BETOLD:
A Task-Oriented Dialog Dataset for Breakdown Detection

Silvia Terragni, Bruna Guedes, Andre Manso,
Modestas Filipavicius, Nghia Khau and Roland Mathis
Telepathy Labs GmbH
Ziirich, Switzerland
{firstname.lastname}@telepathy.ai

Abstract

Task-Oriented Dialog (TOD) systems often
suffer from dialog breakdowns - situations in
which users cannot or do not want to proceed
with the conversation. Ideally TOD systems
should be able to detect dialog breakdowns to
prevent users from quitting a conversation and
to encourage them to interact with the system
again. In this paper, we present BETOLD, a
privacy-preserving dataset for breakdown de-
tection. The dataset consists of user and sys-
tem turns represented by intents and entity an-
notations, derived from NLU and NLG dia-
log manager components. We also propose
an attention-based model that detects potential
breakdowns using these annotations, instead of
the utterances’ text. This approach achieves
a comparable performance to the correspond-
ing utterance-only model, while ensuring data
privacy.

1 Introduction

Task-Oriented Dialog (TOD) systems (Zhang et al.,
2020) enable users to complete specific tasks, such
as booking a reservation at a restaurant. Unlike
open-domain dialog systems (Huang et al., 2020),
where the aim is to maximize user engagement, in
TOD systems it is crucial to optimally assist a user
to fulfill the task at hand. Detecting dialog break-
downs due to miscommunications potentially paves
the way to intervene and rescue the dialog, improve
customer satisfaction and motivate the user to con-
tinue interacting with the system (Brandtzaeg and
Fglstad, 2018).

A dialog breakdown is often defined as a point in
the dialog where the user gives up the conversation
without completing the task, often due to not under-
standing the intended meaning of user’s utterance
(Martinovski and Traum, 2003; Higashinaka et al.,
2015). If conversational system engineers can un-
derstand when and why a conversation is likely
to break down, they can build systems that pre-

23

vent broken dialogs, or design conversational break-
down recovery strategies (Benner et al., 2021).

The Dialog Breakdown Detection Challenge
(DBDC) has motivated the academic community’s
interest in the breakdown detection problem, which
is the goal of predicting the occurrence of a
breakdown at some point in the conversation (Hi-
gashinaka et al., 2016). This challenge also came
with the release of English and Japanese datasets
for addressing this task. Despite the great value
of these proposed datasets, they only provide the
sequence of user and system utterances. Utterances
are indeed useful to detect a breakdown, however,
in certain contexts, especially in industry, a stake-
holder may decide not to share and release the texts
for privacy preserving purposes (Xu et al., 2021).

The utterances produced by a user during a
task-oriented conversation often contain privacy-
sensitive information. Let us consider a dialog
system in a company that handles issues relating to
human resources as an example. The system may
receive data regarding an employee’s health status
or compensation, i.e., data that a company is un-
willing to share. In this paper, we demonstrate that
even without access to the text of the conversation,
it is still possible to identify a breakdown. In fact,
traditional dialog systems often provide synthetic
annotation of the user and system utterances as the
intents and entities, originating from the Natural
Language Understanding (NLU) and Natural
Language Generation (NLG) components (Wahde
and Virgolin, 2022). In particular, the NLU
component classifies the user utterances into
intents (book_appointment) and extracts
entities (user_name="“John Smith”). The
NLG component consists of a closed set of
possible system utterances (each defined by a
unique intent), often parameterized by or supple-
mented with entities (e.g. “restaurant_name
is open on day_of_the_week”, where
restaurant_name and day_of_the_week

Proceedings of the 2nd Workshop on When Creative AI Meets Conversational AI (CAI2), COLING 2022, pages 23-34
October 12-17, 2022.

BETOLD DBDC DSTC2
Task-oriented dialogs ~ Yes partially Yes
. Task domain phone repair mixed restaurant, tourist info
Annotation . .
Feat Annotation by automatic human human
catures Has intents Yes Yes Yes

Has entities Yes No Yes

BD* annotated by system human human

BD label Yes Yes NO**
Breakdown D defined as caller hangup & nonsensical %nferred from
Features transfer request system reply intent

Number of classes 2 3 2

Partial BD label No Yes No

BD initiated by caller ~ Yes No Yes
System
Abilities ASR and TTS Yes No No

Dialogs 13,524 615 2,115
Statistics # uttejrances per dialog 10 20 2

(median)

Table 1: Comparison of our BETOLD and other two publicly available datasets used for breakdown detection. *BD
stands for “breakdown”. **User’s intent “restart” could be used as a substitute for breakdown.

are two entities).

In our study, we propose a simple yet effective
way to automatically create a new breakdown de-
tection dataset, given an existing TOD system. In
particular, we consider a phone-call scenario, in
which a customer talks to a digital assistant to
schedule a service appointment for their mobile
phone. In our experience, two central events indi-
cating caller’s frustration with the current dialog
state and projected outcomes are: a) hang-ups, b)
requests to talk to a human agent. Therefore, we
consider caller hang-ups and transfer to human re-
quests as dialog breakdowns.

