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Abstract
Previous works on the fairness of toxic lan-
guage classifiers compare the output of models
with different identity terms as input features
but do not consider the impact of other impor-
tant concepts present in the context. Here, be-
sides identity terms, we take into account high-
level latent features learned by the classifier
and investigate the interaction between these
features and identity terms. For a multi-class
toxic language classifier, we leverage a concept-
based explanation framework to calculate the
sensitivity of the model to the concept of senti-
ment, which has been used before as a salient
feature for toxic language detection. Our re-
sults show that although for some classes the
classifier has learned the sentiment information
as expected, this information is outweighed by
the influence of identity terms as input features.
This work is a step towards evaluating proce-
dural fairness, where unfair processes lead to
unfair outcomes. The produced knowledge can
guide debiasing techniques to ensure that im-
portant concepts besides identity terms are well-
represented in training datasets.

1 Introduction

Previous NLP works have studied the fairness of
toxicity detection classifiers by comparing the dis-
tributions of prediction scores across different de-
mographic groups as input features (Dixon et al.,
2018; Borkan et al., 2019). However, other toxicity-
related concepts are often present in the text and
affect the differences in score distribution between
identity groups. Here, we introduce a framework
that uses concept-based global explanations to
uncover unintended biases for different identity
groups, while controlling for a certain toxicity-
related concept. To demonstrate the effectiveness
of concept-based explanations in uncovering biases,
we specifically focus on sentiment, although the
general methodology can be applied to any other
relevant human-defined concept. Negative senti-
ment is a salient toxicity feature, which has been

used in designing feature-based and neural toxic-
ity detection systems (Fortuna and Nunes, 2018;
Zhou et al., 2021; Chiril et al., 2022), and highly
correlates with toxic language when targeted at
demographic groups.

Assessing the differences in score distributions
for various demographics is an example of out-
come fairness. In fact, most fairness criteria used in
machine learning measure outcome fairness, such
as accuracy parity (equal accuracy for protected
and unprotected groups), equality of opportunity
(equal true positive rates), or equalized odds (equal
true positive and false positive rates) (Morse et al.,
2021). While valuable, outcome fairness metrics
are costly to compute as they require large labelled
datasets and do not provide any information about
the model’s decision making processes.

More recently, work has begun to focus on the
complementary notion of process fairness (also
known as procedural fairness), or the idea that the
decision-making process itself must be fair. Grgic-
Hlaca et al. (2016) conducted one of the first studies
on process fairness in machine learning, measuring
the extent to which people believed it was permis-
sible to use various features as input to a criminal
recidivism prediction algorithm. For example, they
found that people generally felt that criminal his-
tory was fair to use as an input feature, but that it
was unfair to use family criminality as input. An-
other aspect of process fairness is that the impor-
tance given to an attribute in the decision-making
process shouldn’t be very different for different
demographic groups. An example of this is the
recent SFFA vs. Harvard court case where it was
argued that academic and extracurricular achieve-
ments of Asian-American applicants are given less
weight in the admissions process compared to their
White-American counterparts (Arcidiacono et al.,
2022). We take a similar view of process fairness
and consider a classifier as unfair if it either ignores
or over-utilizes a feature for some demographic
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groups compared to others.
In the current NLP landscape, one major bar-

rier to assessing process fairness is that predictive
models rarely use human-understandable concepts
as input features, and so it is increasingly difficult
to understand what high-level features1 are actu-
ally being learned and used by the classifier. In
this work, we use an interpretability framework
of concept-based explanations (Yeh et al., 2022),
which enables us to explain a machine learning
model’s decision-making via conceptual units un-
derstandable to humans.

Concept-based explanations have been studied
mostly in the context of computer vision, where it
is fairly straightforward to define concepts of in-
terest with a set of representative examples. How-
ever for textual data, it is much less clear how to
define a concept in an effective and intuitive man-
ner, and global explainability methods that operate
on high-level abstractions remain under-explored
(Danilevsky et al., 2020; Balkır et al., 2022a). Ghor-
bani et al. (2019) define a concept to be a meaning-
ful, human-defined abstraction, which is expected
to be important for the task at hand and which can
be specified by a coherent set of examples. Fol-
lowing this definition, we identify sentiment as a
concept for toxicity classification.2 To the best of
our knowledge, this is one of the first works to ap-
ply concept-based explanations to the domain of
NLP, and the first one to explore its effectiveness
in identifying high-level fairness issues in models
that work with textual data.

In this work, we show how to use concept-based
explanations to determine whether a trained tox-
icity classifier uses the information of sentiment
as an important feature in its predictions. For that
we use a multi-class model, described in Section
2, and compare the importance of the concept of
sentiment in predicting different subtypes of toxic-
ity. Although intuitively, negative sentiment should
be an important signal for toxicity detection, its
presence is neither necessary nor sufficient for an
utterance to be tagged as toxic. For example, “Mus-
lims are grieving” carries a negative sentiment but
is not abusive, whereas “You are so smart for a
woman” is perceived as an insult despite including

1Here, by “feature” we mean the latent representations of
a semantic concept learned by a classifier, as opposed to the
low-level input features.

