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Abstract

We present our submission to Subtask 1 of the
CASE-2022 Shared Task 3: Event Causality
Identification with Causal News Corpus as part
of the 5th Workshop on Challenges and Ap-
plications of Automated Extraction of Socio-
political Events from Text (CASE 2022) (Tan
et al., 2022a). The task focuses on causal event
classification on the sentence level and involves
differentiating between sentences that include a
cause-effect relation and sentences that do not.
We approached this as a binary text classifica-
tion task and experimented with multiple train-
ing sets augmented with additional linguistic
information. Our best model was generated by
training roberta-base on a combination of
data from both Subtasks 1 and 2 with the addi-
tion of named entity annotations. During the
development phase we achieved a macro F1 of
0.8641 with this model on the development set
provided by the task organizers. When testing
the model on the final test data, we achieved a
macro F1 of 0.8516.

1 Introduction

Causal event classification can be categorized as
a part of the Natural Language Processing (NLP)
task of event extraction. When extracting event
information from text, the general aim is to iden-
tify answers to the 5W1H questions (WHO, WHAT,
WHEN, WHERE, WHY, HOW; Karaman et al., 2017).
Some of the questions can be answered easily by
means of open source NLP tools–a Named En-
tity Tagger can facilitate the extraction of locations
(WHERE) and times or dates (WHEN), for example.
However, some event information remains more
difficult to identify reliably in texts, such as an-
swers to WHY questions, which is also the type of
question that causal event classification addresses.
This task presents an opportunity to develop mod-
els that detect information about the reason behind
a particular event. For this process, a binary clas-
sifier is used to determine whether a cause-effect

relation is present in the input sentence. In an NLP
pipeline, the output of such a classification process
is often used as input for a span detection system,
which identifies the particular cause and effect text
spans in each causal sentence.

As described by Tan et al. (2022b), causality can
be expressed either explicitly or implicitly. The
authors illustrate this by providing the following
examples:

(1) The treating doctors said Sangram lost around
5 kg due to the hunger strike.

(2) Dissatisfied with the package, workers staged
an all-night sit-in.

Example 1 displays explicit causality, made appar-
ent by the presence of the causal marker "due to".
The organizers of the current shared task also refer
to this marker as the signal. In contrast, the causal
relation between the sit-in and worker dissatisfac-
tion in Example 2 is implicit, as the sentence does
not contain a causal marker.

In their survey of causal relation extraction in nat-
ural language texts, Yang et al. (2022) emphasize
the potential of domain-specific pre-trained models
in combination with graph-based models. They
also stress the importance of leveraging linguistic
information in order to identify both implicit and
explicit causal relations. For this reason, the current
study focuses primarily on experiments regarding
the integration of linguistic information in the train-
ing data, to be used as input for the fine-tuning of
pre-trained transformer models.

The remainder of this paper is structured as fol-
lows: Section 2 introduces the shared task and
the dataset. In Section 3, we describe the training
process, model configuration details, and the lin-
guistic dataset alterations that we tested. Results
are presented in Section 4 and discussed in Section
5, followed by concluding remarks and a summary
of our findings in Section 6.
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2 Dataset and Task

The CASE-2022 Shared Task 3 on Event Causality
Identification is divided into two subtasks. The
data provided by the organizers stems from the
Causal News Corpus, a collection of 3,559 English
annotated event sentences from 869 news articles
about protests (Tan et al., 2022b). The goal of Sub-
task 1 is to determine whether an event sentence
contains a cause-effect relation. Subtask 2 is con-
cerned with identifying the spans that correspond
to cause, effect, or signal in each causal sentence.
We developed and submitted models for the first of
these two subtasks.

For the development phase, the task organiz-
ers provided a training dataset consisting of 2925
training instances. Sentences with the label 0
(n = 1322) did not contain a causal relation, while
sentences with the label 1 included a causal relation
and were in the majority (n = 1603). In addition,
an unlabeled development set of 323 sentences was
made available in order to allow for model testing
via the CodaLab submission portal.

