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Abstract

We investigate how different domains are en-
coded in modern neural network architectures.
We analyze the relationship between natural
language domains, model size, and the amount
of training data used. The primary analysis
tool we develop is based on subpopulation
analysis with Singular Vector Canonical Cor-
relation Analysis (SVCCA), which we apply
to Transformer-based language models (LMs).
We compare the latent representations of such
a language model at its different layers from
a pair of models: a model trained on multiple
domains (an experimental model) and a model
trained on a single domain (a control model).
Through our method, we find that increasing
the model capacity impacts how domain infor-
mation is stored in upper and lower layers dif-
ferently. In addition, we show that larger exper-
imental models simultaneously embed domain-
specific information as if they were conjoined
control models. These findings are confirmed
qualitatively, demonstrating the validity of our
method.

1 Introduction

Pre-trained language models (PLMs) have become
an essential modeling component for state-of-the-
art natural language processing (NLP) models.
They process text into latent representations in such
a way that allows an NLP practitioner to seamlessly
use these representations for prediction problems
of various degrees of difficulty (Wang et al., 2018,
2019). The opaqueness in obtaining these repre-
sentations has been an important research topic in
the NLP community. PLMs, and more generally,
neural models, are currently studied to understand
their process and behavior in obtaining their latent
representations. These PLMs are often trained on
large datasets, with inputs originating from differ-
ent sources. In this paper, we further develop our
understanding of how neural networks obtain their
latent representation and study the effect of learn-

(a) Experimental model (b) Control model

Figure 1: An example of a visualization used with our
subpopulation analysis tool. The experimental model,
which includes all domain data, separates in its latent
representations words related to the Books domain (▲)
from general words (■). The control model, on the
other hand, mixes them together.

ing from various domains on the characteristics of
the corresponding latent representations.

Texts come from various domains that differ
in their writing styles, authors and topics (Plank,
2016). In this work, we follow a simple defini-
tion of a domain as a corpus of documents shar-
ing a common topic. We rely on a simple tool of
subpopulation analysis to compare and contrast la-
tent representations obtained with and without a
specific domain. Our analysis relies on construct-
ing two types of models: experimental models,
from multi-domain data, and control models, from
single-domain data. Figure 1 describes an exam-
ple in which this analysis is applied to study the
way embeddings for domain-specific words clus-
ter together in the experimental and control model
representations.

We believe training in an implicit multi-domain
setup is widespread and often overlooked. For
example, SQuAD (Rajpurkar et al., 2016), a
widely used question-answering dataset composed
of Wikipedia articles from multiple domains, is of-
ten referred to as a single-domain dataset in domain
adaptation works for simplicity (Hazen et al., 2019;
Shakeri et al., 2020; Yue et al., 2021). This sce-
nario is also common in text summarization, where
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many datasets consist of a bundle of domains for
news articles (Grusky et al., 2018), academic pa-
pers (Cohan et al., 2018; Fonseca et al., 2022), and
do-it-yourself (DIY) guides (Cohen et al., 2021).
While models that learn from multiple domains
are frequently used, their nature and behavior have
hardly been explored.

Our work sheds light on the way state-of-the-art
multi-domain models encode domain-specific in-
formation. We focus on two main aspects highly
relevant for many training procedures: model ca-
pacity and data size. We discover that model ca-
pacity, indicated by the number of its parameters,
strongly impacts the amount of domain-specific
information multi-domain models store. This prop-
erty might explain the performance gains of larger
models (Devlin et al., 2019; Raffel et al., 2020;
Clark et al., 2020; Srivastava et al., 2022). While
this paper focuses on studying the effect of do-
mains on latent representations, the subpopulation
analysis tool could be used for studying other NLP
setups, such as multitask and multimodal learning.1

2 Methodology

For an integer n, we denote by [n] the set
{1, . . . , n}. Our analysis tool assumes a distri-
bution p(X) from which a set of examples X =
{x(i) | i ∈ [n]} is drawn. It also assumes a fam-
ily of binary indicators π1, . . . , πd such that πi(x)
indicates whether the example x satisfies a cer-
tain subpopulation attribute i. For example, in this
paper we focus on domain analysis, so π5 could
indicate if an example belongs to a Books domain.

We denote by X
∣∣
πi

the set {x(j) | πi(x(j)) = 1},
the subset of X that satisfies attribute i. Unlike stan-
dard diagnostic classifier methods (Belinkov et al.,
2017a,b; Giulianelli et al., 2018), rather than build-
ing a model to predict the attribute, we perform sub-
population analysis by training a set of models: E,
trained from X (the experimental model), and Ci,
trained from X

∣∣
πi

(the control model). We borrow
the terminology of “experimental” and “control”
from experimental design such as in clinical trials
(Hinkelmann and Kempthorne, 2007). The experi-
mental model corresponds to the experimental (or
“treatment” in the case of medical trials) group in
such trials and the control model corresponds to
the control group. Unlike a standard experimental
design, rather than comparing a function (such as

1Our code is available at: https://github.com/
zsquaredz/subpopulation_analysis

squared difference) between the outcomes of the
two groups to calculate a statistic with an underly-
ing distribution, we instead calculate the similar-
ity values between the representations of the two
models. Our analysis is also related to Representa-
tional Similarity Analysis (Dimsdale-Zucker and
Ranganath, 2018), aimed at studying similarities
(across different experimental settings) between
activation levels in brain neurons.