2We distinguish between the concept of sentiment, as de-
fined by a human through a set of examples, and the feature
of sentiment, which is implicitly learned by the classifier, al-
though our assumption is that they are closely aligned.

a positive sentiment word. Also, sentiment might
not be a distinguishing feature for some variations
or subtypes of toxic language, such as threats or
cyberbullying. For all the classes of our multi-
class model, we ask, “Has the classifier learned the
concept of sentiment as a coherent and important
high-level feature associated with this label?”, and
answer this question with concept-based explana-
tions (Section 5). We then assess how the presence
of identity terms impacts the use of sentiment in-
formation by the classifier. For that, we control the
context for sentiment and ask if the learned senti-
ment information is used similarly and fairly across
identity groups (Section 6). Our code and data is
available at https://github.com/IsarNejad/P
rocedural-Fairness-Sentiment.

Our main contributions are:
• We propose a concept-based explanation

framework to determine whether a trained text
classifier uses a human-defined concept fairly
in its decision making process. To the best of
our knowledge, this is the first work that uses
concept-based explanations to uncover biases
in text classifiers, and the first to formalize
concepts with short textual templates.

• To demonstrate the utility of the proposed
method, we apply it to a multi-class toxicity
classifier and show that when the subject of
the sentiment is not specified (e.g., “They are
<SENTIMENT-WORD>”), the classifier is sensi-
tive to the concept of negative sentiment, for
some of the classes.

• Further, we show that when the subject of
the sentiment is a specific identity term (e.g.,
“<IDENTITY-TERM> are <SENTIMENT-WORD>”),
for some classes, the classifier becomes sensi-
tive to neutral and in some cases even positive
sentiment. This demonstrates that the process
by which the classifier makes its decision is
not the same for all identity groups, and for
some groups may even be unfairly associating
positive sentiment with toxicity.

2 Multi-Class Toxicity Model

For our experiments, we use an open-source,
RoBERTa-based model3 (Hanu, 2020) trained on
the English dataset released as part of a Kaggle
competition on identifying and reducing bias in

3https://huggingface.co/unitary/unbia
sed-toxic-roberta
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toxicity classification of online comments.4. The
dataset includes public comments from the Civil
Comments platform manually annotated for Toxic-
ity as well as six toxicity subtypes: Severe Toxicity,
Obscene, Identity Attack, Insult, Threat, and Sexual
Explicit. The values for each label represent the
fraction of the annotators that assigned the label
to the comment. There are over 1.8M examples in
the training set and around 195K examples in the
test set. We exclude the class Severe Toxicity from
our experiments, since there are only eight train-
ing examples with values higher than 0.5 for this
class. Further, a subset of the data is annotated for
various identity groups mentioned in the text. The
most frequently mentioned identity groups include
male, female, homosexual (gay or lesbian), Chris-
tian, Jewish, Muslim, Black, white, people with
psychiatric or mental illness. The classification
model optimizes the competition’s official evalu-
ation metric that combines the overall AUC with
Bias AUCs for the identity groups (Hanu, 2020).
For this, the model’s loss function combines the
weighted loss functions for two tasks, toxicity pre-
diction and identity prediction. This simple and
straight-forward model has been shown to effec-
tively reduce bias on non-toxic sentences that men-
tion identity terms, and results in a competitive
score of 93.74 on the test set.

We chose this model for two reasons. First, the
model is publicly available and is trained on one of
the largest available toxicity dataset, annotated for
multiple types of toxicity. An alternative choice for
our experiments would be using multiple toxicity
classifiers. However, the definitions of subtypes
of toxicity are usually ambiguous and similar la-
bels might be used for different subtypes of toxic-
ity across datasets. In the case of our multi-class
model, the disparities in using sentiment informa-
tion can be reliably attributed to differences in sub-
type definitions. Second, the model is debiased to
some extent with regards to outcome fairness met-
rics. Uncovering biases in such a model highlights
the issue that optimizing for outcome fairness does
not guarantee the procedural fairness in decision
making.

3 Sentiment Lexicon

To formalize sentiment concepts, we employ the
NRC Valence, Arousal, and Dominance (NRC-

4https://www.kaggle.com/c/jigsaw-unint
ended-bias-in-toxicity-classification/

VAD) lexicon (Mohammad, 2018), which provides
manually annotated real-valued scores of valence,
arousal, and dominance for 20,000 English words.
We use the valence scores and convert them into
the range from -1 (the most negative) to 1 (the most
positive). We automatically select single words
from the lexicon that are predominantly used as ad-
jectives in the British National Corpus (BNC)5 and
sort them in decreasing order by their frequency in
the BNC. The N most frequent adjectives that can
be used to describe humans or groups of humans
are manually selected as the sentiment words to
define the sentiment concepts. The sentiment range
[-1, 1] is divided into five intervals: very negative
[-1, -0.75], negative (-0.75, -0.25), neutral [-0.25,
0.25], positive (0.25, 0.75), and very positive [0.75,
1]. For each interval, N = 100 adjectives are se-
lected.6 These sets of adjectives are then used to
populate the sentence templates to define the senti-
ment concepts as described in Section 5.

