models with different document lengths and queries.
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Figure 2: India Police Events dataset sentence level evaluation tested on RLM and DLM.

specific topic than any action since any action event
type also includes kill events. When 20% of the
data read, 90% recall is achieved for event type kill,
on the other hand, even 60% recall is not reached

for any action.
We take the average sentence and document level
mAP scores for each model and present in Table
7. For ProtestNews dataset, sentence or document
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Figure 3: India Police Events dataset document level evaluation tested on RLM and DLM.

level does not differ in mAP when DLM is used.
However, for India Police Events dataset sentence
level evaluation achieves much higher mAP than
document level evaluation (0.24 mAP increase for
DLM and 0.21 increase for RLM). For both sen-
tence and document level, DLM reaches higher
mAP than RLM.

ProtestNews India Police Events
DLM RLM DLM RLM

sent 0.50 0.52 0.77 0.43
doc 0.50 0.42 0.53 0.22

Table 7: Average mAP on ProtestNews and India Police
Events Dataset for all event types.

6 Conclusion

We investigate the performances of two Trans-
former Language Models (DLM and RLM), dif-
ferent query types (declarative and definitional)
in different document lengths (document and sen-

9https://dictionary.cambridge.org/
dictionary/english/protest

10https://dictionary.cambridge.org/
dictionary/english/opposition

11https://dictionary.cambridge.org/
dictionary/english/disapproval

12https://dictionary.cambridge.org/
dictionary/english/kill

13https://dictionary.cambridge.org/
dictionary/english/arrest

14https://dictionary.cambridge.org/
dictionary/english/act

15https://dictionary.cambridge.org/
dictionary/english/violence
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tence level). Our experiments that conclude DLM
achieves higher mAP scores than RLM are consis-
tent with the findings of Ye and Manoharan (2021)
and He et al. (2020). In general, we find that the
combination of DLM with a declarative query in
sentence level outperforms other combinations in
mAP score. However, scores decrease as the topic
or event type gets broader where protest events can
be considered broader than specific police actions.

7 Future Work

We plan to analyze results more for example by
considering subcategories of protest events for the
ProtestNews dataset. Future work can extend this
work to a different political event classification
dataset and further investigate the association be-
tween the broadness of the topic and metric scores.
Experiments in languages other than English are
also left as future work.
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Abstract

Understanding causal relationship is an impor-
tance part of natural language processing. We
address the causal information extraction prob-
lem with different neural models built on top of
pre-trained transformer-based language mod-
els for identifying Cause, Effect and Signal
spans, from news data sets. We use the Causal
News Corpus subtask 2 training data set to train
span-based and sequence tagging models. Our
span-based model based on pre-trained BERT
base weights achieves an F1 score of 47.48 on
the test set with an accuracy score of 36.87 and
obtained 3rd place in the Causal News Corpus
2022 shared task.

1 Introduction

Subtask 2 of the the Causal News Corpus shared
task at the CASE-22 (Workshop on Challenges and
Applications of Automated Extraction of Socio-
political Events from Text) addresses the causal
information extraction problem (Tan et al., 2022).
The goal of this task is to detect the spans of text in
an input sentence that represent cause-effect pairs
and, if extant, to also detect the text spans that
"signal" this causal relationship. Figure 3 shows
a sample from the data set. Simple examples of
such signal spans are result in, lead to, and due to.
In other cases, the causal relationship is implicit
and it is important to understand the meaning of
the whole sentence to detect causality. The Causal
News Corpus data set contains sentences with both
implicit and explicit causal relationship, so for this
task, language understanding is an essential step.
We adopt different pre-trained language models
to develop our system owing to their tremendous
success in natural language understanding tasks.

In this paper, we train and evaluate the perfor-
mance of span-based and sequence tagging neural
network models for the Cause-Effect-Signal Span
Detection task. Our team name SPOCK (SPan and
sequence based mOdels for Causal Knowledge) for

the Causal News Corpus 2022 shared task is in-
spired by these model architectures. We trained a
span-based (Eberts and Ulges, 2019) causality ex-
traction system1 by fine tuning the BERT-Base (De-
vlin et al., 2018) model. This model resulted
in an F1 score of 47.48 and Accuracy score of
36.87. This was our best performing model com-
pared to the ensemble of sequence tagging models
based on the BIO scheme using the BERT-base and
RoBERTa-large (Liu et al., 2019) language models.

2 Dataset and Task

We use the data sets from Causal News Corpus
2022 in our experiments. The sentences in this
data set are collected from news sources contain-
ing event mentions. There are two subtasks in this
challenge: subtask 1 is Causal Event Classifica-
tion, where the goal is to determine if a sentence
expresses a cause-effect relationship; subtask 2 is
Cause, Effect and Signal Span Detection, where the
goal is to identify the span of words in a sentence
corresponding to a cause, effect, or signal (a span
indicating the existence of a causal relation). This
paper documents two approaches towards subtask
2. The training and dev set from subtask 2 are used
for the training and evaluation of our models. In
the final submission to the challenge, the trained
models were used to obtain predictions on the test
set.

This data set contains labels for Cause, Effect
and Signal spans in a sentence whereas other com-
monly used data sets for causal relation extraction
only contain labels for Cause and Effect. Further,
it is possible for the Signal spans to overlap with
the Cause or Effect spans. In some examples, the
Signal words are not a contiguous span, i.e. words
in different parts of the sentence are tagged as Sig-
nal. Data set statistics for subtask 2 are shown in
Table 1.

1code for SpERT model available in https://github.
com/aniksh/spert-causalnewscorpus
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Data Split Size
Train 180
Dev 323
Test 311

Table 1: Data set statistics

Each example in the training and dev sets is
labeled with a single pair of Cause and Effect span.
Some sentences contain multiple cause-effect pairs;
each pair comprises a separate example, so that
each example has a single cause and effect pair. Not
all sentences in the data set contain a signal span.
In some examples, the signal span overlaps with
the cause or effect span. We show some examples
in Figure 1.

3 Methodology

We experimented with two types of neural models
for the Causal News Corpus 2022 challenge.

3.1 Span-based Model

We introduced this model in our submission (Saha
et al., 2022) to the FinCausal 2022 challenge. The
span-based model takes a sequence of tokens as
input and predicts the Cause and Effect spans in the
sentence by classifying a list of candidate spans of
words. The list of candidate spans is generated by
selecting all possible spans of words in the sentence
up to a maximum span length. This model is based
on SpERT (Eberts and Ulges, 2019) that classifies
each span into 4 classes (Cause, Effect, Signal or
None).

The input to the span classifier is a span embed-
ding which takes the output layer embeddings from
the BERT-base model. We split the words in a sen-
tence with HuggingFace’s BertTokenizer function
(Wolf et al., 2019) to feed the pre-trained BERT
model. We convert the annotations in the Causal
News Corpus data set to Cause, Effect and Signal
span labels for the span-based models.

The span-based model takes in a list of spans
and builds an embedding for each span by using
a max-pooling operation over the BERT output
embeddings of the word pieces in that span. A con-
text embedding is added to the span representation
by concatenating the output layer embedding from
BERT corresponding to the CLS token. The width
of the span is included in the span representation
by concatenating a span width embedding. The
span-width embeddings are stored in a look-up ta-

ble with a row for each unique span length of a
cause or effect in the training data set. The embed-
ding for a given span is thus the concatenation of
the CLS token embedding, the width embedding,
and a max-pool of the token embeddings in the
span.

e(s) = eCLS ◦ wk+1 ◦ f(ei, ei+1, . . . ei+k)

where e(s) is the span embedding, eCLS is the CLS
token embedding, wn is the width embedding for a
span of size n and ei the embedding for i-th token.
A softmax layer is used on top of a linear classifier
to convert the span embeddings into probabilities
over 4 classes.

ys = softmax(Ws · e(s) + bs)

where Ws is the weight of the linear classifier and
bs is the bias of the linear classifier.

The cross-entropy loss is used to train the span
classifier in this model. Spans are classified as
either Cause, Effect, Signal, or None. Consider, for
instance, the process of selecting a single Cause
span. First we drop from consideration all spans
whose probability of being a Cause are smaller than
a threshold t. If there is no span left after applying
the threshold, we predict there is no Cause in the
sentence. Otherwise we take the Cause to be the
span that achieves

max
s∈S

ps

where S is the set of spans after dropping all spans
below the threshold and all spans whose highest
probability class is None, and ps is the predicted
probability for span s to be labeled as a Cause.
Similar rules are used to identify the single Effect
and Signal span.

Since the data set only contains positive labels
for Cause, Effect and Signal spans, we generate
negative examples by randomly sampling spans of
words from the input sentence and labeling those
as None. The negative span samples are selected
from a list of all possible spans in the sentence
up to the maximum span length from before. At
inference time, a list of candidate spans is gener-
ated up to this maximum span size. We explain the
span selection process in Appendix A. Since we
predict Cause and Effect from a list of overlapping
spans, the predicted Cause and Effect might possi-
bly overlap but we did not face this problem as the
span representation for overlapping spans are very
similar.
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<ARG1>Four students appeared in court on Monday</ARG1> <SIG0>for</SIG0> <ARG0>allegedly removing street
signs</ARG0> .

Four students appeared in court on Monday for allegedly removing street signs .
B-E I-E I-E I-E I-E I-E I-E O B-C I-C I-C I-C O
O O O O O O O B-S O O O O O

<ARG1>The workers had embarked on a wildcat strike</ARG1> <ARG0><SIG0>demanding</SIG0> better working
conditions</ARG0> .

The workers had embarked on a wildcat strike demanding better working conditions .
B-E I-E I-E I-E I-E I-E I-E I-E B-C I-C I-C I-C O
O O O O O O O O B-S O O O O

Figure 1: Examples with Cause, Effect and Signal span labels from the Causal News Corpus 2022 data set. The
input text is labeled with ARG0, ARG1 and SIG0 labels. These are converted to the BIO tags for Cause-Effect and
Signal as shown in different lines. The second example has overlapping Cause-Effect and Signal tags.

Model Dev Set Test Set
P R F1 Acc P R F1 Acc

Baseline (Random) 2.17 2.17 2.17 20.84 0.30 0.89 0.45 21.94
Ensemble Tagging Model (BERT-base) 53.26 43.48 46.88 46.45 35.20 23.51 27.44 31.36

Ensemble Tagging Model (RoBERTa-large) 66.30 54.35 58.47 49.65 51.58 38.09 42.52 35.92
Span-based Model 56.52 72.16 62.62 44.71 57.62 43.75 47.48 36.87

Table 2: Precision (P), Recall (R), F1 and Accuracy score (Acc) of different sequence tagging models and the
span-based model on the dev and test set.

Figure 2: Span length distribution of the training set

The maximum span size is a hyperparameter for
this model, chosen based on the distribution of the
size of labeled Cause and Effect spans in the data
set. Figure 2 plots the distribution of span sizes
of all types in the training set. From our initial
experiments, we found the 99-percentile span size
from the training data to work well.

3.2 Sequence Tagging Models

This is a standard sequence tagging model that
classifies each token in the sentence with BIO-style
tags. The input text is tokenized with Huggingface
tokenizers. For an input sequence, each token is

assigned one of the following tags: {B-Cause, I-
Cause, B-Effect, I-Effect, O}, where “B" stands for
“Beginning", “I" for “Inside", and “O" for “Out-
side". Since this data set contains Signal span
labels which overlap with the Cause and Effect
labels we cannot represent these spans within a
single sequence of BIO-style tags. To address the
overlapping span problem, we introduce a separate
set of tags for the Signal span. Figure 1 shows such
an example with the BIO tags.

We experiment with both BERT-base and
RoBERTa-large (Liu et al., 2019) as the encoder for
the input sentence. The BERT-base model has 12
transformer layers with a token embedding dimen-
sion of 768 while the RoBERTa-large models has
24 layers with an embedding dimension of 1024.
We add a 2-layer MLP to the output embeddings
from the encoder to classify each token in the sen-
tence. Since we have two sets of sequence tags,
we train one MLP for detecting the Cause-Effect
spans and another for detecting the Signal spans.
These token classifiers share the same embedding
representation. There are two cross-entropy loss
functions for the two types of labels. We take a
sum of these two loss functions as the total loss
for the model. We fine-tune the pre-trained model
weights and train the MLP parameters from scratch.
We use the dev set performance to select the hyper-
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parameters.
We take an ensemble approach to reduce the

influence of randomness in the training on the final
model performance. Specifically, we use majority
voting to aggregate the token-level predictions on
the test set from 11 different models trained with
11 different random seeds (0,10,20,. . . 100).

3.3 Training

We selected the hyperparameters by using the dev
set performance as validation score and selecting
the model with the highest F1 score. All models de-
scribed here were trained on NVIDIA Tesla V100
gpus. We set the maximum span size to 20 as it
covers 99% of the training data spans. The models
are trained for 40 epochs with a learning rate of
5e−5. The number of negative samples per true
label for the span classifier is set to 10.

4 Results

Span-based Model

The span-based model has a multi-class span clas-
sifier that predicts a score for each of the 4 classes.
During inference, we filter all spans classified as
None i.e. not a Cause, Effect or Signal. We assume
the test data set might contain both causal and non-
causal sentences, so we use a threshold (t = 0.3)
on the predicted probability to filter spans which
belong to a specific class (Cause or Effect). After
thresholding, we select the span with the highest
probability in each class.

This model achieves an F1 score of 47.48 and
an Accuracy score of 36.87; it places 3rd in the
shared task in terms of F1 score. It has the highest
precision (57.62) among the submitted systems but
low recall (43.75) value. We believe this model
can achieve a higher score if we add a mechanism
to predict multiple cause-effect pairs instead of a
single cause-effect pairs.

Sequence Tagging Model

The sequence tagging model predicts both Cause-
Effect and Signal tags to address the cases where
these spans overlap. Since the model has a token-
level classifier, it is possible that the predicted tags
can form multiple spans for the same class. To con-
vert the predicted token tags to span predictions,
we take the first sequence of tokens in the sentence
tagged in a class to be the single span for that class.
We utilize only the class prediction to form the
spans; in particular, either the ’B’ or ’I’ tags signals

the start of a predicted span. The span prediction
ends when the model predicts a different class for
the next token or the sentence ends. We apply ma-
jority voting on the tags predicted for each tokens
over 11 models trained with different random seeds.
The ensemble method helps to reduce errors but
we do not add any constraints to predict consecu-
tive tokens. The RoBERTa-large model has 12%
higher F1 score compared to the BERT-base model
but it is lower than the Span-based model by about
4%.

Model Text
Ground
Truth

The treating doctors said San-
gram lost around 5 kg due to the
hunger strike .

BERT-base
(Ensemble)

The treating doctors said San-
gram lost around 5 kg due to the
hunger strike .

RoBERTa-
large
(Ensemble)

The treating doctors said San-
gram lost around 5 kg due to the
hunger strike .

Span-based
Model

The treating doctors said San-
gram lost around 5 kg due to the
hunger strike .

Figure 3: Sample predictions from the span-based
model and the sequence tagging model. Yellow for
Cause, Cyan for Effect, Red for Signal

.

Sample Prediction

We show the predictions from the sequence tagging
and span-based models for the same input sentence
in Figure 3. All 3 models label the same words as
the Signal and the Cause spans. The BERT-base
model predicts the wrong Effect span by selecting
the phrase “treating doctors". The Cause-Effect
span predictions from the RoBERTa-large model
and the span-based models are the same. Since
this sentence has a simple structure, it is relatively
easier for these neural models to predict the Cause,
Effect and Signal spans. The similarity in predic-
tions from the span-based and the RoBERTa-large
is also reflected in the results in Table 2 where these
models have a small difference in F1 score.

5 Conclusion

In this paper, we adopt two approaches towards
solving the Cause-Effect-Signal Detection task for
participating in the subtask 2 of the Causal News
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Corpus 2022 challenge. The span-based model out-
performs the ensemble of sequence tagging models
in both the dev set and the blind test set. In future
work, we would like to adapt the models to predict
multiple cause-effect pairs for a sentence. We will
also focus on addressing the lack of large labeled
data sets for this tasks by utilizing semi-supervised
domain adaptation or generalization techniques.
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A Span Selection

The span selection procedure is explained here with
an example sentence. For the sentence, The treat-
ing doctors said Sangram lost around 5 kg due to
the hunger strike . with a maximum span size of 5,
we list all possible spans from size 1 to 5. We slide
a window of a certain span size over the sentence
to get all possible spans. For span size 3, the list
of spans in this sentence would be - [The, treat-
ing, doctors], [treating, doctors, said] . . . [hunger,

strike, .]. So for each span size 1, 2, 3, 4, 5 we list
all possible spans in the sentence to form the set of
candidate spans.

Training. We select 10 negative samples ran-
domly from each sentence during training. Predic-
tion. To predict a Cause or Effect span, we need
to list all possible spans from a sentence. So we
classify all spans upto a maximum span size during
inference.
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Abstract

Identifying cause-effect relationships in sen-
tences is one of the formidable tasks to tackle
the challenges of inference and understanding
of natural language. However, the diversity of
word semantics and sentence structure makes it
challenging to determine the causal relationship
effectively. To address these challenges, CASE-
2022 shared task 3 introduced a task focusing
on event causality identification with causal
news corpus. This paper presents our participa-
tion in this task, especially in subtask 1 which
is the causal event classification task. To tackle
the task challenge, we propose a unified neural
model through exploiting two fine-tuned trans-
former models including RoBERTa and Twitter-
RoBERTa. We perform score fusion through
combining the prediction scores of each com-
ponent model using weighted arithmetic mean
to generate the probability score for class label
identification. The experimental results showed
that our proposed method achieved the top per-
formance (ranked 1st) among the participants’
systems.

1 Introduction

Causality is a fundamental cognitive concept that
frequently emerges in various natural language pro-
cessing (NLP) works. It mostly focuses on the
challenges of inference and understanding of the
natural language. In general, a causal relation is
a semantic relationship between two arguments
known as cause and effect, where the occurrence of
one (cause argument) incurs the occurrence of the
other (effect argument). Such causal relation plays
an important role in various contemporary NLP
tasks including document-summarization, event
prediction from text, scene and story generation,
question-answering (Q/A), product recommenda-
tion based on user comments, and other textual
entailments (Yu et al., 2022; Yang et al., 2022).

**The first two authors have equal contributions.

To address the challenges of event causality iden-
tification in texts, Tan et al. (Tan et al., 2022a) intro-
duced a shared task at the CASE-2022 workshop.
The task is composed of two subtasks including
a causal event classification task (subtask1) and a
cause-effect-signal span detection task (subtask 2).
However, we only participated in the causal event
classification task (subtask1), where given a text
a system needs to determine whether it contains
a cause-event meaning or not. To demonstrate a
clear view of the task definition, we articulate a few
examples from subtask 1 in Table 1.

Sentence Label

The farmworkers ’ strike resumed on
Tuesday when their demands were not
met

1

He said he was about 100 metres away
when he witnessed the attack .

0

Table 1: Example of subtask 1. Here, label 1 means
Causal and 0 means Non-Causal.

Prior work on event causality identification has
mostly employed semi-supervised methods (Rink
et al., 2010; Mirza, 2014; Aziz et al., 2020) based
on features (e.g. psycho-linguistic, syntactic, se-
mantic, etc.) or supervised methods (Gordeev et al.,
2020; Ionescu et al., 2020) based on transform-
ers model (e.g. BERT, RoBERTa, DistilBERT,
etc.). However, transformer-based methods ob-
tained more competitive results (Mariko et al.,
2020), although those methods have some limita-
tions in the fusion technique. In order to overcome
this limitation, we proposed a RoBERTa-based uni-
fied method where we utilise the weighted average
fusion technique.

We organize the rest of the paper as follows: Sec-
tion 2 describes our proposed system in the CASE-
2022 causal event classification task whereas, in
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Figure 1: Our proposed model for the causal event classification task.

Section 3, we present our system design with pa-
rameter settings and conduct the results and perfor-
mance analysis. Finally, we conclude with some
future directions in Section 4.

2 Proposed Framework

In this section, we describe our proposed approach
for the event causality identification task. Our goal
is to exploit the inherent semantics of the sentence
to identify whether the event sentence contains any
cause-effect meaning. The overview of our pro-
posed framework is depicted in Figure 1.

Given an input text, we employ two transformer
models including RoBERTa (Liu et al., 2019) and
one of its variants Twitter_RoBERTa (Barbieri
et al., 2020) to extract the diverse contextual fea-
tures. Such feature representation better captures
the inherent semantics of the text. Later, a linear
feed-forward layer is utilized in each model to es-
timate the probability score of each class. Finally,
for the effective fusion of the scores, we take the
weighted arithmetic mean of the prediction scores
of these models. A class that contains the highest
probability scores is considered as the final label.

2.1 Transformer Models

RoBERTa (Liu et al., 2019) stands for robustly
optimized BERT pre-training approach. RoBERTa
has the same architecture as BERT, but it eliminates
the next sentence prediction (NSP) objective used
in BERT during pre-training. Besides, it trained on
longer sequences with much larger mini-batches
and learning rates. Instead of using static masking

like BERT, RoBERTa utilizes dynamic masking
that is employed every time a text sequence is fed
to the model. Therefore, the model encodes the
several versions of the same sentence with masks
on different positions. It helps the model to capture
the inherent semantics of the text.

RoBERTa

Dense + Softmax

Probability Scores

Figure 2: RoBERTa model.

We also employ the Twitter_RoBERTa (Barbieri
et al., 2020), a RoBERTa-base model trained on
5̃8M tweets, described and evaluated in the Tweet-
Eval benchmark. In our proposed framework, we
use RoBERTa along with its Twitter variants to
capture the diverse semantic features effectively.
Here, we use the HuggingFace’s implementation
of the roberta-base model (Wolf et al., 2019). It is
composed of 12-layers (i.e. transformer block), the
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dimension of hidden size is 768, the number of the
self-attention head is 12, and contains 125M param-
eters. In Figure 2, we demonstrate an overview of
the setup of RoBERTa transformer model to obtain
the prediction score of each text.

2.2 Fusion of Transformer Models
In the NLP domain, it is usually a common practice
to fuse multiple models to enhance the performance
of individual models or tackle the limitations of
models. In our proposed framework, we also em-
ploy a fusion strategy to combine the effectiveness
of RoBERTa and Twitter_RoBERTa transformer
models. We estimate a unified probability score
for each class through fusing the prediction scores
generated from each model. For the score fusion,
we employ the weighted arithmetic mean of these
two scores. Finally, based on the highest probabil-
ity score, we determine the final label for a given
text. The estimation is computed as follows:

f(xi, yi) =

{
0, if W0 > W1

1, otherwise

Wi =
xi ∗R+ yi ∗ T

R+ T
(1)

xi and yi correspond to the RoBERTa and Twitter-
RoBERTa probability score, where R and T repre-
sent their weight respectively. Wi (i.e. i = {0, 1})
is the unified probability score for each class.

3 Experiment and Evaluation

3.1 Dataset Description
The organizers used the Causal News Corpus
(CNC) (Tan et al., 2022b), a benchmark dataset
published in LREC-2022 to evaluate the perfor-
mance of the participants’ systems at the CASE-
2022 event causality shared task (Subtask 1). The
dataset statistics are summarized in Table 2.

Category Causal Non-Causal Total

Train 1603 1322 2925

Dev 178 145 323

Test 176 135 311

Total 1957 1602 3559

Table 2: The statistics of causal news corpus used in
event causality shared task in CASE-2022.

The dataset comprises of 3559 event sentences
where 2925, 323, and 311 samples are used for

the train, dev, and test phases. Each sentence is
annotated with binary labels (Causal: 1 and Non-
Causal: 0) which indicates whether there is a causal
relationship available in a sentence or not.

3.2 Experimental Settings
We now describe the details of our experimental
settings and the hyper-parameter settings with fine-
tuning strategy that we have employed to design
our proposed CSECU-DSG system for the CASE-
2022 event causality identification shared task.

Parameter Optimal Value

Learning rate 3e-5
Max-len 128
Epoch 5
Batch size 16
Manual seed 4

Table 3: Model settings for CASE-2022 event causality
identification shared task (subtask 1).

In our CSECU-DSG system, we utilize two
state-of-the-art Huggingface transformer models
with fine-tuning, including RoBERTa and Twitter-
RoBERTa. We use simpletransformers API (Ra-
japakse, 2019) to implement our system. We use
the train and development data during the model
training phase. We used the CUDA-enabled GPU
and set the manual seed = 4 to generate repro-
ducible results. We obtained the optimal parameter
settings of our proposed model based on the per-
formance of the development set which articulated
in Table 3 and we used the default settings for the
other parameters.

To generate the unified prediction, we fuse
the probability score of RoBERTa and Twitter-
RoBERTa based classification model as described
in Section 2.2. To select the optimal weight as
defined in Equation 1, we swept the parameter
value of R and T between {0.1, ......, 0.9} and con-
duct some experiments on training data. Based
on the experimental results, we choose the weight
R = 0.6 for RoBERTa and weight T = 0.4 for
Twitter-RoBERTa model.

3.3 Evaluation Measures
To evaluate the participants’ system at the CASE-
2022 event causality identification shared task (sub-

https://huggingface.co/roberta-base
https://huggingface.co/cardiffnlp/twitter-roberta-base-

sentiment
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Team (Rank) Recall Precision F1-score Accuracy MCC

CSECU-DSG (1st) 0.8864 0.8387 0.8619 0.8392 0.6714

Participants system performance on subtask 1

Arguably (2nd) 0.9148 0.8131 0.8610 0.8328 0.6602
hiranmai (3rd) 0.8864 0.8211 0.8525 0.8264 0.6451
NLP4ITF (4th) 0.8807 0.8245 0.8516 0.8264 0.6449
IDIAPers (6th) 0.8750 0.8280 0.8508 0.8264 0.6449
LXPER AI Research (9th) 0.8636 0.8261 0.8444 0.8199 0.6318
Innovators (15th) 0.7898 0.7202 0.7534 0.7074 0.3981

Baseline 0.8466 0.7801 0.8120 0.7781 0.5452

Table 4: Comparative results with other selected participants (Subtask 1).

Method Recall Precision F1-score Accuracy MCC

CSECU-DSG 0.8864 0.8387 0.8619 0.8392 0.6714

Performance of individual model

RoBERTa 0.8807 0.8245 0.8516 0.8264 0.6449
Twitter-RoBERTa 0.8409 0.8087 0.8245 0.7974 0.5858

Table 5: Performance analysis of individual model used in our proposed CSECU-DSG system (Subtask 1).

task 1) (Tan et al., 2022a), the organizers employed
standard evaluation metrics including recall, preci-
sion, F1-score, accuracy, and Matthews correlation
coefficient (MCC) (Matthews, 1975). However,
the F1 score is considered as the primary evalua-
tion metric for subtask 1 and systems performances
were ranked based on this score.

3.4 Results and Analysis

In this section, we analyze the performance of
our proposed CSECU-DSG system in the CASE-
2022 event causality identification shared task
(subtask 1). The comparative results of our pro-
posed CSECU-DSG system along with other top-
performing systems (Tan et al., 2022a) in subtask 1
are presented in Table 4. Following the benchmark
of CASE-2022 event causality identification sub-
task 1, participants’ systems are ranked based on
the primary evaluation metric F1 score.

At first, we presented the performance of our
proposed CSECU-DSG system. We also presented
the performance of top-ranked participating sys-
tems and the baseline used in subtask 1. Here, we
see that our proposed method obtained the highest
score in terms of the primary evaluation metric F1

score compared to the other top-performing sys-
tems. This deduces the superiority and effective-
ness of our proposed system for the event causality
identification task.

In our proposed CSECU-DSG system, we per-
form the effective fusion of two state-of-the-art
RoBERTa transformer models. However, to val-
idate the performance of our used fusion strat-
egy, we conduct individual experiments using each
transformer models to estimate the effect of each
model used in our proposed system. The summa-
rized experimental results regarding this are pre-
sented in Table 5.

From the results, it can be observed that
RoBERTa based model performed better compared
to the Twitter-RoBERTa model when considering
individual model performances. However, combin-
ing two models prediction scores by using weighted
arithmetic mean improved the performance. It
shows that the fusion strategy improves the ∼1%
performance compared to the RoBERTa model and
improves the ∼4% performance compared to the
Twitter-RoBERTa model in terms of the primary
evaluation measure F1 score. This validates the
importance of our fusion strategy.

141



4 Conclusion and Future Directions

In this paper, we present an approach to iden-
tify the cause-effect relation in texts by exploiting
RoBERTa variants with an effective fusion strategy.
Experimental results demonstrated the efficacy of
our fusion strategy of the two SOTA transformers
model which helped us to obtain the best result in
subtask 1.

In the future, we intend to explore other indi-
cators of textual causal relations for further im-
provement. Especially, a graph-based neural model
may exploit complex dependency patterns of cause-
effect relations from text more effectively.
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Abstract

Causal (a cause-effect relationship between two
arguments) has become integral to various NLP
domains such as question answering, summa-
rization, and event prediction. To understand
causality in detail, Event Causality Identifica-
tion with Causal News Corpus (CASE-2022)
has organized shared tasks. This paper defines
our participation in Subtask 1, which focuses
on classifying event causality. We used sen-
tence level augmentation based on contextual-
ized word embeddings of distillBERT to con-
struct new data. This data was then trained
using two approaches. The first technique used
the DeBERTa language model, and the second
used the RoBERTa language model in combi-
nation with cross attention. We obtained the
second-best F1 score (0.8610) in the competi-
tion with Contextually Augmented DeBERTa
model.

1 Introduction
Causality is a cause-effect relationship between
two arguments, events, processes, states, or ob-
jects in which the occurrence of one (cause) is
partly responsible for the occurrence of the other
(effect) (Barik et al., 2016). A few instances of this
cause-effect relationship are illustrated in Figure 1,
which were extracted from the Causal News Cor-
pus (CNC) (Tan et al., 2022a). The first instance
comprises a causal relation between the phrase "al-
legedly being involved in the blast" (cause) and
"Two more youths were arrested later," indicating
that the youths were arrested because they were
accused of being involved in the bomb blast. The
word "for" indicates that this relationship is causal.
Similarly, other words can be used for indication,
as seen in the case of the second instance where
"over" is the signal word. There are also cases
where the causal relation is explicit and does not
have a word to signal the causality, as can be seen
in the third instance. For the sentences that do not
have causality, they are either missing the effect or

 
 
Two more youths were arrested later for allegedly being
 involved in the blast.
 
The clash took place over use of the field.
 
Two bus drivers were hurt in the attacks.
 
 

Causal

Non-Causal
In a similar incident at Karakkamandapam , KSRTC driver V.
 

A section of students staged a protest. 

Figure 1: The cause, signal of causality, and effect
are highlighted using the red, yellow, and green colors
respectively. Any sentence that comprises of only cause
or only effect is not considered as causal.

the cause argument missing (as illustrated by the
fifth instance), or both.

Causality is often used in Natural Language
Processing (NLP) tasks that address Natural lan-
guage inference and understanding (Jo et al., 2021;
Dunietz et al., 2020; Feder et al., 2021). The in-
formation retrieved from the detection of causal
relations can be used for various NLP tasks like
Causal Question Answering and Generation ap-
plications (Dalal et al., 2021; Hassanzadeh et al.,
2019; Stasaski et al., 2021), and Event prediction
(Radinsky et al., 2012). However, identifying and
extracting a causal relationship is challenging as it
requires significant semantic knowledge.

This paper describes our participation in the
Event Causality Identification with Causal News
Corpus (CASE-2022), the third shared task of the
CASE 2022 (Tan et al., 2022b). Under this task,
there are two subtasks, and this paper describes an
approach for subtask 1. We have used the following
methods to classify causal events:

• We used sentence level augmentation based
on contextualized word embeddings of distill-
BERT to construct new data.