Through their latent representations, the set of
models Ci represent the information that is cap-
tured about p(X) from the relevant subpopulation
of data. By comparing the different models to each
other, we can learn what information is captured in
the latent representations when a subset of the data
is used and whether this information is different
from the one captured when the whole set of data is
used. With a proper control for model size and sub-
population sizes, we can determine the relationship
between the different attributes πi and the corre-
sponding representations in different model com-
ponents. The remaining question now is how do we
compare these representations? Here, we follow
previous work (Saphra and Lopez, 2019; Bau et al.,
2019; Kudugunta et al., 2019), and apply Singular
Vector Canonical Correlation Analysis (SVCCA;
Raghu et al. 2017) to the latent representations of
the experimental and control models.

We assume that each example x(i) is associated
with a latent representation h

(i)
j given by Cj . For

example, this could be the representation in the
embedding layer for the input example, or the
representation in the final pre-output layer. We
define Hj to be a set of latent representations
Hj = {h(k)

j | k ∈ [n]} for model Cj . We de-

fine Hj

∣∣
πi

= {h(k)
j | πi(x(k)) = 1} – the latent

representations of Cj for which attribute i fires.
Similarly, we define H0 for the model E. We calcu-
late the SVCCA value between subsets of H0 and
subsets of Hj for j ≥ 1. The procedure of SVCCA
in this case follows:

• Performing Singular Value Decomposition
(SVD) on the matrix forms of H0 and Hj (match-
ing the representations in each through the index
of the example x(i) from which they originate).
We use the lowest number of principal directions
that preserve 99% of the variance in the data to
project the latent representations.

• Performing Canonical Correlation Analysis
(CCA; Hardoon et al. 2004) between the pro-

193

https://github.com/zsquaredz/subpopulation_analysis
https://github.com/zsquaredz/subpopulation_analysis


jections of the latent representations from the
SVD step, and calculating the average correla-
tion value, denoted by ρ0j .

The SVD step, which may seem redundant, is
actually crucial, as it had been shown that low vari-
ance directions in neural network representations
are primarily noise (Raghu et al., 2017; Frankle and
Carbin, 2019). The intensity of ρ0j indicates the
level of overlap between the latent representations
of each model (Saphra and Lopez, 2019).

In the rest of this paper, we use the tool of sub-
population analysis with E/Ci as above for the case
of domain learning in neural networks. We note
that each time we use this tool, the following deci-
sions need to be made: (a) what training set we use
for each E and Ci; (b) the subset of Hj for j ≥ 0
for which we perform the similarity analysis; (c)
the component in the model from which we take
the latent representations. For (c), the component
can be, for example, a layer. Indeed, for most of
our experiments, we use the first and last layer to
create the latent representation sets, as they stand
in stark contrast to each other in their behavior (see
§ 4). We provide an illustration of our proposed
pipeline in Figure 2. We are particularly interested
in studying the effect of two aspects of learning:
dataset size and model capacity.

The case of domains In this paper, we define
a domain as a corpus of documents with a com-
mon topic. Since a single massive web-crawled
corpus used to pre-train language models usually
contains many domains, we examine to what ex-
tent domain-specific information is encoded in the
pre-trained model learned on this corpus. Such
domain membership is indicated by our attribute
functions πi. For example, we may use π5(x) to
indicate whether x is an input example from the
domain Books. Given this notion of a domain, we
can readily use subpopulation analysis through ex-
perimental and control models to analyze the effect
on neural representations of learning from multiple
domains or a single domain.

3 Experimental Setup

Data We use the Amazon Reviews dataset (Ni
et al., 2019), a dataset that facilitates research
in tasks like sentiment analysis (Zhang et al.,
2020), aspect-based sentiment analysis, and rec-
ommendation systems (Wang et al., 2020). The
reviews in this dataset are explicitly divided into

Experimental 
modelTraining set

Control 
modelControl 

modelControl 
modelControl 

modelConstrained
training set

Control 
model

Experimental 
model

Control 
model

Test set SVCCA 
value

Figure 2: A diagram explaining the analysis we perform.
At the top, during training, we create two sets of models
from constrained datasets (based on different πi) and a
dataset that is not constrained. The result of this training
is two set of models, the experimental model (E) and
control models (Ci). To perform the similarity analysis,
we compute latent representation from a common test
set for both models, and then run SVCCA (bottom).

different product categories that serve as domains,
which makes it a natural testbed for many multi-
domain studies. A noteworthy example of a re-
search field that heavily relies on this dataset is
domain adaptation (Blitzer et al., 2007; Ziser and
Reichart, 2018; Du et al., 2020; Lekhtman et al.,
2021; Long et al., 2022), which is the task of
learning robust models across different domains,
closely related to our research.2 We sort the do-
mains by their review counts and pick the top five,
which results in: Books, Clothing Shoes
and Jewelry, Electronics, Home and
Kitchen, and Movies and TV domains. To
further validate our data quality, we use the 5-core
subset of the data, ensuring that all reviewed items
have at least five reviews authored by reviewers
who wrote at least five reviews.