We also release a novel task-oriented dialog
dataset BETOLD (Breakdown Expectation for
Task-Oriented Long Dialogues) with the proposed
annotation schema. The dataset contains real
human-agent conversations, between customers
and our modular dialog system. The system au-
tomatically annotates the user utterances with NLU
intents and entities, and generates appropriate NLG
responses which contain NLG intents and accom-
panying entities.

Finally, we propose an attention-based model,
capable of taking these features into account. Our
results show that, instead of relying only on the
word tokens of the utterances, the use of NLU and
NLG intents is sufficient to confidently predict a
breakdown in a task-oriented conversation, there-
fore reaching satisfactory results while guarantee-
ing the privacy of the data.

24

2 Related Work

2.1 Datasets for Breakdown Detection

Only few task-oriented dialog breakdown datasets
are openly available. We report the most relevant
ones in Table 1. Overall, they are small and human-
annotated, and with varying definitions of dialog
breakdown.

The Dialogue Breakdown Detection Challenge
(DBDC) offers a small dataset with 615 English
conversations, annotated with system utterances
that cause dialog breakdown (Higashinaka et al.,
2016). It contains three classes: breakdown, pos-
sible breakdown, and no breakdown. However, no
intents and entities annotations are available. Ad-
ditionally, opposite to BETOLD, most of conver-
sations in DBDC are open-domain. Another open-
source alternative is the Dialog State Tracking Chal-
lenge (DSTC?2) dataset, which unfortunately lacks
breakdown annotations (Williams et al., 2014).
However, 7 out of 2,115 conversations have an in-
tent “Restart” which. If more prevalent, this could
be used as a substitute for breakdown.

Similar to our work, Gorin et al. (1997) anno-
tated 10,000 TODs between customers and agents.
Subsequent experiments with the same dataset iden-
tified user hangup and requests to transfer to human
agent as a specific learning problem, as proposed
in our work (Walker et al., 2000). However, the
dataset is not publicly available. Further exam-
ples of closed-source studies feature predicting in-

teraction quality from automatically extracted fea-
tures (Schmitt et al., 2011) or manually-annotated
features by AMT workers (Meena et al., 2015).
These studies used publicly available un-annotated
datasets, however the authors did not release their
annotations.

2.2 Models for Breakdown Detection

The initial approaches to the breakdown identifi-
cation problem focused on extracting features that
can characterize a breakdown (Schmitt et al., 2011;
Meena et al., 2015; Walker et al., 2000). Textual
features can be used to compute similarity between
the system utterance and user utterance (Meena
et al., 2015), or detecting emotions from utter-
ances and using them as indicators of a dialog
breakdown (Schmitt et al., 2011; Matsumoto et al.,
2022). Alternatively, dialog manager-generated
tabular features such as repetitions, negations, or
utterance counts can be considered as well (Walker
et al., 2000; Schmitt et al., 2011).

With advent of the DBDC challenge, novel ap-
proaches have been proposed, yet limited by the
available dataset features. These approaches rely
solely on the textual utterances and the number
of turns. They explore both traditional (Kato and
Sakai, 2017; Sugiyama, 2021) and deep learning-
based models (Hendriksen et al., 2021; Wang et al.,
2021; Park et al., 2017). Given the sequential na-
ture of dialogs, many models exploit sequential
architectures, such as RNN or LSTM (Hendriksen
et al., 2021; Wang et al., 2021; Shin et al., 2019;
Lee et al., 2020), or they use an attention mech-
anism to determine the utterance embeddings on
which to focus the attention (Park et al., 2017).
Considering the encoding of the text, different ap-
proaches have been investigated: from the use
of static word embeddings such as Glove and
Word2Vec (Hendriksen et al., 2021) to contextu-
alized embeddings, e.g., BERT (Sugiyama, 2021;
Shin et al., 2019).

3 A Privacy-Preserving Dataset for
Breakdown Detection

3.1 Dataset Creation

The considered conversations are based on real
conversations between a human and a task-oriented
dialog system, with the goal of scheduling or can-
celing an appointment. The user interacts with the
system over the phone. We considered four scenar-
10s in which a phone call could end:

25

* successful calls: the caller hangs up after the
caller’s goal has been satisfied (e.g. the agent
has successfully scheduled a booking);

agent-initiated forwarded calls: the agent
takes the decision to forward the call (e.g.
technical problems with the system);

user-initiated forwarded calls: the user ex-
plicitly requests to talk to an operator, identi-
fied by the transfer_to_human intent. (This
may include NLU misclassifications);

user-initiated caller hangup: all the remain-
ing calls.

A conversational engineer strives to avoid both user-
initiated forward calls and user-initiated hangups.
However, observing the data, we can see that the
caller’s behavior changes depending on the num-
ber of turns. There is no way to prevent the caller
from hanging up in the initial turns: This is the
case when a user does not want to speak to a digital
assistant at all. We report in Figure 1 the distribu-
tion of the different types of phone calls over the
number of turns.

10000 ~ successful call
agent-initiated forward call
user-initiated forward call

user-initiated hangup

8000

6000 -

4000

2000

number of conversations

15
number of turns

20

Figure 1: Distribution of the different types of phone
calls over the number of turns on a sample of 45,385 con-
versations.