Preliminary exploratory analysis of the data pro-
vided for the development phase revealed an aver-
age inter-annotator agreement of 88.27% for causal
sentences, while sentences labeled as containing
no causal relation had an average agreement of
77.89%. Between 1 and 3 annotators labeled each
sentence, coming to a consensus of 100% agree-
ment for 70.31% (n = 1127) of the causal sen-
tences but only 47.35% (n = 626) of the non-
causal sentences.

For the test phase, the previously unlabeled de-
velopment set was re-released with annotations so
that it could be used as additional training data. An
unlabeled test set of 311 previously unseen sen-
tences was made available for the final testing and
scoring process.

3 Methodology

We fine-tuned pre-trained language models (PLMs)
on the training data and adjusted the model hyper-
parameters accordingly. We then tested four differ-
ent methods of augmenting the training data with
linguistic information and compared their efficacy.

3.1 Model settings
We used the Flair framework (Akbik et al., 2019)
for model configuration and training. For the
development phase, the original data was shuf-
fled and divided into train, validate, and test

sets (80/10/10). Using the roberta-base and
bert-base-cased PLMs for comparison, we
applied document embeddings to each sentence
and fine-tuned the learning rate and batch size
hyperparameters (Devlin et al., 2018; Liu et al.,
2019). Weights were assigned to the different
classes during training to account for the unbal-
anced distribution in the data with the help of
the Scikit-learn class_weight parameter (Pe-
dregosa et al., 2011). As the negative class was
slightly underrepresented, it was assigned a propor-
tionally higher weight.

3.2 Data Manipulation

In addition to adjusting model settings, we exper-
imented with manipulating the model input and
adding pertinent linguistic information during the
development phase of the shared task. During the
final testing phase, we retrained and tested our best
model again using the additional data provided by
the organizers. Regardless of the training data used,
the test instances were always in the form of indi-
vidual sentences, with no additional information
added.

Baseline dataset In order to have a baseline for
comparison, we used an unchanged version of
the training data to fine-tune both the BERT and
RoBERTa PLMs. This data consisted of individ-
ual sentences and corresponding binary labels (cf.
Example 3).

(3) Some protesters attempted to fight back with
fire extinguishers. 0

Flair NER We used the standard 4-class Flair
NER model (pre-trained on the English CoNLL-
03 task) to identify named entities of type Person
(PER), Location (LOC), Organization (ORG), and
Miscellaneous (MISC) in the training data, creat-
ing new training sets that contained all possible
combinations of the four named entity classes. The
identified text spans were replaced with the appro-
priate named entity tag (cf. Example 4).

(4) On Monday, the African National Congress
condemned the shooting of Malunga, the Os-
habeni branch chairman, and Chiliza, the
branch secretary.

On Monday, the ORG condemned the shoot-
ing of PER, the LOC branch chairmain, and
PER, the branch secretary.
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AllenNLP The AllenNLP library was used to
annotate the original training data with the seman-
tic role labels ARG0 (proto-agent), ARG1 (proto-
patient) and ARGM-CAU (cause clause) (Shi and
Lin, 2019). The annotations were then added to the
sentences as illustrated in Example 5.

(5) [ARG0: Mainland authorities] have launched
[ARG1: a massive crackdown against terror-
ism] [ARGM-CAU: in wake of a string of
violent attacks in the restive Xinjiang region
and other cities on the mainland].

The starting point for the semantic role annotations
was always the root of the sentence (e.g. the word
"launched" in Example 5), which was determined
with the help of the spaCy English dependency
parser (Honnibal and Montani, 2017). The inclu-
sion of explicit annotations for cause clauses in the
training data seemed promising in the context of
the given task. However, the AllenNLP model was
only able to identify cause clauses in 1.6% of the
training instances. We suspect that the model fails
primarily at recognizing cause clauses in sentences
that contain cause-effect relations only implicitly.
Due to the small amount of annotations, we deter-
mined that this feature was not meaningful enough
to improve classifier performance.