A representative dataset sample is presented in
Table 1. We consider the different domains within
the Amazon review dataset as lexical domains, i.e.,
domains that share a similar textual structure and
functionality but differ with respect to their vocab-
ulary. For example, we see the review snippet from
the Books domain contains an aspect (“ending”)
for which a negative sentiment is conveyed (“didn’t
have a proper”). Similarly, we find an aspect (“han-

2We use the latest version of the dataset, consisting reviews
from 1996 up to 2019.
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Books: . . . the book didn’t have a proper ending but rather
a rushed attempt to conclude the story and put everyone
away neatly . . .
Clothing: . . . clearly of awful quality, the design and paint
was totally wrong, the mask was short and stumpy as well
as slightly deformed and bent to the left . . .
Home: . . . there are no handles, and the plastic gets too
hot to hold, so you have to awkwardly pour by the top . . .

Table 1: A representative sample of review snippets.

dle”) with a corresponding conveyed sentiment
(“too hot”) for the Home domain. We can see this
shared pattern across all domains, with different
aspects and sentiment terms. We would not expect
this to be the case for other datasets, which might
have different differentiators for domains. For ex-
ample, Amazon reviews and Wikipedia pages on
Books domain may have a similar vocabulary,
however, a review is more likely to convey sen-
timent toward a particular book, and a Wikipedia
article is more likely to focus on describing the
book. Thus, the Amazon Reviews dataset is an
ideal testbed for our analysis.

In addition to the Amazon Reviews dataset, we
experimented on the WikiSum dataset (Cohen et al.,
2021) to further validate our findings. The Wik-
iSum dataset is a coherent paragraph summariza-
tion dataset based on the WikiHow website.3 Wiki-
How consists of do-it-yourself (DIY) guides for the
general public, thus is written using simple English
and ranges over many domains. Similar to Ama-
zon Reviews, we also pick the top five domains for
our experiments: Education, Food, Health,
Home, and Pets. Since the dataset is designed for
summarization, we concatenate the document and
summary together for our MLM task. We present
the results for this dataset at the end of § 4.

Task We study the language modeling task to un-
derstand the nature of multi-domain learning better.
More precisely, we experiment with the masked
language modeling (MLM) task, which randomly
masks some of the tokens from the input, then pre-
dicts the masked word based on the context as the
training objective. We focus on the MLM task as it
is a prevalent pre-training task for many standard
models such as BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019) that serve as building
blocks for many downstream tasks. Using exam-
ples from a set of pre-defined domains, we train a
BERT model from scratch to fully control our ex-

3https://www.wikihow.com

periment and isolate the effect of different domains.
This is crucial since a pre-trained BERT model is
already trained on multiple domains, hence hard to
drive correct conclusions through our analysis from
such a model. Moreover, recent studies (Magar and
Schwartz, 2022; Brown et al., 2020) showed the
risk of exposure of large language models to test
data in the pre-training phase, also known as data
contamination.

Model We use the BERTBASE (Devlin et al.,
2019) architecture for all of our experiments. We
train two types of models: the experimental model
E, trained on all five domains with the MLM objec-
tive, and the control model Ci for i ∈ [5] trained
on the ith domain. We are particularly interested
in the effect of two aspects on the model represen-
tation: model capacity and data size. We use the
capacity of 100% for BERTBASE size. BERTBASE
has 768-dimensional vectors for each layer, adding
up to a total of 110M parameters. We also experi-
ment with a reduced model capacity of 75%, 50%,
25%, and 10% by reducing the dimension of the
hidden layers. We follow Devlin et al. (2019) de-
sign choices, e.g., 12 layers with 12 attention heads
per layer. We set the base training data size (100%)
for E to be 50K, composed of 10K reviews per
domain. Each Ci is trained on single domain data
containing 10K reviews. E and Ci share all the
examples of domain i. To study the effect of data
size on model representation, we take subsets from
the data split and create smaller datasets: a 10%
split and a 50% split. We also create a 200% split to
simulate the case with abundant data. We provide
additional details about our training procedure in
Appendix A.

4 Experiments and Results

Our research questions (RQs) examine how
domain-specific information is encoded in E by
calculating its SVCCA score with Ci for a specific
i. For a given domain, we use a held-out test set
for getting the experimental and control model rep-
resentations as an input for the SVCCA method.
Intuitively, a high SVCCA score between E and
Ci indicates E stores domain-specific information
for domain i, as Ci was train solely on data from
domain i. A low SVCCA score between E and
Ci could mean one of two things: a) E can gen-
eralize to data from di without explicitly storing
domain-specific information about it, or b) E can
not store information about Ci, as a result of, for
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(a) CBooks: ℓ0
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(b) CClothing: ℓ0
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(c) CElectronics: ℓ0
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(d) CBooks: ℓ12
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(e) CClothing: ℓ12
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Figure 3: The SVCCA scores between E and different Cis for different data sizes and model capacities. We only
display for three domains here, and we provide the rest in Appendix B.2. The top row presents the results for the
embedding layer ℓ0, and the bottom row presents them for the last layer ℓ12.
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Figure 4: Training dynamics for all layers between E
and CBooks. Here both model and data size are 100%.