Given these considerations, we focus on user-
initiated forward calls and hang-ups occurring late
in the conversation. We will refer to these calls as to
LUHFs (Late User-initiated Hang-ups or Forward
calls), a particular class of dialog breakdowns.

LUHFs are the types of calls that we aim to
predict (positive examples). We consider as late
conversations all the calls that reach at least the 8th
turn. On the other hand, late successful calls are
the negative examples of the dataset. In particular,
we sample successful calls and then truncate the
conversations at a random point (still, after the

Utterance

Intent

Entities

S: Are you a registered customer?

H: Uhm no

S: Can I book your service appointment under the
phone number ending in <1234>?

H: Yeah that’s correct

S: What is the brand, model and year of your phone
device?

H: It’s a <phonepink> why 100 <2022>

S: What is the model of phone device?

H: It is <y100>

S: What is the battery health percentage of your phone
device?

H: <zero>

S: What is your first name?

H: My name’s <John>

S: Great, what is your last name?

H: <Smith>

S: What service does your phone device need?

H: Uhm <battery replacement>

ask_if current_client
negate

confirm_phone_number

user_phone_suffix

confirm
new_user_profile_brand_model_year

inform

brand_device, year

ask_device_model

inform

model_device

ask_for_battery_health

inform numeric
ask_first_name ask_last_name
inform client_name

ask_last_name

inform

client_name

ask_desired_service

inform

type_of_repair

Table 2: Extract of a conversation between the system and a human. The entity values are enclosed by angular

parentheses in the utterances.

“late”-call threshold). The user-initiated forward
calls are also truncated from the point when the
caller asks to be transferred. The ratio successful
calls/LUHFs is 2:1. As a result, the dataset contains
13,524 calls (4,508 LUHFs and 9,016 not LUHFs).
Let us notice that the dataset contains noisy data
because it is automatically annotated. Conversa-
tions may lead to a user-initiated forward, for ex-
ample, even if there was no indication of user frus-
tration. Similarly, a user may become irritated with
the conversation but still decide to end the call.
Moreover, it is worth noticing that the provided
annotation is not at the utterance-level. Instead,
a LUHF/not LUHF annotation refers to the over-
all conversation. In other words, if a conversation
is a LUHF, we are not aware of at which point
of the conversation a breakdown occurred. These
elements make the predictions more challenging.

3.2 Dataset Features

The dialog system is composed of different mod-
ular components, including an NLU and an NLG
component. The NLU provides annotations to the
user’s utterances, i.e. the intent and the entities, rec-
ognized by an intent classifier and a named-entity
recognition system respectively. The NLG also pro-
vides the name of the intent and the entities, uttered
by the system. The NLG intents are always differ-
ent from the NLU intents. On the other hand, the

26

NLG and NLU may have some entities in common.

3.3 Dataset Anonymization for Privacy
Preservation

We anonymize the original data to protect the pri-
vacy of the original conversation content. In par-
ticular, we remove natural-language text and entity
values. Keeping only the intent and entity annota-
tions guarantees the privacy of the data.

We report an example of a fictitious conversa-
tion in Table 2, reporting the utterances exchanged
between the system and a human. The detected
entities are enclosed by angular parentheses in the
utterances. We can notice that the caller releases
sensitive information, such as the name and phone
number. The entities and the intents are a synthetic
way to represent the utterances, and therefore to
substitute the utterances with these annotations is
a valid way to proceed. One may argue that, in
order to not lose much information, it could be
possible to keep the text and remove only the en-
tity values. This approach would work fine only
with a perfect NLU that is able to recognize all the
entities in the text. As we can see from Table 2,
the entity mode1_device is not detected the first
time. Moreover, the caller may reveal other types
of sensitive information that an NLU is not sup-
posed to detect. Since the NLU is prone to these
errors and may not detect an entity in the text, it is

indeed safer to remove all the textual information
to preserve the privacy of the data.

not LUHFs 9016
LUHFs 4508
#labels 1 UHs 2477
LUFs 2765
min 8
#turns max 34
avg 10
NLG and NLU unique intents 91
NLG and NLU unique entities 41

Table 3: BETOLD dataset statistics.

Table 3 reports the main dataset statistics. The
resulting privacy-preserving dataset, named BE-
TOLD (Breakdown Expectation for Task-Oriented
Long Dialogues), is available at the following link:
https://github.com/telepathylabs
al/BETOLD_dataset.

4 An Attention-based Model for LUHF
Detection

The task in BETOLD dataset is to classify if a
conversation between a human and the system is
a LUHF or not. In this setting, it is fundamental
to keep track of what happened in the past, rep-
resented by the dialog history. We therefore in-
vestigate an attention-based architecture (Vaswani
et al., 2017), that has proved to perform well in sev-
eral dialog-related tasks (Qin et al., 2021; Colombo
et al., 2020; Zhao and Kawahara, 2019; Hori et al.,
2016), including dialog breakdown detection (Park
et al., 2017).