4 Concept-Based Explanations

Concept-based explanation is an emerging area in
black-box model explainability, aiming to explain
neural network models at the abstraction level de-
fined by a human user (Yeh et al., 2022). Most
explainability methods provide importance weights
for low-level input features such as pixels in im-
ages or tokens for text (Sundararajan et al., 2017;
Smilkov et al., 2017; Selvaraju et al., 2017; Shriku-
mar et al., 2017). However, a user might want
to evaluate the model’s functionality at the level
of a concept that is expected to be important for
the model’s prediction, which can be achieved
with concept-based explanations (Koh et al., 2020).
Ghorbani et al. (2019) states that a concept needs to
satisfy the properties of meaningfulness, coherency
and importance for the task at hand. Some exam-
ples of concepts in computer vision tasks are the
concept of stripes for the class of zebra (Kim et al.,
2018), the concept of white coat for the class of
doctor (Pandey, 2021), and the concept of nuclei
texture in the detection of tumor tissue in breast
lymph node samples (Graziani et al., 2018). In the
case of text, Nejadgholi et al. (2022) used concept-
based explanations to measure the sensitivity of a

5The British National Corpus, version 3 (BNC XML Edi-
tion), http://www.natcorp.ox.ac.uk/

6The full list of the selected adjectives is available in the
Supplemental Material. We also conducted similar experi-
ments with the full NRC-VAD lexicon and obtained similar
results.
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abusive language classifier to the emerging concept
of COVID-related anti-Asian hate speech, and Yeh
et al. (2020) explained a text classifier with respect
to the concepts identified through topic modeling.

Here, our goal is to explain the prediction of a
toxicity classifier at the level of sentiment informa-
tion learned by the trained model. Since sentiment
is not one of the direct input features of the model,
feature importance metrics such as LIME (Ribeiro
et al., 2016) and SHAP (Lundberg and Lee, 2017)
cannot be used to provide its importance. Instead,
we consider each level of sentiment as a concept
and calculate the importance of these concepts for
the model’s predictions with Testing Concept Acti-
vation Vectors (TCAV) algorithm. In the following
section, we explain the TCAV algorithm in detail.

4.1 Testing Concept Activation Vectors

Testing Concept Activation Vectors (TCAV) is an
algorithm from the family of concept-based ex-
plainability methods, which measures the impor-
tance of a human-defined concept for model’s pre-
dictions (Kim et al., 2018). In TCAV, each concept
is defined with a set of examples and represented as
Concept Activation Vectors (CAVs), in the activa-
tion layer of the trained model. TCAV formalizes
the importance of a concept as the fraction of in-
put examples for which the prediction scores of
the model increase if the input representation is
infinitesimally moved towards the concept repre-
sentation. The prediction increase is measured by
calculating the directional derivatives of the pre-
diction layer to CAVs. To calculate the statistical
significance of a concept, multiple subsets of con-
cept examples are used to form multiple CAVs, and
a TCAV score is calculated for each CAV. A con-
cept is considered to be important for a class if the
distribution of its TCAV scores is significantly dif-
ferent from the TCAV scores of a random concept
defined by random examples.

Here, we explain how the TCAV procedure mea-
sures the importance of a concept for a class of a
RoBERTa-base classifier, in more detail. Similar
to Nejadgholi et al. (2022), we define each con-
cept C with NC concept examples, and map them
to RoBERTa representations of the [CLS] token
rjC , j = 1, ..., NC . Then, P number of Concept
Activation Vectors (CAVs), υpC , are generated by
averaging the RoBERTa representations of Nυ ran-
domly chosen concept examples, to represent C in
the activation space:

υpC =
1

Nυ

Nυ∑

j=1

rjC p = 1, .., P (1)

where Nυ < NC . With femb, which maps an in-
put text x to its RoBERTa representation rx, the
conceptual sensitivity of a class to the υpC , at in-
put x can be computed as the directional derivative
SC,p(x):

SC,p(x) = lim
ϵ→0

h(femb(x)+ϵυp
C)−h(femb(x))
ϵ

= ▽h(femb(x)).υ
p
C (2)

where h is the function that maps the RoBERTa
representation to the logit value of the class of in-
terest. For a set of input examples, X , we calculate
the TCAV score as the fraction of inputs for which
small changes in the direction of C increase the
logit:

TCAVC,p =
|x ∈ X : SC,p(x) > 0|

|X| (3)

When calculated for all CAVs, Equation 3 results
in a distribution of scores for the concept C. The
mean and standard deviation of this distribution
determines the overall sensitivity of the classifier
to the concept C for the class of interest.

Intuitively, the derivatives in Equation 2 indicate
whether a label’s likelihood increases when a small
vector in the direction of the concept’s representa-
tion is added to a random context. For example, the
predicted probability of the class Toxic for sentence

“I saw these people.” is 0.01. The comment “I saw
these people. They are terrible.” is labeled as toxic
with the probability of 0.56, but the statement “I
saw these people. They are wonderful.” receives
the toxicity probability of 0.01. If this observa-
tion holds systematically across many negative and
positive sentiment words, the classifier has learned
negative sentiment as an important feature of the
toxicity class, but the positive sentiment does not
contribute to the toxicity estimation.