• The training of this data is done using two
approaches. The first technique used the De-
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Preprocessing

Output

It is awesome
orignal

It is [mask]
awesome

BERT

... 
really 
pretty

It is pretty awesome 
augmented

Output

Augmentation

DeBERTa

RoBERTa with dual cross-
attention

Technique 1

Technique 2

Figure 2: Architecture of the proposed pipeline. The initial part of the pipeline is same for both the techniques. Note
that we illustrate the Encoder portion of RoBERTa with dual cross attention. The other components of RoBERTa
architecture were not refactored for any changes

BERTa language model, and the second used
the RoBERTa language model in combination
with cross-attention.

The aim of the task and the details of data
is explained in Section 2. Section 3 gives
a detailed overview of the method used for
the binary classification. The results obtained,
it’s analysis and the experimental setup is de-
scribed in Section 4.

2 Task & Data Description
Event Causality Identification Shared Task aims at
tackling inference and understanding by organizing
two subtasks: a) Causal Event Classification and
b) Cause-Effect-Signal Span Detection. Our team
participated in the first subtask, which required the
participants to classify the given text into "0" (non-
causal) and "1"(causal). The dataset provided in
the task was the Causal News Corpus (CNC) deals
with event causality in the news. The CNC dataset
builds upon the following datasets: Automated Ex-
traction of Socio-political Events from News (AE-
SPEN) in 2020 (Hürriyetoğlu et al., 2020b,a) and
Challenges and Applications of Automated Extrac-
tion of Socio-political Events from Text (CASE)

in 2021 (Hürriyetoğlu et al., 2021a,b). The data in

Label Train Dev
0 1322 145
1 1603 178

Table 1: Data distribution for the CNC database.

CNC is based on random samples that have been
collected from a total of 869 news documents. The
corpus comprises 3,559 data samples, out of which
2925 data points were provided for training, 323
data points were provided for the development set,
and the remaining 311 samples were used as the
test set.

3 Methodology

This section gives an exhaustive overview of the
proposed pipeline. Section 3.1 provides the de-
tails of the preprocessing performed on the given
dataset. Section 3.2 describes the augmentation
technique used on the data. Section 3.3 discusses
the transformer models and techniques used to train
the data.
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Orignal Augmented Label
The protests spread to 15 other towns and
resulted in two deaths and the destruction
of property .

the protests had spread quickly to 15 other towns
and resulted ultimately in two premature deaths
locally and essentially the destruction of property.

1

The protests spread to 15 other towns and
resulted in two deaths and the destruction
of property .

the protests spread out to over 15 other other
towns offshore and territory resulted in two
workers deaths and the destruction of property

1

The demonstrations pose a real problem
, not just for the British but for others too.

the demonstrations pose considered a serious
real negative problem, affecting not just
resentment for the british but for others all too.

0

The demonstrations pose a real problem
, not just for the British but for others too.

the demonstrations allegedly pose potentially
a real world problem, not just perhaps for
interested the british but for important others too.

0

Table 2: Illustration of the contextual augmentation performed by our proposed methodology. The words that are
added or changed in the original sentence have been highlighted.

Model Recall Precision F1 Accuracy MCC
Top Performing 0.8864 0.8387 0.8619 0.8392 0.6714
Proposed Model 0.9148 0.8131 0.8610 0.8328 0.6602
Average Score 0.8686 0.7838 0.8233 0.7870 0.5619

Table 3: Comparison of the proposed model with the top performing model and the
average results of all the models on the leaderboard. The proposed model refers to our
best-performing model DeBERTa trained on augmented data.

3.1 Data Pre-Processing

The quality of data highly impacts the performance
of any machine learning or deep learning model.
However, the raw data present is unstructured. It
comprises noise, punctuations, special symbols,
and unusual texts that might affect the feature se-
lection process of the model, causing it to under-
perform. Thus a basic preprocessing involving the
tokenization of the sentences into words, conver-
sion of the words into lowercase, and removal of
stopwords (the, an, a) and punctuations was done
using the NLTK library (Loper and Bird, 2002).

3.2 Augmentation

Models like BERT and RoBERTa comprise mil-
lions of parameters that require a considerable
amount of data to generalize and obtain meaning-
ful results. However, the dataset provided to the
participants has only 2925 data points, which is
insufficient to train these heavy models. Thus, data
augmentation, a technique of applying transforma-
tion on the original labeled data to construct new
data , was used on the training data to reduce over-
fitting. NLPaug tool1, a well-known library that
can perform three types of augmentations: Char-

1urlhttps://github.com/makcedward/nlpaug.

acter level, Word Level, and Sentence Level was
used for augmentation in our pipeline. For this
task, we used sentence-level augmentation based
on contextualized word embeddings of distillBERT.
NLPaug also allows you to perform various actions
like ’Insertion’ and ’Substitution’ operations. Our
technique utilizes the Insertion operation, which
randomly picks a position in the sentence and in-
serts in that position a word that best fits the local
context. It was ensured that the causality of the
dataset was not changed during the augmentation
process as can be seen in Table 2. Contextualized
word embeddings provide these words chosen for
insertion.

3.3 Modeling

A transformer-based approach is used to perform
Event Causality Identification. The training was
done using DeBERTa (He et al., 2020) and dual
Cross attention RoBERTa (Liu et al., 2019). A
detailed explanation of their architecture is given
in this Section. The architecture of the pipeline is
illustrated in Figure 2.

3.3.1 DeBERTa
Decoding-enhanced BERT with Disentangled At-
tention (DeBERTa) is an enhanced version of the
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BERT and RoBERTa. It differs from BERT in two
aspects. The first is the disentangled self-attention
mechanism, which involves using two vectors to
encode the content and position rather than a single
vector to address these embeddings. This helps
the model naturally encode the word position in-
formation, which conventional transformers lack.
The second is Enhanced Mask Decoder (EMD), a
technique that performs masked token prediction
in model pre-training using absolute positions in
the decoding layer, unlike BERT, which uses rel-
ative position. This helps DeBERTa obtain better
accuracy since the words’ syntactic roles depend
highly on their absolute positions in a sentence.

3.3.2 Dual Cross attention RoBERTa

Robustly Optimized BERT-Pretraining Approach
(RoBERTa) is an extension of BERT. Similar to
BERT, data is passed through RoBERTa in the
form of sequences. However, before passing these
sequences, they are tokenized into words, the se-
quences are masked, a [CLS] token is added to
the beginning of the first sentence, and a [SEP]
is added after each sequence to indicate the end.
Three embeddings, namely, token, sentence, and
positional, are attached to each token. Once the en-
coding is done, these sentences are passed through
the transformer.

RoBERTa differs from BERT in the aspect of
token masking. BERT used a static masking tech-
nique while pretraining, in which each sequence
was masked in 10 different patterns. The training
data was further trained for 40 epochs indicating
that each sequence was trained for the same mask-
ing pattern four times. Unlike BERT, RoBERTa
was trained using a dynamic masking technique
where a new masking pattern is generated every
time a sequence is fed into the model. This helps
create a more generalised model.

In the proposed pipeline, we used two layers of
cross-attention while training RoBERTa to enhance
the overall performance. In contrast to the con-
ventionally used self-attention technique, which
takes a single embedding sequence as input, the
cross-attention combines two different asymmetri-
cal sequences of identical dimensions. One of the
sequences serves as a query input, while the other
as a key and value input.

4 Results and Discussion

4.1 Comparative Analysis

In this section we present a detailed comparison of
our best submission with other submissions present
on the leaderboard.The comparitive study can be
observed in Table 3. Our system ranked 2nd over-
all with F1 Score of 0.8610. The following re-
sults were obtained with DeBERTa trained on
Augmented data with Token length of 450. The
contextualized word embedding augmentation with
distillBERT helped DeBERTa be more robust and
handle the test data well. The best performing sys-
tem of the task had F1 score of 0.0009 greater than
our submission. Our system reports the highest
Recall of 0.9148 across the leaderboard. The high
recall is a direct indicator of high quality of aug-
mented data we had produced for the task. In com-
parison to the average scores calculated from the
leaderboard our system had 4.5% higher F1 score,
5.3% higher recall and 5.819% higher accuracy.

4.2 Experimental Setup

We trained the language models on Tesla-T4 16
GB GPU. For training, we kept the batch size as
four and configured the AdamW optimizer with the
learning rate of 1e-05. We fine-tuned the language
models with a token length of 450 and trained the
data up to 3 epochs.

4.3 Analysis of Experiments

This section discusses the results and performance
of our models, DeBERTa and Dual Cross Attention
RoBERTa, as illustrated in Table 4. The core idea
was the introduction of contextual augmentation
using fine-tuned distillBert. The use of contex-
tual embedding helped maintain the causality of
the sentence that was necessary for the scope of
the task. The increase in the data significantly im-
pacted the performance of the proposed approaches.
DeBERTa fine-tuned on augmented data yielded an
F1 score of 0.8610 [our best performing system], an
improvement of 3.5% from the unaugmented data
version. For Dual Cross Attention RoBERTa, using
augmented data brought about a gain of 2.6%.

DeBERTa uses disentangled attention which
computes the attention weight of a word pair as
a sum of four attention scores using disentangled
matrices on their contents and positions as content-
to-content, content-to-position, position-to-content,
and position-to-position.

146



Model Recall Precision F1 Accuracy MCC
RoBERTa [Naive] unaugmented,Token length:450 0.9261 0.7477 0.8274 0.7813 0.5615
RoBERTa [Dual Cross Attn] unaugmented,Token length:450 0.8806 0.7868 0.8311 0.7974 0.5858
RoBERTa [Dual Cross Attn] augmented,Token length:450 0.8977 0.8061 0.8494 0.8199 0.6327
DeBERTa unaugmented,Token length:450 0.8863 0.7839 0.8320 0.7974 0.5862
DeBERTa augmentated,Token length:450 0.9148 0.8131 0.8610 0.8328 0.6602

Table 4: Results of the models experimented on. The Best Performing System has been highlighted.

Text Gold Predicted
Rath interacted with the affected farmers who were yet to get compensation despite repeated
agitation over the issue .

0 1

Another ‘ TP ’ issue may also leave a blot on the CPM , as public opinion is
heavily pitted against the assault made upon former diplomat T P Srinivasan by SFI activists .

0 1

Police said fighting broke out in Charbatan area in Murshidabad constituency even as the
results were being declared .

0 0

Some protesters attempted to fight back with fire extinguishers. 0 0
The one-day fast attracted a " motley crowd " according to Sumitra M. Gautama, a teacher
with the Krishnamurthi Foundation of India ( KFI )

1 0

Both sides were raining bombs on each other and Mondal was hit by one of the bombs ,
" Murshidabad district magistrate Pervez Ahmed Siddiqui said .

1 0

SI Gopal Mondal , who was part of the police team that rushed to the spot , was killed by
a crude bomb explosion .

1 1

The workers had embarked on a wildcat strike demanding better working conditions . 1 1

Table 5: Behavioural Analysis of our best performing model (DeBERTa with augmentation) on the validation set.

The position-to-content term is impactful since
the attention weight of a word pair depends not
only on their contents but on their relative posi-
tions, which is calculated by the content-to-position
and position-to-content terms. The causality of a
sentence is highly sensitive to the positioning of
words in the sentence, and thus DeBERTa uses the
position-to-content weights to capture the underly-
ing semantics of the causality.

We used dual cross attention in RoBERTa by
generating two embedding representation of an in-
stance and calculating the attention weights for
generating the attention filters. The improvements
in the results can be observed in Table 4.

4.4 Quantitative analysis
This section discusses the quantitative analysis of
the labels predicted by our best model on the valida-
tion set. Table 5 illustrates a few instances from the
validation dataset along with the original and pre-
dicted labels. The first two instances demonstrate
the cases where the model failed to understand the
semantic meaning of words like "affected," "issue,"
and "against" and interpreted the immediate sense
rather than trying to understand what the sentence
as a whole means.

The fifth and sixth instance demonstrates the
model’s inability to distinguish the cause and effect

portions of the sentence. "The one-day fast at-
tracted a motley crowd " was considered the cause
and thus could not find any effect, thus predicting
this sentence to be non-causal. Similarly, the model
did not identify "was hit by one of the bombs" as
the effect for the sixth instance. Instances three,
four, seven, and eight, demonstrate the cases where
the model successfully understood the semantics
and identified the cause-effect relations.

5 Conclusion

In this paper we propose Contextual Embedding
Augmented DeBERTa and Dual Cross Attention
RoBERTa to identify event causality. Our approach
yielded an F1 score of 0.8610 which was the second
best system throughout the shared task. We study
the behaviour of both the models in augmented and
unaugmented settings to derive proper understand-
ing about the impact of our complete pipeline. In
future, experimenting with other language models
and extensive hyperparameter tuning through Neu-
ral Architectural Search will be an ideal path to
follow. The augmentation was successful in main-
taining its causality nature. This acts as a fine way
of up sampling low resource tasks which lack ade-
quate data.
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Abstract

In this report, we describe our ClassBases
submissions to a shared task on multilingual
protest event detection. For the multilingual
protest news detection, we participated in
subtask-1, subtask-2, and subtask-4, which
are document classification, sentence classifi-
cation, and token classification. In subtask-1,
we compare XLM-RoBERTa-base, mLUKE-
base, and XLM-RoBERTa-large on finetuning
in a sequential classification setting. We al-
ways use a combination of the training data
from every language provided to train our mul-
tilingual models. We found that larger mod-
els seem to work better and entity knowledge
helps but at a non-negligible cost. For subtask-
2, we only submitted an mLUKE-base system
for sentence classification. For subtask-4, we
only submitted an XLM-RoBERTa-base for to-
ken classification system for sequence label-
ing. For automatically replicating manually cre-
ated event datasets, we participated in COVID-
related protest events from the New York Times
news corpus. We created a system to process
the crawled data into a dataset of protest events.

1 Introduction

A shared task on multilingual protest event de-
tection at CASE-2022 is the second installment
from the previous event at CASE-2021 about socio-
political and crisis events detection (Hürriyetoğlu
et al., 2021; Hürriyetoğlu et al., 2021). The shared
task focuses on protest events where people com-
plain, put their objections, or display their unwill-
ingness to a course of action whether that action
is from an authority or a government (Merriam-
Webster, 2022).

As in the previous installment, this shared task
organizes the automated multilingual protest event
detection pipeline into multiple subsequent steps at
different granularity levels as four subtasks, docu-
ment classification, sentence classification, event

sentence coreference identification, and event ex-
traction. Moreover, the shared task contains many
languages in many different magnitudes of data
sizes, from ten thousand data points to hundreds
of data points to no data points. In other words,
many settings are varying from full training to low-
resource training to few-shot learning to zero-shot
learning.

• The first subtask, document classification,
tries to classify whether a given document,
a piece of news, or an article, contains any
information about a past or an ongoing socio-
political protest event. The shared task pro-
vides a full training setting for English, Span-
ish and Portuguese on a scale of thousands of
data points. Then, there is a zero-shot training
setting for Hindi, Turkish, Urdu, and Man-
darin.

• The second subtask, sentence classification,
classifies whether a given sentence from a doc-
ument contains any information about a past
or an ongoing socio-political protest event.
The shared task provides a full training setting
for English, Spanish and Portuguese on the
scale of ten thousand data points for English
and thousands of data points for Spanish and
Portuguese.

• The third subtask, event sentence coreference
identification, tries to group sentences, from
the same document, containing socio-political
events from the same stories together. There
are hundreds of training instances for English
and around twenty training instances for Span-
ish and Portuguese.

• The fourth subtask, event extraction, extracts
event entity spans, triggers, and arguments,
from event sentences within the same story.

We participate in the first, second, and fourth
subtasks. We build our system solutions upon

149



(a) English (en) (b) Spanish (es) (c) Portuguese (pt) (d) en-es-pt concatenated

Figure 1: The distribution of tf-idf weighted subtask1 training set document data visualized using t-SNE
(Van der Maaten and Hinton, 2008). The blue dots have no protest event, and the orange dots have some
protest events.

(a) English (en) (b) Spanish (es) (c) Portuguese (pt) (d) en-es-pt concatenated

(e) English (en) (f) Spanish (es) (g) Portuguese (pt) (h) en-es-pt concatenated

(i) English (en) (j) Spanish (es) (k) Portuguese (pt) (l) en-es-pt concatenated

Figure 2: The distribution of subtask1 training set document features extracted by averaging over the sequence
dimension of the last layer from our finetuned XLM-RoBERTa-base (the first row), mLUKE-base (the second
row), and XLM-RoBERTa-large (the third row) visualized using t-SNE (Van der Maaten and Hinton, 2008).
The blue dots have no protest event, and the orange dots have some protest events.

Huggingface’s multilingual transformer language
models (Wolf et al., 2020), specifically, XLM-
RoBERTa language models (Conneau et al., 2020)
and mLUKE multilingual transformer language
models with entity embedding (Ri et al., 2022). We
also participated in creating COVID-related protest
event datasets from the New York Times news cor-
pus (Zavarella and Tanev, 2022). The codes for
our systems are open-sourced and available at our
GitHub repository1.

2 Models

As in the IBM MNLP team report (Awasthy et al.,
2021), whose systems top-scored in most subtasks
of the previous CASE-2021, we consider XLM-
RoBERTa language models (XLM-R) (Conneau

1https://github.com/perathambkk/case_shared_
task_emnlp2022

et al., 2020) trained on the concatenation of the
data from all languages available from the shared
task. XLM-RoBERTa built upon the RoBERTa lan-
guage model (Liu et al., 2019) and multilingual pre-
trained on 2.5 TB of filtered CommonCrawl data
consisting of 100 languages. By pretraining jointly
across many multiple languages, hopefully, the
model can transfer information across languages.
However, the paper indicates the curse of multilin-
guality trade-off where we can scale the number
of languages up to the point that the model perfor-
mance for low-resource languages starts to degrade.
Still, XLM-RoBERTa seems not to suffer from this
trade-off yet by increasing the model capacity and
performing very well on many benchmarks.

We also consider mLUKE, a multilingual trans-
former language model with entity embeddings,
(Ri et al., 2022). The mLUKE language model is
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Figure 3: The architecture of our systems. We con-
catenated data from all languages and randomly
sample them into batches. The batches are inputs to
our models. The model part consists of a tokenizer,
a multilingual language model, and a sequential clas-
sifier, all are from the Huggingface’s library (Wolf
et al., 2020). For subtask4, we replace a sequential
classifier with a token classifier.

also based on XLM-RoBERTa but has an optional
entity embedding set for downstream tasks and
was pretrained on 24 languages using Wikipedia.
The entity embeddings are cross-lingual mappings
of entities learned from Wikipedia. The language
model part was pretrained as a masked language
model and the entity embedding part was pretrained
in a masked entity prediction task. Despite the per-
formance gains on entity-related downstream tasks,
a major limitation of incorporating entity embed-
dings is the large memory footprint. That is, using
only an mLUKE-base model requires about the
same GPU memory as an XLM-RoBERTa-large
model.

3 Experimental Results

All of our experiments were done in the Google
Colab setting on NVIDIA Tesla T4 GPUs. We
used the batch size in the range of 16− 36 and the
learning rate for an AdamW optimizer (Loshchilov
and Hutter, 2018) in the set of {2.5e−5, 5e−5} for
all experiments. We considered a linear annealing
scheduler. Also, adding a warm-up step does not
make any difference so we set the warm-up step to
zero in all experiments.

Except otherwise stated, we concatenated the
given training data in all languages as our combined

training set for every subtask. We also employed
the early stopping with zero patience training strat-
egy schema (Prechelt, 1998; Bengio, 2012). We
varied the training epoch until the training met-
ric saturated with manual monitoring, and then
stopped right at the end of that epoch. However,
we mostly tried with one or two candidate numbers
of training epochs since training large language
models takes a few hours and Gooogle’s Colab
GPU time just runs out.

3.1 Document Classification

We trained XLM-RoBERTa-base, XLM-RoBERTa-
large, and mLUKE-base as sequence classifiers
for document classification. The models classify
whether a given document contains any protest
events or not as a binary classification task. The
input document is truncated to the maximum length
of 150. Then, the truncated document is fed into a
transformer language model with a softmax layer
on top which outputs logits for binary classifica-
tions. We trained XLM-RoBERTa-base for 12
epochs, mLUKE-base for 15 epochs, and XLM-
RoBERTa-large for 5 epochs, respectively. We
used the batch size of 36 for base models, XLM-
RoBERTa-base and mLUKE-base, and we used
the batch size of 16 for our large model, XLM-
RoBERTa-large.

The experimental results in Table 1 suggest that
a small model (XLM-RoBERTa-base) does not
perform well in general. However, adding entity
knowledge makes a small model (mLUKE-base)
performs much better typically at a cost except in
Hindi where mLUKE-base might be trained on less
number of languages and does not perform well in
the zero-shot setting. Still, a larger language model
(XLM-RoBERTa-large) performs best most of the
time. Surprisingly, our XLM-RoBERTa-large sub-
missions perform better than the best submissions
from the previous year in Portuguese and Hindi
using only a single model and without any external
data. In the previous CASE-21, the best Portuguese
submission uses an ensemble and the best Hindi
submission uses some external data so it is not a
zero-shot setting.

We visualized the tf-idf weighted training data in
Figure 1 using t-SNE (Van der Maaten and Hinton,
2008; Wattenberg et al., 2016). The scatter plots
show the inseparability of the class data, and the
concatenated data plot in Figure 1(d) shows that
the data in each language are in different regions.
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Table 1: Test macro F1-scores of our models in subtask1: Document Classification 2021 test data. (The numbers in
subscript are submission rankings on the leaderboard from our best submissions. The symbol † denotes the result is
better than the previous CASE-21 best submission.)

Model en pt es hi
XLM-R-base 79.82 79.55 68.70 79.35
mLUKE-base 79.91 80.02 72.93 75.77
XLM-R-large 82.304 85.392† 73.484 80.771†
CASE-21 best 84.55 84.00 77.27 78.77
(Hürriyetoğlu et al., 2021)

Table 2: Test macro F1-scores of our models in subtask1: Document Classification 2021+2022 test data. (The
numbers in subscript are submission rankings on the leaderboard from our best submissions.)

Model en pt es hi tr ur zh
mLUKE-base 77.35 74.67 69.256 69.54 78.575 67.91 73.79
XLM-R-large 78.506 77.115 66.86 80.781 75.66 75.725 77.165

However, the visualization of the XLM-RoBERTa-
base, mLUKE-base, and XLM-RoBERTa-large fea-
tures shows that the finetuned multilingual lan-
guage models cram the data from various languages
into the same space by their class information. The
plots in the same row from Figure 2 are all the same
shapes.

This year, the shared task organizers provide a
new test set that contains more data and more lan-
guages (Hürriyetoğlu et al., 2022). There are Turk-
ish, Urdu, and Mandarin test data in addition to the
existing English, Portuguese, Spanish, and Hindi.
We also tested our models in this setting where
Hindi, Turkish, Urdu, and Mandarin were tested
in zero-shot settings. We compare mLUKE-base
and XLM-RoBERTa-large in Table 2. From the
results, mLUKE-base works better in Spanish and
Turkish while XLM-RoBERTa-large works best
for the remaining languages. The results are not
consistent for zero-shot setting languages, however,
XLM-RoBERTa-large works better 3 out of 4 cases.
Also, in the low-resource settings, mLUKE-base
works better in Spanish while XLM-RoBERTa-
large works better in Portuguese.

3.2 Sentence Classification

We trained XLM-RoBERTa-large and mLUKE-
base as sequence classifiers for sentence classifi-
cation. Similar to document classification, we set
the maximum sentence length to 150 and fed a sen-
tence to a transformer language model with a soft-
max layer on top. In this subtask, we trained each
model for 2.30 hours. We trained mLUKE-base
for 15 epochs with a batch size of 36 and XLM-
RoBERTa-large for 6 epochs with a batch size of

Table 3: Test macro F1-scores of our models in subtask1:
Sentence Classification 2021 test data. (The numbers
in subscript are submission rankings on the leaderboard
from our best submissions. The best results from the
previous year are from (Hürriyetoğlu et al., 2021).)

Model en pt es
mLUKE-base 79.65 86.833 87.104
XLM-R-large 81.124 85.39 84.62

CASE-21 best 85.32 88.47 88.61

30 (a batch size of 10 with a gradient accumulation
step of 3.). We observed that mLUKE-base was
converged but XLM-RoBERTa-large was just fitted
to a degree given the same resource.

The experimental results in Table 3 suggest
that mLUKE-base works better in low-resource
languages, Portuguese and Spanish, while XLM-
RoBERTa-large works better in English despite
being undertrained. Our submissions are not better
than the previous year’s best results in this subtask.

3.3 Event Extraction

We only trained an XLM-RoBERTa-base model
for token classification. We split the data into train-
ing and validation using the ratio of 0.2. However,
there are so few Portuguese and Spanish data and
XLM-RoBERTa-base does not have enough capac-
ity so it does not perform well in our experiments
as shown in Table 4, sadly.

We speculate that some training strategy, which
does not require data partitioning, and larger lan-
guage models will perform better in this subtask.
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Table 4: Test CoNLL F1-scores of our models in sub-
task4: Event Extraction. (The numbers in subscript are
submission rankings on the leaderboard.)

Model en pt es
XLM-R-base 46.885 12.535 37.105

3.4 Automatically Replicating Manually
Created Event Datasets

In this task (Zavarella and Tanev, 2022), event de-
tection systems are going to be evaluated on their
spatio-temporal pattern extraction performance.
Similar to the previous shared task installment on
Black Lives Matter (Giorgi et al., 2021), this year’s
target event is COVID-related protests in the US
spanning three months (July 27, 2020 through Oc-
tober 27, 2020). We adopt our components from
last year’s report.

To begin with, we used the trained XLM-
RoBERTa-large from subtask1 to classify the news
using a concatenation of its news title and news ab-
stract to see whether it contains any protest events
or not. If the classifier outputs positive (logits were
thresholded at 0.9), we ran a SpaCy named en-
tity recognizer (Honnibal et al., 2020) on the tex-
tual concatenation to get spans with location tags
(‘GPE’). Then, those spans were concatenated into
a query string which we used a geocoder library2

to geocode using the Bing Maps REST Services
API3. We used the provided dates from the date
column as outputs given the filtered ids. Finally,
we created a row for each filtered id containing
five tuples, which are the id, the date, the city, the
region or state, and the country.

4 Conclusions

This report describes our systems for a shared task
on multilingual protest event detection at CASE-
2022. We compared a small multilingual language
model (XLM-RoBERTa-base), a knowledge-based
multilingual model (mLUKE-base), and a large
multilingual language model (XLM-RoBERTa-
large). From all experimental results, we observed
consistent outperforms from XLM-RoBERTa-large
over smaller language models, XLM-RoBERTa-
base, and mLUKE-base. Therefore, we concluded
that language model capacity matters a lot for multi-
lingual tasks. Also, we observed that mLUKE-base
mostly outperforms XLM-RoBERTa-large. Hence,

2https://geocoder.readthedocs.io/
3https://learn.microsoft.com/en-us/bingmaps/rest-

services/

incorporating entity knowledge helps improve per-
formance but with a nonnegligible computational
cost. From our visualizations, we found that our
finetuned multilingual language models cram data
from various languages into the same space by their
class information.

Limitations

This report is like a class assignment, given our
work progress depicted here. We only compared
several multilingual language models and imple-
mented some basic systems to solve the tasks.

The authors are self-affiliated and do not rep-
resent any entities. The authors also participated
in the shared task under many severe unattended
local personal criminal events in their home coun-
tries. There might be some unintentional errors
and physical limitations based on these unlawful
interruptions. Even at the times of drafting this re-
port, the authors suffer from unknown toxin flumes
spraying into their places. We want to participate
in the shared task because it is fun and educational.
We apologize for any errors in this report. We tried
our best.

Ethics Statement

Scientific work published at EMNLP 2022 must
comply with the ACL Ethics Policy. We, the au-
thors, intend the uses of our systems for peace and
social good only. No harm. To see and alleviate
people dangers, pains, and angers, detecting these
socio-political and crisis events is meant to be help-
ful and savior for all, not the other way around.
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Abstract

This paper presents our submission to the 2022
edition of the CASE 2021 shared task 1, sub-
task 4. The EventGraph system adapts an end-
to-end, graph-based semantic parser to the task
of Protest Event Extraction and more specifi-
cally subtask 4 on event trigger and argument
extraction. We experiment with various graphs,
encoding the events as either “labeled-edge” or
“node-centric” graphs. We show that the “node-
centric” approach yields best results overall,
performing well across the three languages of
the task, namely English, Spanish, and Por-
tuguese. EventGraph is ranked 3rd for English
and Portuguese, and 4th for Spanish. Our code
is available at: https://github.com/
huiling-y/eventgraph_at_case

1 Introduction

The automated extraction of socio-political event
information from text constitutes an important
NLP task, with a number of application areas for
social scientists, policy makers, etc. The task
involves analysis at different levels of granular-
ity: document-level, sentence-level, and the fine-
grained extraction of event triggers and arguments
within a sentence. The CASE 2022 Shared Task
1 on Multilingual Protest Event Detection extends
the 2021 shared task (Hürriyetoğlu et al., 2021a)
with additional data in the evaluation phase and
features four subtasks: (i) document classification,
(ii) sentence classification, (iii) event sentence co-
reference, and (iv) event extraction.

The task of event extraction involves the detec-
tion of explicit event triggers and corresponding
arguments in text. Current classification-based ap-
proaches to the task typically model the task as a
pipeline of classifiers (Ji and Grishman, 2008; Li
et al., 2013; Liu et al., 2020; Du and Cardie, 2020;
Li et al., 2020) or using joint modeling approaches
(Yang and Mitchell, 2016; Nguyen et al., 2016; Liu
et al., 2018; Wadden et al., 2019; Lin et al., 2020).

In this paper, we present the EventGraph sys-
tem and its application to Task 1 Subtask 4 in the
2022 edition of the CASE 2021 shared task. Event-
Graph is a joint framework for event extraction,
which encodes events as graphs and solves event
extraction as semantic graph parsing. We show
that it is beneficial to model the relation between
event triggers and arguments and approach event
extraction via structured prediction instead of se-
quence labelling. Our system performs well on the
three languages, achieving competitive results and
consistently ranked among the top four systems.

In the following, we briefly describe the data
supplied by the shared task organizers and present
Subtask 4 in some more detail. We then go on
to present an overview of the EventGraph system
focusing on the encoding of the data to semantic
graphs and the model architecture. We experiment
with several different graph encodings and provide
a more detailed analysis of the results.

2 Data and task

Our contribution is to subtask 4, which falls under
shared task 1 – the detection and extraction of socio-
political and crisis events. While most subtasks of
shared task 1 have sentence-level annotations, sub-
task 4 has been annotated at the token-level while
providing the annotators the document-level con-
texts. Subtask 4 focuses on the extraction of event
triggers and event arguments related to contentious
politics and riots (Hürriyetoğlu et al., 2021a). This
subtask has been previously approached as a se-
quence labeling problem combining various meth-
ods of fine-tuning pre-trained language models
(Hürriyetoğlu et al., 2021a).