4.1 Model Architecture

A conversation between a human and the system
can be represented as a sequence x of n tuples,
where each element of a tuple represents a differ-
ent feature. Here, the features include the caller
name (either NLG or NLU), the intents, and the
entities. The sets of possible values (also called
vocabularies) of each feature are represented by C,
I, and FE for the caller names, intents and entities
respectively. The sequence z is then:

xr = (cl,il,el), (Cz,ig,eg), ey (Cn,in,en) (1)

where (c;j,4;5,¢€;) is a tuple composed of a caller
name c¢; € C, an intent 7; € I and an entity set

27

e; € P(E)and j = 1,...,n. We refer to the
entities as entity set, because for each tuple, we can
have zero, one or more entities. The vocabulary
sets C, I and F have different dimensions, to which
we add an unknown symbol for unseen elements
and a padding symbol.

For each of these features, the model learns em-
bedded representations of dimension m. These
vector representations are then summed up, obtain-
ing a m-dimensional vector, which is then passed
through a positional encoding layer, to keep track
of the order of each element of the sequence. The
resulting sequence of m-dimensional vectors is
used as input to the Transformer encoder. The
Transformer encoder is a stack of ¢ encoder lay-
ers of [dimensionality. The output sequence of
the Transformer encoder is averaged and the re-
sulting vector passes through a sequence of linear
layers. Finally, we apply a sigmoid function to the
last layer to get the predicted score (LUHF or not
LUHF). We use a weighted Binary Cross Entropy
(BCE) loss to optimize.

Figure 2 shows a sketch of the proposed archi-
tecture. Each type of feature is represented in a
different color.

S5 Experimental Setting

5.1 Text-only Baseline

Our goal is to demonstrate that a text-free model
can achieve comparable performance to a text-
based model. As a consequence, we consider the
text-only model to be our baseline model. The
available text is represented by the user and sys-
tem utterances. We use Sentence-BERT (Reimers
and Gurevych, 2019) to generate a contextualized
sentence representation for each utterance.

We use the same type of architecture as the pro-
posed model to ensure a fair comparison, except
that the model’s input is different, i.e. dense vector
representations of text. We call this model TEXT.

5.2 Models

We compare the text-only baseline TEXT with dif-
ferent variants of the proposed model. To identify
the single contribution of the entities and intents,
we consider two variants of the model, namely INT
and ENT, as the models that rely solely on intents
or entities respectively. We then consider a model
that combines all the features (intents, entities, and
caller type (NLU or NLG)), referred to as IEC.
The implementation of the models is available at

https://github.com/telepathylabsai/BETOLD_dataset
https://github.com/telepathylabsai/BETOLD_dataset

learnable
embeddings

input
sequence

transformer
encoder

decoding output

I i

Stacked
Transformer
Encoders

m-dim
ask_battery_health |= - |¢ »l | -
- BER
n
- | |- |G
= 3]
e+ |} (L2 -
e °
3 L g
@]
- ¢ |-
=% E
[+ |5 |-CLL 2 T
- - -
[w - |»[IT1T]
‘ inform "‘ "I]] | |" "l | | | |-'
| type_of _repair "’ "| | l | |

I-dim
J[I10-
o
E
~[TT1» 3
o 3 a
3 -dim Linear g
£ +| decocing =[]]= 2 #[22]
@ layers S | probability
; of predicting
-[I-

Figure 2: Sketch of the model architecture. To train the LUHF/not LUHF classifier multiple features are embedded
and summed before a transformer encoder block followed by linear layers. The represented features are callers
(orange, possible callers are “NLG” and “NLU”), intents (yellow, 91 intent names from NLU and NLG), and entities

(blue, 41 entity names from NLU and NLG).

the following link: https://github.com/t
elepathylabsai/dialog_breakdown_
detection.

5.3 Hyperparameter Setting

For running the experiments, we split the dataset
into three parts: 80% for training, 10% for testing,
and 10% for validation. We run all models for 50
epochs and then select the best model based on the
validation set. We augment the training data by
adding successful calls. In particular, we truncate
the successful calls at random points and use them
to expand the training data. We added 30% more
successful calls to the overall training data. We
do not perform data augmentation for the LUHFs
because the LUHF annotation refers to the overall
conversation and we have no hints about at which
point in the conversation something went wrong.

We use grid search to determine the optimal hy-
perparameter configuration of the models. In partic-
ular, since we are more interested in the prediction
of a LUHF rather than the prediction of a not LUHF,
we select the optimal configuration based on the
F1 score of the LUHF class. For the text-only
model TEXT, we use the a11-MiniLM-L6-v2
pre-trained model to obtain the utterance represen-

28

tations.! Any document embedding model can be
used to generate the utterances representations and
feed the TEXT model. We run the TEXT model on
the non-anonymized version of BETOLD, ensur-
ing the same train/test/validation splits for a fair
comparison. See Appendix A for further details on
the hyperparameters.

6 Results
6.1 Quantitative Analysis

Table 4 reports the results of the models in terms of
the F1 score for each class and the macro-averaged
score. As a first remark, the models ENT and INT
obtain a similar performance. This is probably due
to the fact that some intents can be recognized by
the entities of which they are composed. But since
not all the intents are characterized by entities, the
ENT model is not able to reach the same perfor-
mance as the INT one.