example, lack of model capacity. The way to distin-
guish between the two is subjective and depends on
whether one finds E performance when applied to
data from di to be satisfactory. This paper analyzes
how information is stored at the model layers. As
we inspect highly complex models consisting of
multiple layers, it is challenging to determine to
what extent a certain layer contributes to a model’s
overall performance. For those reasons, when com-
paring equivalent layers of different models, we
focus on the amount of domain-specific informa-
tion encoded in E for a given layer. With these
preliminaries in mind, we are now ready to ask the

following research questions:

RQ1: How does the similarity between the corre-
sponding layers in E and C evolve over training?
We perform an iterative comparison between the
E and Ci for each i ∈ [5]. After each epoch, we
calculate the SVCCA score between corresponding
layers of the models, i.e., layer j of E is compared
to layer j of Ci. As E is trained on more data points
than Ci, and both use the same batch size, for any
given epoch, E had more weights’ updates than
Ci. More precisely, after the kth epoch, Ci and E
had completed k passes on data points from di, but
E used additional data points from the rest of the
domains. We choose this alignment to examine the
effect of the additional training data drawn from
other domains.

Figure 4 presents the training dynamics analysis
for the Books domain (we denote the Books con-
trol model as CBooks). We include training dynam-
ics analyses of other control models and domains in
Appendix B.1, as they demonstrate similar trends.
Since both CBooks and E are initialized with the
same weights, the initial SVCCA score is 1 for all
layers before training. We observe that as train-
ing progresses, the SVCCA values of higher layers
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(closer to the output) consistently become lower
compared to the first layer. The order of SVCCA
values is almost perfectly preserved with respect to
the order of the layers in the network. The separa-
tion is higher for lower layers, with higher layers
receiving similar SVCCA values. This is evidence
that E stores more domain-specific information in
lower layers than in deeper layers throughout the
training procedure. Singh et al. (2019), who re-
searched the nature of multilingual models, ob-
served a similar pattern of dissimilarity in deeper
layers for multilingual model representations of
parallel sentences in different languages.

The alignment between the similarity of the layer
pairs (E and C) and their depth also exists for mod-
els with random weights. It can be partially at-
tributed to the mathematical artifact of decreasing
correlation values for layers that are deeper be-
cause of the use of nonlinear activation units. To
see to what extent this artifact plays a role in this
alignment, we created ten models with random
weights (no training, so there is no longer an exper-
imental/control distinction) and calculated SVCCA
between all 45 pairs for the first and last layers.
We discovered that the mean difference between
SVCCA scores of the first layer comparison and
the last layer comparison is 0.139 (with a standard
deviation of 0.001 over 45 pairs). In Figure 4, the
difference is much larger when comparing the con-
trol model to the experimental model (0.428), in-
dicating that the difference in layer SVCCA score
cannot be only attributed to the mathematical arti-
fact of increasing depth with more nonlinear activa-
tion. We still note that one should exercise caution
when using linear methods, such as SVCCA, to
analyze nonlinear processes.

The observed training dynamics motivates us to
focus on the embedding layer (ℓ0) and final layer
(ℓ12) for the rest of our analysis, as they serve as
a lower bound (ℓ0) and an upper bound (ℓ12) with
respect to the SVCCA scores of Ci and E through-
out the training process. In addition, those layers
have interesting attributes that we would like to ex-
plore. ℓ0, a non-contextualized word embeddings
layer, is known for encoding mainly lexical infor-
mation (de Vries et al., 2020; Vulić et al., 2020).
The highly contextualized ℓ12 is fed directly to the
masked word classifier, thus playing a significant
role in the MLM task. Our interest in the fully-
trained models leads us to the following question:

RQ2: How do data size and model capacity af-
fect domain encoding in ℓ0 and ℓ12? To answer
this question, we measure the SVCCA score be-
tween variants of E and their corresponding Ci for
different domains. The variants differ with respect
to two parameters, data size and model capacity.

Figure 3 presents our results. We observe train-
ing the model on larger datasets decreases the
SVCCA scores across all model capacities and do-
mains for both ℓ0 and ℓ12. For each data point we
add to the control model, we add d data points to
the general model, where d− 1 out of them belong
to other domains. This means while we keep a
constant ratio between the number of datapoints
for the domains, the absolute gap between a given
domain and the rest of the domains is growing for
larger data sizes. This might explain why adding
more data points increase E and C divergence.