In contrast to the previous concept-based expla-
nation works in NLP, which either require anno-
tated data (Nejadgholi et al., 2022), or are limited
to the topics extracted by the topic modeling pro-
cedure (Yeh et al., 2020), we define the sentiment
concepts with a set of minimal templates, that are
easy to generate and minimize extra contextual in-
formation. Using concept examples, described in
Sections 5 and 6, TCAV first encodes the infor-
mation of sentiment in the RoBERTa embedding
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Sentiment level concepts Control concepts
Class label Very negative Negative Neutral Positive Very positive Explicit Non-coherent

Toxicity 0.87 (0.04) 0.47 (0.26) 0 (0) 0 (0) 0 (0) 0.88 (0.02) 0 (0)
Obscene 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0.75 (0.1) 0 (0)

Identity Attack 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0.01 (0.03) 0 (0)
Insult 0.92 (0.02) 0.77 (0.14) 0 (0) 0 (0) 0 (0) 0.89 (0.02) 0 (0)
Threat 0.01 (0.03) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Sexual Explicit 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0.70 (0.18) 0 (0)

Table 1: Means and standard deviations of TCAV score distributions for the six types of toxicity with respect to five
sentiment categories and two control concepts. Scores statistically significantly different from random are in bold.

space. Then, it populates the directional derivatives
of the prediction layer with respect to these vectors.
If the derivatives are positive for a significant num-
ber of the sentiment concept representations, a high
average TCAV score is obtained, i.e, sentiment is
learned as a coherent and important feature for the
label of interest.

In our implementation, for each concept, 100
CAVs are generated, each of which is the average
representation of 50 randomly selected concept
examples. For 1000 random input texts (random
tweets collected with stop words), the TCAV scores
of each CAV are calculated. Average and standard
deviation of TCAV scores are reported to quantify
the importance of the concept for this class.

5 Classifier Sensitivity to Sentiment

In this section, we analyze the sensitivity of the
classifier described in Section 2 and identify the
classes for which the classifier is sensitive to sen-
timent as a coherent and important feature. For
the concepts of sentiment level, we create concept
examples and use the TCAV technique to test the
importance of the concepts for each class.

To create concept examples for each level of
sentiment described in Section 3, we use the tem-
plate “They are <SENTIMENT-WORD>.”. This
simple template ensures minimal extra semantic
information other than sentiment level and avoids
the problem of encoding unwanted biases in the
concept itself, as described by Tong and Kagal
(2020). It is important to note that such minimal
templates cannot be labeled for toxicity without
more context. Consider a sentence such as “They
are terrible.”. This sentence expresses a negative
sentiment but lacks any other significant informa-
tion. Only with more context can we say whether
this sentence is toxic or not. The statement “These
people are immigrants. They are terrible.” is toxic,
while the comment “I don’t like these computers.
They are terrible.” is non-toxic, and “I don’t like

these singers. They are terrible.” can be toxic de-
pending on the specific definition of toxicity in a
use case. Therefore, the fairness analysis methods
that rely on labels cannot be used to study the im-
pact of these templates on the model’s predictions.

In addition to five levels of sentiment, we use
two control concepts with predictable sensitivities:
1) A non-coherent concept, defined by a set of ran-
dom tweets collected with stop words, for which
we expect low average TCAV scores for all labels;
2) The concept of explicit offence defined by in-
serting a profane word7 in the template “They are
<PROFANE-WORD>”, for which we expect high sen-
sitivity from at least some of the labels. As the
creators of the toxicity model mention, this classi-
fier shows high sensitivity to profanity because of
the over-representation of these words in its train-
ing data.8 Table 1 shows the average and standard
deviation of TCAV scores calculated for the seven
concepts described above.

We observe that the TCAV scores for the control
concepts are as expected—zero sensitivity for a
non-coherent, random concept and high sensitiv-
ity to the concept of explicit offence for the labels
Toxicity, Obscene, Insult and Sexual Explicit. For
the sentiment concepts, we observe that the clas-
sifier is sensitive to Very Negative and Negative
sentiment for the labels Toxicity and Insult. 9 We
also observe that the classifier is not sensitive to
the Neutral, Positive and Very Positive sentiment
concepts for any of the labels, which rules out the
sensitivity of the classifier to the specific sentence
structure of the templates.

Literature suggests that a high TCAV score indi-
cates: 1) the concept is learned by the classifier as

7We use the words from https://github.com/chu
cknorris-io/swear-words/blob/master/en

8https://github.com/unitaryai/detoxify
9Intuitively, the classes Obscene, Identity Attack, Threat

and Sexual Explicit rely on features other than negative senti-
ment, i.e., profanity, identity terms, violence or intention of
harming, and lewdness, respectively.
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Sentiment level concepts Control concepts
Class label Very negative Negative Neutral Positive Very positive Explicit Non-coherent

Toxicity 0.22 0.12 0.01 0 -0.01 0.27 0.03
Obscene 0.01 0 0 0 0 0.10 0

Identity Attack 0.01 0 0 0 0 0.03 0
Insult 0.17 0.10 0.02 0 0 0.16 0
Threat 0 0 0 0 0 0 0

Sexual Explicit 0 0 0 0 0 0.09 0

Table 2: Average increase in probabilities when concept templates are added to random texts. Cells in equivalent
positions to Table 1 are in bold.