Focusing on the TEC model, which combines
the intents, entities, and caller type, we can notice
that this model gets improved performance with re-

'See https://huggingface.co/sentence-t
ransformers/all-MiniLM-L6-v2. In a preliminary
investigation, we tried different pre-trained sentence embed-
ding models made available by Hugging Face. Here, we report
the results with the best performing model.

https://github.com/telepathylabsai/dialog_breakdown_detection
https://github.com/telepathylabsai/dialog_breakdown_detection
https://github.com/telepathylabsai/dialog_breakdown_detection
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

LUHF not LUHF Macro avg

Fl1 Fl Fl1
TEXT 0.798£0.016 0.903 +£0.005 0.850 £ 0.010
INT 0.727£0.018 0.8774+0.002 0.802 £ 0.010
ENT 0.707+£0.018 0.867 £0.007 0.787 +0.011
IEC 0.744 £0.008 0.8794+0.003 0.812+£ 0.005

Table 4: Results of the considered models in terms
of F1 score. We report the average and the deviation
of 5 independent runs with the same hyperparameter
configuration.

spect to the INT and ENT counterparts, as expected.
IEC also obtains good performance if compared
with the text-only baseline. It is worth noticing
that the TEXT model is indeed a strong baseline:
the intents and entity annotations provided by the
dialog manager synthesize the meaning of an utter-
ance, mapping them to a finite set of intents and
entities. With this process, we inevitably lose some
information about the dialog. Moreover, intent and
entity annotations are prone to classification errors:
the NLU may misclassify an intent or it may not
detect an entity. Despite these difficulties, the IEC
model can reach a comparable performance to the
TEXT baseline, suggesting that it is possible to con-
fidently identify a breakdown even without taking
text into account.

6.2 Qualitative Analysis

In this section, we discuss some qualitative exam-
ples of the TEC model on the test set, one of a
LUHEF classification and one of a not LUHF mis-
classified as a LUHF.

Let us consider the conversation shown in Ta-
ble 5. For each step of the conversation, we report
the corresponding caller type (NLG or NLU), the
intent, the entities, and the probability of identi-
fying a LUHF. We filter out the first steps of the
conversations due to space limitations. Let us re-
call that the LUHF annotation corresponds to the
overall call. Therefore the model was not trained
on each step of the conversation because there is
no information about if a breakdown occurred at
a given step. We will further discuss this issue in
Section 7. Nevertheless, we can still compute the
probability of identifying a LUHF at each step for
a conversation, by generating a synthetic dataset
composed of the same conversation but incremen-
tally truncated.

Table 5 shows that the probability of detecting
a LUHF increases as the conversation progresses.

29

However, the probability often decreases after a
user input, represented by an NLU annotation. We
presume that this behavior happens because a user
is less likely to hang up after replying and would
wait until the next utterance before deciding to
hang up. For example, at step 23, a user negates
the proposed date of the system. This may be a
signal of a breakdown and indeed the probabil-
ity of a LUHF increases at step 24. The intent
time_asked_unavailable_propose_new indicates an
NLG intent where a time preference proposed by
the user is unavailable, therefore the system pro-
poses a new time. This can be an additional signal
for a breakdown, which in fact increases the proba-
bility of detecting a LUHF.

In Table 6, we report an example of a not LUHF
that has been classified as a LUHF at the final
step of the conversation. As before, we eliminated
the early steps of the call, where the conversation
flowed nicely. At steps 13 and 16, the probability
of predicting a LUHF increases, although there are
no clear indications of a breakdown. It is worth not-
ing that in the previous example the probability of a
LUHF also increased after the intent propose_date
(Table 5). Many LUHFs may happen in correspon-
dence to this intent, therefore biasing the model to
believe that this intent is an indication of a break-
down.

7 Limitations

As mentioned in Section 3.1, the labels in BETOLD
are automatically assigned to each conversation.
Therefore, it is possible that a conversation where
everything goes smoothly but suddenly the user
decides to hang up is classified as LUHF. Simi-
larly, the user may decide to reach the end of the
conversation even if they are extremely unsatisfied
with the call. This case is not considered a dialog
breakdown.

In addition to this issue, a LUHF annotation ap-
plies to the overall call and is not an indication of
what happened during at each step of the conver-
sation. A model that generalizes well should be
able to predict whether a LUHF happened at each
step of the call. The process of data augmentation
described in Section 5.3 is an attempt to address
this issue. This is, however, limited to not LUHF
calls, given that we have no guarantees on when
a breakdown happened in a conversation. Instead,
we are quite confident that, if a call was successful,
it was also successful in the previous steps.

Step Caller Intent

Entities Probability

of LUHF
9 NLG ask_for_battery_health 0.002
10 NLU inform numeric 0.000
11 NLG ask_first_name 0.109
12 NLU inform client_name 0.002
13 NLG ask_last_name 0.296
14 NLU inform client_name 0.016
15 NLG ask_desired_service 0.344
16 NLU user_initial_request type_of_repair 0.033
17 NLG ask_additional_service 0.262
18 NLU inconclusive 0.012
19 NLG transportation_of_device ask_to_schedule, 0.253
ask_means_of_transportation
20 NLU confirm 0.014
21 NLG inform_schedule_inspection 0.012
22 NLG propose_date transportation_type_selection, 0.269
available_slot_to_schedule
23 NLU negate 0.033
24 NLG ask_time_preference 0.378
25 NLU user_proposed_date time_range_indication 0.153
26 NLG time_asked_unavailable_propose_new transportation_type_selection, 0.922
available_slot_to_schedule,
user_request_start_time
27 NLU negate 0.764
28 NLG ask_time_preference 0.960

Table 5: Example of LUHF conversation correctly classified.