A possible explanation for these trends might
be how we define domains. The Amazon reviews
dataset is divided by product categories which can
be seen as lexical domains (see § 3). More pre-
cisely, all the domains share a similar structure and
writing style of Amazon product reviews. The dif-
ferences lie in the vocabulary of each domain. We
hypothesize that the E uses the increased capac-
ity to keep more domain-specific information in ℓ0,
where the lexical information is kept and diverges
from C in ℓ12, where the highly contextualized rep-
resentations are stored. As we hypothesize that our
domains differ mostly with respect to their vocabu-
laries, we refine the mentioned above experiment
by raising the following research question:

RQ3: To what extent does E encode domain-
specific information for domain-specific words?
To shed light on the domains’ lexical nature, we
inspect the patterns of domain-specific and general
words. Domain-specific words need to appear with
at least 20 reviews in the domain in hand and no
more than 10 reviews in total for the rest of the
other domains. General words must appear in at
least 20 reviews in each domain. Those definitions
are often used in domain adaptation works to de-
scribe domain discrepancy and find adaptable fea-
tures (Blitzer et al., 2007; Ziser and Reichart, 2017).
We provide some examples of domain-specific and
general words in Appendix B.3. It is noteworthy
that the union of the domain-specific and general
words is not the complete vocabulary. To calculate
the SVCCA scores for a subset of words, we first
apply SVD to all inputs. Then we use the corre-
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(a) ℓ0: all words
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(b) ℓ0: general words
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(c) ℓ0: domain-specific words
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(d) ℓ12: all words

10% 50% 100% 200%
Data size

10%

25%

50%

75%

100%

M
od

el
 s

iz
e

0.8 0.74 0.59 0.47

0.77 0.43 0.39 0.5

0.59 0.36 0.43 0.45

0.48 0.38 0.4 0.41

0.44 0.35 0.37 0.39

0.0

0.2

0.4

0.6

0.8

1.0

S
V

C
C

A sim
ilarity

(e) ℓ12: general words
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(f) ℓ12: domain-specific words

Figure 5: The SVCCA score between E and CBooks for different subsets of tokens. The top row presents the results
for the embedding layer ℓ0, and the bottom row presents them for the last layer ℓ12.

sponding representations of the subset tokens to
calculate the CCA similarity.

Figure 5 presents our results for the Books do-
main.4 We present the Books domain analysis
for all the words taken from RQ2 for reference
(on the left-hand side of the figure). We observe
high SVCCA scores for domain-specific words for
ℓ12. For large data sizes (100% and 200%), the
trends of domain-specific words are opposite to the
ones of RQ2, i.e., E uses the additional capacity
to encode more domain-specific information. This
indicates that as model capacity increases, E can
capture similar information to CBooks for domain-
specific words. This justifies the construction of
large language models, mixing multiple subpopu-
lations, as it demonstrates that if the E model has
large enough capacity, it separately creates rep-
resentations for the different subpopulations that
are similar to Ci model, which is a specialized
model for a given domain. Domain-specific words
and their representations are crucial for the success
of many NLP tasks, for example, Named Entity
Recognition (Rocktäschel et al., 2013; Shang et al.,
2018; Gu et al., 2021). We can see that the SVCCA
scores for all the words and general words are al-

4The rest of the domains exhibit similar patterns. We
provide all results in Appendix B.4

most identical. These findings make us suspect that
word frequency and domain specificity are strongly
connected. Indeed, we find out that the average
frequency for Books domain-specific words is 75
with a median of 43. For general words, the average
is 7696, and the median is 1440, making general
words the main factor in the SVCCA scores for all
words.

Finally, we would like to ensure the patterns we
observe throughout this paper affect the behavior
of the model:

RQ4: Do the observed trends manifest in the
models’ behavior? We conducted two qualita-
tive analyses to understand better if the models’ be-
havior expresses our findings. For the first analysis,
we compare MLM predictions of E and C to check
whether higher SVCCA values are associated with
similar word predictions. For ℓ0, we calculate the
k-nearest neighbors of the word embeddings for a
given word as a proxy to make predictions. For ℓ12,
we follow the standard procedure by feeding the
last layer representation to the final MLM classifier
in BERT. Table 2 presents our analyses. We can
see that for ℓ0, as we increase the model capacity,
we get more similar predictions for both domain-
specific and general words. This finding agrees
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m=50% m=100%
E Ci E Ci

blackberry proxy linux mac
linux linux mac linux

biologist peer blackberry computers
viking windows vista windows

samsung servers xp xp

(a) 5-nearest neighbors for the domain-specific word Mac-
intosh with i=Electronics.

m=50% m=100%
E Ci E Ci

functioning riding functioning functioning
work running work repair

worked work worked work
playing walking looking riding

responding cleaning works looking

(b) 5-nearest neighbors for the general word working with
i=Home and Kitchen.

m=50% m=100%
E Ci E Ci

networks connections routers router
phones networks products networks
devices ports systems connections

problems computers mice computers
models cables connections products

(c) Other wired and wireless [MASK] I had never had
this problem. The masked word is a domain-specific word
routers with i=Electronics.

m=50% m=100%
E Ci E Ci

away apart apart aside
apart off flat apart
aside away short down

downhill downhill out back
asleep asleep off along

(d) Sadly, those hopes began to fall [MASK] shortly after I
finished the Prologue. The masked word is a general word
apart with i=Books.