Increase in Probability TCAV scores
Class label non-coherent coherent non-coherent coherent

Toxicity 0.11 0.12 0.01 (0.07) 0.47 (0.26)
Insult 0.09 0.10 0.09 (0.19) 0.77 (0.14)

Table 3: Average increase in probability and mean and standard deviation of TCAV scores for the non-coherent
concept (Very negative or Very positive sentiment) and the coherent concept (Negative sentiment).

a coherent feature, and 2) that feature is important
for the classifiers’ predictions (Kim et al., 2018).
We evaluate the TCAV scores shown in Table 1, in
terms of the importance and coherency of a concept.
We first confirm that the importance of a concept
can be interpreted as the increase in the predicted
probability due to the addition of a concept to input
sentences. Then, we show that increase in probabil-
ity is not an equivalent metric to TCAV score, since
increase in probability can be due to the addition
of a non-coherent concept to input sentences.

High average TCAV scores indicate a significant
increase of prediction probabilities when the
concept is added to random contexts. We append
the concept examples to random tweets and mea-
sure the prediction probabilities before and after
the addition of the concept examples. The aver-
age increase of probabilities for all concepts and
labels is shown in Table 2. We observe that in all
cases where the average TCAV scores are high (i.e.,
significantly different from the control random con-
cept) in Table 1, the probability increase is notable
in Table 2. For example, for the Toxic label, the
addition of sentences with Very Negative and Nega-
tive sentiment on average increases the prediction
probability by 0.22 and 0.12, whereas the addition
of Neutral, Positive and Very Positive sentiments
increases the prediction probability by 0.01 or less.
This is in line with our observation from Table 1
that the classifier is sensitive to Negative and Very
Negative sentiments for the label Toxic.

TCAV scores differentiate between coherent and
non-coherent concepts whereas the probability
increase does not. To test this hypothesis, we cre-

ate a non-coherent concept by combining the Very
Negative and the Very Positive sentiment examples,
and compare the average increase in probability
and the TCAV score for this concept with those for
the Negative sentiment concept. The comparison
is demonstrated in Table 3. Although the increase
in probability is similar for the coherent and non-
coherent concepts, the TCAV score indicates that
the classifier has only learned the coherent concept
as an important feature.

6 Sensitivity to Sentiment Towards an
Identity Group

In the previous section, we demonstrated how the
TCAV framework can be used to assess whether
a human-defined concept is learned by a classi-
fier as an important feature. With that we showed
that for some labels our model is sensitive to
the presence of Very Negative and Negative sen-
timents in broader contexts. Here, we turn to
the concept of “associating a sentiment with an
identity group”10 and ask if similar levels of sensi-
tivity to sentiment are observed in the presence
of certain demographic terms as input features.
For creating the concept examples, we use the
template “<SUBJECTS> are <SENTIMENT-WORD>”,
where <SUBJECTS> are the protected identity terms
used in HateCheck (Röttger et al., 2021): Women,
Gay people, Trans people, Muslims, Immigrants,
Black people, and Disabled people. We also add

10Note that this concept is composed of more basic con-
cepts, similar to the concept of white coat used in (Pandey,
2021). Still, it satisfies the three criteria of meaningfulness,
coherency and importance as stated by (Ghorbani et al., 2019)
and can be considered as a relevant concept for toxicity.
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Figure 1: Sensitivity to identity terms in neutral contexts, for which a low sensitivity is expected.

the terms These people and These things, to assess
the sensitivity of the model to the concepts of “as-
sociating a sentiment with people in general” and

“associating a sentiment with objects” as two base-
lines. As expected, we observe that the classifier is
not sensitive to any level of sentiment when asso-
ciated with objects. We discuss some of the most
salient results below. (The full results are presented
in Appendix in Table A.1.)

We first assess the influence of identity terms by
analysing the classifiers’ sensitivities to the neutral
sentiment towards the identity groups. Figure 1
visualizes the column of Table A.1 related to the
Neutral sentiment. From the findings in Table 1, as
well as human intuition, the association of identity
terms with neutral sentiment should not increase
the probability of the classifier predicting a toxic la-
bel. However, we observe high sensitivities for the
labels Toxicity and Insult and all identity groups, ex-
cept for Women and Disabled people. The classifier
is also sensitive to the Neutral sentiment associated
with Women for the label Identity Attack. We con-
clude that in neutral contexts the classifier is more
sensitive to some identity terms than others.

Figure 2 visualizes the results of Table A.1 from
a different perspective. In this figure, we assess
the sensitivity of the classifier to different levels
of sentiment across the identity groups. For the
relevant classes, we expect to see that the classi-
fier is sensitive to negative sentiment but not sensi-
tive to positive sentiment; i.e., the average TCAV
score should be high for negative sentiment and
low for positive sentiment. Consistent with results
in Table 1, we observe this expected pattern for
the subject These people and the two classes Insult
and Toxicity. Taking this as our baseline, we ex-
pect to see similar patterns across all the identity
groups for an unbiased classifier. However, we ob-
serve that the pattern only holds for certain classes,
and certain identity groups. Notably, the classifier

loses its sensitivity to the Negative sentiment for
the classes Insult and Toxicity when the mentioned
identity group is Disabled people. In addition to
classes Insult and Toxicity, in the presence of an
identity term, the classifier becomes sensitive to
Negative and Very Negative sentiment for the class
Identity Attack. This is expected given the class
definition, but again the pattern does not hold for
the identity term Disabled people.