Figure 3 shows a density histogram of the proba-
bility by class of predicting a LUHF, averaged over
all the conversation steps, for the test set conversa-
tions. As we can observe in the plot, the average

3.0 1 = LUHF

not LUHF

2.51

Density

0.0 0.2 0.6 0.8
Probability of predicting a LUHF averaged over

different steps of a conversation

0.4

10

Figure 3: Histogram of the average probability of pre-
dicting a LUHF by class.

probability of predicting a LUHF in a not LUHF
call is low in general. We recall that we have
more data available for the successful calls (the
not LUHFs are two times more than the LUHFs
and, in addition, we add 30% more successful calls

30

through augmentation). Therefore, it is not surpris-
ing to see that the not LUHF distribution is more
skewed towards to O than the LUHF distribution.
Moreover, the results shown in the plot correspond
to the average score across many steps of the con-
versation. A breakdown may happen very late in
the conversation, thus resulting in an overall low
average score. However, this is hard to determine
through an automatic investigation and would re-
quire a manual inspection.

8 Conclusions

In this paper, we proposed a simple way to auto-
matically generate a breakdown detection dataset
in task-oriented dialogs, where the breakdown la-
bels are extracted by user-initiated events. This
dataset guarantees the privacy of the data by only
keeping the annotations from NLU and NLG com-
ponents. We proposed an attention-based model
which uses these types of annotations. As a result,
we demonstrated that a model does not necessarily
require textual utterances to predict a breakdown;
yet, it can benefit from the NLG and NLU intents
and entities, automatically provided by a classical
dialog system.

Probability

Step Caller Intent Entities of LUHF
11 NLG transportation_of_device ask_means_of_transportation, 0.164
ask_to_schedule

12 NLU confirm 0.005
13 NLG ask_time_preference 0.391
14 NLU confirm 0.011
15 NLG inform_schedule_inspection 0.005
16 NLG propose_date transportation_type_selection, 0.678

available_slot_to_schedule

Table 6: Example of not LUHF conversation misclassified as a LUHF.

We also discussed some possible limitations of
the model and the dataset, connected to the annota-
tion schema. An automatic annotation, as it often
happens, results in noisy data. However, we do
believe that the proposed dataset is a promising
starting point, which can save resources and could
be further improved through manual annotations.

As highlighted by the qualitative analysis, it is
worth further investigating the results to understand
which elements play a role in the detection of a
LUHF. The implementation of explainability meth-
ods can be an important tool in this context (Lund-
berg and Lee, 2017). Given the transformer-based
architecture of our proposed model, current explain-
ability tools (Kokhlikyan et al., 2020; Attanasio
et al., 2022) can enrich our investigation of the role
of each attention head in the breakdown predic-
tion. For that, gradient-based methods can give an
overview of the importance of individual features
as well as of the interactions.

References

Giuseppe Attanasio, Eliana Pastor, Chiara Di Bonaven-
tura, and Debora Nozza. 2022. ferret: a Frame-
work for Benchmarking Explainers on Transformers.
arXiv preprint.

Dennis Benner, Edona Elshan, Sofia Schobel, and An-
dreas Janson. 2021. What do you mean? A Review
on Recovery Strategies to Overcome Conversational
Breakdowns of Conversational Agents. In Interna-
tional Conference on Information Systems (ICIS).

Petter Bae Brandtzaeg and Asbjgrn Fglstad. 2018. Chat-
bots: changing user needs and motivations. Interac-
tions, 25(5):38-43.

Pierre Colombo, Emile Chapuis, Matteo Manica, Em-
manuel Vignon, Giovanna Varni, and Chloe Clavel.
2020. Guiding attention in sequence-to-sequence
models for dialogue act prediction. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 34, pages 7594-7601.

31

Allen L. Gorin, Giuseppe Riccardi, and Jeremy H.
Wright. 1997. How may I help you? Speech Com-
mun., 23(1-2):113-127.

Mariya Hendriksen, Artuur Leeuwenberg, and Marie-
Francine Moens. 2021. LSTM for dialogue break-
down detection: exploration of different model types
and word embeddings. In Increasing Naturalness
and Flexibility in Spoken Dialogue Interaction, pages
443-453. Springer.

Ryuichiro Higashinaka, Kotaro Funakoshi, Masahiro
Araki, Hiroshi Tsukahara, Yuka Kobayashi, and
Masahiro Mizukami. 2015. Towards taxonomy of
errors in chat-oriented dialogue systems. In Proceed-
ings of the 16th annual meeting of the special interest
group on discourse and dialogue, pages 87-95.

Ryuichiro Higashinaka, Kotaro Funakoshi, Yuka
Kobayashi, and Michimasa Inaba. 2016. The dia-
logue breakdown detection challenge: Task descrip-
tion, datasets, and evaluation metrics. In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 3146—
3150.