The data supplied for Subtask 4 is identical to
that of the 2021 edition of the task, as presented
in Hürriyetoğlu et al. (2021a). The data is part of
the multilingual extension of the GLOCON dataset
(Hürriyetoğlu et al., 2021b) with data from En-
glish, Portuguese, and Spanish. The source of the

155

https://github.com/huiling-y/eventgraph_at_case
https://github.com/huiling-y/eventgraph_at_case


trigger

<root>

target participant

chased, hacked to death

groupChale people

participant

Artificial root:

Triggers:

Arguments:

<root>

trigger 
chased, hacked to death

participant 
group

target 
Chale

participant 
people

<root>

trigger 
chased

participant 
group

target 
Chale

participant 
people

trigger 
hacked to death

Labeled-edge representation Node-centric representation Node-centric-split representation

Figure 1: Graph representations of sentence “Chale was allegedly chased by a group of about 30 people and was
hacked to death with pangas, axes and spears.”

data is protest event coverage in news articles from
specific countries: China and South Africa (En-
glish), Brazil (Portuguese), and Argentina (Span-
ish). The data has been doubly annotated by grad-
uate students in political science with token-level
information regarding event triggers and arguments.
Hürriyetoğlu et al. (2021a) reports the token level
inter-annotator agreement to be between 0.35 and
0.60. Disagreements between annotators were sub-
sequently resolved by an annotation supervisor. Ta-
ble 1 shows the number of news articles for each
of the languages in the task, distributed over the
training and test sets. This clearly shows that the
majority of the data is in English with only a frac-
tion of articles in Portuguese and Spanish.

Relevant statistics for the different event compo-
nent annotations for Subtask 4 are presented in Ta-
ble 1 detailing the number of triggers, participants,
and various other types of argument components,
such as place, target, organizer, etc. Once again,
the table also illustrates the comparative imbalance
in data across the three languages.

3 System overview

We use our system, EventGraph, that adapts an
end-to-end graph-based semantic parser to solve
the task of extracting socio-political events. In
what follows, we give more details about the graph
representation and the model architecture of our
system.

3.1 Graph representations

We represent each sentence as an event graph,
which contains event trigger(s) and arguments as
nodes. In an event graph, edges are constrained
between the trigger(s) and the corresponding ar-
guments. However, since our system can take as
input graphs in a general sense the precise graph
representation that works best for this task must

English Portuguese Spanish

train 732 (2,925) 29 (78) 29 (91)
dev 76 (323) 4 (9) 1 (15)
test 179 (311) 50 (190) 50 (192)

trigger 4,595 122 157
participant 2,663 73 88
place 1,570 61 15
target 1,470 32 64
organizer 1,261 19 25
etime 1,209 41 40
fname 1,201 48 49

Table 1: Top: Number of articles (sentences) for the
different languages in Subtask 4 (Hürriyetoğlu et al.,
2021a). About 10 percent (in terms of sentences) of the
official training data is used as the development split.
Bottom: Counts for the different event components in
Subtask 4 training data for English, Portuguese, and
Spanish (Hürriyetoğlu et al., 2021a).

be determined empirically. We here explore two
different graph encoding methods, where the labels
for triggers and arguments are represented either
as edge labels or node labels, namely “labeled-
edge” and “node-centric”. Since sentences in the
data may contain information about several events
with arguments shared across these, we also experi-
ment with a version of the “node-centric” approach
where multiple triggers give rise to separate nodes
in the graph. The intuition behind this is that it is
easier for the model to predict a node anchoring to
a single span than to several disjoint spans.

• Labeled-edge: labels for event trigger(s) and
arguments are represented as edge labels; mul-
tiple triggers are merged into one node, as
shown by the first graph of Figure 1.

• Node-centric: labels for event trigger(s) and
arguments are represented as node labels;
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Figure 2: EventGraph architecture. 1) the input gets a
contextualized representation from the sentence encoding
module, 2) graph nodes are decoded by the node prediction
module and 3) connected by the edge prediction module. The
given example is for “label-edge” event graph parsing.

there is always a single node for trigger(s),
as shown by the second graph of Figure 1.

• Node-centric-split: node labels denote trig-
ger(s) and argument roles; multiple triggers
are represented in different nodes, as shown
by the third graph of Figure 1.

3.2 Model architecture

Our model is built upon a winning framework
(Samuel and Straka, 2020) from a previous mean-
ing representation parsing shared task (Oepen et al.,
2020). The model contains customizable compo-
nents for predicting nodes and edges, thus generat-
ing event graphs for different graph representations.
We introduce each component of the model as fol-
lowing (Figure 2):

Sentence encoding Each token of an input sen-
tence obtains a contextualized embedding from a
pretrained language model, the large version of
XLM-R (Conneau et al., 2020) in our implemen-
tation. These embeddings are mapped onto latent
queries by a linear transformation layer, and pro-
cessed by a stack of Transformer layers (Vaswani
et al., 2017) to model the dependencies between
queries.

Node prediction A node-presence classifier pro-
cesses the queries and predicts nodes by classifying
each query. An anchor biaffine classifier (Dozat
and Manning, 2017) creates anchors from the nodes

to surface strings via deep biaffine attention be-
tween the queries and the contextual embeddings.

Edge prediction With predicted nodes, two bi-
affine classifiers are used to construct the edges
between nodes: one classifier predicts the presence
of edge between a pair of nodes and the other pre-
dicts the corresponding edge label.

The graph generated for each input sentence con-
tains the extracted event components. We then
convert the labels to BIO format.

4 Experimental setup

Data We use all the official training data to train
our final model, without using any additional data.
During development time, we set aside about 10
percent of the training data for development. A
breakdown of the number of articles and sentences
in train and dev are provided in Table 1.

Joint training We train our model on the training
data of all three languages and test on the official
test data. As shown in Table 1, the training data
for Portuguese and Spanish makes only a small
portion of all training data, which leads to few-shot
learning for these two languages.

Implementation details We use the large version
of XLM-R via HuggingFace transformers li-
brary (Wolf et al., 2020). All models were trained
with a single Nvidia RTX3090 GPU.

Evaluation metrics The evaluation metric is a
macro F1 score for individual languages. The pre-
dicted event-annotated texts are in BIO format, and
the scores are calculated with a python implemen-
tation1 of the conlleval evaluation script used
in CoNLL-2000 Shared Task (Tjong Kim Sang and
Buchholz, 2000), where precision, recall and F1

scores are calculated for predicted spans against
the gold spans and there is no dependency between
event arguments and triggers.

Submitted systems We submitted three models
as listed in Table 3.

5 Results and discussion

We summarize the results of our systems on the
official test data in Table 3. All scores are obtained
by submitting our test predictions to the shared

1https://github.com/sighsmile/
conlleval
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Language System trigger target Place Participant Organizer fname etime all

En

457 134 118 293 131 129 121
Label-edge 82.48 56.29 75.44 74.62 74.52 50.42 77.06 73.46
Node-centric 84.21 62.09 74.89 76.42 75.46 54.31 81.22 75.85
Node-centric-split 84.62 52.88 75.11 73.75 74.91 52.28 78.97 73.92

Es

28 5 5 7 4 7 5
Label-edge 66.67 60.00 100.00 100.00 66.67 71.43 80.00 73.85
Node-centric 65.62 72.73 100.00 100.00 80.00 76.92 80.00 75.76
Node-centric-split 71.19 54.55 100.00 100.00 66.67 85.71 60 75.59

Pr

11 7 3 5 2 2 5
Labeled-edge 83.33 71.43 75.00 90.91 66.67 100.00 66.67 78.87
Node-centric 88.00 61.54 66.67 90.91 100.00 100.00 66.67 79.45
Node-centric-split 91.67 71.43 50 90.91 100.00 66.67 100.00 83.78

Table 2: Detailed F1 scores of our systems on the development data with different graph representations. We also
add the number of each event component to better compare the distribution of components against the scores.

System Language Macro F1

Labeled-edge
English 73.12
Spanish 64.02
Portuguese 69.62

Node-centric
English 74.02
Spanish 64.16
Portuguese 70.73

Node-centric-split
English 74.763
Spanish 64.494
Portuguese 71.723

Winning systems
English 77.461
Spanish 69.871
Portuguese 74.571

Table 3: Results of our systems on the official test
data with different graph representations. We also in-
clude the winning system results from the shared task
leaderboard. Subscripts indicate the ranking on the
leaderboard, so we only add corresponding ranking to
our best-performing system.

task.2 Results show that “node-centric” systems
generate better results than “label-edge” systems,
and it is more beneficial to keep multiple event trig-
gers as separate nodes. In terms of languages, all
models perform best on English, which is unsur-
prising, since the training data consists mostly of
English. However, the results on Portuguese are
consistently better than those of Spanish, signal-
ing English might be a better transfer language for
Portuguese than for Spanish.

Compared with other participating systems, in
particular the winning systems,2 as shown in Ta-

2https://codalab.lisn.upsaclay.fr/
competitions/7126, accessed on September 29, 2022.

Argument System P R F1

fname
Labeled-edge 47.62 53.57 50.42
Node-centric 52.50 56.25 54.31
Node-centric-split 48.84 56.25 52.28

target
Labeled-edge 60.28 52.80 56.29
Node-centric 65.52 59.01 62.09
Node-centric-split 58.21 48.45 52.88

Table 4: Detailed Precision, Recall, and F1 scores of
fname and target arguments for English develop-
mentset.

ble 3, our results are still competitive. We rank 3rd
for English and Portuguese, and 4th for Spanish;
our best results are achieved by a single system.
For English and Portuguese, our results are very
close to the winning results, which are achieved by
different participating systems.

5.1 Error analysis on development data

Since the gold data for the test set is not available
to task participants, we are not able to perform
more detailed error analysis. Hence, to have more
insights into our models’ performance, we provide
some error analysis on the development data (as
described in Table 1). As previously mentioned,
during our model development phase, we did not
use all the official training data for training, but set
aside small set for validation (about 10%).

As shown in Table 2, over all event components,
target and fname arguments are more difficult
to extract than others, with the scores substantially
lower across different languages and models. In
general, our models perform best in trigger ex-
traction, partly because the number of triggers is
much larger than event arguments for all datasets.
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We further look at target and fname pre-
diction scores of the English development set.
As shown in Table 4, for fname, our systems
tend to over-predict, with consistently lower pre-
cision scores; by manually going through our sys-
tems’ predictions, we find many labeled chunks of
fname are actually non-event components. For
target, our systems tend to under-predict, with
consistently higher precision scores; we also find
that our systems would predict a longer span, for in-
stance “former diplomat” as opposed to “diplomat”,
which is the gold span, and sometimes our systems
confuse organizer and participant with
target, by wrongly labelling the corresponding
span as target.

6 Conclusion

In this paper we have presented the EventGraph
system for event extraction and its application to
the CASE 2022 shared task on Multilingual Protest
Event Detection. EventGraph solves the task as a
graph parsing problem hence we experiment with
different ways of encoding the event data as gen-
eral graphs, contrasting a so-called “labeled-edge”
and “node-centric” approach. Our results indicate
that the “node-centric” approach is beneficial for
this task and furthermore that the separation in the
graph of nodes belonging to different events in the
same sentence proves useful. A more detailed anal-
ysis of the development results indicates that our
system performs well in trigger identification, how-
ever struggles in the identification of target and
fname arguments.
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Abstract
Event detection, specifically in the socio-
political domain, has posed a long-standing
challenge to researchers in the NLP domain.
Therefore, the creation of automated techniques
that perform classification of the large amounts
of accessible data on the Internet becomes im-
perative. This paper is a summary of the efforts
we made in participating in Task 1 of CASE
2022. We use state-of-art multilingual BERT
(mBERT) with further fine-tuning to perform
document classification in English, Portuguese,
Spanish, Urdu, Hindi, Turkish and Mandarin.
In the document classification subtask, we were
able to achieve F1 scores of 0.8062, 0.6445,
0.7302, 0.5671, 0.6555, 0.7545 and 0.6702
in English, Spanish, Portuguese, Hindi, Urdu,
Mandarin and Turkish respectively achieving
a rank of 5 in English and 7 on the remaining
language tasks.

1 Introduction

Protests exist as a natural way for citizens of a na-
tion to show their dissatisfaction with decisions
taken by the respective governments or authori-
ties (Neogi et al., 2021). The sentiment prevalent
in such events and the reaction by various parties
to these events provide the basis for carrying out
many studies in the sociopolitical field, such as the
public opinion about the event that was the cause
for the protest, how much freedom the protesters
were afforded as a measure of the democracy in
the nation, and so on. With the advancement of
technology, there has also been an exponential rise
in the use of social networks as a medium for ex-
changing information across the globe, with global
events and their inner nuances being available to
the public at large. However, extracting valuable
insights from such events on a national or global
scale is a daunting task if done manually (Carothers
and Youngs, 2015). Even if we leverage automated
techniques for the process, there are numerous chal-
lenges faced while working on multilingual data

(Hershcovich et al., 2022). Hence, there exists an
incentive to automate the task of processing protest
news from multiple locations and in multiple lan-
guages and to create an NLP system that could be
generalized for the task of detecting protest news.
Task 1 of CASE 2022 (Hürriyetoğlu et al., 2022a)
aims at working on multilingual protest news cor-
pora, with Subtask 1 working towards the binary
classification of news reports, where if a document
reports on an event that has happened or is ongoing,
it is marked as relevant, otherwise it is considered
irrelevant.

Our approach revolves around the use of state-
of-art Pre-Trained Language Models (PLMs) and
finetuning them to perform the task we require. We
leverage the bert-base-multilingual-cased
(Devlin et al., 2018) that was trained in over 104
languages to tackle the multilingual task. We fine-
tune it for protest news detection. Since most of
the training datasets had a bias toward the nega-
tive class, we augmented the datasets by translating
positive samples from other language datasets and
hence improving the balance between the positive
and negative class to prevent our model from being
biased towards the negative class. Furthermore, the
lack of samples in Portuguese and Spanish presents
us with a few-shot learning scenario, which we
tackle by augmenting these datasets with samples
from the English dataset translated into the respec-
tive languages. For languages with no training
datasets (Urdu, Turkish, Mandarin and Hindi), we
created training datasets by translating the English
corpus.

The rest of the paper is organised as follows: We
begin by laying out the past literature and work
done in the field of protest event detection in Sec-
tion 2 followed by the description of the task at
hand and the data given to us in Section 3. In Sec-
tion 4, we describe the techniques we employed,
namely data augmentation and the model we used,
multilingual BERT (mBERT). The experimental
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setup for our system is described in Section 5 and
the results on the test set are mentioned and anal-
ysed in Section 6. Finally, in Section 7, we draw
a conclusion to our work and go over prospective
directions for additional research.

2 Related Work

Protest detection and allied fields have drawn a
lot of attention from researchers in the NLP do-
main. MAVEN (Wang et al., 2020) and CySecED
(Trong et al., 2020) are annotated datasets in the
English language created for the purposes of event
detection. ACE 2005 (Walker, Christopher et al.,
2006) and TempEval-2 (Verhagen et al., 2010) are
multilingual datasets where ACE 2005 covers En-
glish, Arabic, and Chinese and TempEval-2 cov-
ers Chinese, English, French, Italian, Korean and
Spanish. MINION (Veyseh et al., 2022) is an-
other multilingual ED dataset covering 8 differ-
ent languages (English, Spanish, Portuguese, Pol-
ish, Turkish, Hindi, Japanese and Korean). MM-
CHIVED (Steinert-Threlkeld and Joo, 2022) is an-
other dataset containing multimodal data like text
and images compiled from social media regard-
ing Chile and Venezuela protests. There have also
been region-specific case studies, such as detec-
tion of protest events in Turkey 2013 (Elsafoury,
2020) and protest analysis in Greece over the last
twenty years through the scope of Computational
Social Science (Papanikolaou and Papageorgiou,
2020). Previously event detection has also been
researched upon by researchers participating in the
Task 1 of CASE 2021 (Hürriyetoğlu et al., 2021).
Teams which participated in the task earlier have
used multilingual pre-trained language models (Re
et al., 2021; Awasthy et al., 2021a; Gürel and Emin,
2021) which is similar to the approach used by our
system.

3 Background

3.1 Task
Event Detection aims at extracting event triggers
(in the forms of singular nouns or verbs or even
full sentences sometimes) and classifying the trig-
gers into the type of event they belong to (Awasthy
et al., 2021b). The main challenge of this task
comes from the fact there exists a many-to-many
relationship between the trigger and event type,
i.e. the same event can be represented by various
event triggers and the same expression can repre-
sent different events in different contexts (Feng

et al., 2016). The CASE 2022 workshop (Hür-
riyetoğlu et al., 2022a) focuses on protest news
event detection. In this paper, we aim to tackle
Shared Task 1: Multilingual Protest News Detec-
tion, specifically Subtask 1.

Subtask 1 - Document Classification is a binary
classification task on the document-level (news ar-
ticle) where we classify an event as positive if the
event actually occurred or is ongoing. Scheduled
events, rumors, and speculations are considered as
irrelevant and hence marked as negative.

The task we deal with is a binary classification
task where we classify documents that pertain to
ongoing or already occurred events as positive sam-
ples. Events that are merely rumors, scheduled to
take place in future or speculations are marked as
negative samples.

The task is multilingual, as we have training
data consisting of English, Portuguese, and Span-
ish Languages for both training and evaluation of
the model. The Portuguese and Spanish datasets
present us with a few-shot scenario to the dearth of
data compared to the English data set. At the same
time, Hindi, Mandarin, Turkish and Urdu evalua-
tion sets present a zero-shot setting to evaluate our
model.

The metric used for the evaluation of the results
produced by the model is the Macro-F1 score. It
provides a balance between Precision and Recall
of the model, by taking a harmonic mean of both
metrics.

F1 =
2× Precision×Recall

Precision+Recall

3.2 Data

Language Split Subtask 1

English Train 9,324
Test 3,871

Spanish Train 1,000
Test 671

Portuguese Train 1,487
Test 671

Hindi Test only 268
Urdu Test only 299

Turkish Test only 300
Mandarin Test only 300

Table 1: Distribution of samples in respective datasets
for the given languages
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English Spanish Portuguese
Characters 1067.37 932.87 635.25
Tokens 199.74 177.35 116.03

Table 2: Analysis of the average number of characters
and tokens in the respective training sets for English,
Spanish, and Portuguese.

The data for this task has been created and anno-
tated using the methods described in Hürriyetoğlu
et al. (2022b). While the task is multilingual, there
isn’t an even distribution of data for all languages,
with the English corpus having more data than both
Portuguese and Spanish. Also, some languages
to be evaluated do not have any training data (a
zero-shot learning problem), namely Hindi, Turk-
ish, Urdu and Mandarin. The distribution of data is
given in Table 1 as shown.

The distribution of labels for training data for
subtask 1 is as follows: The positive sample ratio
for Subtask-1 is 0.205 for English dataset, 0.131
for Spanish dataset and 0.132 for Portuguese.

This highlights that the data is skewed towards
the negative class for all languages. It is natural
to tackle this bias problem so that our model does
not align itself too much with one class, which
would lead to its performance suffering in a more
balanced scenario.

The number of characters in each training dataset
is shown in Table 2. One would believe that a
longer sentence gives the model more context to
work with and therefore produces better results;
however, a longer text also runs the risk of confus-
ing the model with interference from mixed signals
(Çelik et al., 2021). The number of tokens in each
language dataset is also shown.

Another thing to note is the low amount of train-
ing data in the case of Portuguese and Spanish, and
the complete lack of it in the case of Hindi, Urdu,
Mandarin and Turkish. We attempt to alleviate this
problem by translating the English corpus exam-
ples into the respective language and training on
this augmented dataset.

4 System Overview

4.1 Data Augmentation
Data augmentation refers to the set of techniques to
increase the quantity and diversity of data points in
a data-set without collecting new data. The purpose
of data augmentation in our system was as follows:

• Class Imbalance: In the English, Spanish

and Portuguese datasets provided by the orga-
nizers, the ratio of the positive samples was
0.205, 0.131 and 0.132 for Subtask 1. There-
fore to provide enough diversity of samples
of the positive class, data augmentation was
required

• Lack of Training Data: Spanish and Por-
tuguese had limited training data compared to
English. For Hindi, Urdu, Mandarin and Turk-
ish, no training data was available. Therefore
to create an appropriately large dataset, data
augmentation is used.

The technique used for data augmentation in our
system leverages the availability of three linguisti-
cally different datasets. We translated various com-
binations of positive and negative samples from
the three available datasets of English, Spanish and
Portuguese

Our augmentation strategy can be understood by
Fig 1. The process is described below:

1. English The final training set consisted of the
original English dataset along with positive
samples of Spanish and Portuguese datasets
translated into English.

2. Spanish The final training set consisted of
the original Spanish dataset along with the
English dataset (both positive and negative
samples), Portuguese dataset translated into
Spanish.

3. Portuguese The final training set consisted
of the original Portuguese dataset along with
the English dataset (both positive and nega-
tive samples), Spanish dataset translated into
Spanish

4. Hindi, Urdu, Mandarin and Turkish The
training datasets for Hindi, Urdu, Mandarin
and Turkish were created by translating the
final English dataset into the respective lan-
guages.

Table 3 displays the size and final data distri-
bution of the respective train datasets after data
augmentation.

4.2 Finetuning Pretrained MultiModal BERT
Pre-training in NLP refers to moulding a large
collection of unannotated text input into general-
purpose language representations. It is useful as it
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Figure 1: Data augmentation using translation. In the given diagram, each directed edge represents translation from
a source language to a target language. The graph represents the combination of datasets used during translation to
achieve the final augmented training sets.

Language(s) Label 0 Label 1 Total
English, Hindi, Urdu,
Mandarin and Turkish 2240 7412 9652

Spanish 2240 8281 10521
Portuguese 2240 8702 10942

Table 3: Distribution of labels in the respective training set after data augmentation.

prevents having to start from scratch when train-
ing a new model for downstream tasks. Because it
offers a stronger model initialization, pre-training
improves generalization performance and aids in
convergence on downstream tasks. Pretraining can
be considered a form of regularization that avoids
overfitting on smaller datasets with relatively few
human-annotated examples. On many NLP tasks,
pre-training models followed by fine-tuning them
for downstream tasks, have demonstrated good per-
formance (Erhan et al., 2010).

The model used in our system is based on the
BERT architecture. Bidirectional Encoder Rep-
resentations from Transformers (BERT) (Devlin
et al., 2019) is a transformer-based (Vaswani et al.,
2017) pre-trained language model that was cre-
ated with the objective of fine-tuning a pre-trained
model yields better performance. The pretraining
phase of BERT includes two tasks. Firstly, Masked
Language Modeling (MLM) is where certain words
are randomly masked in a sequence. About 15%

of the words in a sequence are masked. The model
then attempts to predict the masked words. Sec-
ondly, Next Sentence Prediction (NSP), where the
model has an additional loss function, NSP loss,
indicates if the second sequence follows the first
one. Around 50% of the inputs are a pair, and they
randomly chose the other 50.

Our system uses a multimodal BERT (mBERT)
specifically, bert-base-multilingual-cased
which has been trained on 104 languages with
the largest Wikipedia content. Since the size of
Wikipedias for different languages varies, exponen-
tially smoothed weighting of the data is performed
to under-sample resource-rich languages and
over-sample low-resource languages. The model
has 12 layers of transformer blocks with 768
hidden dimensions conditioned on 12 self-attention
heads. In total, the model has 110M trained
parameters.

Preprocessing involves splitting the input docu-
ment into tokens and generating a compatible in-
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Figure 2: Diagrammatic representation of the model used for the system.

put sequence. Considering that different languages
have different vocabularies, the model uses a shared
110k WordPiece vocabulary. For Mandarin texts,
a whitespace is inserted around every character
before applying the WordPiece tokenizer, making
the Mandarin input character tokenized. For other
languages, lower casing and accent removal is the
first step. This is followed by punctuation split-
ting and finally whitespace tokenization. Special
tokens, [CLS] used to indicate the beginning of the
input, [SEP] used to indicate the end of a sequence
and [PAD] used for padding sequences to max-
length are inserted into the tokenized sequence.
Fine-tuning of the model involved stacking a dense
layer on top of the BERT output. The dense layer
is stacked with a dropout layer. The final layer of
the model consists of two neurons with sigmoid
activation to predict the binary labels.The features
of the [CLS] token are used for classification. A
benchmark of 0.62 was used to classify a sample as
positive. Fig 2 summarises the model architecture
used by our system.

5 Experimental Set-up

The models were developed on Keras1 (Chol-
let et al., 2015), and implemented using
the transformers library by HuggingFace2

(Wolf et al., 2019). The model used is
1https://keras.io/
2https://huggingface.co/docs/transformers/

index

bert-base-multilingual-cased 3. We
use the AutoTokenizer 4 offered by HuggingFace’s
transformers library to tokenize our inputs. We
experimented with learning rates of 1e-5, 3e-5
and 5e-5 for all models, finding the best results
at 3e-5. For all the models, we fixed the max
length parameter at 512 tokens and the batch size
parameter to 6. The finetuning for the models was
performed on Google Colab GPU. We trained each
model for 3-4 epochs and found the best results
at 4 epochs. The dropout rate during fine-tuning
is 0.2. We used the Adam (Kingma and Ba,
2014) optimizer from Keras. The loss function
used is binary cross-entropy. The translation was
performed using the Google Translation library in
Python googletrans(v3.1.0a0) 5.

6 Results and Discussion

Table 4 demonstrates the results of our system on
the test set for the respective languages. One com-
mon pitfall of the system across languages is that
it performs better on the majority class and fails
to identify the minority class correctly. Our hy-
pothesis is that this happens because despite data
augmentation increasing the count of samples, the
dataset is still imbalanced. The quality of aug-

3https://huggingface.co/
bert-base-multilingual-cased

4https://huggingface.co/transformers/v3.0.2/
model_doc/auto.html#autotokenizer

5https://pypi.org/project/googletrans/

165

https://keras.io/
https://huggingface.co/docs/transformers/index
https://huggingface.co/docs/transformers/index
https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/bert-base-multilingual-cased
https://huggingface.co/transformers/v3.0.2/model_doc/auto.html##autotokenizer
https://huggingface.co/transformers/v3.0.2/model_doc/auto.html##autotokenizer
https://pypi.org/project/googletrans/


mented samples depends on the performance of the
translation engine which is a decisive factor in our
system. Furthermore, we believe that a task like
protest event detection involves nuanced references
and linguistic nuances may get lost during trans-
lation, even more so when the datasets for Hindi,
Urdu, Mandarin and Turkish are generated through
two cycles of translation.

Our model seems to have performed better on
the English dataset indicating that the multilin-
gual BERT has a better contextualizing ability for
the Lingua Franca, English. The preprocessing
process involves removal of accents which might
be detrimental to performance of many languages
which heavily rely on accents such as Hindi, Urdu,
Turkish and Spanish. For example, in Turkish ı and
i (non -dotted and dotted) are very different vowels
with the phonetic sounds ( as in cycle - sı̄kl ) and ē
(as in easy - ēzē).

Language Macro F1 Score
English 0.8062
Spanish 0.6445
Portuguese 0.7302
Hindi 0.5671
Urdu 0.6555
Mandarin 0.7545
Turkish 0.6702

Table 4: The results on the given test set for each of the
respective languages given by our system. The metric
for evaluation is the Macro F1 score.

7 Conclusion and Future Work

The amounts of publicly available data on the Inter-
net, especially social networks, desire for skillful
analysis for the purposes of protest detection. This
becomes especially imperative because of the sig-
nificance of protests in the social, political and eco-
nomic domains. Our submission in Task 1 of CASE
2022 demonstrated the effective use of Pretrained
Language Models (PLMs), specifically multilin-
gual BERT (mBERT) in the binary classification
of documents into events or not events. We were
also successful in tackling the dearth in training
data and class imbalance using data augmentation.
We have been able to achieve F1 scores of 0.8062,
0.6445, 0.7302, 0.5671, 0.6555, 0.7545 and 0.6702
in English, Spanish, Portuguese, Hindi, Urdu, Man-
darin, and Turkish respectively. In the future, we
can deal with class imbalance using class weighing

(Suri, 2022). We would also like to experiment with
cross-lingual finetuning on a multilingual model by
training in one language and testing in another lan-
guage. We would like to extend this work by using
language specific PLMs rather than a multilingual
model.
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Ali Hürriyetoğlu, Hristo Tanev, Vanni Zavarella, Reyyan
Yeniterzi, Osman Mutlu, and Erdem Yörük. 2022b.
Challenges and applications of automated extraction
of socio-political events from text (case 2022): Work-
shop and shared task report. In Proceedings of the 4th
Workshop on Challenges and Applications of Auto-
mated Extraction of Socio-political Events from Text
(CASE 2022), online. Association for Computational
Linguistics (ACL).

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. International
Conference on Learning Representations.

Ashwin Sanjay Neogi, Kirti Anilkumar Garg, Ram Kr-
ishn Mishra, and Yogesh K Dwivedi. 2021. Sen-
timent analysis and classification of indian farmers’
protest using twitter data. International Journal of In-
formation Management Data Insights, 1(2):100019.

Konstantina Papanikolaou and Harris Papageorgiou.
2020. Protest event analysis: A longitudinal anal-
ysis for greece. In Proceedings of the Workshop on
Automated Extraction of Socio-political Events from
News 2020, pages 57–62.

Francesco Re, Daniel Vegh, Dennis Atzenhofer, and
Niklas Stoehr. 2021. Team “DaDeFrNi” at CASE
2021 task 1: Document and sentence classification
for protest event detection. In Proceedings of the 4th
Workshop on Challenges and Applications of Auto-
mated Extraction of Socio-political Events from Text
(CASE 2021), pages 171–178, Online. Association
for Computational Linguistics.

Zachary Steinert-Threlkeld and Jungseock Joo. 2022.
Mmchived: Multimodal chile and venezuela protest
event data. Proceedings of the International AAAI
Conference on Web and Social Media, 16(1):1332–
1341.

Manan Suri. 2022. PiCkLe at SemEval-2022 task 4:
Boosting pre-trained language models with task spe-
cific metadata and cost sensitive learning. In Proceed-
ings of the 16th International Workshop on Semantic
Evaluation (SemEval-2022), pages 464–472, Seattle,
United States. Association for Computational Lin-
guistics.

Hieu Man Duc Trong, Duc-Trong Le, Amir Pouran Ben
Veyseh, Thut Nguyn, and Thien Huu Nguyen. 2020.
Introducing a new dataset for event detection in cy-
bersecurity texts. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 5381–5390.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Marc Verhagen, Roser Saurí, Tommaso Caselli, and
James Pustejovsky. 2010. SemEval-2010 task 13:
TempEval-2. In Proceedings of the 5th International
Workshop on Semantic Evaluation, pages 57–62, Up-
psala, Sweden. Association for Computational Lin-
guistics.

Amir Pouran Ben Veyseh, Minh Van Nguyen, Franck
Dernoncourt, and Thien Nguyen. 2022. Minion: a
large-scale and diverse dataset for multilingual event
detection. In Proceedings of the 2022 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, pages 2286–2299.

Walker, Christopher, Strassel, Stephanie, Medero, Julie,
and Maeda, Kazuaki. 2006. Ace 2005 multilingual
training corpus.

Xiaozhi Wang, Ziqi Wang, Xu Han, Wangyi Jiang,
Rong Han, Zhiyuan Liu, Juanzi Li, Peng Li, Yankai
Lin, and Jie Zhou. 2020. Maven: A massive gen-
eral domain event detection dataset. arXiv preprint
arXiv:2004.13590.