Another anomalous result with respect to the
Negative sentiment is that the classifier is sensitive
to Negative and Very Negative sentiment for the
class Sexual Explicit, but only in the context of the
identity group Gay people. Additionally, for the
label of Threat the classifier shows some sensitivity
to the Very Negative and Negative sentiment, but
only when used with the identity term Muslims.

We then turn to assessing the sensitivities to pos-
itive sentiment. In general, the expected pattern
of sensitivities is only observed for the labels Tox-
icity and Insult and the identity term Women. For
other cases, as the level of sentiment changes from
Very Negative and Negative to Positive and Very
Positive, the sensitivity of the classifier does not
decrease as expected and remains high, specifically
for identity groups Gay people, Black people and
Muslims. This observation indicates that a sentence
such as “Black people are wonderful” in a conversa-
tion will increase the probability of that text being
labeled as Toxic, Identity Attack and Insult. Also,
for Sexual Explicit the classifier is sensitive to the
mention of Gay people for all levels of sentiment.
We conclude that the classifier is oversensitive to
the presence of these identity terms regardless of
the level of sentiment, and even highly positive sen-
timent cannot cancel out the impact of the identity
terms. One exception is the term Disabled peo-
ple, for which the model is under-sensitive, i.e, not
sensitive to even Negative and Very Negative senti-
ments associated with this group.
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Figure 2: Sensitivity to various levels of sentiment for all demographic groups.

7 Discussion

Our results demonstrate that while a multi-class
toxicity classifier generally shows high sensitivities
to negative sentiment for certain classes, and zero
sensitivities to neutral or positive sentiment, the pic-
ture changes when the sentiment is applied to cer-
tain marginalized identity groups. Then, counter-
intuitively, even positive sentiment can increase the
probability of a toxicity label. This suggests an
over-reliance on the identity group term.

Previous work in computer vision has under-
scored the difficulty in finding unbiased examples
with which to define concepts, e.g., when searching
for images of men or women to examine gender
bias, the examples invariably also contain infor-
mation about age, race, and so on. Here, in the
context of NLP, we propose a generalizable solu-
tion to that problem, by generating examples rather
than collecting them, and carefully controlling the
variable of interest (here, sentiment, although the
method could extend to other features). For this we
use existing lexicons, without the need to label the
examples for the various toxicity classes, as would
be required for an analysis of outcome fairness.

This knowledge of how the model uses the senti-
ment information can guide debiasing techniques.
For example, a data augmentation approach can en-
sure important features are present in the training
dataset. In the case of our model, a data balanc-
ing procedure should collect and label positive and
very positive sentiments associated with gay peo-
ple, Black people and Muslims, as well as very
negative sentiments associated with disabled peo-

ple and add them to the training dataset.
It is important to note that evaluating models

for the sensitivity to human-defined concepts is a
tool to reveal flaws of a trained model, where prior
knowledge about expected sensitivities is available.
Similar to previous test suits such as HateCheck
(Röttger et al., 2021), our method should not be
considered as a standalone evaluation of models.
Moreover, observing the expected sensitivities does
not guarantee the fairness of the model. Only where
unexpected sensitivity patterns are observed, the
biases can be detected and mitigated accordingly.

Our method has limitations. We carry our analy-
sis for one grammatical construction that expresses
the concept of associating sentiment to identity
groups. Future work is needed to assess the gen-
eralizability of our results to other expressions of
sentiment. Moreover, TCAV requires access to
at least some model layers and cannot be applied
when the model itself is unavailable.

8 Related work

Identifying and mitigating unintended biases in
NLP systems to ensure fair treatment of various
demographic groups has been focus of intensive
research in the past decade (Blodgett et al., 2020;
Shah et al., 2020). Various metrics to quantify bi-
ases in system outputs have been proposed, includ-
ing group fairness metrics and individual fairness
metrics (Castelnovo et al., 2022; Czarnowska et al.,
2021). However, to apply such metrics, the datasets
need to be annotated with demographic attributes,
which is costly and sometimes infeasible to do (e.g.,
the demographics of the authors of social media
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posts are often unknown). Alternatively, the bias
metrics are applied on synthetic data automatically
generated using simple templates (Kiritchenko and
Mohammad, 2018; Borkan et al., 2019). In both
cases, the test data are limited, and the evaluation
is restricted to a set of pre-defined contexts.

Explainability techniques (XAI) can potentially
help in discovering and quantifying biases. Much
work on XAI has been motivated by the need to
assist in bias detection and mitigation (Doshi-Velez
and Kim, 2017; Das and Rad, 2020). However, only
a handful of NLP studies have actually employed
explainability methods for bias detection and to a
limited extent (Prabhakaran et al., 2019; Kennedy
et al., 2020; Aksenov et al., 2021; Balkır et al.,
2022b). Balkır et al. (2022a) surveyed the works
at the intersection of fairness and XAI in NLP
and discussed conceptual and practical challenges
in applying current explainability approaches for
debiasing NLP models. Multiple outlined issues
stem from the fact that most current XAI meth-
ods employed in NLP provide explanations on a
local level through post-hoc processing, and it is
still an open question how to generalize these lo-
cal explanations to reveal systematic model biases.
The TCAV framework used in this paper produces
global explanations and can therefore uncover un-
fair processes in the model’s decision making.