Cause-Effect-Signal Spans A further training
dataset was created by adding information from
the data provided for Subtask 2, which was iden-
tical to the Subtask 1 data, with the addition of
Cause-Effect-Signal (CES) span annotations. All
sentences from the negative class in the Subtask 1
data were added to the new training set without any
annotations.

(6) <ARG1>They then decided to call off
the protest</ARG1> <SIG0>as</SIG0>
<ARG0>the police had ceded to their
demand</ARG0> .

Sentences from the positive class were replaced
with the corresponding annotated version from the
Subtask 2 data (cf. Example 6). If the Subtask
2 data listed more than one possible annotation
option for a sentence, the first option was selected.

NER & Cause-Effect-Signal Spans After creat-
ing the training set with Cause-Effect-Signal span
annotations, we also used the 4-class Flair NER
model to identify named entities and replaced the
named entity text spans with the corresponding la-
bel (PER, LOC, ORG, MISC) in all training instances.

(7) <ARG1>Police took into custody fifteen
activists</ARG1> <SIG0>for</SIG0>
<ARG0>blocking the traffic in
LOC</ARG0>.

Example 7 shows a training instance from the posi-
tive class containing both NER and Cause-Effect-
Signal annotations. We experimented by including
all possible combinations of named entity classes
during training.

4 Results

4.1 Development phase

Models trained using roberta-base outper-
formed those trained with bert-base-cased.
For this reason, we choose to focus on the models
trained with the former architecture in the follow-
ing pages. Regardless of the data used, the fol-
lowing hyperparameters worked best for all mod-
els: a batch size of 8, a learning rate of 3e-5, and
the ADAM optimizer. The maximum number of
epochs was set to 20, but training was terminated
early if it became obvious that the model was over-
fitting the data, which could be observed as early
as epoch 3.

Three of the four methods for adding linguis-
tic information to the model input positively af-
fected model performance: 1) Flair NER annota-
tions; 2) Cause-Effect-Signal spans from the Sub-
task 2 data; or 3) a combination of both NER and
Cause-Effect-Signal spans. When training models
with data containing Flair NER annotations, we
found that including only the PER and LOC classes
(RoBERTa+PER+LOC) resulted in the best per-
formance. When the training data contained both
Cause-Effect-Signal spans and Flair NER classes,
however, performance was better when only the
PER class was included (RoBERTa+PER+CES).

The best performing model on the devel-
opment set provided by the organizers was
RoBERTa+PER+LOC with a macro F1 of 0.8802
(cf. Table 1). However, performance was incon-
sistent. When we tested the model on our self-

Model configuration Precision Recall Macro F1
RoBERTa baseline 0.8256 0.9045 0.8633
RoBERTa+PER+LOC 0.8729 0.8876 0.8802*
RoBERTa+CES 0.8571 0.8427 0.8499
RoBERTa+PER+CES 0.8368 0.8933 0.8641

Table 1: Results of development phase scoring. Best
performing model is marked with *.
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Model configuration Precision Recall Macro F1
BERT baseline (Tan et al., 2022a) 0.7801 0.8466 0.8120
LSTM baseline (Tan et al., 2022a) 0.7268 0.8466 0.7822
RoBERTa baseline 0.8000 0.9091 0.8511
RoBERTa+PER+LOC 0.7914 0.8409 0.8154
RoBERTa+CES 0.8239 0.8239 0.8239
RoBERTa+PER+CES 0.8245 0.8807 0.8516*
RoBERTa+PER+CES+FullDataset 0.8343 0.8580 0.8459

Table 2: Results of final test phase scoring. Best performing model is marked with *.

compiled test set during the training phase, the
macro F1 score peaked at 0.8578, leading us to
question the robustness of the model.

The RoBERTa baseline and the
RoBERTa+PER+CES models performed sim-
ilarly (macro F1 scores of 0.8633 and 0.8641,
respectively) with regard to the development set
and exhibited more robustness, i.e. the variance
between development and self-compiled test set
was comparatively small. The RoBERTa+CES
model scored slightly lower than the other models
with a macro F1 of 0.8499.