167

https://doi.org/10.18653/v1/P16-2011
https://doi.org/10.18653/v1/P16-2011
https://doi.org/10.18653/v1/2021.case-1.19
https://doi.org/10.18653/v1/2021.case-1.19
https://doi.org/10.18653/v1/2021.case-1.19
https://doi.org/10.48550/ARXIV.2203.10020
https://doi.org/10.48550/ARXIV.2203.10020
https://doi.org/https://doi.org/10.1016/j.jjimei.2021.100019
https://doi.org/https://doi.org/10.1016/j.jjimei.2021.100019
https://doi.org/https://doi.org/10.1016/j.jjimei.2021.100019
https://doi.org/10.18653/v1/2021.case-1.22
https://doi.org/10.18653/v1/2021.case-1.22
https://doi.org/10.18653/v1/2021.case-1.22
https://ojs.aaai.org/index.php/ICWSM/article/view/19385
https://ojs.aaai.org/index.php/ICWSM/article/view/19385
https://doi.org/10.18653/v1/2022.semeval-1.63
https://doi.org/10.18653/v1/2022.semeval-1.63
https://doi.org/10.18653/v1/2022.semeval-1.63
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://aclanthology.org/S10-1010
https://aclanthology.org/S10-1010
https://doi.org/10.35111/MWXC-VH88
https://doi.org/10.35111/MWXC-VH88


Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

168

http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771


Proceedings of the 5th Workshop on Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE), pages 169 - 174
December 7-8, 2022 ©2022 Association for Computational Linguistics

CamPros at CASE 2022 Task 1: Transformer-based Multilingual Protest
News Detection

Kumari Neha† Mrinal Anand† Tushar Mohan†
Arun Balaji Buduru† Ponnurangam Kumaraguru‡
†Indraprastha Institute of Information Technology, Delhi

‡International Institute of Information Technology, Hyderabad
{nehak,mrinal20222,tushar19393,arunb}@iiitd.ac.in

{pk.guru}@iiit.ac.in

Abstract
Socio-political protests often lead to grave con-
sequences when they occur. The early detec-
tion of such protests is very important for tak-
ing early precautionary measures. However,
the main shortcoming of protest event detec-
tion is the scarcity of sufficient training data
for specific language categories, which makes
it difficult to train data-hungry deep learning
models effectively. Therefore, cross-lingual
and zero-shot learning models are needed to de-
tect events in various low-resource languages.
This paper proposes a multi-lingual cross-
document level event detection approach using
pre-trained transformer models developed for
Shared Task 1 at CASE 2022. The shared task
constituted four subtasks for event detection at
different granularity levels, i.e., document level
to token level, spread over multiple languages
(English, Spanish, Portuguese, Turkish, Urdu,
and Mandarin). Our system achieves an aver-
age F1 score of 0.73 for document-level event
detection tasks. Our approach secured 2nd po-
sition for the Hindi language in subtask 1 with
an F1 score of 0.80. While for Spanish, we
secure 4th position with an F1 score of 0.69.
Our code is available at https://github.
com/nehapspathak/campros/.

1 Introduction

The recent technological advancement has led to
a continuous flow of information among users in
online and offline ecosystems. Users’ informa-
tion may cover various social and political fac-
tors, often constituting information related to po-
litical violence, crisis, and protests, among oth-
ers. The automatic detection of such socio-political
protests/crisis events from news and social media
has become crucial from a peaceful society per-
spective (Hürriyetoğlu et al., 2020, 2021). Not only
does the early detection of such event helps in the
deployment of early interventions, but it also helps
understand people’s perception of a socio-political
event.

Event detection aims to identify and extract per-
tinent data from a text about specific categories of
events. It is a crucial information extraction task
that unearths and collects information about cur-
rent and historical occurrences concealed in vast
amounts of textual data. The CASE 2022 work-
shop focuses on detecting socio-political and crisis
events in a multi-lingual setting at different gran-
ularity levels. This paper focuses on developing
models and systems for “Multilingual Protest News
Detection - Shared Task 1”. In shared task 1, there
are 4 subtasks. The aim of subtask 1 is to detect
whether a news article contains event information.
The news articles are in the form of documents.
Hence the subtask looks at whether a given docu-
ment contains event information. The second sub-
task focuses on detecting a sentence containing
information about a past or ongoing event. The
third task focuses on event sentence coreference
identification, such as which event sentences in
subtask 2 belong to the same event. The fourth and
final subtask focuses on event extraction and aims
to identify the event triggers and their arguments.
We present our proposed system for subtask 1 in
this paper.

Researchers have focused on Event extraction
from various aspects in the past (Yadav et al., 2021;
Lai et al., 2021a). The task presented by (Hür-
riyetoğlu et al., 2020) focused on event sentence
co-reference identification. In the CASE 2021
socio-political and crisis event detection, the train-
ing dataset consisted of English, Spanish and Por-
tuguese, while the test data were from English,
Spanish, Portuguese, and Hindi (Hürriyetoğlu et al.,
2021). In CASE 2022, however, new languages are
introduced for multilingual document-level event
detection. The workshop allows participants to
create models for various subtasks and contrast
related approaches. Subtask 1 consists of docu-
ments from English, Spanish, and Portuguese for
training. For testing, the documents are available
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in a zero-shot setting, including languages from
low-resource languages; Hindi, Turkish, Urdu, and
Mandarin. Identifying crisis and socio-political
protest detection in a multi-lingual setting makes
the Task very complex.

Our work mainly focuses on document-level
(subtask 1) event detection in a multilingual setting.
Our approach is based on pretrained transformer
models and different learning strategies for mak-
ing predictions. Since the tasks are designed for
protests in a multilingual setting, we do not per-
form language-level pre-processing on our dataset.
Our submission for subtask 1 achieved 2nd position
in zero-shot Hindi document-level event detection.

The rest of the paper is organized as follows. Sec-
tion 2 describes the Related literature. The details
of the Task and dataset are presented in Section
3. The proposed approach and experimental setup
are described in Section 4. Results are described
in Section 5, followed by Conclusion in Section 6.
We intend to make our code public for further use
by the community.

2 Related Work

In natural language processing (NLP), Event detec-
tion is a task that detects event triggers/mentions
(i.e., the key terms that drive or express an
event) and categorizes them into predefined event
types (Lai et al., 2021b). The early detection
of ongoing and past events exploited feature-
based approaches to detect events (Li et al.,
2013). However, the early data-driven (Hogen-
boom et al., 2011), knowledge-driven, and rule-
based approaches missed the semantic relationship
in the data (Danilova and Popova, 2014). Other
early approaches for event detection include ma-
chine learning models such as SVM and decision
trees (Schrodt et al., 2014). The recent deep learn-
ing approaches proposed in the literature (Ahmad
et al., 2020) improve event detection; nonetheless,
they are not generalizable for low-resource lan-
guages. To address the data scarcity problem for
low-resource languages, researchers have recently
used the pre-trained language model GPT-2 to gen-
erate training samples (Veyseh et al., 2021a).

Another less-discovered approach in the Event
detection task is Cross-Lingual event detection
which proposes model creation for effective perfor-
mance over different languages (Guzman-Nateras
et al., 2022). The work presented in (Lai et al.,
2021b) utilizes knowledge from open-domain word

Language Label
1

Label
0

Total

English (En) 1, 912 7, 412 9, 324

Spanish (Es) 131 869 1, 000

Portuguese (pt) 197 1, 290 1, 487

Table 1: Training Data available for training for Shared
Task 1, subtask 1: Document-level crisis event predic-
tion.

Language Documents
English 3, 871

Hindi 268

Mandarin 300

Spanish 400

Portuguese 671

Turkish 300

Urdu 299

Table 2: Test Data for testing for Shared Task 1, subtask
1: Document-level crisis event prediction.

sense disambiguation to transfer knowledge into
few-shot learning models for Event detection, such
that the model can generalize to new event types.
To perform Event detection at the document level,
the work in (Veyseh et al., 2021b) proposes a dy-
namic selection of relevant sentences in a docu-
ment to create improved representation learning.
Targeting the issues with scarce availability of low-
resource languages, the CASE 2021 subtask in-
troduced the multi-lingual crisis event detection
dataset, which focuses on the zero-shot and few-
shot detection of protest and crisis event (Hür-
riyetoğlu et al., 2021).

3 Data

The dataset used in CASE 2022 has been created
in the process presented in (Hürriyetoğlu et al.,
2022). For subtask 1, the new data contains doc-
uments with and without protest events. The data
provided for training are highly imbalanced and
provided for only 3 languages. The testing data
contains 7 languages, with documents from addi-
tional 4 languages apart from training data. Table 1
provides the details of the training data provided
in the shared task. Table 2 presents the test data
for the Task. Given that no training data is present
for Hindi, Mandarin, Turkish and Urdu, the task
of document event detection becomes a zero-shot
classification problem.
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Language Model macro-F1
English mBERT+Softmax 0.76

XLM-Roberta+LSTM 0.74
XLM-Roberta+Sigmoid 0.77
XLM-Roberta+Sigmoid (U) 0.72

Spanish mBERT+Softmax 0.69
XLM-Roberta+LSTM 0.63
XLM-Roberta+Sigmoid 0.64
XLM-Roberta+Sigmoid (U) 0.63

Portuguese mBERT+Softmax 0.68
XLM-Roberta+LSTM 0.71
XLM-Roberta+Sigmoid 0.76
XLM-Roberta+Sigmoid (U) 0.72

Table 3: Test results for English, Spanish and Portuguese documents, as reported in the shared task. The training
data were present for the above 3 languages. U represents a model with under-sampled data.

3.1 Data proprocessing

Since we experiment with mBERT (cased) and
other sentence-based embeddings, we do not lower-
case our document corpus before training. We also
do not conduct language-specific pre-processing
to keep the preprocessing step language agnostic.
However, we removed any URLs, and a single oc-
currence replaced repeated symbols. We also re-
moved any extra spaces present in the data.

4 Methodology

The transformer-based models have recently gained
success in various multilingual NLP tasks such as
offensive content detection (Arango et al., 2022)
and various zero-shot cross-lingual tasks (Kuo and
Chen, 2022). We experiment with different multi-
lingual models and analyze how the different mod-
els perform on the downstream task of document
classification in subtask 1. We design the docu-
ment classification problem as a sequence classifi-
cation problem (Hettiarachchi et al., 2021; Gürel
and Emin, 2021).

In our approach, we use different transformer
models including XLM-Roberta (Conneau et al.,
2020), mBERT (Devlin et al., 2018) and encoder-
decoder based LASER (Artetxe and Schwenk,
2019) to generate embedding from the documents.
We experiment with different layers on top of the
multi-lingual sentence embedding. Our prelimi-
nary analysis found that transformer-based XLM-
Roberta with a sigmoid layer outperformed other
models in the macro-F1 score. Therefore, in our
approach, we propose the XLM-Roberta model
with a sigmoid classification layer for event pre-

diction. XLM-Roberta is pre-trained on unla-
beled Wikipedia text and CommonCrawl Corpus
of 100 languages. The XLM-Roberta has a vo-
cabulary size of 25, 000 and uses SentencePiece
tokenizer (Kudo and Richardson, 2018). We fine-
tuned the model for our task with the training data
provided. The training data was highly imbalanced.
However, oversampling and under-sampling meth-
ods did not provide any marginal improvement in
the model’s output as per our experiments.

4.1 XLM-Roberta Based Document
Classification Models

XLM-Roberta belongs to an unsupervised represen-
tation learning framework as it does not use cross-
lingual resources (Conneau et al., 2020). XLM-
Roberta has L = 12 transformers, with H = 768
attention heads with A = 12, and 270M parame-
ters. The maximum token size for input for XLM-
Roberta is 512 tokens. The token size of 512 is less
for creating document-level creation, as a lot of in-
formation might not be captured. However, break-
ing the sentences into 512-length tokens might lead
to an incorrect labeling process for different sen-
tence splits (Gürel and Emin, 2021). Due to the
limitation of our system, our final approach uses
a 256-length token for document embedding cre-
ation. The learning rate was 2.75e−05, the batch
size for training was 32, and the training was done
for 20 epochs. The total training time taken for
the XLM-Robert-based model was approximately
2 hours. Since we use the Sigmoid layer on the top
of XLM-Roberta, the final decision boundary for
0/1 was taken based on the probability of 0.6 for
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Language Model macro-F1
Hindi mBERT+Softmax 0.71

XLM-Roberta+LSTM 0.75
XLM-Roberta+Sigmoid 0.80
XLM-Roberta+Sigmoid (U) 0.77

Turkish mBERT+Softmax 0.69
XLM-Roberta+LSTM 0.70
XLM-Roberta+Sigmoid 0.74
XLM-Roberta+Sigmoid (U) 0.69

Urdu mBERT+Softmax 0.67
XLM-Roberta+LSTM 0.72
XLM-Roberta+Sigmoid 0.71
XLM-Roberta+Sigmoid (U) 0.73

Mandarin mBERT+Softmax 0.75
XLM-Roberta+LSTM 0.71
XLM-Roberta+Sigmoid 0.75
XLM-Roberta+Sigmoid (U) 0.73

Table 4: Test results for Hindi, Mandarin, Turkish and Urdu documents, as reported in the shared task. Training data
was not provided for the above language. Hence classification is done in a zero-shot setting.

all cases.

4.2 Experimental setup

For training all models, we use the Nvidia RTX
3090 GPU system with an installed Cuda version
of 11.3. For training, we combined the training
data from the 3 languages, English, Spanish, and
Portuguese, as shown in Table 1. We performed
at a 90:10 split for training and testing, respec-
tively. The split was done randomly but stayed the
same for all the experiments with models to obtain
the result on the same set of datasets. The score
we demonstrated for document-level classification
was the F1-macro metric, which was selected as an
evaluation metric for our models. We performed ex-
periments with different epoch numbers and batch
sizes with the same experimental setup.

4.3 Baselines

We experimented with different multilingual mod-
els such as XLM-Roberta (Conneau et al., 2020),
mBERT (Devlin et al., 2018) and LASER (Artetxe
and Schwenk, 2019) to obtain predictions. The
performance for LASER was the worst in our case.
Hence, we do not report the results from LASER-
based models.

XLM-Roberta+Softmax (under-sampling): In
this approach, before feeding the data into the
model, we under-sample the majority class (i.e.,
a class with label 0 representing a no-event class)

such that we have an equal number of documents
for both label 0 and label 1 class. We under-sample
the training data constituting the combination of
documents from all the 3 languages. After this,
we split the data into the ratio of 90:10 and fed it
to the model with XLM-Roberta with softmax as
the classification layer. The number of epochs for
training is set to 20, and the batch size is taken as
32.

XLM-Roberta+LSTM: After we have created
embedding using XLM-Roberta, we feed the em-
bedding into long short-term memory (LSTM) lay-
ers to train the model. We use the sigmoid layer for
the classification of events.

mBERT+Softmax: We also tried mBERT to
create embedding, which is the multilingual BERT
embedding for our experiment. The BERT tok-
enizer is based on wordpiece tokenizer. We used
softmax as a classification layer and trained the
model.

5 Results

In this section, we demonstrate and elaborate on the
results from different models for each language. Ta-
ble 3 shows the result for English, Spanish and Por-
tuguese language, for which we had training data
available. The best model for English came out to
be XLM-Roberta+Sigmoid model, with a macro-
F1 score of 0.77. The second best model for En-
glish was mBERT+Softmax model, with a macro-
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F1 score of 0.76. While XLM-Roberta+LSTM
showed macro-F1 score of 0.74, the undersam-
pled majority class for XLM-Roberta+Sigmoid pro-
duced the worst result, with a macro-F1 score of
0.72. For Spanish, however, our proposed frame-
work of XLM-Roberta+Sigmoid model was out-
performed by mBERT+Softmax, with macro-F1
of 0.69. XLM-Roberta+Sigmoid remained the
second best model with macro-F1 score of 0.64.
The result for XLM-Roberta+LSTM and under-
sampled XLM-Roberta+Sigmoid came as 0.63.
In Portuguese, our proposed framework outper-
formed all other baselines, with macro-F1 score
of 0.76. The second best model for Portuguese
was undersampled XLM-Roberta+Sigmoid, with
macro-F1 score of 0.72. The macro-F1 score
for XLM-Roberta+LSTM came as 0.71, while
mBERT+Softmax performed worst for the Por-
tuguese document classification task. Hence, we
found that XLM-Roberta with the Sigmoid layer
outperformed for English and Portuguese tasks;
however, the best model for Spanish was multilin-
gual BERT with the softmax layer.

Table 4 presents the results for the zero-shot
classification for the respective languages. Our
best model, the XLM-Roberta+Sigmoid model, ob-
tained a macro-F1 score of 0.80 for Hindi and
secured 2nd in the shared task. The second best
model for zero-shot Hindi document classification
was undersampled XLM-Roberta+Sigmoid with
a macro-F1 score of 0.77. The macro-F1 score
for XLM-Roberta+LSTM model was 0.75. We
found that for Hindi, mBERT+Softmax produced
the worst results, with macro-F1 score of 0.71. For
Turkish, the best model also came out as XLM-
Roberta+Sigmoid, with macro-F1 as 0.74. Among
the baselines, the XLM-Roberta+LSTM model pro-
duced a macro-F1 score of 0.70, while the macro-
F1 score for both mBERT+Softmax and undersam-
pled XLM-Roberta+Sigmoid came as 0.69. For the
Urdu language, XLM-Roberta+LSTM marginally
outperformed the proposed model, with a macro-
F1 score of 0.72. The macro-F1 score for the
proposed XLM-Roberta+Sigmoid came as 0.71.
The worst model for Urdu was mBERT+Softmax,
with a macro-F1 score of 0.67. In contrast, the
best model for the Urdu language was the un-
dersampled XLM-Roberta+Sigmoid model with
a macro-F1 score of 0.73. For Mandarin, how-
ever, the best F1-score was obtained from both the
mBERT+Softmax model and the proposed XLM-

Roberta+Sigmoid model, with a marginal differ-
ence on the macro-F1 score of 0.75. The undersam-
pled XLM-Roberta+Sigmoid produced a macro-
F1 score of 0.73, while the XLM-Roberta+LSTM
model produced a macro-F1 score of 0.71.

6 Conclusion

This paper describes our approaches for
CASE@EMNLP 2022: Shared Task on
Socio-political and Crisis Events Detection
in multilingual settings. We explored various
multilingual and zero-shot approaches and showed
results across the languages in subtask 1. We
propose XLM-Roberta with a Sigmoid layer
for classifying crisis events in zero-shot and
low-resource language settings. Our system
achieved an average F1 score of 0.73. Among the
given languages, our proposed approach was able
to secure 2nd place in the Hindi document event
classification task. While comparing with our
approach, the multilingual Bert with softmax layer
obtained better results for Spanish and Mandarin,
with the result for Spanish securing the 4th spot in
the shared task.
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Abstract

Automated socio-political protest event detec-
tion is a challenging task when multiple lan-
guages are considered. In CASE 2022 Task 1,
we propose ensemble learning methods for mul-
tilingual protest event detection in four subtasks
with different granularity levels from document-
level to entity-level. We develop an ensemble
of fine-tuned Transformer-based language mod-
els, along with a post-processing step to reg-
ularize the predictions of our ensembles. Our
approach places the first place in 6 out of 16
leaderboards organized in seven languages in-
cluding English, Mandarin, and Turkish.

1 Introduction
Socio-political protest events are organized to

protest against various decision and policy mak-
ers. An example is the social movement of Arab
Springs and Internet hacktivism. The detection of
socio-political protest events in news articles is a
challenging task when news are reported in multi-
ple languages.

The shared task of Multilingual Protest News
Detection (Hürriyetoğlu et al., 2022; Hürriyetoğlu
et al., 2020), organized in the workshop of Chal-
lenges and Applications of Automated Extraction
of Socio-political Events from Text (CASE) that is
held at the 2022 Conference on Empirical Methods
in Natural Language Processing (EMNLP), targets
automated detection of protest events considering
language generalization of the event information
collection systems. The shared task includes four
subtasks:
Subtask 1, Protest Document Classification: The
subtask aims to detect if news articles contain past
or ongoing protest events. There are three source
languages; English, Spanish, and Portuguese. In
addition, there are seven target languages including
English, Turkish, and Mandarin. The granularity
of classification is document-level. The prediction
output is binary (protest exists or not).

Subtask 2, Protest Sentence Classification: The
subtask aims to detect if the news sentences contain
protest events. There are three source and target
languages; English, Spanish, and Portuguese. The
granularity of classification is sentence-level. The
prediction output is binary.

Subtask 3, Protest Event Sentence Coreference
Identification: The subtask aims to identify which
protest sentences are about the same event. There
are three source and target languages; English,
Spanish, and Portuguese. The granularity of group-
ing is sentence-level. The prediction output is clus-
ters of protest event sentences.

Subtask 4, Protest Event Extraction: The subtask
aims to extract or label protest entity spans such
as triggers and participants. There are three source
and target languages; English, Spanish, and Por-
tuguese. The granularity of classification is word
span-level. The prediction output is entity labels.

The ARC-NLP team participated in all subtasks
of Multilingual Protest News Detection. Our main
approach for all subtasks is based on two factors.
First, we utilize Transformer-based language mod-
els that are pretrained on specific languages, e.g.
RoBERTa (Liu et al., 2019), and also multilingual
corpus, e.g. mDeBERTa (He et al., 2021a). Second,
we apply ensemble learning and post-processing
methods to obtain better and smoother predictions,
considering that large language models are stochas-
tic (Bender et al., 2021). Besides, we apply cus-
tomized methods for each subtask according to
the subtask’s definition and requirements. Our ap-
proach places the first place in 6 out of 16 leader-
boards organized in seven languages including En-
glish, Mandarin, and Turkish. In the following sec-
tions, we present our detailed solutions and leader-
board results for all subtasks of multilingual protest
event detection.
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Language Train Test
English (EN) 9,324 3,871
Spanish (ES) 1,000 400
Portuguese (PR) 1,487 671
Hindi (HI) - 268
Turkish (TR) - 300
Mandarin (MA) - 300
Urdu (UR) - 299

Table 1: The number of instances in Subtask 1.

2 Subtask 1: Protest Document
Classification

2.1 Dataset

The dataset in Subtask 1 consists of news doc-
uments collected in various languages, and corre-
sponding protest labels (positive or negative). The
collection and annotation processes are described
in (Hürriyetoğlu et al., 2021) for the 2021 data, and
in (Hürriyetoğlu et al., 2020) for the 2022 data. The
number of instances is given for 2022 in Table 1.
While English, Spanish, and Portuguese have train-
ing samples that are labeled, the other languages
only have unlabeled test samples (i.e. zero-shot
evaluation). In Subtask 1, the class labels are un-
balanced, that is, there are more negative samples
(no past or ongoing event in document) than posi-
tive ones.

2.2 Methods

We focus on ensemble learning of multilingual
or monolingual language models. We also use data
processing techniques, such as data translation to
improve our models further. In Table 2, we share
our best performing three submissions for each
language for Subtask 1 (S1), which are based on
four methods1:
Ensemble of multilingual language models (S1-
multi): English, Spanish, and Portuguese have
labeled data that can be used in training mod-
els, but not other languages. Therefore, we com-
bine the labeled samples from English, Spanish,
and Portuguese to construct the training data (i.e.,
source). We rely on a Transformer-based multilin-
gual model, namely mDeBERTa (He et al., 2021c),
which is the multilingual version of DeBERTa. It
is pre-trained with the 2.5T CC100 multilingual
dataset. In Subtask 1, we use the mDeBERTa V3
base model that has 12 layers and a hidden size
of 768. We use the HuggingFace’s Pytorch im-

1We did not submit all versions of the following methods
for each language. Instead, we submitted best performing
three models in our internal experiments for each language.

plementation of this model (He et al., 2021b), the
corresponding tokenizer with max length 512, ex-
tra padding and truncation. We set epoch number
to 5 and use constant learning rate 2e− 5.

We train five split mDeBERTa models, each with
80% of the training data randomly selected from
the entire training data with replacement. Further-
more, we train a single full mDeBERTa model us-
ing the entire training data. While S1-multi-5 in
Table 2 uses the predictions of the five split mod-
els, S1-multi-6 uses the predictions of the five split
models and one full model together. Moreover,
we follow two approaches to ensemble the models’
predictions into final test labels. First, we take the
majority voting of the five split models, called M1.
Second, we compute the average softmax probabil-
ities of the five split models and one full model for
each class in test samples, called M2. The classes
with the highest probabilities are selected for final
test labels.
Ensemble of monolingual language models (S1-
mono): We use Transformer-based monolingual
models, namely RoBERTa (Liu et al., 2019) and
DeBERTa (He et al., 2021c) for English2, BETO
(Cañete et al., 2020) for Spanish, and BERTimbau
(Souza et al., 2020) for Portuguese. All mono-
lingual models are their base versions, and Hug-
gingFace’s Pytorch implementations are used. We
fine-tune these models with the samples from their
respective languages for document classification.
Other notations (ensemble size, majority method,
and hyperparameters) are the same as in multilin-
gual models.
Ensemble of monolingual language models with
Target Translation (S1-mono-TT): For zero-shot
evaluation, we translate each target test language
with no training instances (Spanish, Hindi, Turkish,
Mandarin, and Urdu) to a source language (En-
glish) using Google’s translation3. mono-TT-5 in
Table 2 consists of five DeBERTa models (trained
with 80% of train data). The predictions are com-
puted from the translated test data and ensembled
together using M1 majority voting. In addition,
mono-TT-6 consists of five DeBERTa models and
one full DeBERTa model whose predictions are
computed on the translated test data using M2 ma-
jority voting. We use the same hyperparameters
and settings as in previous setups.

2We mostly observe that DeBERTa and mDeBERTa have
better performances than RoBERTa and XLM-R in our inter-
nal experiments.

3https://translate.google.com
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Method Target Lang. Train data (Source) Backbone Models Majority Score
S1-mono-5

EN
EN RoBERTa (x5 split) M1 80.74

S1-mono-6 EN RoBERTa (x5 split + x1 full) M2 80.67
S1-multi-6 EN+ES+PR mDeBERTa (x5 split + x1 full) M2 80.03
S1-multi-5

PR
EN+ES+PR mDeBERTa (x5 split) M1 79.85

S1-multi-6 EN+ES+PR mDeBERTa (x5 split + x1 full) M2 78.73
S1-mono-6 PR BERTimbau (x5 split + x1 full) M2 77.96
S1-mono-TT-6 ESEN

trans EN DeBERTa (x5 split + x1 full) M2 69.44
S1-mono-6 ES ES BETO (x5 split + x1 full) M2 68.75
S1-multi-6 EN+ES+PR mDeBERTa (x5 split + x1 full) M2 67.74
S1-multi-5 HI EN+ES+PR mDeBERTa (x5 split) M1 80.08
S1-multi-6 EN+ES+PR mDeBERTa (x5 split + x1 full) M2 78.96
S1-mono-TT-6 HIEN

trans EN DeBERTa (x5 split + x1 full) M2 75.63
S1-mono-ST-6 TR ENTR

trans
BERTurk-128k (x5 split + x1 full) M2 84.06

S1-mono-ST-5 BERTurk-128k (x5 split) M1 83.27
S1-mono-TT-6 TREN

trans EN DeBERTa (x5 split + x1 full) M2 82.89
S1-mono-TT-5

MAEN
trans

EN DeBERTa (x5 split) M1 83.39
S1-mono-TT-6 EN DeBERTa (x5 split + x1 full) M2 83.23
S1-multi-6 MA EN+ES+PR mDeBERTa (x5 split + x1 full) M2 83.06
S1-mono-TT-5

UREN
trans

EN DeBERTa (x5 split) M1 77.99
S1-mono-TT-6 EN DeBERTa (x5 split + x1 full) M2 77.48
S1-multi-6 UR EN+ES+PR mDeBERTa (x5 split + x1 full) M2 76.15

Table 2: Our submitted models for Subtask 1 (S1), Document Classification. L1
L2
trans means that language L1 is

translated to language L2. Split models are trained with randomly selected 80% of the train data and full models
with all train data. Highest F1-macro scores are given in bold.

Ensemble of monolingual language models with
Source Translation (S1-mono-ST): We translate a
source language (English training samples) to a tar-
get language with no training data (Turkish) using
Google’s translation tool. We use Transformer-
based monolingual BERTurk4, which is trained
with translated Turkish data. mono-ST-5 in Table
2 consist of five split BERTurk models (trained
with 80% of the training data) and final test labels
are computed on the original Turkish test data us-
ing M1 majority voting. Similarly, mono-ST-6
consists of five split BERTurk models and one full
BERTurk model (trained with the entire training
data) together, and final test labels are computed
on the original Turkish test data using M2 major-
ity voting. We use the same hyper-parameter and
tokenizer settings as in previous setups.

2.3 Leaderboard Results

Our best performing model for each language in
Subtask 1 is given in Table 3 along with best com-
petitor scores in 2022 and our rankings. We rank
the first place in Turkish and Mandarin, second
place in Portuguese, and third place in Urdu.

4https://huggingface.co/dbmdz/bert-base-turkish-128k-
cased

3 Subtask 2: Protest Sentence
Classification

3.1 Dataset

The dataset in Subtask 2 consists of news sen-
tences and corresponding protest labels (positive or
negative) in English, Spanish, and Portuguese. The
collection and annotations are described in (Hür-
riyetoğlu et al., 2021) for the 2021 data. There is
no new data provided in 2022. The number of ex-
amples for each language are given in Table 4. The
problem of unbalanced class label distributions is
also present in this task.

3.2 Methods

We mainly focus on multilingual and monolin-
gual language models as in Subtask 1. In Table 5,
we share our best performing two methods for each
language for Subtask 2 (S2), which are based on
two methods5:
Ensemble of multilingual language models (S2-
multi): We combine the labeled instances from
English, Spanish, and Portuguese to construct the
training data (source). We utilize multilingual
language models, namely mDeBERTa (He et al.,
2021c), in the subtask. We use the correspond-
ing tokenizer with max length 128, extra padding
and truncation. We set epoch number to 5 and use

5We follow a similar approach to Subtask 1 in our internal
experiments for Subtask 2.
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Lang. Method Our score Best Competitor Score Rank
2022 2022

EN S1-mono-5 80.74 82.49 4
PR S1-multi-5 79.85 80.07 2
ES S1-mono-TT-6 69.44 74.96 5
HI S1-multi-5 80.08 80.78 4
TR S1-mono-ST-6 84.06 82.91 1
MA S1-mono-TT-5 83.39 83.06 1
UR S1-mono-TT-5 77.99 79.71 3

Table 3: The 2022 leaderboard scores for Subtask 1, Document Classification.

Language Train Test
English (EN) 22,825 1,290
Spanish (ES) 2,741 686
Portuguese (PR) 1,182 1,445

Table 4: The number of instances in Subtask 2.

constant learning rate 2e− 5 throughout the train-
ing. We train five split mDeBERTa models, each
with 80% of the training data randomly selected
from the entire training data with replacement. Fur-
thermore, we train a single full mDeBERTa model
using the entire training data. While S2-multi-5
uses the predictions of the five split models, S2-
multi-6 uses the predictions of the five split models
and one full model together. The meanings of M1
and M2 are also the same as in Subtask 1.
Ensemble of monolingual language models (S2-
mono): Our second method utilizes monolingual
language models. In Subtask 2, we use RoBERTa
(Liu et al., 2019) for English. The model is the
base version. We use HuggingFace’s pytorch im-
plementation, the corresponding tokenizers with
max length 128, extra padding and truncation. We
set epoch number to 10 and use constant learning
rate 2e− 5. S2-mono-6 includes five split models
(trained with the 80% of training data) and one
full model (trained with the entire training data)
together, whose predictions are ensembled using
the M2 majority voting.

3.3 Leaderboard Results

Our best performing model for each language
in Subtask 2 is reported in Table 6 along with best
competitor scores in both 2021 and 2022, and our
rankings. We rank the third place in English and
Spanish in 2022.

4 Subtask 3: Event Sentence Coreference
Identification

4.1 Dataset

The dataset in Subtask 3 consists of news sen-
tences and corresponding clusters in three different

languages (English, Spanish, and Portuguese). The
statistics of the dataset are given in Table 7. The
numbers of instances are smaller than those of pre-
vious subtasks. The number of instances in English
is significantly higher than those of other languages.
The number of clusters also varies in the dataset.

4.2 Methods

Our approach for Subtask 3 is based on ensem-
ble learning of hierarchical clustering. In order to
cluster the sentences, we calculate the distance be-
tween two sentences, and then feed this distance
score to a hierarchical clustering algorithm.