Probing classifiers are well-known interpretabil-
ity tools used to examine the encoded information
in the representation layers of NLP models (Con-
neau et al., 2018). Probes are trained independently
from the original model to predict an externally
defined property (e.g., linguistic properties such
as part of speech) from the model’s representa-
tions. Despite being widely used, several studies
revealed that probes are not well-controlled, and
caution should be taken when drawing behavioural
conclusions about the original model from the per-
formance of probing classifiers (Belinkov, 2022).
Also, probes can only assess whether the informa-
tion about the property of interest is encoded in the
representations (e.g., (Tenney et al., 2019; Rogers
et al., 2020)) but do not provide evidence about
how the model uses this information. To that end,
extensions of probing classifiers were proposed,
which assess the effect of removing the property’s
information with counterfactual interventions to
provide causal explanations and mitigate biases
in NLP classifiers (Ravfogel et al., 2020; Elazar
et al., 2021). However, several concerns are raised

about the effectiveness and the unintended conse-
quences of removing attributes (Kumar et al., 2022).
While causality-driven probing methods assess the
necessity of the property for the classifier’s deci-
sion, TCAV determines whether the model uses the
encoded information as an important signal for a
particular class. Also, TCAV allows us to quantify
the relative importance of different properties en-
coded in the representation, which is not feasible
with probing classifiers.

The TCAV framework has been developed and
mostly applied in image classification. In the orig-
inal paper, Kim et al. (2018) showed how gender
and racial biases can be discovered with TCAV
in image classifiers. Wei et al. (2021) extended
the method to regression problems, and applied it
to detect gender and first language biases in au-
tomatic spoken language assessment. Tong and
Kagal (2020) studied the effectiveness of TCAV in
discovering gender biases in image classification
and discussed the difficulties in obtaining quality
examples to represent a concept while not introduc-
ing new sources of bias (e.g., introducing a racial
bias when selecting gendered examples). Adhikari
(2021) used TCAV to measure gender bias when
classifying faces as young or old, and discussed the
difficulty of defining ‘disentangled’ concepts that
only encode the concept of interest. To the best of
our knowledge, our work is the first in applying
TCAV to discover biases in text classifiers.

9 Conclusion

Building on previous studies that measured group
fairness in toxic language detection, this work is
a step toward a more systematic and fine-grained
analysis of procedural fairness in neural model’s
predictions. We use a global explainability met-
ric to uncover the disparities in how the classi-
fier learns to associate identity terms with domain-
relevant concepts, e.g. sentiment. Future work will
focus on extending the analysis to other concepts
known to be important to toxic language detection
(profanity, threats of violence, dehumanizing or
othering language, and so on) as well as additional
classifiers, domains, and types of bias.

Ethical Statement

The presented framework aims to identify fairness
issues in text classifiers when identity terms are
mentioned in the text. As stated above, such eval-
uation cannot attest for the absence of any biases,
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but can indicate potential areas of concern. This
framework is a complementary approach to other
methods of bias detection that are based on the no-
tion of outcome fairness (e.g., using fairness met-
rics on held-out test sets annotated for mentions of
demographics or on specifically designed test suits,
such as HateCheck). The proposed method cannot
be applied to assessing fairness on texts written by
different demographic groups.

The method requires the identity groups of inter-
est to be specified in advance. In the current study,
we have included several protected groups, but the
list is by no means exhaustive. More protected
groups should be included in the future. Addition-
ally, it is known that the label used to refer to a
social group can itself communicate bias (consider,
for example, the difference between immigrants
versus migrants versus expats) (Beukeboom and
Burgers, 2019). We have not analyzed the effect
of this form of bias on the explanations here. Fur-
thermore, other, legally non-protected groups (e.g.,
based on physical appearances, education, etc.),
should also be considered as we strive towards in-
clusive and safe online spaces.

As most AI technology, this approach can be
used adversely to exploit the system’s vulnerabil-
ities and produce toxic texts that would be unde-
tectable by the studied classifier. Specifically, for
methods that require access to the model’s inner
layers, care should be taken so that only trusted par-
ties could gain such access. The obtained knowl-
edge should only be used for model transparency
purposes, and the security concerns should be ade-
quately addressed.

Regarding environmental concerns, contempo-
rary NLP systems based on pre-trained large lan-
guage models, such as RoBERTa, require signif-
icant computational resources to train and even
fine-tune. Larger training datasets, such as the one
used in this study with almost 2M training exam-
ples, used for fine-tuning, usually result in a better
classification performance, but also an even higher
computational cost. To lower the cost of this study
and its negative impact on the environment, we
chose to use an existing, publicly available classifi-
cation model.
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A Sensitivities to Sentiment in Presence of
Identity Terms

The full results of the experiments described in
Section 6 are presented in Table A.1.
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Target Class label Very negative Negative Neutral Positive Very positive

Women

Toxicity 0.99(0.00) 0.99(0.00) 0.24(0.22) 0(0) 0(0)
Obscene 0(0) 0(0) 0(0) 0(0) 0(0)