Takaaki Hori, Hai Wang, Chiori Hori, Shinji Watanabe,
Bret Harsham, Jonathan Le Roux, John R Hershey,
Yusuke Koji, Yi Jing, Zhaocheng Zhu, et al. 2016. Di-
alog state tracking with attention-based sequence-to-
sequence learning. In 2016 IEEE Spoken Language
Technology Workshop (SLT), pages 552-558. IEEE.

Minlie Huang, Xiaoyan Zhu, and Jianfeng Gao. 2020.
Challenges in building intelligent open-domain di-
alog systems. ACM Transactions on Information
Systems (TOIS), 38(3):1-32.

Sosuke Kato and Tetsuya Sakai. 2017. RSL17BD at
DBDC3: computing utterance similarities based on
term frequency and word embedding vectors. In
Proceedings of DSTC6., volume 34, pages 37-44.

Narine Kokhlikyan, Vivek Miglani, Miguel Martin,
Edward Wang, Bilal Alsallakh, Jonathan Reynolds,
Alexander Melnikov, Natalia Kliushkina, Carlos
Araya, Siqi Yan, and Orion Reblitz-Richardson. 2020.
Captum: A unified and generic model interpretability
library for pytorch.

https://doi.org/10.48550/arXiv.2208.01575
https://doi.org/10.48550/arXiv.2208.01575
https://aisel.aisnet.org/icis2021/hci_robot/hci_robot/13
https://aisel.aisnet.org/icis2021/hci_robot/hci_robot/13
https://aisel.aisnet.org/icis2021/hci_robot/hci_robot/13
https://doi.org/10.1145/3236669
https://doi.org/10.1145/3236669
https://ojs.aaai.org/index.php/AAAI/article/view/6259
https://ojs.aaai.org/index.php/AAAI/article/view/6259
https://doi.org/10.1016/S0167-6393(97)00040-X
https://doi.org/10.1007/978-981-15-9323-9_41
https://doi.org/10.1007/978-981-15-9323-9_41
https://doi.org/10.1007/978-981-15-9323-9_41
https://doi.org/10.18653/v1/w15-4611
https://doi.org/10.18653/v1/w15-4611
http://www.lrec-conf.org/proceedings/lrec2016/summaries/525.html
http://www.lrec-conf.org/proceedings/lrec2016/summaries/525.html
http://www.lrec-conf.org/proceedings/lrec2016/summaries/525.html
https://doi.org/10.1109/SLT.2016.7846317
https://doi.org/10.1109/SLT.2016.7846317
https://doi.org/10.1109/SLT.2016.7846317
https://doi.org/10.1145/3383123
https://doi.org/10.1145/3383123
http://arxiv.org/abs/2009.07896
http://arxiv.org/abs/2009.07896

Seolhwa Lee, Dongyub Lee, Danial Hooshyar, Jaechoon
Jo, and Heuiseok Lim. 2020. Integrating breakdown
detection into dialogue systems to improve knowl-
edge management: encoding temporal utterances
with memory attention. Information Technology and
Management, 21(1):51-59.

Scott M. Lundberg and Su-In Lee. 2017. A unified
approach to interpreting model predictions. In Ad-
vances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Process-
ing Systems 2017, December 4-9, 2017, Long Beach,
CA, USA, pages 4765-4774.

Bilyana Martinovski and David Traum. 2003. Break-
down in human-machine interaction: the error is the
clue. In Proceedings of the ISCA tutorial and re-
search workshop on Error handling in dialogue sys-
tems, pages 11-16.

Kazuyuki Matsumoto, Manabu Sasayama, Minoru
Yoshida, Kenji Kita, and Fuji Ren. 2022. Emotion
analysis and dialogue breakdown detection in dia-
logue of chat systems based on deep neural networks.
Electronics, 11(5).

Raveesh Meena, José Lopes, Gabriel Skantze, and
Joakim Gustafson. 2015. Automatic detection of
miscommunication in spoken dialogue systems. In
Proceedings of the 16th Annual Meeting of the Spe-
cial Interest Group on Discourse and Dialogue, pages
354-363.

Chanyoung Park, Kyungduk Kim, and Songkuk Kim.
2017. Attention-based dialog embedding for dialog
breakdown detection. In Proceedings of the dialog
system technology challenges workshop (DSTC6).

Libo Qin, Zhouyang Li, Wanxiang Che, Minheng Ni,
and Ting Liu. 2021. Co-GAT: A Co-Interactive
Graph Attention Network for Joint Dialog Act Recog-
nition and Sentiment Classification. In Thirty-Fifth
AAAI Conference on Artificial Intelligence, AAAI
2021, pages 13709-13717. AAAI Press.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP), pages 3982—-3992.

Alexander Schmitt, Benjamin Schatz, and Wolfgang
Minker. 2011. Modeling and predicting quality in
spoken human-computer interaction. In Proceedings
of the SIGDIAL 2011 Conference, pages 173—184.

J Shin, Alireza Dirafzoon, and Aviral Anshu. 2019.
Context-enriched attentive memory network with
global and local encoding for dialogue breakdown
detection. Proceedings of the WOCHAT.