We construct pairs of sentences from the dataset
by labeling them according to existing clustering
labels. For instance, assume that there are three sen-
tences with numbers 20, 21, and 22 in two clusters
as [[20],[21, 22]]. We then construct the sentence
pairs (21, 22) as positive, and (20, 21) and (20, 22)
as negative pairs. We calculate the Cosine distance
similarity between these sentence pairs for obtain-
ing training instances. The training of sentence
pairs is a binary classification task (positive or neg-
ative) with binary cross-entropy loss. The output
softmax probability is used as distance score.

After training and obtaining a distance similar-
ity model, we apply hierarchical or agglomerative
clustering algorithm using the distance scores. For
linking two clusters, we use single linkage, where
the distance between nearest points in two clusters
is considered.

Based on this clustering approach, we apply en-
semble learning as in previous subtasks. Since
there are very small number of training instances
in Spanish and Portuguese training datasets, we
exploit translating target languages to English, and
merging the instances of all languages in multilin-
gual models. In Table 8, we share our best perform-
ing submissions for each language for Subtask 3
(S3), which are based on four methods6:

6We also tried different methods such as BERTopic (Groo-
tendorst, 2022) and SBERT (Reimers and Gurevych, 2019),
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Method Target Lang. Train data (Source) Backbone Models Majority Score
S2-multi-6 EN EN+ES+PR mDeBERTa (x5 split + x1 full) M2 83.77
S2-mono-6 EN RoBERTa (x5 split + x1 full) M2 80.68
S2-multi-5 PR EN+ES+PR mDeBERTa (x5 split) M1 86.53
S2-multi-6 EN+ES+PR mDeBERTa (x5 split + x1 full) M2 86.11
S2-multi-6 ES EN+ES+PR mDeBERTa (x5 split + x1 full) M2 87.20
S2-multi-5 EN+ES+PR mDeBERTa (x5 split) M1 85.16

Table 5: Our submitted models for Subtask 2 (S2), Sentence Classification. Split models are trained with randomly
selected 80% of the train data and full models with all train data. Highest F1-macro scores are given in bold.

Lang. Method Our score Best Competitor Score Rank
2021 2022 2021 2022

EN S2-multi-6 83.77 85.32(Hu and Stoehr, 2021) 85.93 3 3
PR S2-multi-5 86.53 88.47(Awasthy et al., 2021) 89.67 4 4
ES S2-multi-6 87.20 88.61(Awasthy et al., 2021) 88.78 2 3

Table 6: The 2021 and 2022 leaderboard scores for Subtask 2, Sentence Classification.

Language Train Test
English (EN) 596 100
Spanish (ES) 21 40
Portuguese (PR) 11 40

Table 7: The number of instances in Subtask 3.

Multilingual language model with hierarchi-
cal clustering (S3-multi-1): We merge the orig-
inal instances from English, Spanish, and Por-
tuguese to construct the training data. We apply
distance model and hierarchical clustering as ex-
plained above. For distance model, we rely on
a Transformer-based multilingual model, namely
XLM-R (Conneau et al., 2020). In Subtask 3 (S3),
we train only a single (1) multilingual model with-
out using ensembles (S3-multi-1). We use the
XLM-R base model that has 12 layers and a hidden
size of 768. We use the HuggingFace’s Pytorch
implementation of this model (He et al., 2021b),
the corresponding tokenizer with max length 512,
extra padding and truncation. We set epoch number
to 20 and use constant learning rate 2e− 5. We use
the SciPy implementation for hierarchical cluster-
ing. We set the hierarchical clustering threshold as
0.65.
Ensemble of monolingual language models with
hierarchical clustering and Source Translation
(S3-mono-ST): We translate Spanish and Por-
tuguese to English, and then merge all instances.
The test data is also translated to English. We ap-
ply distance model and hierarchical clustering as
explained above. For distance model, we train a

however we did not achieve better performances. We did not
submit all versions of the reported methods for each language.
Instead, we submitted best performing models in our internal
experiments for each language.

monolingual language model, namely RoBERTa
(Liu et al., 2019). We use the RoBERTa base model
that has 12 layers and a hidden size of 768. The
hyperparameters and other settings are the same as
in the previous method.

We train five split RoBERTa models, each with
80% of the training data randomly selected from
the entire training data with replacement. Further-
more, we train a single full RoBERTa model using
the entire training data. S3-mono-ST-6 in Table
8 uses the predictions of the five split models and
one full model together. Moreover, we apply the
following approach to ensemble the models’ pre-
dictions into final test labels. The algorithm we are
using is based on the getting connected components
on a graph after getting rid of the low probability
connections. To do so, the binary similarity ma-
trix that is symmetric is calculated based on the
pairs in clusters for each clustering model. After
that, we get element-wise average of the similarity
matrices to get a single matrix of probabilities. A
pre-determined threshold (0.60) is then applied to
remove the low probability scores, so that we ob-
tain a final similarity matrix that contains binary
decisions for sentence pairs.
Ensemble of monolingual language models with
hierarchical clustering and Target Translated
(S3-mono-TT): We use only English instances for
training a monolingual language model. However,
we translate the target languages (Spanish and Por-
tuguese) to English, since they have very small
number of training instances. We apply distance
model and hierarchical clustering as explained
above. For distance model, we train RoBERTa
(Liu et al., 2019) base model. The hyperparameters
and other settings are the same as in the previous
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Method Target Lang. Train data Backbone Models Score
S3-multi-1 EN EN + ES + PR XLM-RoBERTa Base 79.44
S3-mono-ST-6 EN EN + ESEN

trans + PREN
trans RoBERTa (x5 split + x1 full) 84.24

S3-mono-TT-6 EN EN RoBERTa (x5 split +x1 full) 84.26
S3-mono-TT-16 EN EN RoBERTa (3x5 split (15) + x1 full) 85.11
S3-multi-1 ES EN + ES + PR XLM-RoBERTa Base 82.68
S3-mono-ST-6 ESEN

trans EN + ESEN
trans + PREN

trans RoBERTa (x5 split + x1 full) 85.25
S3-mono-TT-6 ESEN

trans EN RoBERTa (x5 split +x1 full) *
S3-mono-TT-16 ESEN

trans EN RoBERTa (3x5 split (15) + x1 full) 83.70
S3-multi-1 PR EN + ES + PR XLM-RoBERTa Base 88.88
S3-mono-ST-6 PREN

trans EN + ESEN
trans + PREN

trans RoBERTa (x5 split + x1 full) 92.04
S3-mono-TT-6 PREN

trans EN RoBERTa (x5 split +x1 full) 91.21
S3-mono-TT-16 PREN

trans EN RoBERTa (3x5 split (15) + x1 full) 93.00

Table 8: Our submitted models for Subtask 3 (S3), Event Sentence Coreference Identification. All methods are
based on hierarchical clustering with single linkage. L1

L2
trans means that language L1 is translated to language L2.

Split models are trained with randomly selected 80% of the train data and full models with all train data. Highest
CoNLL-2012 average (Pradhan et al., 2014) scores are given in bold. (*) means that the submission score is not
produced by the leaderboard system.

Lang. Methods Our Score Best Competitor Score Rank
2021 2022 2021 2022

EN S3-mono-TT-16 85.11 84.44 (Awasthy et al., 2021) - 1 1
ES S3-mono-ST-6 85.25 84.23 (Awasthy et al., 2021) - 1 1
PR S3-mono-TT-16 93.00 93.03 (Tan et al., 2021) - 2 1

Table 9: The 2021 and 2022 leaderboard scores for Subtask 3, Event Sentence Coreference Identification.
Highest CoNLL-2012 average (Pradhan et al., 2014) scores are given in bold.

method.
We train five split RoBERTa models, each with

80% of the training data randomly selected from
the entire training data with replacement. Further-
more, we train a single full RoBERTa model using
the entire training data. S3-mono-TT-6 in Table
8 uses the predictions of the five split models and
one full model together. Besides, we construct a
bigger ensemble to reflect more aspects from dif-
ferent models, such that we repeat five splits three
times to get 15 different models and one full model
together (S3-mono-TT-16). We apply the same
approach to ensemble the models’ predictions into
final test labels as in the previous method.

4.3 Leaderboard Results

In Subtask 3, the scoring metric is CoNLL-2012
average score (Pradhan et al., 2014). The leader-
board and our ranking among 2021 and 2022 sub-
missions can be seen in Table 9. In 2022, we ac-
complished the first place in all languages. In 2021
leaderboard, we get the first place in English and
Spanish and we get the second place in Portuguese.

5 Subtask 4: Protest Event Extraction

5.1 Dataset

The dataset in Subtask 4 consists of entity spans
in news sequences for three languages (English,

Language English Spanish Portuguese
Data split Train Test Train Test Train Test

E
nt

ity

Facility 1,201 - 49 - 48 -
Organizer 1,261 - 25 - 19 -
Participant 2,663 - 88 - 73 -
Target 1,470 - 64 - 32 -
Trigger 4,595 - 157 - 122 -
Place 1,570 - 15 - 61 -
Time 1,209 - 40 - 41 -

To
ta

l Sequences 808 88 30 50 33 50
Word count 103,327 11,334 3,712 7,852 2,780 6,280
Vocab. size 12,841 3,160 1,379 2,424 1,034 2,046

Table 10: The number of instances and entity types in
Subtask 4.

Spanish, and Portuguese). Event entity types are
event time, facility name, organizer, participant,
place, target, and trigger. The number of sequences
are highly imbalanced for English compared to
Spanish and Portuguese. We provide a detailed
statistics of the dataset in Table 10.

5.2 Methods

We utilize monolingual and multilingual models
in ensemble learning of token classification with a
specific focus on post-processing predictions. We
preprocess the input data since there are very long
sequences that do not fit the input layer of the mod-
els, where the maximum sequence length is 512.
We, therefore, split sequences, whose sequence
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Method Target Lang. Train data Backbone Models Majority Post-Proc Score
S4-multi-10

EN EN

XLM-R (x5) + XLM-R-CRF (x5) ✓ ✗ 75.70
S4-multi-PP-10 XLM-R (x5) + XLM-R-CRF (x5) ✓ ✓ 75.90
S4-mono-PP-10-v2 DeBERTa (x5) + DeBERTa-CRF (x5) ✓ ✓ 77.46
S4-mono-PP-10-v3 DeBERTa-CRF (x10) ✓ ✓ 77.84
S4-multi-10

PR EN+ES+PR

XLM-R (x5) + XLM-R-CRF (x5) ✓ ✗ 70.89
S4-multi-PP-10 XLM-R (x5) + XLM-R-CRF (x5) ✓ ✓ 71.50
S4-multi-PP-10-v2 mDeBERTa (x5) + mDeBERTa-CRF (x5) ✓ ✓ 73.84
S4-multi-PP-10-v3 mDeBERTa-CRF (x10) ✓ ✓ 73.84
S4-multi-10

ES EN+ES+PR

XLM-R (x5) + XLM-R-CRF (x5) ✓ ✗ 66.08
S4-multi-PP-10 XLM-R (x5) + XLM-R-CRF (x5) ✓ ✓ 66.46
S4-multi-PP-10-v2 mDeBERTa (x5) + mDeBERTa-CRF (x5) ✓ ✓ 68.00
S4-multi-PP-10-v3 mDeBERTa-CRF (x10) ✓ ✓ 67.91

Table 11: Our submitted models for Subtask 4 (S4), Event Extraction. Highest CoNLL (Tjong Kim Sang and
De Meulder, 2003) macro F1 scores are given in bold.

length is greater than 512 tokens, with a window
size of 200. For instance, we split a sequence hav-
ing 654 words as four groups having 200, 200, 200,
and 54 words. We do not use data translation due
to the granularity of classification (i.e. translated
word spans may not match the original sequence).
In Table 11, we share our best performing three
submissions for each language for Subtask 4 (S4),
which are based on four methods7:
Ensemble of multilingual language models (S4-
multi): We have more number of instances in En-
glish compared to Spanish and Portuguese. Having
less data in a language complicates our task, since
the granularity of the task is word span-level. We
use a multilingual model, XLM-R (Conneau et al.,
2020). We also use XLM-R-CRF, which is a hybrid
model of Transformer-based language model and
Conditional Random Fields (CRF) (Lafferty et al.,
2001). The motivation behind using the CRF on
top of Transformer-based language model is that
the hybrid model can achieve promising results
for the long named entities (Ozcelik and Toraman,
2022). In Subtask 4, we use the XLM-R base cased
model that has 12 layers and a hidden size of 768.
We use the HuggingFace’s Pytorch implementation
of this model (He et al., 2021b), the corresponding
tokenizer with max length 512, extra padding and
truncation. We set epoch number to 20 and use
constant learning rate 5e− 5.

We train five XLM-R and five XLM-R-CRF
models, fine-tuned with different seeds on full train
data (S4-multi-10 in Table 11). Majority voting
is applied after training of 10 models. During
majority voting, instead of choosing the most fre-
quent classes, we use a task-specific algorithm to

7We did not submit all versions of the following methods
for each language. Instead, we submitted best performing
models in our internal experiments for each language.

choose best label. We first create a label transition
dictionary, where possible transitions have posi-
tive weights while transition errors have negative
weights. For instance, B-etime→ I-etime have
positive weight, but O→ I-{entity type} have
negative weights since O label cannot be followed
by any type of I-{entity type}.

Ensemble of multilingual language models with
Post-Processing (S4-multi-PP): In this method,
we apply the same approach and ensemble models
as in the previous method. The only differences
are that we use an additional multilingual language
model, mDeBERTa (He et al., 2021c) (S4-multi-
PP-10-v2 and S4-multi-PP-10-v3 in Table 11),
and we apply a post-processing step on the pre-
diction labels of ensemble members as follows.
Post-processing is applied after the majority vot-
ing step, since there still occurs transition errors
for the predictions, e.g., prediction of O label just
before I-{entity type}. We, thereby, automat-
ically fill the entity chunks when transition error
occurs. For instance, an entity chunk having three
labels B-target I-target I-target is corrected
if it is predicted as B-target O I-target.

Ensemble of monolingual language models with
Post-Processing (S4-mono-PP): In this method,
we apply the same approach, ensemble models, and
post-processing method as in the previous method.
The only difference is that we use a monolingual
language model on English, namely DeBERTa (He
et al., 2021a) (S4-mono-PP-10-v2 and S4-mono-
PP-10-v3). This method is not applied for Span-
ish and Portuguese since the number of training
instances are very small and we do not have trans-
lations.
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Language Model Our score Best Competitor Score Our Rank
2021 2022 2021 2022

EN S4-mono-PP-10-v3 77.84 78.11 (Awasthy et al., 2021) 76.49 2 1
PR S4-multi-PP-10-v3 73.84 73.24 (Awasthy et al., 2021) 74.57 1 2
ES S4-multi-PP-10-v2 68.00 66.20 (Awasthy et al., 2021) 69.87 1 2

Table 12: The 2021 and 2022 leaderboard scores for Subtask 4, Event Extraction.

5.3 Leaderboard Results

In Subtask 4, the evaluation metric is CoNLL
(Tjong Kim Sang and De Meulder, 2003) macro
F1 score. The leaderboard and our ranking among
2021 and 2022 submissions can be seen in Table 12.
We get the first place in Portuguese and Spanish in
2021, and English in 2022. We achieve promising
improvement in our scores for all languages when
majority and post-processing are applied. Thus, we
believe that our methods can generalize to many
languages in token classification tasks.

6 Discussion and Conclusion
In this study, we summarize our solutions for

multilingual protest event detection under four sub-
tasks that have different granularities from docu-
ment to word span-level. Our overall approach is
based on ensemble learning and post-processing,
which places the first place in 6 out of 16 leader-
boards organized in seven languages including En-
glish, Mandarin, and Turkish.

Based on the experiments and leaderboard re-
sults, we have the following observations.

• We argue that post-processing predictions ben-
efit the predictions of ensemble models due to
the fact that large language models are stochas-
tic (Bender et al., 2021). Specifically, post-
processing predictions have significant benefits
in the performances of our ensemble models in
Subtask 3 and Subtask 4.

• When zero-shot evaluation (i.e. no available
training data) is considered such as Turkish in
this task, we observe that Transformer-based lan-
guage models pretrained on a target language
perform better in ensemble learning compared to
multilingual models. Furthermore, we observe
that for languages such as Spanish, Mandarin,
and Urdu, monolingual Transformer-based lan-
guage models pretrained on English perform bet-
ter than multilingual language models. For fine-
tuning, we translate the training data in source
languages, such as English, to a target language,
such as Turkish.

We plan to extend our experiments to different

data collections, such as tweets, in different lan-
guages, specifically the languages used in Eastern
Europe and Middle East countries.
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Ali Hürriyetoğlu, Osman Mutlu, Erdem Yörük,
Farhana Ferdousi Liza, Ritesh Kumar, and Shyam
Ratan. 2021. Multilingual protest news detection -
shared task 1, CASE 2021. In Proceedings of the 4th
Workshop on Challenges and Applications of Auto-
mated Extraction of Socio-political Events from Text
(CASE 2021), pages 79–91, Online. Association for
Computational Linguistics.
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Abstract
This paper summarizes our work on the doc-
ument classification subtask of Multilingual
protest news detection of the CASE @ ACL-
IJCNLP 2022 workshop. In this context, we
investigate the performance of monolingual and
multilingual transformer-based models in low
data resources, taking Portuguese as an exam-
ple and evaluating language models on doc-
ument classification. Our approach became
the winning solution in Portuguese document
classification achieving 0.8007 F1 Score on
Test set. The experimental results demonstrate
that multilingual models achieves best results
than monolingual models in scenarios with few
dataset samples of specific language, because
we can train models using datasets from other
languages of the same task and domain.

1 Introduction

Observing the prominent ease of use and vari-
ety of virtual media, such as social networks in
general, and the exponential use of these for the
organizational purpose of various manifestations,
protests and social movements (McKeon and Gito-
mer, 2019), a large amount of information is stored
in databases of applications that are not properly
analyzed for a socially beneficial purpose. There-
fore, it is important to explore alternatives for an
analysis capable of classifying and even predicting
the organization of social movements such as those
mentioned above.

Considering the importance of detecting crises
and sociopolitical events present in social networks
(Hürriyetoğlu et al., 2022). The practical applica-
tion of extracting and classifying information and
its importance in the field of collective social mani-
festations, in order to obtain several useful results
for important political and economic decisions (Du-
ruşan et al., 2022).

In this paper, we investigate the performance
of monolingual and multilingual language mod-
els for classification of documents in Portuguese.

The experiments are conducted on Socio-political
datasets and all models are transformer-based mod-
els. Our submission achieved the 1st place in docu-
ment level predictions for the Portuguese language
at first shared task of the CASE @ ACL-IJCNLP
2022 workshop (Hürriyetoğlu, Ali and Mutlu, Os-
man and Duruşan, Fırat and Uca, Onur and Gürel,
Alaeddin Selçuk et al., 2022), the Multilingual
protest news detection subtask (Hürriyetoğlu et al.,
2021a,b).

This article is organized as follows. In Section
2, reviews the related work. Section 3 details of
subtask and data. Section 4 describes the method-
ology, while experiments results are discussed in
Section 5. Section 6 brings the conclusions.

2 Related Work

Kalyan et al. (2021) proposed applying LSTM
layers on top of 3 different models and combin-
ing the probabilities of each model in a soft vot-
ing manner. The models used were mBERT (De-
vlin et al., 2018), DistilmBERT (Sanh et al., 2019)
and RoBERTa (Liu et al., 2019). They achieved a
Macro F1 score of 0.7951 for the Portuguese.

Hettiarachchi et al. (2021) studied the use of
long-range models such as big-bird and longformer
as well as monolingual and multilingual models.
They found that low-resource languages benefited
from multilingual learning, but high-resource lan-
guages such as English will get better results from
monolingual models. Their approach is similar to
ours regarding the monolingual versus multilingual
paradigm and their results demonstrated that multi-
lingual models perfomance better than monolingual
models in low data scenarios. Awasthy et al. (2021)
work also agrees with the benefit from training with
multilingual data on low-resource language cases.

Francesco Ignazio Re (2021) presented a disrup-
tive perspective with the exploratory analysis of
the dataset. Their conclusions approached differ-
ences in the use of state versus non-state conflict
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actors based on conditional probabilities, and also
identified an outlier in the English corpus via the Tf-
Idf-weighted principal component analysis (PCA).

3 Subtask and Data

The dataset was provided by the organization of
CASE 2022’s first multilingual protest news detec-
tion shared task. Table 1 show some examples of
dataset. The CASE 2022’s a combination of CASE
2021 with new test data for Document classification
subtask. These subtask focus on predicting whether
a document contains information about some event
related to protests. The dataset are composed of
three languages: English, Spanish and Portuguese
(Hürriyetoğlu et al., 2019a,b) for Socio-political
Events in text domain. Table 2 shows the dataset
distribution for each language. We random split
the dataset in the ratio of 80% for the training and
20% validation set.

4 Methodology

We used pretrained transformer-based models for
portuguese to investigate the classification perfor-
mance of monolingual across multilingual models
in scenario with low dataset resources. For this
study, we selected two models and their multilin-
gual versions:

• BERT: BERT (Devlin et al., 2018) is a
pretrained language model trained using a
masked language modeling and next sentence
prediction objectives. The model has about
30k tokens in its vocabulary. Our version is
the BERTimbau (Souza et al., 2020), trained
on portuguese with the BRWAC dataset (Wag-
ner Filho et al., 2018).

• mBERT: The multilingual cased version of
BERT. It was trained on top of 104 languages
using the wikipedia dataset. The training pro-
cedure was masked language modeling and
next sentence prediction as in the original
BERT, the main difference being the vocabu-
lary size 110k tokens instead of 30k and the
multilingual dataset.

• RoBERTa: The original RoBERTa (Liu et al.,
2019) showed that increasing the vocabulary
from around 30k to around 50k tokens and
dropping the next sentence prediction training
objective was beneficial for the model. Our

version, trained on Portuguese, has a vocab-
ulary size of 128k tokens and was trained on
the Portuguese portion of OSCAR dataset and
BRWAC dataset (Wagner Filho et al., 2018)
for 100k steps.

• xlm-RoBERTa: the xlm-RoBERTa (Conneau
et al., 2019) is a multilingual pretrained ver-
sion of RoBERTa, which showed better perfor-
mance than mBERT on NLI. It was pretrained
similarly to Roberta but the training was done
with 2.5TB of filtered CommonCrawl data
containing 100 languages. The model has as
vocabulary of about 250k tokens.

These models were optimized with a grid search
optimization on held-out development set with a
combination of finetuning hyperparameters pro-
vided by Table 3. We selected the best hyperparam-
eter values based on 5 random seeds.

5 Results and Evaluation

All experiments were conducted on the Hugging’s
Face transformer library using one Nvidia A100
GPU (Choquette et al., 2021) for classify whether
a document in Portuguese mentions an event or
not. The models performance was evaluated by
the macro F1-Scores on the validation set, which
were created by splitting the dataset. The dataset
for multilingual models was created by combining
training data from each languages into one dataset.
Table 5 shows the results of Portuguese document
classification experiments on validation set using
different sequence lengths and models. We can
observe that increasing the max sequence length
improves the performance on all tested models.
Both multilingual versions of the models were bet-
ter than their monolingual versions, showing that
learning representations of other languages in the
same task and domain can improve the model per-
formance. The best result is shown in bold using
the xlm-RoBERTa Large model achieving 0.8818
F1 score.

The results for the test set are shown in Table
4 with all models tested and the two best results
submitted in the competition. According to the re-
sults, our best model became the best system for the
document classification for Portuguese language.
The xlm-RoBERTa model achieves the best result
reaching 1st place with 0.8007 F1 score at Task 1
SubTask 1 Portuguese competition.
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Table 1: Dataset examples for each language indicating the event mentions

Sentence Language Label

Publicidade Nessa propaganda dos
Portuguese

0
Explosão de carro-bomba deixa vários feridos em Israel Publi 1
Nos começos de 1964, instalara-se no cenário nacional a mesma divisão 0

OTHER STATES Kashmir unrest Protestors indulge in stone
English

1
Mass disconnection driv 0
403 Forbidden You don’t have p 0

Las autoridades egipcias perdieron e
Spanish

0
33 son los basquetbolistas argentino 0
Un nuevo atentado sacudió al continente asiático. Do 1

Table 2: Dataset distribution

Language Class 0 Class 1

Portuguese 1290 197
English 869 131
Spanish 869 131

Table 3: Hyperparameters for finetuning

Hyperparameter CASE 2022

Max Epochs {10, 20}
BatchSize {8, 16, 32, 64}
Learning Rate {2e-5, 3e-5, 4e-5, 5e-5}
Max Sequence Length {128, 256, 512}
Learning Rate Decay Linear
Warmup Ratio 0.1
Weight Decay {0.1, 0.01}

6 Conclusion

In this paper, we have explored the capabilities
of multilingual and monolingual language mod-
els on document classification of the CASE 2022
Task 1: Multilingual protest news detection. We
demonstrate that multilingual transformer-based
approach could be more competitive that mono-
lingual transformer-based model in scenarios that
have low data resources of a specific language and
more data of other languages can help achieve a
best performance. The proposed xlm-RoBERTa
model achieved the 1st place for the Portuguese
language with 0.8007 F1 Score on Test set.

These results illustrate the importance of increas-
ing the maximum sequence length for document
classification. As future work, it would be interest-
ing to extend the study to architectures with much

longer input sequences. We also investigate other
methodologies based on ensemble approach, data
augmentation and few shot models.

Limitations

Recent works demonstrated that monolingual lan-
guage models achieves better performance than
multilingual models in NLP downstream task. The
dataset size for a specific language task can be an
issue (scenarios with low amount of data resource).
Our experimental results demonstrate that using
a multilingual model with more data from other
languages achieves a better result than a monolin-
gual model trained only in a specific language. The
low amount of data for non-English language be
a difficult for training monolingual language mod-
els. Finally, in this case, the size of maximum
sequence length has a big impact in performance
and transformers-based models size resulting a re-
quirement of large GPU resources to processing
long texts.

Ethics Statement

Most of the recent work on language models rely on
vast amount of unannotated data to achieve good re-
sults, which means that these models are very likely
to be training on harmful content to some degree.
It is possible that the bias present in the pretraining
continues to play a role after the fine-tuning of the
model. The amount of bias influencing the model
is yet to be quantified and future work should try
to measure this before and after fine-tuning on spe-
cific data.
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Table 4: Document classification results for Portuguese test data set. Best results is in Bold.

Model Training data Macro F1

team1 - 0.7985
team2 - 0.7922

BERT pt 0.7372
mBERT pt + en + es 0.7525
RoBERTa pt 0.7732
xlm-RoBERTa pt + en + es 0.8007

Table 5: Macro F1 results of document classification experiments for Portuguese using different sequence lengths
and models on dev set. Best results is in Bold.

Model Training data Seq. Length Accuracy Macro F1

BERT pt
128 0.9142 0.8443
256 0.9199 0.8491
512 0.9261 0.8533

mBERT pt + en + es
128 0.9076 0.8528
256 0.9086 0.8542
512 0.9136 0.8600

RoBERTa pt
128 0.9328 0.8641
256 0.9327 0.8696
512 0.9362 0.8721

xlm-RoBERTa pt + en + es
128 0.9246 0.8727
256 0.9293 0.8781
512 0.9310 0.8818
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Yoltar, Burak Gürel, Fırat Duruşan, and Osman
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Abstract
We participated in the Shared Task 1 at CASE
2021, Subtask 4 on protest event extraction
from news articles (Hürriyetoğlu et al., 2022)
and examined different techniques aimed at im-
proving the performance of the winning system
from the last competition round (Hürriyetoğlu
et al., 2021). We evaluated in-domain pre-
training, task-specific pre-fine-tuning, alterna-
tive loss function, translation of the English
training dataset into other target languages (i.e.,
Portuguese, Spanish, and Hindi) for the token
classification task, and a simple data augmenta-
tion technique by random sentence reordering.
This paper summarizes the results, showing
that random sentence reordering leads to a con-
sistent improvement of the model performance.

1 Introduction

The generation of protest event datasets over the
last decades has allowed social movement scholars
to study the dynamics and evolution of collective
action in contemporary societies. The collection of
relevant events is usually based on the systematic,
manual analysis of news articles, which provide
information about the variables of interest such as
the location, date, and main protagonists of protest
demonstrations (Hutter, 2014).

It has been noted, however, that the manual cod-
ing of news articles is time and labor-consuming,
and, as a result, comparative and longitudinal stud-
ies that rely on multiple news sources may not
be feasible (Lorenzini et al., 2022). Recent work
on approaches that automatically retrieve protest
information is promising and may address this chal-
lenge.

CASE 2021 Task 1: Multilingual protest news
detection (Hürriyetoğlu et al., 2021) constitutes a
collaborative project that attempts to map the fea-
tures of political contention through the automated
analysis of news articles at different data levels. We
participate in Subtask 4, which focuses on identify-
ing event triggers and their arguments and involves

detecting protest events in three languages: English,
Portuguese, and Spanish.

The paper proceeds as follows: Section 2 dis-
cusses related work in the field of computational
social science, whereas section 3 defines the task
of event extraction. Section 4 describes the archi-
tecture of our approach. Section 5 provides details
about the experiments we conducted. Finally, in
section 6, we summarize and discuss the results.

2 Related Work

The use of automated tools for the identification
and coding of political event data spans a period
of more than 30 years (Hanna, 2017), and, for this
task, several methodological approaches have been
developed and tested. Initial attempts to automati-
cally parse text and produce structured data were
based on the Kansas Event Data System (KEDS)
(Schrodt et al., 1994), which, along with its suc-
cessors programs such as TABARI (Schrodt, 2009)
and PETRARCH (Norris, 2016), was designed to
provide information about different types of politi-
cal action and also their source and target actors.

In the field of contentious politics, that is mainly
interested in the activities of social movements and
protest groups, the standard approach involved for a
long time the manual coding of text. However, half-
automated techniques have also been introduced.
For instance, Lorenzini et al. (2022) have devel-
oped several filters (e.g., a location-based filter)
and document and event-trigger classifiers to se-
lect newspaper articles that contain protest-related
information. In the final step of their procedure,
the authors create samples of relevant articles and
manually extract the features of protest events.

Taking advantage of recent advances in machine
learning methods, other scholars have turned their
attention to approaches that automatically detect
and classify protest information. However, unlike
coding systems such as KEDS and its successors
programs that make use of actor and verb dictio-
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Figure 1: Sentence splitting into overlapping sequences.

naries, the new techniques primarily rely on pre-
trained transformer-based language models (Liu
et al., 2021), such as BERT (Devlin et al., 2018).
CASE 2021 and 2022 Task 1 (Hürriyetoğlu et al.,
2021, 2022) are such research projects—organized
as shared tasks—that focus on the generation of
multilingual protest event data and involve four
subtasks: 1. Document classification; 2. Sentence
classification; 3. Event sentence coreference identi-
fication; and 4. Event extraction.

In the following sections, we focus on subtask 4
and discuss techniques that improve over the base-
line multilingual model XLM-RoBERTa (Conneau
et al., 2019).

3 Event Extraction Task

The event extraction task consists of identifying
text spans in given news article sentences and classi-
fying them into entity types such as trigger, partic-
ipant, place etc. Given S = (w1, .., wn) a sentence
and T = {t1, .., tm} a set of entity types, the task
consists of identifying spans s = (wb, .., we) such
that typeof(s) ∈ T . This task can be reformulated
as the token classification task, where IOB2 labels
(Sang and Veenstra, 1999) are assigned to tokens
in sentences to form spans. Hereby, the first token
wb within the span s is assigned the label Btype

and the rest of the tokens the label Itype, where
type ∈ T . All tokens outside of any identified
spans are assigned the token O.