Identity Attack 1.00(0) 0.99(0.00) 0.98(0.02) 0(0.01) 0(0)
Insult 0.98(0.01) 0.87(0.11) 0(0) 0(0) 0(0)
Threat 0(0) 0(0) 0(0) 0(0) 0(0)

Sexual Explicit 0(0) 0(0) 0(0) 0(0) 0(0)

Trans people

Toxicity 0.97(0.01) 0.93(0.01) 0.78(0.04) 0(0) 0(0)
Obscene 0(0) 0(0) 0(0) 0(0) 0(0)

Identity Attack 1.00(0) 1.00(0) 0.92(0.01) 0.32(0.20) 0.02(0.05)
Insult 0.97(0.007) 0.94(0.01) 0.77(0.07) 0(0) 0(0)
Threat 0(0) 0(0) 0(0) 0(0) 0(0)

Sexual Explicit 0(0) 0(0) 0(0) 0(0) 0(0)

Gay people

Toxicity 1.00(0) 0.99(0.00) 0.99(0.00) 0.97(0.00) 0.93(0.01)
Obscene 0.25(0.12) 0.01(0.02) 0(0) 0(0) 0(0)

Identity Attack 1.00(0) 1.00(0) 0.99(0.00) 0.99(0.00) 0.99(0.00)
Insult 0.99(0.001) 0.99(0.003) 0.91(0.04) 0(0) 0(0)
Threat 0(0) 0(0) 0(0) 0(0) 0(0)

Sexual Explicit 0.82(0.02) 0.84(0.01) 0.88(0.01) 0.82(0.02) 0.73(0.02)

Black people

Toxicity 1.00(0) 1.00(0) 0.99(0.00) 0.95(0.00) 0.92(0.01)
Obscene 0.05(0.06) 0.00(0.00) 0(0) 0(0) 0(0)

Identity Attack 1.00(0) 1.00(0) 1.00(0) 0.99(0.00) 0.99(0.00)
Insult 0.99(0.001) 0.99(0.002) 0.95(0.01) 0.14(0.12) 0(0)
Threat 0.03(0.02) 0.04(0.02) 0(0) 0(0) 0(0)

Sexual Explicit 0(0) 0(0) 0(0) 0(0) 0(0)

Disabled people

Toxicity 0.41(0.2) 0.01(0.06) 0(0) 0(0) 0(0)
Obscene 0(0) 0(0) 0(0) 0(0) 0(0)

Identity Attack 0(0) 0(0) 0(0) 0(0) 0(0)
Insult 0.70(0.2) 0.13(0.21) 0(0) 0(0) 0(0)
Threat 0(0) 0(0) 0(0) 0(0) 0(0)

Sexual Explicit 0(0) 0(0) 0(0) 0(0) 0(0)

Muslims

Toxicity 1.00(0) 0.99(0.00) 0.96(0.01) 0.75(0.04) 0.57(0.07)
Obscene 0(0.02) 0(0) 0(0) 0(0) 0(0)

Identity Attack 1.00(0) 1.00(0) 0.99(0.00) 0.98(0.00) 0.97(0.00)
Insult 0.99(0.00) 0.98(0.007) 0.69(0.15) 0(0) 0(0)
Threat 0.33(0.07) 0.32(0.07) 0.20(0.06) 0(0) 0(0)

Sexual Explicit 0(0) 0(0) 0(0) 0(0) 0(0)

Immigrants

Toxicity 0.98(0) 0.95(0.01) 0.86(0.03) 0(0) 0(0)
Obscene 0(0) 0(0) 0(0) 0(0) 0(0)

Identity Attack 1.00(0) 0.99(0) 0.95(0.01) 0.74(0.11) 0.30(0.23)
Insult 0.98(0.005) 0.96(0.01) 0.86(0.03) 0(0) 0(0)
Threat 0(0) 0(0) 0(0) 0(0) 0(0)

Sexual Explicit 0(0) 0(0) 0(0) 0(0) 0(0)

These people

Toxicity 0.93(0.02) 0.83(0.07) 0(0.03) 0(0) 0(0)
Obscene 0(0) 0(0) 0(0) 0(0) 0(0)

Identity Attack 0(0) 0(0) 0(0) 0(0) 0(0)
Insult 0.97(0.01) 0.92(0.02) 0.13(0.21) 0(0) 0(0)
Threat 0(0) 0(0) 0(0) 0(0) 0(0)

Sexual Explicit 0(0) 0(0) 0(0) 0(0) 0(0)

These things

Toxicity 0(0) 0(0) 0(0) 0(0) 0(0)
Obscene 0(0) 0(0) 0(0) 0(0) 0(0)

Identity Attack 0(0) 0(0) 0(0) 0(0) 0(0)
Insult 0(0.03) 0(0) 0(0) 0(0) 0(0)
Threat 0(0) 0(0) 0(0) 0(0) 0(0)

Sexual Explicit 0(0) 0(0) 0(0) 0(0) 0(0)

Table A.1: Average and standard deviation of TCAV scores for all the labels and different levels of sentiment
ranging from Very Negative to Very Positive for the template “<SUBJECTS> are <SENTIMENT-WORD>”. All the
sensitivities that are significantly different from random are in bold.
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