Table 2: (a) and (b) are the 5-nearest neighbors using the embedding layer weights. (c) and (d) are model predictions
using last layer representations. m denotes model capacity. All models here use a data size of 100%.

with the trend in Figure 3 that higher model capac-
ity is associated with higher SVCCA similarity for
ℓ0. For ℓ12, we can see that as model capacity in-
creases, predictions for the general word becomes
inconsistent, whereas, for domain-specific words,
it is the opposite. This finding also agrees with
our findings in RQ2 and RQ3, in which we ob-
serve the ℓ12 SVCCA values are decreasing for
general words as we increase the model capacity
and decrease for domain-specific words. We pro-
vide additional examples in Appendix B.5.

For the second analysis, we employ principal
component analysis (PCA) to reduce the dimension
of general and domain-specific representations for
ℓ0 and ℓ12 for both E and CBooks. We provide visu-
alizations in Figure 6. We can see that as model ca-
pacity increases, ℓ0 representations of both general
and domain-specific words from E and CBooks are
aligned to a similar subspace. Additionally, ℓ12 rep-
resentations of general words and domain-specific
words for both models exhibit opposite behavior:
domain-specific words are more aligned with in-
creasing model capacity while general words start
to detach. All of these agree with our findings in
corresponding SVCCA scores trends in Figure 5.
Even though we did not explicitly examine the re-
lations between general and specific words in our
work, we can observe that general and domain-
specific word representations form different clus-
ters in both models. Those clusters are more sep-
arated in ℓ0 than in ℓ12, suggesting that models
use their increased capacity to keep more domain-

specific information in ℓ0.

WikiSum results Due to the lack of computa-
tional resources required, we only validate our
main findings, namely, RQ2 and RQ3, using Wik-
iSum. We present the results in Appendix B.6.
We choose Health domain as it is the largest do-
main of this dataset. We observe that the trend in
SVCCA scores across different scenarios on Wik-
iSum is generally the same as those on Amazon
Reviews, demonstrating that our findings are con-
sistent.

5 Related Work

Analyzing neural representations Raghu et al.
(2017) proposed SVCCA for comparing representa-
tions for the same data points from different layers
and networks invariant to an affine transform. They
also discovered that lower layers in a multi-layer
neural network converge more quickly to their final
representations in contrast to higher layers. Build-
ing off of SVCCA, Morcos et al. (2018) devel-
oped projection weighted CCA (PWCCA) using
an aggregation technique. Using the SVCCA tool,
Saphra and Lopez (2019) studied the learning dy-
namics of neural language models by probing the
evolution of syntactic, semantic, and topic repre-
sentations across time and models. Kudugunta et al.
(2019) used SVCCA to understand massively mul-
tilingual neural machine translation representations
over 100 languages. Their major findings are that
encoder representations of different languages form
clusters based on their linguistic similarities.
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(a) ℓ0: m=10% (b) ℓ0: m=50% (c) ℓ0: m=100%

(d) ℓ12: m=10% (e) ℓ12: m=50% (f) ℓ12: m=100%

Figure 6: Visualization for ℓ0 and ℓ12 representations for E and CBooks. We use colors (blue/cyan for E and
red/magenta for CBooks) to separate representations for generals and domain-specific words. m denotes model
capacity. All models here use a data size of 100%.

Diagnostic Classifiers Another prominent tool
for analyzing learned representations is diagnos-
tic classifiers (DCs; Belinkov et al., 2017a,b; Giu-
lianelli et al., 2018). DCs measure the amount of
information encoded in representations about a par-
ticular task by using them as input to a classifier,
which is trained on the task in a supervised manner.
DC users assume that the higher their performance
for this task, the more task-specific information
is encoded in the representations. While widely
adopted, DCs have several pitfalls. For example,
Zhang and Bowman (2018) showed that learning
a classifier on top of random embeddings is of-
ten competitive and, in some cases, even better
than doing so with representations taken from a
pre-trained model when trained on enough data.
Saphra and Lopez (2019) demonstrated that, unlike
SVCCA, DCs showed a stable correlation between
language models and target labels throughout train-
ing epochs, in contrast to the language models’
immense improvement over time.

6 Conclusions and Future Work

We present a novel methodology based on subpop-
ulation analysis which helps understand how sub-
domains are represented in a multi-domain model.
Our findings show that neural models encode do-
main information differently in lower and upper
layers and that larger models (in our case, E) tend

to “preserve a copy” of small, more specialized
models (C). Generally, we observe rapid model
improvements in NLP tasks when model capac-
ity and dataset size, the two dimensions we study,
increase. We encourage the research community
to study the cause for these improvements from
a multi-domain angle (i.e., the ability to encode
specific information about many domains at once
using the increased capacity). In future work, we
would like to apply our methodology to examine
the behavior of multilingual, multitask, and multi-
modal models.
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Limitations

Throughout this work, we use the BERTBASE
model. While it is widely adopted in the NLP
community, there are other more advanced mod-
els (such as BERTLARGE, RoBERTa and GPT3)
that we do not experiment with due to a lack of
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resources. Given that the differences between mod-
els of the BERT family are mostly irrelevant to the
way we conduct our experiments, we believe our
results would generalize, at the very least, to this
family of models.