4 Architecture

The objective of the conducted evaluations was to
show possible improvement compared to the win-
ning system from last year’s participation at CASE
2021 (Hürriyetoğlu et al., 2021) by the IBM team
(Awasthy et al., 2021). The authors trained vari-
ants of the multilingual model XLM-RoBERTalarge
(Conneau et al., 2019) on news article sentences to
predict IOB2 labels for event extraction. Therefore,
all experiments in our paper used the same base
model and similar training settings.

In contrast to IBM team’s approach, we did not
provide an ensemble variant of the model but relied
only on a single multilingual model. Another sig-
nificant architectural difference was how the inputs
were provided to the model; instead of splitting
the news articles into single sentences, we used
the maximum possible input length of 512 tokens
and fed as many full sentences as possible to the
model, providing as a result more context. If the
news article exceeded the maximum input length,
it was split into overlapping sentence sequences
as shown in Figure 1. Thus, some sentences were
presented to the model multiple times during the
fine-tuning procedure with different preceding or
following contexts. However, the final predicted
token labels during the test procedure were derived
only from the reconstructed non-overlapping se-
quence of sentences, leading to unique predictions.
In both procedures, we removed the concatenating
separator token [SEP] from the input. We should
also note that the predicted token labels correspond
to the IOB2 labels.

5 Experiments

Starting from the base model, several techniques
were evaluated after fine-tuning the model on the
provided dataset for Subtask 4 (Hürriyetoğlu et al.,
2021). Similar to the IBM team, we used only
10% of the English dataset as a development set.
Thus, the influence of the employed techniques on
other languages was mainly inferred from the test-
ing results in the provided Codalab page. The best
models for submission were selected according
to the highest CoNLL F1 score and lowest mean
validation loss on the development set. The best
values of F1 achieved 80.06% and 80.86%. Models
were fine-tuned for 20 epochs using hyperparam-
eters as shown in Table 1. The fine-tuning was
conducted on four NVIDIA A100 GPUs each with
40GB RAM leveraging the Distributed Data Paral-
lel (DP) paradigm (Li et al., 2020).

5.1 Further Pre-Training

The current literature suggests that further pre-
training of models on in-domain data can produce
promising results, especially when the target lan-
guage has a different—and yet unknown—token
distribution for the pre-trained model. For instance,
in the case of the language used on Twitter, further
pre-training of the XLM-R models led to signifi-
cant improvements in the task of stance detection
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Parameter Pre-Training Fine-Tuning
Input Length 512 512
Batch Size 1280 20
AdamWlr 1e-5 2e-5
AdamWbeta (0.9, 0.999) (0.9, 0.999)
AdamWeps 1e-6 1e-8
Weight Decay 0 0.001
Linear Warmup 0 0.1
Dice Loss Parameter Fine-Tuning
Smooth 0.5
Square Denominator true
Using Logits true
Ohem Ratio 0.0
Alpha 0.0
Reduction mean
Index Label Position true

Table 1: Parameters for pre-training and fine-tuning.

Datasets en es pr hi
Count Love 38k
Count Lovet 38k 38k 38k
POLUSA 21k
POLUSAt 21k 21k 21k
GDELT 2.0 177k 40k 8.3k 0.5k
GDELT 2.0t 177k 177k 177k
Sum per lang 236k 276k 244.3k 236.5k
Sum total 992.8k

Table 2: Sizes of collected, filtered, and translated
datasets for further pre-training. The index t indicates
the datasets translated from English.

(Müller et al., 2022). NoConflict team used further
pre-training for subtasks 1 and 2 at CASE 2021
(Hu and Stöhr, 2021). It was also employed with
success for the task of event extraction on a dataset
that was based on online news archives from India
(Caselli et al., 2021). The approach used BERT
(Devlin et al., 2018) as the base model.

In this paper, our objective was to evaluate
whether further pre-training on protest-specific
news articles can integrate more—yet unknown—
token distributions into the model. Therefore, we
collected, filtered, and translated multiple datasets
for four languages: English, Portuguese, Spanish,
and Hindi. We used the Hindi language for pre-
training, although a dataset for Hindi is not pro-
vided for subtask 4.

The Count Love dataset (Leung and Perkins,
2021) consists of semi-automated collected protest

news articles in English. We used the provided
crawler to recollect data and removed missing arti-
cles collecting 81,500 articles, of which ca. 38,000
were labeled as protest-related news. To filter miss-
ing articles, we used the content length of 150 char-
acters and expressions that indicated missing or
restricted web pages during the crawling process,
such as "Unfortunately, our website is currently
unavailable" and "Please whitelist us to continue
reading". Some web pages were not accessible due
to necessary subscriptions or legal geographic re-
strictions. The collected English dataset was trans-
lated into Portuguese, Spanish, and Hindi using the
Argos Translate library. We reused the provided
labels in order to train a binary classifier based on
the XLM-RoBERTabase (Conneau et al., 2019) and
identify protest-related news for each of the four
languages with an F1 score of ca. 85%, which was
used to filter articles in the following datasets:

The POLUSA dataset (Gebhard and Hamborg,
2020) consists of ca. 0.9 mio political news arti-
cles in English. It was also used by the previously
mentioned NoConflict team at CASE 2021 for Sub-
tasks 1 and 2 (Hu and Stöhr, 2021). The authors
provided us with the full dataset, and we used the
previously trained binary English-based classifier
to filter protest-related news; a process which re-
sulted in ca. 21,000 articles. We translated them
into the three languages mentioned above.

GDELT 2.0 Event Database is a large-scale
news database that monitors different types of
events in 65 languages. We downloaded the files
containing links to articles beginning from Febru-
ary 2015 to July 2022 and filtered them to obtain
protest-related news using codes 140–149 accord-
ing to the CAMEO codebook. Additionally, we
applied the binary classifier to filter protest-related
articles. Those consisted of ca. 4% for Hindi and
ca. 11% for English, Spanish, and Portuguese. Fi-
nally, we translated English texts into these three
languages.

As can be seen from the overview of collected
and translated dataset sizes in Table 2, even the
originally multilingual GDELT dataset resulted in
very low amounts of items for non-English lan-
guages. Therefore, the translation procedure we
employed was driven by the idea that translated
texts could create more diversity in the token dis-
tribution regarding the different ways protests are
described.
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The pre-training of the base model was con-
ducted using the full multilingual collected dataset
with hyperparameters according to Table 1. It was
repeated up to 7 epochs on the same but randomly
ordered articles. In contrast to the fine-tuning pro-
cedure, we did not split sentences. Instead, the first
512 tokens were fed into the model, assuming that
the most important information is available at the
beginning of the article. All pre-trained models
for each epoch and parameter combination were
fine-tuned and the best model was selected for eval-
uation on the Codalab page. The pre-training was
conducted on an NVIDIA DGX V100 machine
with 16 GPUs each with 32 GB RAM. We used
the Fully Shared Data Parallel (FSDP) paradigm
(Baines et al., 2021). To achieve the high batch size
of 1280, the technique of gradient accumulation
was additionally leveraged.

5.2 Pre-Fine-Tuning on Similar Tasks
Learning similar or related tasks is known to be
beneficial for model performance (Ruder, 2017).
Therefore, we evaluated fine-tuned models that
were trained on the Spanish part of the CoNLL
2002 dataset (Tjong Kim Sang, 2002) and are avail-
able on HuggingFace (Wolf et al., 2020):

1. xlm-roberta-large-finetuned-conll02-spanish

2. MMG/xlm-roberta-large-ner-spanish

5.3 Dice Loss Function
As an alternative to classic cross-entropy loss for
fine-tuning, we used the Dice Loss (Li et al., 2019),
which has been shown to be beneficial for tasks
with imbalanced class distributions. This is true
for token classification tasks, where most tokens
are labeled using the IOB2 label O. Also, other
annotated entity types are highly imbalanced in the
data provided for Subtask 4.

5.4 Translating the Training Dataset
Translating the training dataset for the token classi-
fication task and transferring corresponding IOB2
labels to translated tokens has already been ex-
plored by the Handshakes team at CASE 2021
(Kalyan et al., 2021). Their approach was based
on translating sentences word-by-word using aux-
iliary embedding mapping. Here we explored an
alternative technique suggested for Named Entity
Entity Recognition in the clinical domain (Schäfer
et al., 2022). We used a trained model for Neu-
ral Machine Translation, the multilingual BART50

Model Loss en pr es
IBM’s S1 cross 75.95 73.24 66.20
PT1 dice 75.70 74.57 69.08
PT2 cross 76.49 73.11 69.58
FTes-1 cross 75.72 74.45 69.87
FTes-2 cross 75.28 73.33 69.35

Table 3: Summary of the best models as CoNLL F1
score. PT indicates models with further pre-training on
the multilingual dataset. FT models were previously
fine-tuned on the Spanish part of the CoNNL 2002 task.
The loss functions dice and cross correspond to Dice
Loss and Cross-Entropy. The underlined numbers are
the best results from the previous competition round at
CASE 2021. The bold numbers show our best values.

Model Data en pr es
TRen+es+pr en+pr+es

+pr-pseudo
+es-pseudo

75.66 67.23 62.18

TRes pr+es
+es-pseudo

71.59 63.94

TRpr pr+es
+pr-pseudo

69.68 66.01

Table 4: Summary of the best models as CoNLL F1
score for dataset translation. The data labels en, pr, es
indicate the usage of original parts of the training dataset.
The parts pr-pseudo and es-pseudo are translated from
the English dataset into Portuguese and Spanish.

model (Tang et al., 2020), to first translate the orig-
inal English text into the target languages. Next,
embeddings from an auxiliary model were used to
map every word of the source sentence to one or
multiple tokens in the translated sentence. For this
task, we employed the multilingual BERTbase-cased
model (Devlin et al., 2018).

5.5 Augmentation by Sentence Reordering
Since we used sentence sequences as the input to
our models, it was possible to randomly reorder
them as a simple data augmentation technique.
For every article with more than one sentence, we
added up to three random combinations to the train-
ing fold. This technique was initially employed by
default for all experiments.

6 Final Results and Discussion

The final results on testing datasets for the ap-
proaches of pre-training and pre-fine-tuning are
summarized in Table 3. We compare the results
to IBM’s S1 multilingual model as the baseline,
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which was trained on the same multilingual dataset.
IBM’s S1 achieved the best results for Portuguese
and Spanish languages in the last CASE 2021 com-
petition. At least one of our models achieved better
results for each of the three languages; however,
the most pronounced difference is for Spanish—
between 2.88 and 3.67 points. The further pre-
trained model PT1 and the pre-fine-tuned model
FTes-1 achieved nearly the same results for Por-
tuguese.

The numbers indicate that conducting an expen-
sive pre-training procedure on additional protest-
related data does not have the expected boosting
effect for the model performance. This suggests
that the XLM-R models already integrate sufficient
knowledge about the type of language used to de-
scribe protests. Comparable results can be achieved
using a pre-fine-tuned model on a similar task. Fur-
thermore, the usage of the Dice Loss does not lead
either to very different results compared to the clas-
sical Cross-Entropy loss on this task.

It is important to mention that models in Table
3 were trained using the simple data augmentation
technique. We argue that at least part of the perfor-
mance increase was caused by this technique. To
evaluate its influence, we retrained 10 models us-
ing different parameters but without augmentation,
including the best models. There was a consis-
tent increase measured on the English development
set due to data augmentation on average by 0.70
points. On testing datasets, the average improve-
ment resulted in 0.73 points for English, 1.03 for
Portuguese, and 0.70 for Spanish.

Finally, we evaluated the translation technique,
which resulted in performance drops. Table 4 sum-
marizes the results of these three models. In the
first model, the original dataset parts for the three
languages were used, and the English part was fur-
ther translated into Portuguese and Spanish. The
following two models used the Portuguese and
Spanish datasets and a translated part into one of
these languages. Compared to IBM’s S1, the per-
formance dropped especially for those target lan-
guages in which datasets were extended by addi-
tional translated parts. Apparently, this approach
introduced lots of noise. Manual evaluation of the
Spanish translation showed that in many cases the
conjunctions and articles within entity spans—such
as de, del, la, etc.—were missing the appropriate
labels.

7 Conclusion

In this paper, we presented the models developed
for the Shared Task 1 Subtask 4 at CASE 2021.
We explored different techniques to improve the
baseline multilingual model. The best result was
achieved by improving on the Spanish test data by
3.67 points of CoNLL F1 score over the winner of
the previous competition round. Our submissions
ranked 1st for Portuguese and Spanish and 2nd for
English in the current competition round.
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Abstract

The Event Causality Identification Shared Task
of CASE 2022 involved two subtasks working
on the Causal News Corpus. Subtask 1 required
participants to predict if a sentence contains a
causal relation or not. This is a supervised
binary classification task. Subtask 2 required
participants to identify the Cause, Effect and
Signal spans per causal sentence. This could
be seen as a supervised sequence labeling task.
For both subtasks, participants uploaded their
predictions for a held-out test set, and ranking
was done based on binary F1 and macro F1
scores for Subtask 1 and 2, respectively. This
paper summarizes the work of the 17 teams that
submitted their results to our competition and
12 system description papers that were received.
The best F1 scores achieved for Subtask 1 and
2 were 86.19% and 54.15%, respectively. All
the top-performing approaches involved pre-
trained language models fine-tuned to the tar-
geted task. We further discuss these approaches
and analyze errors across participants’ systems
in this paper.

1 Introduction

A causal relation represents a semantic relation-
ship between a Cause argument and an Effect ar-
gument, in which the occurrence of the Cause
leads to the occurrence of the Effect (Barik et al.,
2016). Extracting causal information from text
has many downstream natural language processing

(NLP) applications, for summarization and predic-
tion (Radinsky et al., 2012; Radinsky and Horvitz,
2013; Izumi et al., 2021; Hashimoto et al., 2014),
question answering (Dalal et al., 2021; Hassan-
zadeh et al., 2019; Stasaski et al., 2021), inference
and understanding (Jo et al., 2021; Dunietz et al.,
2020).

However, data for causal text mining is limited
(Asghar, 2016; Xu et al., 2020; Yang et al., 2022;
Tan et al., 2021, 2022a). There are also not many
benchmarks to allow for fair model comparisons
(Asghar, 2016). Therefore, in this paper, we con-
tinue our efforts with the creation of the Causal
News Corpus (CNC). CNC is a corpus of news
articles annotated with causal information suitable
for causal text mining. Additionally, we introduce
a shared task to promote modelling for two causal
text mining tasks: (1) Causal Event Classification
and (2) Cause-Effect-Signal Span Detection. Fig-
ure 1 provides examples from the CNC in this
shared task. To our knowledge, we are the first ded-
icated causal text mining dataset and benchmark to
include signal span detection as an objective.

The rest of the paper is organized as follows: Sec-
tion 2 presents literature on event causality datasets.
Section 3 describes the dataset and annotation of
the corpus. Section 4 formally introduces the two
subtasks for the shared task. Section 5 describes the
evaluation metrics and competition set-up. Subse-
quently, Section 6 summarizes the methods used by

195



Figure 1: Examples from the CNC for the two subtasks.
Cause spans are indicated by Pink, while Effect spans
are indicated by Green. Signals, if present, are under-
lined.

participants during the competition, while Section
7 analyzes the participants’ submissions. Finally,
Section 8 concludes this paper.

2 Related Work

In many papers about Event Causality Identifica-
tion (ECI) (Gao et al., 2019; Zuo et al., 2021b;
Cao et al., 2021; Zuo et al., 2021a, 2020), the two
datasets used for benchmarking are CausalTime-
Bank (Mirza et al., 2014; Mirza and Tonelli, 2014)
and EventStoryLine (Caselli and Vossen, 2017).
These datasets are unsuitable for span detection
since their arguments are event headwords only.

There are two other efforts that intentionally
introduce datasets for benchmarking causal text
mining systems. FinCausal (Mariko et al., 2021,
2020) is a recurring shared task held within the
FinNLP workshop focusing on financial news. In
the first subtask, participants also aim to identify
if sentences contain causal relations. In the sec-
ond subtask, participants to identify the Cause and
Effect spans in the causal sentences. UniCausal
(Tan et al., 2022b)1 is an open-source repository
for causal text mining that has consolidated six cor-
pora for three causal text mining tasks. The six
corpora included in UniCausal are: AltLex (Hidey
and McKeown, 2016), BECAUSE 2.0 (Dunietz
et al., 2017), CausalTimeBank (Mirza et al., 2014;
Mirza and Tonelli, 2014), EventStoryLine V1.0
(Caselli and Vossen, 2017), Penn Discourse Tree-
bank V3.0 (Webber et al., 2019), and SemEval
2010 Task 8 (Hendrickx et al., 2010). The three
tasks are: Causal Sentence Classification, Causal
Pair Classification and Cause-Effect Span Detec-
tion.

1https://github.com/tanfiona/UniCausal

Similar to FinCausal and UniCausal, we in-
cluded a signal span detection objective. Our an-
notation guidelines differ slightly, in that our ar-
guments must contain events, and the spans are
annotated in a manner that is minimally sufficient.
In general, we notice that spans from FinCausal are
much longer. Spans from UniCausal depend on the
original data source.

Additionally, for Cause-Effect Span Detection in
FinCausal, their approach to handle multiple causal
relations per unique sentence was to include index
numbers at the start of each sentence to differenti-
ate the Cause-Effect predictions. This approach is
problematic because (1) it leaks information that
the sentence contains multiple causal relations to
the model, and (2) predictions that are submitted in
a different order from the true labels are unnecessar-
ily penalised. Therefore, we differ from FinCausal
when evaluating multiple causal relations in span
detection since we group relations by its sentence
index. This is described further in Section 5.1.

3 Dataset

3.1 Data Collection
Our shared task worked with the Causal News Cor-
pus (CNC) (Tan et al., 2022a)2, which consists of
869 news documents and 3,559 English sentences,
annotated with causal information. CNC builds on
the randomly sampled articles (Yörük et al., 2021)
from multiple sources and periods featured (Hür-
riyetoğlu et al., 2021) in a series of workshops
directed at mining socio-political events from news
articles (Hürriyetoğlu et al., 2020b,a, 2021a,b; Hür-
riyetoğlu, 2021). CNC follows the train-test split
of the original data source, with 3,248 training and
311 test examples. Later, we further split and ran-
domly sampled 10% of the original training set to
obtain the development set. Later, Table 3 presents
the sentence counts per data split.

3.2 Annotation
3.2.1 Guidelines
For more information on our annotation guidelines,
please refer to our annotation manual3.

Subtask 1 In CNC, sentences were labeled as
Causal or Non-causal, where the presence of
causality indicates that “one argument provides the

2https://github.com/tanfiona/
CausalNewsCorpus

3Available under the "documentation" folder of CNC’s
Github repository.
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reason, explanation or justification for the situation
described by the other” (Webber et al., 2019). Our
sentences had to contain at least a pair of events,
defined as “things that happen or occur, or states
that are valid" (Saurı et al., 2006). These annota-
tions correspond to the target labels for Subtask 1,
Causal Event Classification.

Subtask 2 For Causal sentences, the words cor-
responding to the Cause-Effect-Signal spans of a
causal relation were also marked. These annota-
tions correspond to the target labels for Subtask 2,
Cause-Effect-Signal Span Detection. However, at
the current stage of writing, only a small subset of
our data contains annotated spans. Span annota-
tions are an on-going effort.

A Cause is a reason, explanation or justification
that led to an Effect. We defined a Cause or Effect
span as a continuous set of words sufficient for the
interpretation of the causal relation meaning. This
means that any context modifying or describing
the argument relevant to the causal relation was
included. Each Cause or Effect span must contain
an event, where an event is defined as a situation
that ‘happen or occur’, or predicates that ‘describe
states or circumstances in which something obtains
or holds true’ (Pustejovsky et al., 2003).

Signals are words that help to identify the struc-
ture of the discourse. In our case, signals highlight
the relationship between the Cause and Effect.

3.2.2 Annotation Tool

We used the WebAnno tool (Eckart de Castilho
et al., 2016) to conduct our annotation process.

Subtask 1 Annotation at the sequence level was
relatively straightforward, where annotators se-
lected “Yes" or “No" labels for each sentence.

Subtask 2 Annotators first marked the Cause
span, Effect span, and Signal span. Subsequently,
they linked the spans together by pointing Cause
to Effect and Signal to Effect. An illustration is
provided in Figure 2. Annotations were then down-
loaded and sent through checking scripts on Python
to identify if there were any avoidable human errors.
For example, if missing links (E.g. An Effect has
no Cause) or invalid links (E.g. An Effect points to
Effect) were present, and an error report was then
sent to annotators for them to consider correcting
their annotations.

Train Dev Test Total
K-Alpha 34.42 29.77 48.55 34.99

Table 1: Subtask 1 Inter-annotator Agreement Scores.
Reported in percentages.

Metric Span Train+Dev Test Total

Exact
Match

Cause 30.57 15.11 23.88
Effect 36.30 19.86 29.19
Signal 27.92 29.21 28.48
Total 7.84 5.81 6.96

One-
Side
Bound

Cause 57.55 39.86 49.90
Effect 60.90 45.42 54.21
Signal 31.93 32.96 32.37
Total 24.05 22.25 23.27

Token
Overlap

Cause 63.65 49.18 57.39
Effect 64.66 49.88 58.27
Signal 32.09 33.15 32.55
Total 26.94 27.78 27.31

K-
Alpha

Cause 46.36 42.51 44.32
Effect 57.18 41.89 49.89
Signal 29.30 23.42 27.08
Total 50.90 41.54 46.27

Table 2: Subtask 2 Inter-annotator Agreement Scores.
Reported in percentages (%).

3.2.3 Annotation Process & Curation
Five annotators were involved and independently
annotated for both subtasks across the span of a
few months. For each round of annotations, anno-
tators were presented with a subset of the dataset.
After each round, the curator consolidated the final
annotations as follows:

Subtask 1 The majority voted label was retained
as the final label. Every example in the final corpus
was annotated by at least two annotators. The cura-
tor has the final vote if there are ties, or if only one
annotation is present. Further details are available
in the CNC paper (Tan et al., 2022a).

Subtask 2 There was no straightforward way to
take a majority label for span annotations. There-
fore, our approach was that the curator took into
account the spans highlighted by the annotators and
decided on the final selection.

After each annotation round, the final span an-
notations were made available for annotators to
review and discuss.

3.2.4 Summary Statistics
Inter-annotator Agreement For Subtask 1,
scores are reflected in Table 1. Also reported in
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Figure 2: Screenshot of the annotation tool used to mark Cause-Effect-Signal spans.

Stat. Label Train Dev Test Total
#
Sent-
ences

Causal 1603 178 176 1957
Non-causal 1322 145 135 1602
Total 2925 323 311 3559

Avg.
#
words

Causal 35.48 36.86 41.27 36.13
Non-causal 27.34 27.35 30.25 27.59
Total 31.80 32.59 36.49 32.28

Table 3: Subtask 1 Data Summary Statistics.

Tan et al. (2022a), overall, the dataset has a Krip-
pendorff’s Alpha (K-Alpha) agreement score of
34.99%.

For Subtask 2, the agreement metrics used were
Exact Match (EM), Token Overlap (TO), One-Side
Bound (OSB), and K-Alpha. Scores are presented
in Table 2. Overall, the dataset had agreement
scores of 6.96% EM, 23.27% OSB, 27.31% TO,
and 46.27% K-Alpha. Since OSB and TO are re-
laxed span evaluation metrics (Lee and Sun, 2019),
they are naturally much higher than EM, which is
a strict metric. How the metrics were calculated is
described in the Appendix Section A.1.

Shared Task Data The summary statistics for
Subtask 1 and 2 are available in Tables 3 and 4
respectively.

It is worth noting that for Subtask 2, the test set
contained sentences that were much longer than
those in the training sets. This is because we were
annotating the shorter sentences first based on an-
notators’ feedback that working with shorter sen-
tences at the beginning helps them to familiarise
themselves with the annotation rules. Since there
were more sentences in the training set, the training
set naturally also had more short sentences for us
to annotate first. Once we are done with span anno-
tations, the average number of words for Subtask 2
should tally with the causal sentences of Subtask 1,
shown earlier in Table 3.

4 Task Description

The shared task is comprised of two subtasks re-
lated to Event Causality Identification. The objec-
tive of each task is described in detail as follows:

Stat. Train Dev Test Total
# Sentences 160 15 89 264
# Relations 183 18 119 320
Avg. rels/sent 1.14 1.20 1.34 1.21
Avg. # words 17.21 16.13 28.45 20.94

Cause 6.52 7.28 12.76 8.89
Effect 7.80 6.44 10.20 8.62
Signal 1.55 1.60 1.36 1.47

Avg # signals/rel 0.67 0.56 0.82 0.72
Prop. of rels w/ signals 0.64 0.56 0.76 0.68

Table 4: Subtask 2 Data Summary Statistics.

4.1 Subtask 1: Causal Event Classification

The objective of this task is to classify whether an
event sentence contains any cause-effect meaning.
Systems had to predict Causal or Non-causal labels
per test sentence. An event sentence was defined to
be Causal if it contains at least one causal relation.

4.2 Subtask 2: Cause-Effect-Signal Span
Detection

The objective of this task is the detection of the con-
secutive spans relevant to a Causal relation. There
are three types of spans involved in a Causal rela-
tion: The Cause span refers to words that describe
the event that triggers another Effect event. The
Effect span refers to words that describe the result-
ing event arising from a Cause event. Signals are
optionally present, and are words that explicitly
indicate a Causal relation is present. In our dataset,
multiple Causal relations can exist in a sentence,
and participants have to identify all of them.

5 Evaluation & Competition

5.1 Evaluation Metrics

5.1.1 Subtask 1
We evaluated participants’ predictions using Ac-
curacy (Acc), Precision (P), Recall (R), F1, and
Matthews Correlation Coefficient (MCC) scores.

5.1.2 Subtask 2
Following previous evaluation metrics for Cause-
Effect Span Detection (Mariko et al., 2020, 2021)
and text chunking (Tjong Kim Sang and Buchholz,
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2000), we assessed predictions using Macro P, R
and F1 metrics.

Participants uploaded sentences with Cause-
Effect-Signal spans marked directly in the text us-
ing ARG0, ARG1 and SIG start and end boundary
markers. We converted these marked sentences
into two white-space tokenized sequences, one cor-
responding to the token labels for Cause and Effect,
and another corresponding to the token labels for
Signals. We used the token classification evalu-
ation scheme from seqeval (Nakayama, 2018;
Ramshaw and Marcus, 1995)4 provided through
Huggingface (Wolf et al., 2020)5.

Evaluation was conducted at the relation level.
In other words, examples with multiple causal rela-
tions were unpacked and each relation contributed
equally to the final score.

Handling multiple relations Since one input se-
quence can return multiple causal relations, we ad-
justed the evaluation code to automatically extract
the combination that results in the best F1 score.
As such, participants could submit multiple Cause-
Effect-Signal span predictions per input sequence
in any order. An illustration is provided in Figure
5.1.2.

In evaluation, we only compare with the number
of causal relations that the true label has. Let the
number of predicted relations be np, and the num-
ber of actual relations be na. Our evaluation script
does the following:

• If the number of predicted relations exceeds
the number of actual relations (np > na), we
kept only the first na predictions.

• If the number of predicted relations is less
than the number of actual relations (np < na),
the missing na − np, na − np + 1, ..., na re-
lation predictions were represented by tokens
that all correspond to the Other (O) label.

5.2 Baseline

For Subtask 1, we duplicated the BERT (Devlin
et al., 2019) and LSTM (Hochreiter and Schmidhu-
ber, 1997) baselines from our previous work (Tan
et al., 2022a) that achieved F1 scores of 81.20%
and 78.22% respectively.

4https://github.com/chakki-works/
seqeval

5https://huggingface.co/spaces/
evaluate-metric/seqeval

For Subtask 2, a random baseline6 was created
for reference. This baseline first randomly iden-
tifies start positions for Cause and Effect spans,
and then identifies end positions for these spans
with a linearly increasing probability as we move
away from the start location in order to reflect our
preference for longer spans. We also randomly pre-
dicted words to be signals with a 10% chance. The
baseline F1 score was 0.45%.

5.3 Competition Set-up

We used the Codalab website to host our competi-
tion.7

Registration 37 participants requested to par-
ticipate on the Codalab page. However, we re-
quired participants to email us some personal de-
tails (Name, Institution and Email) to avoid teams
from creating multiple accounts to cheat. Subse-
quently, 29 participants were successfully regis-
tered, but only 17 accounts participated by upload-
ing predictions.

Trial and Test Periods The trial period started
on April 15, 2022 and the validation labels were
released on August 01, 2022. Participants could
upload any number of submissions against the vali-
dation set, and they could also submit predictions
for the validation set at any point in time. The
main purpose of this setting is for participants to
familiarise themselves with the Codalab platform.

The test period started on August 01, 2022 and
ended on August 31, 2022. Each participant was
allowed only 5 submissions to prevent participants
from over-fitting to the test set. After the compe-
tition ended, an additional scoring page was cre-
ated,8 where participants could upload one predic-
tion a day to generate more scores for their descrip-
tion papers. Any scores from this additional scoring
page is not included into the final leaderboard.

For both subtasks, models were ranked based on
F1 performance on the competition test set.

6https://github.com/tanfiona/
CausalNewsCorpus/blob/master/random_
st2.py

7The competition page is at https://codalab.
lisn.upsaclay.fr/competitions/2299. The ad-
ditional scoring page is at https://codalab.lisn.
upsaclay.fr/competitions/7046.

8The additional scoring page is at https://codalab.
lisn.upsaclay.fr/competitions/7046.
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Figure 3: Illustration of how we process multi-relation examples for sequence evaluation.

6 Participant Systems

6.1 Overview

13 participants successfully submitted scores to
Subtask 1 while only 4 successfully submitted
scores to Subtask 2 during test period. Table 5
and 6 reflects the leaderboard for Subtask 1 and 2
respectively for evaluation metrics described earlier
in Section 5.1. For Subtask 2, we further provided
the performance for each span type (i.e., Cause,
Effect and Signal).

For Subtask 1, the top performing team was
CSECU-DSG (Aziz et al., 2022), scoring 86.19%
F1. CSECU-DSG also topped the charts for P, Acc,
and MCC scores. Team ARGUABLY (Kohli et al.,
2022) followed closely after, with 86.10% F1 score
and a high recall score of 91.48%. Both meth-
ods fine-tuned SOTA pre-trained BERT variants
(RoBERTA (Liu et al., 2019) and DeBERTa (He
et al., 2021)) to the classification task.

For Subtask 2, the top performing team was
1Cademy (Chen et al., 2022), scoring 54.15% F1.
Team IDIAPers (Fajcik et al., 2022) and SPOCK
(Saha et al., 2022) followed closely after, with
48.75% and 47.48% F1 scores respectively. Each
team approached the span detection task in a dif-
ferent way: 1Cademy treated the task as a reading
comprehension challenge and predicted start and
end boundaries of the spans. IDIAPers treated the
task as a decoding challenge, while SPOCK gener-

ated and classified candidate spans. All participants
used pre-trained models in their frameworks.

6.2 Methods

Each teams’ systems are summarized below, sorted
according to their leaderboard ranking.

6.2.1 Subtask 1

CSECU-DSG (Aziz et al., 2022) proposed a way
to unify predictions obtained from two neural net-
work models, by combining the prediction scores
generated from each model using a weighted arith-
metic mean. The two models used were, Twitter
RoBERTa and RoBERTa-base, and each was at-
tached to a linear layer to predict the causal labels.
The weights per model were 0.4 and 0.6 respec-
tively, selected through experiments on training
data. Their findings on the test set showed that the
fused model achieves higher P, R, and F1 score
than each model alone, and their approach clinched
the top place during the competition.