Hiroaki Sugiyama. 2021. Dialogue breakdown detec-
tion using BERT with traditional dialogue features.
In Increasing Naturalness and Flexibility in Spoken
Dialogue Interaction, pages 419-427. Springer.

32

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, pages 5998—
6008.

Mattias Wahde and Marco Virgolin. 2022. Conver-
sational agents: Theory and applications. arXiv
preprint.

Marilyn A. Walker, Irene Langkilde, Jeremy H. Wright,
Allen L. Gorin, and Diane J. Litman. 2000. Learning
to predict problematic situations in a spoken dialogue
system: Experiments with how may I help you ? In
6th Applied Natural Language Processing Confer-
ence, ANLP 2000, Seattle, Washington, USA, April
29 - May 4, 2000, pages 210-217. ACL.

Chih-Hao Wang, Sosuke Kato, and Tetsuya Sakai. 2021.
RSL19BD at DBDC4: ensemble of decision tree-
based and LSTM-based models. In Increasing Natu-
ralness and Flexibility in Spoken Dialogue Interac-
tion, pages 429-441. Springer.

Jason D. Williams, Matthew Henderson, Antoine Raux,
Blaise Thomson, Alan W. Black, and Deepak Ra-
machandran. 2014. The dialog state tracking chal-
lenge series. AI Mag., 35(4):121-124.

Runhua Xu, Nathalie Baracaldo, and James Joshi. 2021.
Privacy-preserving machine learning: Methods, chal-
lenges and directions. arXiv preprint.

Zheng Zhang, Ryuichi Takanobu, Qi Zhu, MinLie
Huang, and XiaoYan Zhu. 2020. Recent advances
and challenges in task-oriented dialog systems. Sci-
ence China Technological Sciences, 63(10):2011—
2027.

Tianyu Zhao and Tatsuya Kawahara. 2019. Joint dialog
act segmentation and recognition in human conver-
sations using attention to dialog context. Computer
Speech & Language, 57:108-127.

A Hyperparameter Search

We report the hyperparameter space in Table 8. Ta-
ble 7 shows the optimal hyperparameters selected
after the grid search approach. We train the models
for 15 epochs and select the best result based on
the F1 score for the LUHF class on the validation
set.

B Computing Infrastructure

We ran the experiments on a machine equipped
with AMD® Ryzen 9 5900hx CPU, NVIDIA
GeForce RTX 3060 GPU with CUDA v11.4, Driver
Version 470.141.03 and 32GB RAM.

https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://doi.org/10.3390/electronics11050695
https://doi.org/10.3390/electronics11050695
https://doi.org/10.3390/electronics11050695
https://doi.org/10.18653/v1/w15-4647
https://doi.org/10.18653/v1/w15-4647
https://ojs.aaai.org/index.php/AAAI/article/view/17616
https://ojs.aaai.org/index.php/AAAI/article/view/17616
https://ojs.aaai.org/index.php/AAAI/article/view/17616
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://aclanthology.org/W11-2020/
https://aclanthology.org/W11-2020/
https://doi.org/10.1007/978-981-15-9323-9_39
https://doi.org/10.1007/978-981-15-9323-9_39
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://arxiv.org/abs/2202.03164
https://arxiv.org/abs/2202.03164
https://aclanthology.org/A00-2028/
https://aclanthology.org/A00-2028/
https://aclanthology.org/A00-2028/
https://doi.org/10.1007/978-981-15-9323-9_40
https://doi.org/10.1007/978-981-15-9323-9_40
https://doi.org/10.1609/aimag.v35i4.2558
https://doi.org/10.1609/aimag.v35i4.2558
https://arxiv.org/abs/2108.04417
https://arxiv.org/abs/2108.04417
https://doi.org/10.1016/j.csl.2019.03.001
https://doi.org/10.1016/j.csl.2019.03.001
https://doi.org/10.1016/j.csl.2019.03.001

Parameter Description

Value

Embedded representations dimension [
Transformer Encoder embeddings dimension m
layers of the Transformer Encoder ¢

attention heads of the Transformer Encoder
Dropout ratio applied in the Transformer Encoder
Learning Rate

Size of layers of decoding stage

Optimizer

Number of epochs

BCE weight for not LUHFs

BCE weight for LUHFs

400
128
3
16
0.01
0.0001
(256, 32)
Adam
15
1.0
3.0

Table 7: Hyperparameters used for training the models.

33

Parameter Description

Value

Embedded representations dimension [
Transformer Encoder embeddings dimension m
layers of the Transformer Encoder ¢

attention heads of the Transformer Encoder
Dropout ratio applied in the Transformer Encoder
Learning Rate

Size of layers of decoding stage

Optimizer

Number of epochs

BCE weight for not LUHFs
BCE weight for LUHFs

[256, 400, 800]
[64, 128, 256]
[1,3,5]

[4, 8, 16]

[0.01, 0.1, 0.5]
[0.0001, 0.0005, 0.001]
[(256, 32), (256, 128, 32),
(256, 64), (256, 128, 64),
(256, 128, 64, 32)]
Adam
50
1.0
[1.0, 3.0, 5.0, 10.0]

Table 8: Hyperparameter space used for grid search.

34