In addition, we do not experiment with a large
amount of training data for two reasons: a) We
want to control for the domains from which we
draw examples, and those have a size limitation,
and b) Training many models on a large dataset
is computationally expensive. Our multi-domain
setup is comprised of five domains. We believe a
higher number of domains should be considered
for real-world scenarios.

To control our experiments, we train all models
from scratch. For real-world scenarios, it would
be harder to divide the training data into homoge-
neous and natural domains. While our proposed
methodology can be easily adapted to different sim-
ilarity measurement methods, we focus on SVCCA,
which restricts us to linear correlations. In future
work, we plan to investigate the nature of domains
using non-linear techniques.

We identify domains through a common topic,
and as a result, the shared lexical choices within
the domain. This is the most common case for
classifying domains, but we acknowledge that there
are additional valuable ways to define domains.
For example, domains could be separated based on
writing style while still having a significant shared
vocabulary (Amazon book reviews and Wikipedia
articles about books).
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A Additional Details for Experiments

Here we provide some additional details for our
experiments.

Training We set the validation data size for E to
be 10K, which is composed of 2K reviews from
each domain. For validation set of each Ci, we use
the same 2K reviews used for E from each domain.
For consistency, we use the same validation set for
all data sizes. We use a test set with 2.5K reviews
for each domain. The same test set is fed to both E
and Ci across all model capacities and data sizes to
obtain representations for subpopulation analysis.
When it is clear from the context which Ci for i ∈
[5] we are referring to (and under which training
regime), we will use the simplification C.

All models use the validation set cross-entropy
loss to perform early stopping, and we train a model
for a maximum of 500 epochs. We provide the
validation loss (cross-entropy) for the E model in
Table 3. From the results, we can see that for fixed
data size, model performance saturates when reach-
ing model capacity of 100%. Thus, unlike data
size, we do not perform further experiments with
model capacity larger than 100%.

10%d 50%d 100%d 200%d
10%m 6.052 5.541 4.788 3.886
25%m 5.764 3.257 2.745 2.354
50%m 4.366 2.758 2.451 2.144
75%m 4.017 2.781 2.435 2.149
100%m 4.012 2.786 2.436 2.16

Table 3: Validation cross-entropy loss on the experimen-
tal model for different model capacities and data sizes
where m refers to model capacity and d refers to data
size used to train the model.
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Figure 7: Training dynamics for all layers between E
and CClothing . Here both model and data size are 100%.
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Figure 8: Training dynamics for all layers between E
and CElectronics. Here both model and data size are
100%.
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Figure 9: Training dynamics for all layers between E
and CHome. Here both model and data size are 100%.

All models are trained on 4 NVIDIA A100 GPUs
with a batch size of 32 per GPU. We use PyTorch
(Paszke et al., 2019) and the HuggingFace library
(Wolf et al., 2020) for all model implementation.

B Additional Details for Results

B.1 Additional Results for RQ1

We provide additional experimental results for
training dynamics on Clothing Shoes and
Jewelry (Figure 7), Electronics (Figure 8),
Home and Kitchen (Figure 9), and Movies
and TV (Figure 10).

B.2 Additional Results for RQ2

In § 4, we provided SVCCA results between E and
different Cis for three domains. Here we present
the results for the rest of the two domains in Fig-
ure 13a, 13d, 14a, and 14d.

B.3 Example of General and Domain-specific
Words

We provide a sample of general words and domain
specific words for each domain in Table 4. Note
that list of general words are domain independent,
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Figure 10: Training dynamics for all layers between E
and CMovies. Here both model and data size are 100%.

i.e., the general word list is the same for all do-
mains.

B.4 Additional Results for RQ3
Here we present additional results for SVCCA
score between E and Ci for different subsets of to-
kens. Figure 11 illustrates for CClothing, Figure 12
illustrates for CElectronics, Figure 13 illustrates for
CHome, and Figure 14 illustrates for CMovies.

B.5 Additional Results for RQ4
Here we provide more example MLM predictions
of E and Ci. Table 5 presents predictions using k-
nearest neighbors of the word embeddings. Table 6
presents predictions using the final layer represen-
tation.

B.6 Additional Results on WikiSum
Here we provide additional results on WikiSum
Health domain in Figure 15, including SVCCA
results between E and CHealth, as well as results
for different subsets of tokens.
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General words: totally, preference, cost, mistake, hello, noticeable, play, factor, common,
friend, previously, upon, explain, future, everyone
Books: gutenberg, appendix, autobiographical, grammatically, bookshelves, democrat,
asides, arabic, stagnant, curriculum, minutiae, gripped, publishers, referencing, socialism
Clothing: marten, docker, florsheim, rockports, skechers, buckles, 38d, fleece, nylons,
insoles, tees, pantyhose, puckered, slippers, footwear
Electronics: printable, wifi, 105mm, aux, energizer, recordable, directories, reinstall, gigabit,
reboots, portability, vga, hitachi, configurations, wirelessly
Home: cupcakes, kitchenaid, undercooked, ikea, chopper, mugs, steamers, juices, fiesta,
kettles, aroma, toasted, rinsed ovens, airtight
Movie: scenic, 16x9, nightclub, cheesiest, filmakers, supernova, serials, weepy, purists,
incarnations, lionsgate, reportedly, suggestive, 1931, choreography