4.2 Test phase
Table 2 shows our results from the final test-
ing phase of the shared task, as well as the
baselines provided by the organizers. Hyper-
parameter settings used for development were
kept constant for the final testing phase, as
were the training datasets, with the exception of
RoBERTa+PER+CES+FullDataset. This model
was trained using the additional labeled data pro-
vided by the organizers for the final testing phase.

Models trained during the development phase
consistently achieved lower macro F1 scores on
the final testing data. The best model from the
development phase (RoBERTa+PER+LOC) per-
formed poorly with a macro F1 of 0.8154, support-
ing the idea that the model was not robust. The
RoBERTa+PER+CES model achieved the high-
est macro F1 score of 0.8516, outperforming the
RoBERTa baseline model by only 0.0005. Surpris-
ingly, re-training this best model with the additional
training data provided by the organizers did not im-
prove model performance, resulting in a macro F1
score of only 0.8459.

5 Discussion

The discrepancies between the scores for the de-
velopment and final testing phases call for a closer

investigation of the model input and output. The
results from the development phase suggest that
model performance increases when training data
includes linguistic information in the form of 1)
named entity annotations for the PER and LOC

classes, or 2) as a combination of both PER named
entity annotations and Cause-Effect-Signal spans.
Adding only Cause-Effect-Signal spans, however,
appears to have had a negative impact on model
test scores.

The fact that the RoBERTa+PER+LOC model
outperformed the RoBERTa+PER+CES model also
suggests that named entity information may prove
more useful than Cause-Effect-Signal spans. It is
frequently the case that named entities of type PER,
i.e. proper nouns, have the semantic role of AGENT

or PATIENT in a sentence. Replacing these nouns,
along with location names, with named entity tags
distills this important information and reduces the
number of superfluous words in the data. We sug-
gest that this creates a clearer pattern for the model,
which in turn improves performance.

In the final test phase, however, only
RoBERTa+PER+CES outperformed our estab-
lished RoBERTa baseline by a small margin, while
RoBERTa+PER+LOC and RoBERTa+CES had the
lowest macro F1 scores. According to these results,
it seems that adding linguistic information to the
training data in the form of named entity annota-
tions or Cause-Effect-Signal spans only leads to
minute increases in model performance. It may be
that our RoBERTa baseline model is able to extract
this particular linguistic information on its own
without the need for additional feature engineering.
Further experimentation with linguistic features is
needed in this area.

With only 2925 sentences, the size of the original
amount of training data is also a potential factor that
affected model performance. More training data
would most likely increase model performance.
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A closer investigation of the data revealed that
some annotations also leave room for discussion,
such as the sentence in Example 8:

(8) The house of a PDP MP was torched in south
Kashmir. 1

The sentence is labeled as belonging to the positive
class, but we were unable to identify a cause-effect
relation. This shows that identifying causality can
pose difficulties for expert human annotators. Such
instances may negatively influence the detection of
causal patterns during training.

Interestingly, re-training our best model with the
additional training data in the final testing phase
did not improve performance. Furthermore, the
testing data used for evaluation in the development
phase appears to consist of sentences from only two
news articles. The data basis for development was
accordingly very homogeneous and most likely did
not provide an accurate representation of all pos-
sible articles that the model might need to classify
in a real-world application. Optimization based on
homogeneous data can lead to a preference for mod-
els that work well with that specific data but fail to
generalize to more diverse data. The difference in
model performance between the development and
test phases might be evidence of this phenomenon.

6 Conclusion

Training data—including the source, domain,
amount, and any added features—plays an impor-
tant role when it comes to model optimization for
NLP tasks, and the subfield of event causality is no
exception. Our findings show that the generalizabil-
ity of a model depends heavily on the quality and
content of the model input. In our case, adding lin-
guistic information to the training data only led to a
minute increase in model performance as compared
to our established RoBERTa baseline. It is possible
that a larger training dataset would improve results.
In addition, a larger, more diverse testing dataset
is necessary in order to adequately evaluate the ro-
bustness of the model and predict its effectiveness
for real-world applications. Future directions might
also include a greater focus on strategies for the
identification of implicit cause-effect relations.
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