ARGUABLY (Kohli et al., 2022) proposed using
sentence-level data augmentation to fine-tune lan-
guage models (LMs). They involved contextualised
word embeddings of DistilBERT (Sanh et al., 2019)
to construct new data. As for the LMs, DeBERTa
and dual cross attention RoBERTa models have
been experimented with. According to the results,
the DeBERTa model fine-tuned on augmented data
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Rank Team Name Codalab Username R P F1 Acc MCC
1 CSECU-DSG (Aziz et al., 2022) csecudsg 88.64 83.87 86.19 83.92 67.14
2 ARGUABLY (Kohli et al., 2022) guneetsk99 91.48 81.31 86.10 83.28 66.02
3 LTRC (Adibhatla and Shrivastava, 2022) hiranmai 88.64 82.11 85.25 82.64 64.51
4 NLP4ITF (Krumbiegel and Decher, 2022) pogs2022 88.07 82.45 85.16 82.64 64.49
5 IDIAPers (Burdisso et al., 2022) msingh 87.50 82.80 85.08 82.64 64.49
6 NoisyAnnot (Nguyen and Mitra, 2022) thearkamitra 88.07 82.01 84.93 82.32 63.83
7 SNU-Causality Lab (Kim et al., 2022) JuHyeon_Kim 90.34 79.50 84.57 81.35 62.04
8 LXPER AI Research brucewlee 86.36 82.61 84.44 81.99 63.18
9 1Cademy (Nik et al., 2022) nika 86.36 81.72 83.98 81.35 61.85
10 - quynhanh 85.80 79.06 82.29 79.10 57.19
11 BERT Baseline (Tan et al., 2022a) tanfiona 84.66 78.01 81.20 77.81 54.52
12 GGNN (Trust et al., 2022) PaulTrust 88.07 74.88 80.94 76.53 52.05
13 LSTM Basline (Tan et al., 2022a) hansih 84.66 72.68 78.22 73.31 45.15
14 Innovators lapardnemihk9989 78.98 72.02 75.34 70.74 39.81
15 - necva 81.25 59.09 68.42 57.56 9.44

Table 5: Subtask 1 Leaderboard. Ranked by Binary F1. All scores are reported in percentages (%). Highest score
per column is in bold.

Ra-
nk

Team Name
Codalab
Username

Overall Cause (n=119) Effect (n=119) Signal (n=98)
R P F1 Acc R P F1 R P F1 R P F1

1 1Cademy (Chen et al., 2022) gezhang 53.87 55.09 54.15 43.15 55.46 57.98 56.47 55.46 57.14 56.13 50.00 49.09 48.92
2 IDIAPers (Fajcik et al., 2022) msingh 47.62 51.21 48.75 40.83 45.38 45.38 45.38 42.86 42.86 42.86 56.12 68.44 60.01
3 SPOCK (Saha et al., 2022) spock 43.75 57.62 47.48 36.87 37.82 49.19 41.40 39.50 59.66 46.29 56.12 65.39 56.32
4 LTRC (Adibhatla and Shrivastava, 2022) hiranmai 5.65 2.34 3.23 33.03 2.52 1.10 1.53 13.45 5.51 7.60 0.00 0.00 0.00
5 Random Baseline tanfiona 0.30 0.89 0.45 21.94 0.84 2.52 1.26 0.00 0.00 0.00 0.00 0.00 0.00

Table 6: Subtask 2 Leaderboard. Ranked by Overall Macro F1. All scores are reported in percentages (%). Highest
score per column is in bold.

outperformed the unaugmented DeBERTa model
and RoBERTa models.

LTRC (Adibhatla and Shrivastava, 2022) used
various transformers-based language models fol-
lowed by a classification head. The pre-
trained models explored by them were: BART-
large (Lewis et al., 2020), RoBERTa-base+Linear
Layer, RoBERTa-large+Linear Layer, RoBERTa-
base+Adapter and RoBERTa-large+Adapter. Their
best model slightly beats the baseline scores on the
development set.

NLP4ITF (Krumbiegel and Decher, 2022) pro-
posed building a RoBERTa model with linguistic
features. They mainly involved named entities (NE)
and cause-effect-signal (CES) spans from Subtask
2 to incorporate linguistic features with the input
text. Based on their findings, the model trained
with the PER (person) NE class with CES, achieved
the best results, outperforming the RoBERTa base-
line (model trained on data with no linguistic fea-
tures).

IDIAPers (Burdisso et al., 2022) proposed a
prompt-based approach for fine-tuning LMs in
which the classification task is modeled as a
masked language modeling problem (MLM). This
approach allows LMs natively pre-trained on MLM

problems, like RoBERTa, to directly generate tex-
tual responses to domain-specific prompts. This
approach allow the model to be trained in a few-
shot configuration, keeping most of available data
for measuring the generalization power the model.
The best-performing model was trained with only
256 instances per class and yet was able to obtain
the second-best precision and third-best accuracy.

NoisyAnnot (Nguyen and Mitra, 2022) proposed
fine-tuning different LMs with customised cross-
entropy loss functions that exploit annotation infor-
mation such as the number of annotators and their
agreement. They used several language models
including BERT, RoBERTa and XLNET models
and showed that the involvement of annotation in-
formation improves the model performance.

SNU-Causality Lab (Kim et al., 2022) proposed
fine-tuning an ELECTRA model using the CNC
dataset and augmented data. They followed two
approaches for data augmentation: (1) concate-
nating SemEval-2010 to CNC and (2) generating
new samples using POS tagging. With the POS
tagging-based approach they mainly targeted re-
placing causality irrelevant words with POS tags,
to generate more data while preserving the causal-
ity relevant information in the original dataset.
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1Cademy (Nik et al., 2022) experimented with
self-training to generate more sequence classifica-
tion examples from unlabeled Wikipedia sentences.
They experimented with three pretrained models
(BERT, RoBERTa and ELECTRA), and also experi-
mented with three ratios of positive to negative self-
labeled examples (1:3, 1:1, 3:1). Their experiments
showed that including self-labeled data during train-
ing always returns higher F1 scores. Their best
model during test time was the RoBERTa-based
model with 1:1 self-training ratio, which surpassed
the competition baseline scores.

GGNN (Trust et al., 2022) injected word embed-
dings into a Gated Graph Neural Network (GGNN),
which were attached to a RNN decoder to predict
the sequence label. Two word embeddings were ex-
plored: Word2Vec and BERT. Their BERT+GGNN
combination outperforms the BERT baseline pro-
vided during the competition for both the develop-
ment and test sets for P, F1 and Acc.

6.2.2 Subtask 2
1Cademy (Chen et al., 2022) approached this
task in a reading comprehension manner, and cre-
ated a baseline BERT-based neural network that
predicted the start and end positions of each Cause,
Effect, and Signal span. They introduced beam-
search methods (BSS) as post-processing con-
straints suited to the task. They also introduced
a signal classifier that detects if a Signal exists
in the sequence or not via a joint model (JS) or
a separate model (ES). Additionally, BART was
fine-tuned for paraphrasing to re-write Cause and
Effect phrases within each sentence for data aug-
mentation (DA). In the end, their best model is
a combination of Baseline+BSS+ES+DA method,
where the DA generated 3 new phrases per span.
This model achieved F1 score of 54.15% on the test
set, clinching the top place during the competition.

IDIAPers (Fajcik et al., 2022) approached the
task in an encoder-decoder framework. They con-
ditioned the T5 language model three times per
example to generate up to four causal relations per
example. In each round, given the history of a
sentence, the model generates Cause, followed by
Effect, and then Signal. This model is their vanilla
model known as T5-CES. History refers to the in-
put sequence with any annotated spans from the
previous round, if applicable. In experiments, they
also explored (1) variants involving a version with-
out historical annotations, (2) T5-large pre-trained

model, and (3) changing the order of generation
to be Effect, Cause then Signal. Their best model
on the test set (T5-CES) achieved 48.8 F1 score,
coming in second in the competition.

SPOCK (Saha et al., 2022) designed two sepa-
rate frameworks for the span detection task, span-
based modelling and token classification. Both ap-
proaches far exceed the random baseline provided
by the organizers during the competition period.
Their span-based modelling approach achieved an
F1 score of 47.48%, ranking third in the competi-
tion. This model classifies a list of candidate spans
to a Cause, Effect, Signal or None label. The candi-
date spans are generated by considering all possible
spans up to a maximum length. The model receives
inputs comprising a CLS token embedding, con-
catenated with a width embedding, plus the span
embedding representation itself. To select the final
Cause-Effect-Signal span, spans below a certain
threshold are removed, and then the span with the
highest probability for that label is retained.

LTRC (Adibhatla and Shrivastava, 2022) ap-
proached the task as a token classification task,
and designed a BERT-based IOB predicting model
alongside some heuristics adjusted for the task.
Their approach slightly beats the baseline scores
on the development set.

7 Analysis & Discussion

7.1 Trends

Consistent with NLP trends, pre-trained language
models are popular and employed by all teams and
for both subtasks.

For Subtask 1, teams found novel ways to im-
prove from the BERT and LSTM baseline by com-
bining multiple models, adding linguistic features,
incorporating additional neural network layers, and
working with augmented data.

For Subtask 2, there is a wide variation in fram-
ing the task. Teams approached it as a reading
comprehension, encoder-decoder, candidate span
classification and token classification task. Addi-
tionally, there are two constraints that models had
to accommodate: (1) The task involves predict-
ing multiple causal relations per input sentence,
and (2) Not all causal relations have a signal span.
The top three teams carefully adjust their models
to work with the two constraints. For (1), IDI-
APers predicted different relations using rounds
while incorporating the predicted annotations of
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(a) Subtask 1 (b) Subtask 2

Figure 4: Histogram of exact matches.

Subtask Finished Failed Total
Subtask 1 58 8 66
Subtask 2 12 24 36

Table 7: Number of submissions received for test set.

the previous round. For (2), 1Cademy included
a separate classification task, while IDIAPers and
SPOCK permitted "empty" or "None" span pre-
dictions. Interestingly, the F1 score for signals is
highest for IDIAPers, suggesting merits to predict
signal spans in a manner that includes Cause and
Effect predictions as inputs.

7.2 Participation

More submissions were received for Subtask 1 than
for Subtask 2, as shown in Table 7. Unsurprisingly,
there is a high proportion of failed submissions in
Subtask 2. Since Subtask 2 requires specific for-
matting of argument markings and compiling of
multiple predictions into a list, it is easy to face
formatting errors. For Subtask 2, although 12 par-
ticipants did try to submit for the competition, only
4 managed to submit predictions of the right format.
A closer look at the submission files suggests that
most of the time, these participants intended to up-
load predictions for Subtask 1. However, because
the default Codalab tab falls on Subtask 2, they
make submissions to the wrong task. Nevertheless,
we are aware of 1 participant who reached out to try
and resolve formatting issues and did not manage
to resubmit their predictions in the right format in
time. This team ran into issues trying to match the
spacing of the original input text.

7.3 Error Analysis

For Subtask 1, we had 13 participants while for
Subtask 2, we had 4 participants. For Subtask 1,
we counted the number of teams that matched the

true labels exactly per example. For Subtask 2, if
any predicted span exactly match the true Cause-
Effect-Signal span, we considered there to be an
accurate count. A histogram per subtask reflecting
the accuracy counts are reflected in Figure 4.

For Subtask 1, 100 examples were predicted cor-
rectly, while 4 examples were predicted wrongly
by all participants. There is a total of 52 examples
that are challenging, where less than half of the
participants were able to get a correct prediction.

For Subtask 2, no examples were predicted cor-
rectly by all participants. This is because LTRC’s
submission was very close to the Random Baseline
and had no exactly correct predictions. 6 causal
relations were predicted correctly by the remaining
three participants. Nevertheless, most examples
were predicted wrongly by all participants (i.e., 70
examples received all wrong predictions). Clearly,
Subtask 2 is a challenging task and has a lot of
room for growth.

8 Conclusion

In conclusion, our shared task investigated two im-
portant tasks in causal text mining, namely: (1)
Causal Event Classification, and (2) Cause-Effect-
Signal Span Detection. Our shared task attracted
29 registered participants and 17 active participants
who made over 100 submissions on the test set.
Based on the 12 description papers received, many
novel methods that exceeded our initial baseline
were proposed. The best F1 scores achieved for
Subtask 1 and 2 were 86.19% and 54.15% respec-
tively.

We intend to re-launch this shared task next year
with even more data for Subtask 2. Additionally,
we will also investigate the challenging examples
in Subtask 1 that are predicted wrongly by many
teams.
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A Appendix

A.1 Subtask 2 Agreement Score Calculations

For span annotations, the agreement scores were
calculated by taking a weighted average of the sub-
set level agreement scores that takes into account
the example counts per subset.

We split the training plus development set into 8
subsets and the test set into 2 subsets. While con-
ducting the annotations, the agreement scores were
evaluated at a subset level so that we can consis-
tently assess the annotators’ performance. The sub-
set level scores takes the average scores between
each pair of annotators. For example, if there were
three annotators (Annotator A, B, and C) for the
subset, then we took the average agreement score
when comparing (A,B), (B,C) and (A,C) annotator
pairs. Each pair was weighted equally.

The annotator pair level scores were computed
by taking the average scores across the sentences.
Each sentence was weighted equally.

At the sentence level, agreement scores were
obtained by taking the average scores of each
causal relation pair. Each causal relation pair was
weighted equally.

Since annotators might annotate multiple spans
per example, there are many ways to match the
annotated relations between two annotators. We
approached this conflict by considering every pos-
sible combination pair, after which, we retained
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the match that returned the highest possible sum of
EM, OSB and TO scores. If one annotator identi-
fied more causal relations than the other, then EM,
OSB and TO scores for that relation is automati-
cally zero.

The KAlpha script was an open-source code9.
The other three metrics were coded based on previ-
ous work (Lee and Sun, 2019).

9https://github.com/emerging-welfare/
kAlpha
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Abstract

The goal of Shared Task 2 is evaluating state-of-
the-art event detection systems by comparing
the spatio-temporal distribution of the events
they detect with existing event databases.

The task focuses on some usability require-
ments of event detection systems in real world
scenarios. Namely, it aims to measure the
ability of such a system to: (i) detect socio-
political event mentions in news and social me-
dia, (ii) properly find their geographical loca-
tions, (iii) de-duplicate reports extracted from
multiple sources referring to the same actual
event. Building an annotated corpus for train-
ing and evaluating jointly these sub-tasks is
highly time consuming. One possible way to
indirectly evaluate a system’s output without
an annotated corpus available is to measure its
correlation with human-curated event data sets.

In the last three years, the COVID-19 pandemic
became motivation for restrictions and anti-
pandemic measures on a world scale. This
has triggered a wave of reactions and citizen
actions in many countries. Shared Task 2 chal-
lenges participants to identify COVID-19 re-
lated protest actions from large unstructured
data sources both from mainstream and so-
cial media. We assess each system’s ability
to model the evolution of protest events both
temporally and spatially by using a number
of correlation metrics with respect to a com-
prehensive and validated data set of COVID-
related protest events (Raleigh et al., 2010).

1 Introduction

State-of-the-art evaluation methods for event de-
tection are based on manually coded corpora with
annotated document and sub-document units, in-
cluding annotation of syntactic fragments, such as
event reporting verbal phrases, as well as entities

having specific semantic roles, such as victim, per-
petrator, weapons, etc., see (Hürriyetoğlu et al.,
2021) and (Atkinson et al., 2017) among the oth-
ers. While this type of benchmarks provide accu-
rate means for measuring the performance of event
detection approaches, their development implies
significant efforts: many person-hours of annota-
tions by journalists or linguists, which make such
annotated corpora limited in number and size and
generally developed for the English language only,
with a few exceptions (Hürriyetoğlu et al., 2021).
Moreover, such evaluation methods do not assess
the overall usability of machine-coded event data
sets for micro-level modelling of social processes.
Also, in the domain of socio-political and armed
conflicts, spatio-temporal analysis has become stan-
dard and state-of-the-art evaluation methods come
short in evaluating exhaustively the spatial and tem-
poral aspects of event detection systems.

Extracting spatio-temporal information from on-
line text sources has developed in the late 2000’s,
with the advent of the so-called ‘Web 2.0’ and So-
cial Networks (Pultar et al., 2008), (De Longueville
et al., 2009). Since then, applications have been
developed in fields as diverse as disaster manage-
ment (De Longueville et al., 2010), traffic monitor-
ing (D’Andrea et al., 2015), or fight against crime
(Kounadi et al., 2015). Detecting socio-political
events (and in particular, protests) emerged as an
important use case (Zhang, 2019), as many appli-
cations in this field need to rely on comprehensive,
timely and high-quality data that is often not avail-
able (e.g. high quality commercial data is produced
on a weekly, or even monthly basis, while applica-
tions need near-real-time data). This is a gap that
CASE workshops, and this shared task in particular,
are aiming to address.

The dynamics of the COVID-19 protests and
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their varied media coverage by news outlets and
social media makes it a particularly relevant use
case for assessing the capability of automated event
extraction systems to analyse socio-political pro-
cesses. The database replicability Shared Task 2
aims at doing so by challenging event extraction
systems to extract a collection of protest events
from two heterogeneous text collections (i.e., news
and social media). The task’s evaluation is done
by measuring a number of spatio-temporal correla-
tion coefficients against a gold standard data set of
protest incidents, provided by the the Armed Con-
flict Location and Event Data (ACLED) project
(Raleigh et al., 2010).

This task is the second in a series of shared tasks
at the CASE 2022 workshop (Hürriyetoğlu et al.,
2022b). The first task is concerned with protest
news detection at multiple text resolutions (e.g.,
the document and sentence level) and in multiple
languages: English, Hindi, Portuguese, and Span-
ish (Hürriyetoğlu et al., 2021, 2022a). Task 3 is
about detecting event causality in a corpus of sen-
tence pairs that have been annotated with labels on
whether there is a causal relations or not between
them (Tan et al., 2022a,b).

Teams which participated in Task 1 were invited
to participate in this second task. This is an evalua-
tion only task, where all models are (i) trained on
the data provided in Task 1, (ii) applied to raw news
and social media data, specifically gathered for the
task (i.e, news collection crawled from the Web
from various news sources, as well as Twitter data),
and (iii) evaluated on a manually curated, COVID-
19 protest event list, gathered from the Web page
of the ACLED project (Raleigh et al., 2010).

2 Related Work

Some recent studies show that performance mea-
sures such as precision, recall, and F1 are limited
in their capacity to asses the efficiency of an NLP
system (Derczynski, 2016; Yacouby and Axman,
2020). Moreover, evaluating a system on detecting
socio-political events from text requires additional
metrics such as spatio-temporal correlation of the
system output and the actual distribution of the
events (Wang et al., 2016; Althaus et al., 2021).

In a detailed study Cook and Weidmann (2019)
demonstrates the usefulness of disaggregating
event reports when considering data from event
coding. Several approaches deal with assessing the
correlation of automatically generated event data

sets with gold standards based on disaggregated
event counts, see example Ward et al. (2013) and
Schrodt and Analytics (2015) among the others.

Hammond and Weidmann (2014) applied disag-
gregation of events across PRIO-GRID geographi-
cal cells (Tollefsen et al., 2012) to assess the spatio-
temporal pattern of conflicts in the Global Database
of Events, Language and Tone (GDELT) (Leetaru
and Schrodt, 2013). In a later work Zavarella et al.
(2020) adapted the aforementioned approach to
administrative units for measuring the impact of
event de-duplication on increasing correlation with
ACLED event data sets.

3 Data

The goal of this task is to evaluate the performance
of automatic event detection systems on model-
ing the spatial and temporal pattern of a social
protest movement. We evaluate the capability of
participant systems to reproduce a manually cu-
rated COVID-19 related protest event data set, by
detecting protest event reports, enriched with loca-
tion and date attributes, from a news corpus col-
lection, a Twitter collection (both pre-filtered for
COVID-19 topic occurrence) and from the union
of the two.

3.1 Training Data

As a usability analysis, no training data were pro-
vided for this Task. Namely, the event definition
applied for coding the reference event data set is
the same as the one adopted for Shared Task 1 (Hür-
riyetoğlu et al., 2021) and any data utilized for Task
1 and Task 2, such as the one from Hürriyetoğlu
et al. (2021); Duruşan et al. (2022); Yörük et al.
(2021), or any additional data could be used to
build a system/model run on the input data.

3.2 Input Data

We provide three collections of input data:

• an English language news corpus comprising
a large selection of COVID-related articles
from US news sources;

• an English language tweet collection compris-
ing daily samples of COVID-related tweets
with some geographical metadata referring to
U.S.;

• a Spanish language tweet collection compris-
ing daily samples of COVID-related tweets
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with some geographical metadata referring to
U.S.

News Collection The news corpus used in this
Task is a collection of articles in English language
spanning the time range July 27, 2020 through Oc-
tober 26,2020 from a large set of news sources
from U.S. We used public APIs when available and
scraped the newspaper web pages otherwise. For
example, we used the New York Times Archive
API 1. The articles are filtered by checking the oc-
currence of keywords ["covid","coronavirus"] in
the top two sentences of the articles. Overall the
collection contains around 122k articles. We har-
monized the news item metadata from the different
collections so as to have the attributes: Publication
Date of the article, Title and a Snippet from the
article text, comprising the 2 lead sentences.

Twitter The corpus used in this Task is
based on a large-size multilingual collection
of tweets sampled from the Twitter public
streaming API using the set of keywords
[“COVID19”, “CoronavirusPandemic”, “COVID-
19”, “2019nCoV”, “CoronaOutbreak”, “coron-
avirus”, “WuhanVirus"], described in (Banda et al.,
2021). The source data of this collection, to-
gether with documentation on how to process
the data, can be found on https://github.com/
thepanacealab/covid19_twitter.

We used the clean version of this dataset that
was already filtered for retweets. The collection of
tweets is language tagged since July 27 2020. We
further filter the data from July 27, 2020 through
October 26, 2020 and produce two monolingual
tweet collections for English and Spanish. Namely,
in order to restrict the sample to content from the
US context, we filter for tweets which have a Place
metadata with Place’s country_code="us" or (if
Place is None) with a User location specified as
one of the US States. For each day, we filter up
to reaching a sampling cap ratio of 0.1 and 0.5
of the original tweet collections for English and
Spanish, respectively. The overall size of the tweet
collections are about 2.8M and 46k for English and
Spanish, respectively, with an average of 30k and
503 tweets per day. We distributed the numeric
tweet ids and participants were allowed to process
any of the tweet’s meta-data for their system runs.

1https://developer.nytimes.com/get-started

3.3 Gold Standard Data
We challenge the participant systems to reproduce
a Gold Standard data set from the ACLED project’s
COVID-19 Disorder Tracker2, comprising curated
disorder events directly related to the coronavirus
pandemic.

These include: a.targeting of healthcare work-
ers responding to the coronavirus, b.violent mobs
attacking individuals arbitrarily viewed as linked
to the coronavirus and c. demonstrations against
response measures to coronavirus (government’s
lock-downs, etc). On the other hand, changes in al-
ready existing demonstration patterns as a result of
coronavirus-related restrictions, or disorder events
driven by already existing armed or political group
capitalizing on the coronavirus-induced instability
are not included in the data set. From the whole
data set, we select events tagged with ACLED types
Protest and Riot and with a US country code loca-
tion, for the time range from July 27, 2020 through
October 26, 2020, resulting with a set of 1449
events, with event date, city, state, country-level
information and geographical coordinates.

Notice that while ACLED data come with both
hierarchical, string-like location information (i.e.
place names at different administrative levels) and
coordinate pairs, for the sake of consistency with
system output results we re-processed string-like
location descriptions of Gold Standard events using
the method described in 4.1 and re-generated event
coordinate pairs before joining with PRIO-GRID
shapefiles.

The U.S. map in Figure 1 shows the spatial dis-
tribution of these events (blue dots).

4 Evaluation

System performance is evaluated by computing
correlation coefficients on event counts aggregated
on cell-days, using uniform grid cells of approxi-
mately 55 kilometers sides from the PRIO-GRID
data set (Tollefsen et al., 2012). We use these ana-
lytical measures as a proxy to the spatio-temporal
pattern of the coronavirus-related protest events.

4.1 Data Normalization
In order to be joined with PRIO-GRID shapefiles,
string-like location information of system output
data had to be normalized to coordinate pairs. To
do this we used the OpenStreetMap Nominatim

2https://acleddata.com/analysis/
covid-19-disorder-tracker/
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Figure 1: The geo-referenced COVID-19 protest event records from ACLED (blue dots) and the events automatically
detected by the Classbases system (red dots), overlaid with the PRIO-GRID cells over the US.

search API3. For structured location name repre-
sentations (i.e., city, state, country) we used a para-
metric search: if this fails, we back off to free-form
query strings.

We note that geographical coordinate conversion
from Nominatim places the event at the geographi-
cal centroid of the polygon of the assigned admin-
istrative unit. In our evaluation, we discarded the
system output event records with no source location
information or whose string-like location attribute
returned Null results through the Nominatim API.

4.2 Metrics

We use the cell-days counts for two different types
of analysis: the correlation with the total daily
“protest cell" counts (i.e., time trends alone) and
the event counts for each cell-day (i.e., spatial and
temporal trends together).

Temporal Trends The first analysis only con-
siders the correlation between the total number of
“activated" cells (i.e., for which at least one Protest
event was recorded), in the system output and the
Gold Standard data set.

This time series analysis is sufficient to estimate
how well the automatic system captures the devel-
opment in time of the protest movement, without
considering the geo-location accuracy. So, it evalu-
ates on the task of detecting or not an event in the

3https://nominatim.org/release-docs/develop/
api/Search/#parameters

document collection.

Spatial and Temporal Trends To this purpose,
we also measure the correlation coefficients on the
absolute event counts with respect to Gold Stan-
dard, over each single cell-day. In this way also the
geolocation capabilities of the system are consid-
ered.

For both analyses, we use two types of correla-
tion coefficients to assess variable’s relationship:
Pearson coefficient r and Spearman’s rank correla-
tion coefficient ρ. Moreover, we used Root Mean
Squared Error (RMSE) to measure the absolute
value of the error on estimating cell/event counts
from the Gold Standard.

4.3 Team Systems
Only one team participated in this edition of the
Shared Task: Classbases. We briefly describe the
system below and ask the reader to refer to their sys-
tem paper for additional details (Wiriyathammab-
hum, 2022).

Classbases The Classbases system used the
trained XLM-RoBERTa large model from subtask1
to classify the news using a concatenation of its
news title and news abstract to guess whether it
contains any protest events or not. If the classifier
outputs positive (logits were thresholded at 0.9), we
ran a SpaCy named entity recognizer (Honnibal et
al., 2020) on the textual concatenation to get spans
with location tags (‘GPE’). Then, those spans were
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Data r ρ RMSE
Classbases News -0.330 -0.331 193.60

Table 1: Correlation coefficients and error rates for daily
protest cell counts: r represents Pearson correlation
coefficient, ρ is Spearman’s rank correlation coefficient,
and RMSE is the Root Mean Squared Error computed
on day-cell units.

concatenated into a query string which we used a
geocoder library2 to geocode using the Bing Maps
REST Services API3. We used the provided dates
from the date column as outputs given the filtered
ids. Finally, we outputted a row for each filtered
id containing five tuples, which are the id, the date,
the city, the region or state, and the country.

5 Results

Table 1 shows the Pearson r, Spearman correla-
tion coefficient ρ, and Root Mean Squared Error
(RMSE) for the total daily protest cell counts over
the 92 days target time range of the only participant
system,Classbases, run on the news data (denoted
as Classbases_new_1 in the plot.

Here, the correlations are between the total num-
ber of cells per day where the system found an
event vs. the number of cells where at least one
event occurred according to the Gold Standard.

The figures show no correlation between the
automatically detected conflict cells and the gold
standard over time. This is evident from Figure 2,
where we plot the time series of total daily protest
cells of the participant system against Gold Stan-
dard. We see the system evaluated on news data
failing to pick up both temporal variation (i.e., the
gradually declining weekly picks of protests from
early August through October) and the overall mag-
nitude of the protest movement (e.g., it detects a
maximum of less then 10 protest cells per day).

While this correlation analysis is overall more
tolerant to errors in geocoding4, a more in-depth
error analysis showed that geocoding inaccuracy
caused: a. several detected events to wrongly ac-
tivate the same cells in system output, causing
the geographical spread to be significantly lower
than Gold Standard; b. some highly recurrent
place names to be wrongly resolved to multiple
homonym locations, activating additional cells.

Table 2 reports Pearson r, Spearman correla-
tion coefficient ρ, and Root Mean Squared Error

4Indeed, as long as the events are located in U.S., a system-
atic misplacement of the events might not potentially affect its
geographical ’spread’ in terms of number of activated cells.

(RMSE) over cell-day event counts of the Class-
bases system with respect to Gold Standard for the
92 days time range

Here the variables range over the whole set of
PRIO-GRID cells included in the US territory and,
thus, show the correlation of event numbers across
geo-cells, thus better evaluating the system’s fine-
grained geolocation capabilities. As expected, no
significant correlation with Gold Standard is found
here either.

A more lenient representation of the agreement
with Gold Standard is shown in Table 3. Here we
report the confusion matrix between grid cells that
Gold Standard and system runs code as experienc-
ing at least a protest event. It can be observed
that only few of the cells classified as Protest by
Gold Standard are detected by the automatic sys-
tem, which on the other hand incorrectly classified
as Protest several additional cells.

6 Conclusions

The goal of the “Covid protest events" Shared Task
was to explore novel performance evaluations of
pre-trained event detection systems. These sys-
tems are applied to large noisy, heterogeneous text
data sets (i.e., news articles and social media data)
related to a specific protest movement or, as in
this case, a wave of protests induced by the coron-
avirus crisis. Thus, the systems are being evaluated
out-of-domain in terms of both data type (i.e., the
systems are trained on news data and evaluated on
both news and social media) and protest movement
context (i.e., the training data are not necessarily
related to covid-19 pandemic). Systems are evalu-
ated on their ability to identify both events across
time as well as their distribution across space. This
evaluation scenario proved challenging for the sys-
tem participating in the shared task, confirming
the finding from the previous edition(Giorgi et al.,
2021). A major problem, as shown on Table 3, is
the systems’ low recall.

The low recall at this years shared task may be
due to the pre-filtering of the news data for the
presence of covid-19 mentions. Differently than for
an organized protest movement (like Black Lives

Data r ρ RMSE
*Classbases News 0.0247 0.0342 0.0101

Table 2: Correlation coefficients and error rates for cell-
day event counts of the participant systems with respect
to Gold Standard.
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Figure 2: Time series of total daily protest cells from the Gold Standard (in orange), against the Classbases system
run on news data.

Gold Standard Precision Recall F1
1 0

Classbases 1 24 312 7.14 1.76 2.83
0 1333 478765

Table 3: Confusion matrix of grid cells experiencing at least one Protest event (true) versus inactive cells (false),
for the Gold Standard and participant systems. Given the high negative class imbalance of the data, we report
Precision,Recall figures for the positive class only.

Matter), inferring a relationship of single protest
events to the pandemic might not be trivial and
thus explicitly stated in the protest news report:
therefore, filtering for covid-19 keywords might
remove relevant protest reports. However, absolute
low recall does not necessarily affect correlation
measures as much as inaccurate geocoding of the
detected events, as shown.

Overall, this year’s edition of the Task was com-
promised by the low attendance and it is not pos-
sible to draw further significant conclusions. We
therefore decided to re-open the evaluation win-
dow open and welcome further system run sub-
missions. Researchers interested to have their
models run and evaluated on the input data pro-
vided can check the GitHub https://github.
com/zavavan/case2022_task2 or contact the au-
thors.
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Discovering black lives matter events in the United
States: Shared task 3, CASE 2021. In Proceedings of
the 4th Workshop on Challenges and Applications of
Automated Extraction of Socio-political Events from
Text (CASE 2021), pages 218–227, Online. Associa-
tion for Computational Linguistics.