Table 4: A representative sample of general words (top row) and domain specific words (bottom rows) taken from
different categories (domains) of the dataset.

m=50% m=100%
E Ci E Ci

editors volumns editors editors
publisher buyer publisher publisher

heirs listing editor editor
libraries edit writers authors

universities hardcover authors reviewers

(a) 5-nearest neighbors for the domain-specific word pub-
lishers with i=Books.

m=50% m=100%
E Ci E Ci

towards towards towards towards
beside settled against at

surrounding at onto onto
beneath concerning at against
against behind beside near

(b) 5-nearest neighbors for the general word toward with
i=Books.

m=50% m=100%
E Ci E Ci

comics jokes comics comics
jokes joke comedian joke

comedian accolades laughs comedian
directors critics comedies critics

commentators reviewers jokes laughs

(c) 5-nearest neighbors for the domain-specific word co-
medians with i=Movies and TV.

m=50% m=100%
E Ci E Ci

print vinyl plastic plastic
plastic bonded print vinyl
cloth plastic materials cardboard

cardboard junk paperback print
printed cardboard cardboard tissue

(d) 5-nearest neighbors for the general word paper with
i=Clothing Shoes and Jewelry.

Table 5: Example predictions of E and Ci using 5-nearest neighbors from embedding layer weights. m denotes
model capacity. All models here use data size of 100%.
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(c) ℓ0: domain-specific words
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Figure 11: The SVCCA score between E and CClothing for different subsets of tokens. The top row presents the
results for the embedding layer ℓ0, and the bottom row presents them for the last layer ℓ12.
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(c) ℓ0: domain-specific words
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(d) ℓ12: all words
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Figure 12: The SVCCA score between E and CElectronics for different subsets of tokens. The top row presents the
results for the embedding layer ℓ0, and the bottom row presents them for the last layer ℓ12.
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(b) ℓ0: general words

10% 50% 100% 200%
Data size

10%

25%

50%

75%

100%

M
od

el
 s

iz
e

0.76 0.74 0.68 0.58

0.82 0.69 0.68 0.69

0.89 0.8 0.78 0.78

0.93 0.91 0.9 0.89

0.94 0.94 0.94 0.94

0.0

0.2

0.4

0.6

0.8

1.0
S

V
C

C
A sim

ilarity

(c) ℓ0: domain-specific words
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(d) ℓ12: all words
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(e) ℓ12: general words
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(f) ℓ12: domain-specific words

Figure 13: The SVCCA score between E and CHome for different subsets of tokens. The top row presents the
results for the embedding layer ℓ0, and the bottom row presents them for the last layer ℓ12.
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(b) ℓ0: general words
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(c) ℓ0: domain-specific words
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(d) ℓ12: all words
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(e) ℓ12: general words
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(f) ℓ12: domain-specific words

Figure 14: The SVCCA score between E and CMovies for different subsets of tokens. The top row presents the
results for the embedding layer ℓ0, and the bottom row presents them for the last layer ℓ12.
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m=50% m=100%
E Ci E Ci

food counter bottle counter
counter hands refrigerator bottle

wine oil wine hands
oil food food sink

salad salad fridge stove

(a) I realize the point of my purchase was to reduce the
amount of olive oil I sprayed on my [MASK] but I do
end up having to pump it up and mist twice. The masked
word is a domain-specific word salad with i=Home and
Kitchen.

m=50% m=100%
E Ci E Ci

guy guy girl guy
musician woman guy woman

dude man killer hero
kid kid gal cop

vampire person dude man

(b) There had to be the four friends-a hypochondriac, a
smoothing-talking [MASK] who gets everyone in trouble,
the joker’s friend who’s a bit of a ham but has slightly
more brains, and a girl. The masked word is a domain-
specific word joker with i=Movies and TV.

m=50% m=100%
E Ci E Ci

say have worry worry
think say complain say

complain know wonder know
know care know think
worry understand say complain

(c) Amazon replaced it with no hassle, but I always have to
[MASK] about these drives. The masked word is a general
word worry with i=Electronics.

m=50% m=100%
E Ci E Ci

instructed expected suggested suggested
suggested instructed stated instructed

well stated instructed expected
usual advertised advertised well

indicated normal well stated

(d) I ordered a half size down as [MASK] and the size 11
eclipses my foot. The masked word is a general word sug-
gested with i=Clothing Shoes and Jewelry.

Table 6: Example MLM predictions of E and Ci using last layer representation. m denotes model capacity. All
models here use a data size of 100%.
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(a) ℓ0: all words
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(b) ℓ0: general words
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(c) ℓ0: domain-specific words
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(d) ℓ12: all words
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(e) ℓ12: general words
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(f) ℓ12: domain-specific words

Figure 15: The SVCCA score between E and CHealth for different subsets of tokens. The top row presents the
results for the embedding layer ℓ0, and the bottom row presents them for the last layer ℓ12.
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