Jesse Hammond and Nils B Weidmann. 2014. Us-
ing machine-coded event data for the micro-level
study of political violence. Research & Politics,
1(2):2053168014539924.
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Uca, Alaeddin Selçuk Gürel, Benjamin Radford,
Yaoyao Dai, Hansi Hettiarachchi, Niklas Stoehr,
Tadashi Nomoto, Milena Slavcheva, Francielle Var-
gas, Aaqib Javid, Fatih Beyhan, and Erdem Yörük.
2022a. Extended Multilingual protest news detection
- Shared Task 1, CASE 2021 and 2022. In Proceed-
ings of the 5th Workshop on Challenges and Appli-
cations of Automated Extraction of Socio-political
Events from Text (CASE 2022), online. Association
for Computational Linguistics (ACL).
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Abstract

We provide a summary of the fifth edition of
the CASE workshop that is held in the scope
of EMNLP 2022. The workshop consists of
regular papers, two keynotes, working papers
of shared task participants, and task overview
papers. This workshop has been bringing to-
gether all aspects of event information collec-
tion across technical and social science fields.
In addition to the progress in depth, the submis-
sion and acceptance of multimodal approaches
show the widening of this interdisciplinary re-
search topic.

1 Introduction

The workshop on Challenges and Applications of
Automated Extraction of Socio-political Events
from Text (CASE) has become a significant venue
where all technical and social science aspects of
event information collection can be discussed in its
fifth edition.1 The 2022 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2022) hosts the edition this year between December
7 and 11 in Abu Dhabi .2

Socio-political event extraction (SPE) has long
been a challenge for the natural language process-
ing (NLP) community as it requires sophisticated
methods in defining event ontologies, creating lan-
guage resources, and developing algorithmic ap-
proaches (Pustejovsky et al., 2003; Boroş, 2018;
Chen et al., 2021). Social and political scien-
tists have been working to create socio-political
event (SPE) databases such as ACLED, EMBERS,
GDELT, ICEWS, MMAD, PHOENIX, POLDEM,
SPEED, TERRIER, and UCDP following similar
steps for decades. These projects and the new ones
increasingly rely on machine learning (ML), deep
learning (DL), and NLP methods to deal better

1https://emw.ku.edu.tr/case-2022/, accessed on
November 14, 2022.

2https://2022.emnlp.org/, accessed on November 14,
2022.

with the vast amount and variety of data in this
domain (Hürriyetoğlu et al., 2020; Hürriyetoğlu
et al., 2021b). Automation offers scholars not only
the opportunity to improve existing practices but
also to vastly expand the scope of data that can
be collected and studied, thus potentially opening
up new research frontiers within the field of SPEs,
such as political violence and social movements.
But automated approaches suffer from major issues
like bias, generalizability, class imbalance, train-
ing data limitations, and ethical issues that have
the potential to affect the results of automated text
processing systems and their use drastically (Leins
et al., 2020; Bhatia et al., 2020; Chang et al., 2019).
Moreover, the results of the automated systems
for SPE information collection have neither been
comparable to each other nor been of sufficient
quality (Wang et al., 2016; Schrodt, 2020).

Setting a clear path toward addressing these chal-
lenges is our main focus. We are confident that the
program we put together for this year’s event af-
ter rigorous and thorough reviews, would bring us
closer to that goal and beyond.

We provide a summary of the accepted papers
in the following Section, which is Section 2. Next,
the shared tasks that are organized in the scope
of this workshop are described in Section 3. The
keynote abstracts and invited talks are provided in
sections 4 and 5. Finally, Section 6 conclude this
report with a brief summary and future outlook.

2 Accepted papers

This year, out of 12 submissions 8 were accepted
by the program committee. A quick summary of
these papers are provided below.

• Thapa et al. (2022) releases a multimodal
dataset that consists of of 5,680 text-image
pairs of tweets and a baseline for hate speech
detection in the context of Russia-Ukraine
war.
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• You et al. (2022) propose Event-Graph, a joint
framework for event extraction, which en-
codes events as graphs. They represent event
triggers and arguments as nodes in a semantic
graph. Event extraction therefore becomes a
graph parsing problem.

• Desot et al. (2022) suggests event and argu-
ment role detection as one task in a hybrid
event detection approach and a novel method
for automatic self-attention threshold selec-
tion.

• Mehta et al. (2022) cast socio-political con-
flict event extraction as a machine reading
comprehension (MRC) task. In this approach,
extraction of socio-political actors and targets
from a sentence is framed as an extractive
question answering problem conditioned on
event type.

• Raj et al. (2022) propose a method that utilizes
existing annotated unimodal data to perform
event detection in another data modality using
a zero-shot setting. They focus on protest
detection in text and images, and show that
a pretrained vision-and-language alignment
model (CLIP) can be leveraged towards this
end.

• Sticha and Brenner (2022) release a compre-
hensive, consolidated, and cohesive assassina-
tion dataset that is prepared utilizing a robust
ML framework that prioritizes understandabil-
ity through visualizations and generalizability
through the ability to implement different ML
algorithms.

• Yaoyao et al. (2022) train a model that can
produce structured political event records at
the sentence level. This approach is based on
text-to-text sequence generation. They also
describe a method for generating synthetic
text and event record pairs that we use to fit a
model.

• Kiymet Akdemir and Hürriyetoğlu (2022) ap-
proach the classification problem as an en-
tailment problem and apply zero-shot rank-
ing to socio-political texts. Documents that
are ranked at the top can be considered posi-
tively classified documents and this reduces
the close reading time for the information ex-
traction process.

3 Shared tasks

Three tasks were organized in the scope of CASE
2022. Each one of these tasks shed light on a differ-
ent aspect of event information collection. These
are zero-shot and detailed multilingual event infor-
mation, evaluation of state-of-the-art systems in
replicating manually curated event datasets, and
event causality detection.

3.1 Task 1: Extended Multilingual Protest
Event Detection

The extended multilingual protest news detection is
the same shared task organized at CASE 2021 (Hür-
riyetoğlu et al., 2021a). This year we introduced
additional data and languages at the evaluation
stage.3 This year, the Task 1 focused on evalu-
ating the zero-shot prediction performance of the
state-of-the-art systems for Subtask 1, document
classification. The training set is the same with
CASE 2021 data that is in English, Portuguese,
and Spanish. But the evaluation data consists of
the union of CASE 2021 test data and new data in
both available and new languages. The new lan-
guages are Mandarin, Urdu, and Turkish. Details
of CASE 2022 Task 1 is reported by Hürriyetoğlu
et al. (2022).

3.2 Task 2: Tracking COVID-19 protest
events in the United States

This task aims at automatically replicating man-
ually created event datasets. The participants of
Task 1 are invited to run the systems they develop
to tackle Task 1 on a news and a Twitter archive.
This is a similar setting with the edition performed
last year in the scope of CASE 2021 and reported
by Giorgi et al. (2021). This year’s results 4 are
reported by Zavarella et al. (2022).

3.3 Task 3: Event Causality identification
Causality is a core cognitive concept and appears
in many natural language processing (NLP) works
that aim to tackle inference and understanding.
This task focuses on the study of event causal-
ity in news, and therefore, introduces the Causal
News Corpus (Tan et al., 2022b). The Causal
News Corpus consists of 3,559 event sentences
from CASE 2021 data, extracted from protest event

3https://github.com/emerging-welfare/
case-2022-multilingual-event, accessed on November
15, 2022.

4https://github.com/zavavan/case2022_task2, ac-
cessed on November 14, 2022.
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news, that have been annotated with sequence la-
bels on whether it contains causal relations or not.
Subsequently, causal sentences are also annotated
with Cause, Effect, and Signal spans. The two sub-
tasks (Sequence Classification and Span Detection)
work on the Causal News Corpus, and accurate,
automated solutions are proposed for the detection
and extraction of causal events in news. The de-
tailed report of the task is provided in Tan et al.
(2022a). 5

4 Keynotes

Three scholars delivered two keynote speeches that
are one on event extraction system development
and one for error analysis of event information
collection systems. The speakers were invited ac-
cording to our tradition of having one keynote with
technical and another one with social and politi-
cal sciences, background. We provide abstracts of
the keynote speeches as they are provided by the
keynote speakers in the following subsections. Sec-
tion 4.1 and Section 4.2 are contributions of Prof.
Thien Huu Nguyen 6 and Prof. Scott Althaus7 and
Prof. J. Craig Jenkins8 respectively.9

4.1 Event Extraction in the Era of Large
Language Models: Structure Induction
and Multilingual Learning

Events such as protests, disease outbreaks, and nat-
ural disasters are prevalent in text from different
languages and domains. Event Extraction (EE) is
an important task of Information Extraction that
aims to identify events and their structures in un-
structured text. The last decade has witnessed sig-
nificant progress for EE research, featuring deep
learning and large language models as the state-
of-the-art technologies. However, a key issue of
existing EE methods involves modeling input text
sequentially to solve each EE tasks separately, thus
limiting the abilities to encode long text and cap-
ture various types of dependencies to improve EE
performance. In this talk, I will present some of

5https://github.com/tanfiona/CausalNewsCorpus,
accessed on November 14, 2022.

6https://ix.cs.uoregon.edu/~thien/, accessed on
November 14, 2022.

7https://ix.cs.uoregon.edu/~thien/, accessed on
November 14, 2022.

8https://sociology.osu.edu/people/jenkins.12,
accessed on November 15, 2022.

9The personal pronoun usege such as ‘I’ and ‘we’ in the
following subsections indicate the keynote speakers and not
the authors of this report.

our recent efforts to address this issue where text
structures are explicitly learned to realize impor-
tant objects and their interactions to facilitate the
predictions for EE.

In addition, current EE research still mainly fo-
cuses on a few popular languages, e.g., English,
Chinese, Arabic, and Spanish, leaving many other
languages unexplored for EE. In this talk, I will
also introduce our current research focus on devel-
oping evaluation benchmarks and models to extend
EE systems to multiple new languages, i.e., multi-
lingual and cross-lingual learning for EE. Finally, I
will highlight some research challenges that can be
studied in future work for EE.

4.2 A total error approach to validating event
data that is transparent, scalable, and
practical to implement

There are at least two reasonable ways to make your
way toward where you want to go: looking down
to carefully place one foot in front of the other,
and looking up to focus on where you hope to ar-
rive. Looking up beats looking down if there’s a
particular destination in mind, and for constructing
valid event data that destination usually takes the
form of high-quality human judgment. Yet many
approaches to generating event data on protests and
acts of political violence using fully-automated sys-
tems implicitly adopt a “looking down” approach
by benchmarking validity as a series of incremental
improvements over prior algorithmic efforts. And
even those efforts that adopt a “looking up” ap-
proach often treat human-generated gold standard
data as if it was prima facie valid, without ever test-
ing or confirming the accuracy of this assumption.
It stands to reason that if we want to automatically
produce valid event data that approaches the va-
lidity of human judgment, then we also need to
validate the human judgment tasks that provide
the point of comparison. But because of obvious
difficulties in implementing such a rigorous assess-
ment within the time and budget constraints of typ-
ical research projects, this more rigorous double-
validation approach is rarely attempted.

This presentation outlines a “looking up” ap-
proach for double-validating fully-automated event
data developed by the Cline Center for Ad-
vanced Social Research at the University of Illi-
nois Urbana-Champaign (USA), illustrates that ap-
proach with a test of the precision and recall for
two widely-used event classification systems (the
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PETRARCH-2 coder used in Phoenix and TER-
RIER, as well as the BBN ACCENT coder used in
W-ICEWS), and demonstrates the utility of the ap-
proach for developing fully-automated event data
algorithms with levels of validity that approach the
quality of human judgment.

The first part of the talk reviews the Cline Cen-
ter’s total error framework for identifying 19 types
of error that can affect the validity of event data
and addresses the challenge of applying a total error
framework when authoritative ground truth about
the actual distribution of relevant events is lack-
ing (Althaus et al., 2022). We argue that carefully
constructed gold standard datasets can effectively
benchmark validity problems even in the absence of
ground truth data about event populations. We pro-
pose that a strong validity assessment for event data
should, at a minimum, possess three characteristics.
First, there should be a standard describing ideal
data; a gold standard that, in the best case, takes
the form of ground truth. Second, there should
be a direct “apples to apples” comparison of out-
puts from competing methods given identical input.
Third, the test should use appropriate metrics for
measuring agreement between the gold standard
and data produced by competing approaches.

The second part of the talk presents the results
of a validation exercise meeting all three crite-
ria that is applied to two algorithmic event data
pipelines: the Python Engine for Text Resolution
and Related Coding Hierarchy (PETRARCH-2)
and the BBN ACCENT event coder. It then reviews
a recent Cline Center project that has built a fully-
automated event coder which produces dramatic
improvements in validity over both PETRARCH-2
and BBN ACCENT by leveraging the total error
framework and a reliance on the double-validation
approach using high-quality gold standard bench-
mark datasets.

5 Invited talks

Papers that are accepted to be published in the
Findings of EMNLP 2022 and related to our work-
shop theme were invited to be presented during
our workshop. The authors of the following papers
were invited for presenting their papers:

• Jiao et al. (2022) define the task open-
vocabulary argument role prediction. The goal
of this task is to infer a set of argument roles
for a given event type. They propose a novel
unsupervised framework, ROLEPRED for this

task and release a new human-annotated event
extraction dataset including 139 customized
argument roles with rich semantics.

• Faghihi et al. (2022) presents CrisisLTL-
Sum, the largest dataset of local crisis event
timelines about wildfires, local fires, traffic,
and storms available to date. CrisisLTLSum
was built using a semi-automated cluster-then-
refine approach to collect data from the public
Twitter stream.

• Ding et al. (2022) design a neural model that
they refer to as the Explicit Role Interaction
Network (ERIN) which allows for dynami-
cally capturing the correlations between dif-
ferent argument roles within an event.

• Gao et al. (2022) present Mask-then-Fill,
a flexible and effective data augmentation
framework for event extraction. This ap-
proach allows for more flexible manipulation
of text and thus can generate more diverse
data while keeping the original event structure
unchanged.

6 Conclusion

The CASE workshop series has been contributing
to both technical advancement in terms of shared
task organization and being a venue for scholars
working at the intersection of social sciences and
event extraction. This role become more significant
as these series are known to a wider community.
Following steps of this series should serve the com-
munity by preserving its inderdisciplinary setting,
welcoming new methodologies, and promoting re-
sponsible development and utilization of the results
of this scholarship.
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Abstract

We report results of the CASE 2022 Shared
Task 1 on Multilingual Protest Event Detec-
tion. This task is a continuation of CASE 2021
that consists of four subtasks that are i) docu-
ment classification, ii) sentence classification,
iii) event sentence coreference identification,
and iv) event extraction. The CASE 2022 ex-
tension consists of expanding the test data with
more data in previously available languages,
namely, English, Hindi, Portuguese, and Span-
ish, and adding new test data in Mandarin,
Turkish, and Urdu for Sub-task 1, document
classification. The training data from CASE
2021 in English, Portuguese and Spanish were
utilized. Therefore, predicting document la-
bels in Hindi, Mandarin, Turkish, and Urdu
occurs in a zero-shot setting. The CASE 2022
workshop accepts reports on systems developed
for predicting test data of CASE 2021 as well.
We observe that the best systems submitted by
CASE 2022 participants achieve between 79.71
and 84.06 F1-macro for new languages in a
zero-shot setting. The winning approaches are
mainly ensembling models and merging data in
multiple languages. The best two submissions
on CASE 2021 data outperform submissions
from last year for Subtask 1 and Subtask 2 in
all languages. Only the following scenarios
were not outperformed by new submissions on
CASE 2021: Subtask 3 Portuguese & Subtask
4 English.

1 Introduction

We aim at determining event trigger and its argu-
ments in a text snippet in the scope of an event
extraction task. The performance of an automated
system depends on the target event type as it may
be broad or potentially the event trigger(s) can
be ambiguous. The context of the trigger occur-
rence may need to be handled as well. For in-
stance, the ‘protest’ event type may be synonymous
with ‘demonstration’ or not in a specific context.
Moreover, the hypothetical cases such as future
protest plans may need to be excluded from the
results. Finally, the relevance of a protest depends
on the actors as in a contentious political event only
citizen-led events are in the scope. This challenge
is even harder in a cross-lingual and zero-shot set-
ting in case training data are not available in new
languages.

We provide a benchmark that consists of four
subtasks and multiple languages in the scope of
the 5th Workshop on Challenges and Applications
of Automated Extraction of Socio-political Events
from Text at The 2022 Conference on Empirical
Methods in Natural Language Processing (CASE
@ EMNLP 2022) (Hürriyetoğlu et al., 2022).1

bgenfrhumil: To paraphrase: The work presented
1https://emw.ku.edu.tr/case-2022/, accessed on

November 13, 2022.
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in this paper is a continuation of the work initi-
ated in CASE 2021 Task 1 (Hürriyetoğlu et al.,
2021) and consists in adding new documents in
already available languages, as well as adding new
languages to the evaluation data.

Task 1 consists of the following subtasks that en-
sure the task is tackled incrementally: i) Document
classification, ii) Sentence classification, iii) event
sentence coreference identification, and iv) event
extraction. The training data consist of documents
in English, Portuguese, and Spanish, while the eval-
uation texts are in English, Hindi, Mandarin, Por-
tuguese, Spanish, Turkish, and Urdu. Subtask 1
ensures documents with relevant senses of event
triggers are selected. Next, Subtask 2 focuses on
identifying event sentences in a document. Discrim-
inating sentences that are about separate events and
grouping them is done in Subtask 3 (Hürriyetoğlu
et al., 2020, 2022). Finally, the sentences that are
about the same events are processed to identify the
event trigger and its arguments in Subtask 4. In
addition to accomplishing the event extraction task,
the subtask division improves significantly the an-
notation quality, as the annotation team can focus
on a specific part of the task and errors in previous
levels are corrected during the preparation of the
following subtask (Hürriyetoğlu et al., 2021). The
significance of this specific task division is twofold:
i) facilitating the work with a random sample of
documents by first identifying relevant documents
and sentences before annotating or processing a
sample or a complete archive of documents respec-
tively; ii) increasing the generalizability of the au-
tomated systems that may be developed using this
data (Yörük et al., 2021; Mutlu, 2022).

The current report is about Task 1 in the scope
of CASE 2022. Task 2 (Zavarella et al., 2022) and
Task 3 (Tan et al., 2022b,a) complement Task 1
by evaluating Task 1 systems on events related to
COVID-19 and detecting causality respectively.

The following section, which is Section 2 de-
scribes the data we use for the shared task. Next
we describe the evaluation setting in Section 3. The
results are provided in Section 4. Finally, the Sec-
tion 5 conclude this report.

2 Data

We used the CASE 2021 training data as those for
CASE 2022.2 The CASE 2022 test data are the

2https://github.com/emerging-welfare/
case-2021-shared-task for CASE 2021

union of CASE 2021 test data and additional new
documents in both available and new languages.
The new languages are Mandarin, Turkish, and
Urdu.

The new document level data, which are used to
extend CASE 2021 data, were randomly sampled
from MOT v1.2 (Palen-Michel et al., 2022) 3 and
were annotated by co-authors of this report. Doc-
uments were annotated by native speakers of the
respective language. A single label was attached to
each document. The annotation manual followed in
the annotation process (Duruşan et al., 2022) was
the same as that used in CASE 2021.

The total number of CASE 2022 documents with
labels is 3,870 for English, 267 for Hindi, 300 for
Mandarin, 670 for Portuguese, 399 for Spanish,
300 for Turkish, and 299 for Urdu.

Teams that developed systems for Subtasks 2, 3,
and 4 evaluated their systems on CASE 2021 test
data.

3 Evaluation setting

We utilized Codalab for evaluation of Task 1 for
CASE 2022.4 The evaluation for CASE 2021 was
performed on an additional scoring page5 of the
original6 CASE 2021 Codalab page. Moreover,
we launched an additional scoring page for CASE
2022 after completion of the official evaluation
period.7

Five submissions per subtask and language pair
could be submitted in total for CASE 2022. The
additional scoring phase of both CASE 2021 and
CASE 2022 allow only one submission per sub-
task and language combination per day. The test
data of CASE 2021 were shared with participants
at the same time with the training data. But the
CASE 2022 evaluation data were shared around
two weeks before the deadline for submission.

The same evaluation scores that are F1-macro
for Subtasks 1 and 2, CoNLL-20128 for Subtask

and https://github.com/emerging-welfare/
case-2022-multilingual-event for CASE 2022.

3https://github.com/bltlab/mot
4https://codalab.lisn.upsaclay.fr/

competitions/7438, accessed on November 13, 2022.
5https://codalab.lisn.upsaclay.fr/

competitions/7126, accessed on November 13, 2022.
6https://competitions.codalab.org/

competitions/31247, which is not accessible due to
change of the servers of Codalab.

7https://codalab.lisn.upsaclay.fr/
competitions/7768, accessed on November 13, 2022.

8https://github.com/LoicGrobol/scorch, accessed
on November 13, 2022.
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3, and CoNLL-20009 script for Subtask 4 were
utilized.

4 Results

Eighteen teams were registered for the task and
obtained the training and test data for both CASE
2022 and CASE 2021. Ten and seven teams sub-
mitted their results for CASE 2021 and CASE 2022
respectively. Seven papers were submitted as sys-
tem description papers to the CASE 2022 workshop
in total. The scores of the submissions are calcu-
lated on two different Codalab pages for CASE
202110 and CASE 202211. The teams that have
participated are ARC-NLP (Sahin et al., 2022),
CamPros (Kumari et al., 2022), CEIA-NLP (Fer-
nandes et al., 2022), ClassBases (Wiriyathammab-
hum, 2022), EventGraph (You et al., 2022), NSUT-
NLP (Suri et al., 2022), SPARTA (Müller and
Dafnos, 2022). We provide details of the results
and submissions of the participating teams for each
subtask in the following subsections.12

4.1 CASE 2022 Subtask 1

The results for CASE 2022 subtask 1 are provided
in Table 1. ARC-NLP finetune an ensemble of
transformer-based language models and use en-
semble learning, varying training data for each
target language. They also perform tests with au-
tomatic translation of both training and test sets.
They achieve 1st place both in Turkish and Man-
darin, 2nd place in Portuguese and 3rd to 5th
place in other languages. CEIA-NLP finetune
XLM-Roberta-base transformers model with all
the training data to achieve 1st place in Portuguese,
3rd or 4th places in other languages. ClassBases
achieve 1st place in Hindi test data finetuning XLM-
Roberta-large model, 5th or 6th places in other
languages.

CamPros finetune XLM-Roberta-base model
with all training data, and NSUT-NLP finetune

9https://github.com/sighsmile/conlleval, ac-
cessed on November 13, 2022.

10https://codalab.lisn.upsaclay.fr/
competitions/7126#results, accessed on Nov 14,
2022.

11https://codalab.lisn.upsaclay.fr/
competitions/7438#results, accessed on Nov 14,
2022.

12The results and system descriptions from participants that
did not submit a system description paper are provided as
well. This shows the capacity of the state-of-the-art systems
on our benchmark. These systems are provided with their co-
dalab names that are colabhero, fine_sunny_day, gauravsingh,
lapardnemihk9989, lizhuoqun2021_iscas.

mBERT while augmenting the data by translating
different languages into each other.

4.2 CASE 2021 Subtask 1

The extended results for CASE 2021 subtask 1
are provided in Table 2. The boldness indicates
CASE 2022 entries. ClassBases finetune XLM-
Roberta-large transformers model to perform 1st in
Hindi and 2nd in Portuguese test data. They also
achieve 5th and 6th places in Spanish and English
respectively. Another team that submitted their
model to CASE 2021 test data is ARC-NLP, taking
5th, 8th and 9th places in Portuguese, Spanish and
English.

4.3 Subtask 2

The extended results for CASE 2021 subtask 2
are provided in Table 3. The boldness indicates
CASE 2022 entries. ARC-NLP train an ensemble
of transformers models using all training data to
achieve 4th, 5th and 7th places in Spanish, English
and Portuguese respectively. ClassBases finetune
mLUKE-base for Portuguese and Spanish placing
5th in both, XLM-Roberta-large for English taking
8th place.13

4.4 Subtask 3

The extended results for CASE 2021 subtask 3
are provided in Table 4. The boldness indicates
CASE 2022 entries. ARC-NLP achieve 1st place in
both English and Spanish, 2nd place in Portuguese.
They use an ensemble of English transformers mod-
els for English, Portuguese and Spanish test data.
They train with only English data and translating
Portuguese test data into English during model pre-
diction. For Spanish test data, they train with En-
glish, translated Portuguese and translated Spanish,
and test on translated Spanish data.

4.5 Subtask 4

The extended results for CASE 2021 subtask 4
are provided in Table 5. The boldness indicates
CASE 2022 entries. SPARTA employ two meth-
ods. Both of these methods build on pretrained
XLM-Roberta-large and use a data augmentation
technique (sentence reordering). For English and
Portuguese, they gather articles that contain protest
events from outside sources and use them for fur-
ther pretraining. For Spanish, they use an XLM-
Roberta-large model that was further pretrained on

13CamPros do not describe their model for subtask 2.
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Team English Portuguese Spanish Hindi Turkish Urdu Mandarin
ARC-NLP 80.744 79.852 69.445 80.084 84.061 77.993 83.391

CEIA-NLP 80.773 80.071 73.193 78.176 82.434 77.654 77.634

CamPros 76.527 77.116 69.554 80.492 74.756 73.776 75.906

ClassBases 78.506 77.115 69.256 80.781 78.575 75.725 77.165

NSUT-NLP 80.625 73.027 64.457 56.717 67.027 65.557 75.457

fine_sunny_day 82.222 79.054 73.842 80.113 82.912 79.711 80.993

lizhuoqun2021_iscas 82.491 79.223 74.961 80.015 82.893 78.672 83.062

Table 1: The performance of the submissions in terms of F1-macro and their ranks as a subscript for each language
and each team participating in CASE 2022 subtask 1.

Team English Hindi Portuguese Spanish
ALEM 80.8210 N/A 72.9811 46.4713

AMU-EuraNova 53.4615 29.6611 46.4714 46.4713

DAAI 84.553 77.076 82.434 69.3110

DaDeFrTi 80.6911 78.773 77.2210 73.017

FKIE_itf_2021 73.9013 54.2410 62.3912 68.2011

HSAIR 77.5812 59.559 81.217 69.849

IBM MNLP IE 83.934 78.535 84.003 77.273

SU-NLP 81.758 N/A N/A N/A
NoConflict 51.9416 N/A N/A N/A
jitin 67.3914 70.498 52.2313 62.0512

ARC-NLP 81.359 N/A 81.735 72.428

ClassBases 82.306 80.781 85.392 73.485

colabhero 82.345 74.217 81.735 73.276

fine_sunny_day 85.002 N/A 80.748 82.451

gauravsingh 82.287 78.604 79.419 73.864

lizhuoqun2021_iscas 85.121 80.012 85.871 81.192

Table 2: The performance of the submissions in terms
of F1-macro and their ranks as a subscript for each
language and each team participating in CASE 2021
subtask 1. Bold teams indicate CASE 2022 entries.

Team English Portuguese Spanish
ALEM 79.679 42.7915 45.3015

AMU-EuraNova 75.6414 81.6111 76.3911

DaDeFrTi 79.2810 86.626 85.176

FKIE_itf_2021 64.9616 75.8113 70.4914

HSAIR 78.5011 85.068 83.258

IBM MNLP IE 84.564 88.473 88.612

IIITT 82.917 79.5112 75.7812

SU-NLP 83.056 N/A N/A
NoConflict 85.323 87.004 79.9710

jiawei1998 76.1413 84.679 83.059

jitin 66.9615 69.0214 72.9413

ARC-NLP 83.775 86.537 87.204

CamPros 77.9412 81.6310 83.697

ClassBases 81.128 86.835 87.105

fine_sunny_day 85.752 89.671 88.781

lizhuoqun2021_iscas 85.931 88.862 88.612

Table 3: The performance of the submissions in terms
of F1-macro and their ranks as a subscript for each
language and each team participating in subtask 2. Bold
teams indicate CASE 2022 entries.

CoNLL 2002 Spanish data. They take 1st place
both in Portuguese and Spanish, 3rd place in En-
glish.

ARC-NLP finetune an ensemble of transformers
models for each language. They use all training

Team English Portuguese Spanish
DAAI 80.404 90.236 81.836

FKIE_itf_2021 77.057 91.334 82.524

Handshakes AI Research 79.015 90.615 81.955

IBM MNLP IE 84.442 92.843 84.232

NUS-IDS 81.203 93.031 83.153

SU-NLP 78.676 N/A N/A
ARC-NLP 85.111 93.002 85.251

Table 4: The performance of the submissions in terms
of CoNLL-2012 average score Pradhan et al. (2014) and
their ranks as a subscript for each language and each
team participating in subtask 3. Bold teams indicate
CASE 2022 entries.

data for Portuguese and Spanish, and only English
for English test data. They achieve 2nd place in
all languages. EventGraph aim to solve event ex-
traction as semantic graph parsing. They use a
graph encoding method where the labels for trig-
gers and arguments are represented as node labels,
also splitting multiple triggers. They use the pre-
trained XLM-Roberta-large as their encoder. They
achieve 4th place both in English and Portuguese,
5th place in Spanish. ClassBases take 9th place in
all languages finetuning XLM-Roberta-base trans-
formers model.

Scores
Team English Portuguese Spanish
AMU-EuraNova 69.967 61.878 56.648

Handshakes AI Research 73.535 68.156 62.216

IBM MNLP IE 78.111 73.243 66.203

SU-NLP 2.5810 N/A N/A
jitin 66.438 64.197 58.357

ARC-NLP 77.832 73.842 67.992

ClassBases 46.889 12.529 37.099

EventGraph 74.764 71.724 64.485

SPARTA 76.603 74.561 69.861

lapardnemihk9989 72.186 70.985 64.834

Table 5: The performance of the submissions in terms
of F1 score based on CoNLL-2003 (Tjong Kim Sang
and De Meulder, 2003) and their ranks as a subscript for
each language and each team participating in subtask 4.
Bold teams indicate CASE 2022 entries.
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5 Conclusion

The CASE 2022 extension consists of expanding
the test data with more data in previously available
languages, namely, English, Hindi, Portuguese,
and Spanish, and adding new test data in Man-
darin, Turkish, and Urdu for Sub-task 1, document
classification. The training data from CASE 2021
in English, Portuguese and Spanish were utilized.
Therefore, predicting document labels in Hindi,
Mandarin, Turkish, and Urdu occurs in a zero-shot
setting.

The CASE 2022 workshop accepts reports on
systems developed for predicting test data of CASE
2021 as well. We observe that the best systems
submitted by CASE 2022 participants achieve be-
tween 79.71 and 84.06 F1-macro for new languages
in a zero-shot setting. The winning approaches
are mainly ensembling models and merging data
in multiple languages. The best two submissions
on CASE 2021 data outperform submissions from
last year for Subtask 1 and Subtask 2 in all lan-
guages. Only the following scenarios were not
outperformed by new submissions on CASE 2021:
Subtask 3 Portuguese & Subtask 4 English.

We aim at increasing number of languages and
subtasks such as event coreference resolution (Hür-
riyetoğlu et al., 2022) and event type classifica-
tion(Hürriyetoğlu et al., 2021) in the scope of fol-
lowing edition of this shared task.
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Duruşan, Ali Safaya, Reyyan Yeniterzi, and Erdem
Yörük. 2022. Event coreference resolution for con-
tentious politics events.
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