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Abstract
Multilingual NLP models provide potential so-
lutions to the digital language divide, i.e., cross-
language performance disparities. Early analy-
ses of such models have indicated good perfor-
mance across training languages and good gen-
eralization to unseen, related languages. This
work examines whether, between related lan-
guages, multilingual models are equally right
for the right reasons, i.e., if interpretability
methods reveal that the models put emphasis
on the same words as humans. To this end,
we provide a new trilingual, parallel corpus of
rationale annotations for English, Danish, and
Italian sentiment analysis models and use it to
benchmark models and interpretability meth-
ods. We propose rank-biased overlap as a better
metric for comparing input token attributions
to human rationale annotations. Our results
show: (i) models generally perform well on the
languages they are trained on, and align best
with human rationales in these languages; (ii)
performance is higher on English, even when
not a source language, but this performance is
not accompanied by higher alignment with hu-
man rationales, which suggests that language
models favor English, but do not facilitate suc-
cessful transfer of rationales.

1 Introduction

NLP models are sometimes right for the wrong
reasons, e.g., when sentiment analysis models cor-
rectly predict a movie review to be positive because
it contains the word Shrek (Sindhwani and Melville,
2008). Human rationale annotations can be used to
evaluate the extent to which models are right for the
right reasons, i.e., whether model rationales align
with human rationales. Datasets with rationale an-
notations exist for sentiment analysis (Zaidan and
Eisner, 2008), fact-checking (Thorne et al., 2018),
natural language inference (Camburu et al., 2018a),
and hate speech detection (Mathew et al., 2020),1

1Several of these datasets can also be found in the
ERASER Benchmark (DeYoung et al., 2020).

EN
A deep and meaningful film

2.34 1.69 2.70 1.92 0.09

DA
En dyb og meningsfuld film

0.20 0.79 0.67 2.32 0.11

IT
Un film profondo e significativo
0.44 0.28 1.72 1.79 1.43

Table 1: Tokens with machine generated importance
scores for direct translations of the same sentence into
English, Danish, and Italian. We see machine rationales
are nevertheless quite different; e.g., consider the impor-
tance scores for the connectives and, og and e.

but so far only for the English language. While
multilingual language models often fail to gener-
alize across distant languages (Singh et al., 2019a;
Pires et al., 2019; Rust et al., 2020), they do bridge
between related languages and have become a stan-
dard solution to data sparsity (Zheng et al., 2021),
as well as a way to reduce the overall energy con-
sumption of training language-specific language
models (Sahlgren et al., 2021). Benchmark perfor-
mance does not tell us whether multilingual models
are more prone to spurious correlations in some lan-
guages rather than others, i.e., whether models are
equally right for the right reasons or to different
degrees, see Table 1.

This paper presents a trilingual parallel corpus
of human rationale annotations in Danish, Italian,
and English, for the task of sentiment analysis. To
this end, we translate an existing sentiment analysis
dataset into different languages following a similar
procedure as Hu et al. (2020), with human post-
correction. We then collect rationales from native
speakers of these languages. We evaluate the qual-
ity of our human rationale annotations in two ways:
using inter-annotator agreement metrics and using
human forward prediction experiments (Nguyen,
2018). We then use the corpus to evaluate the extent
to which multilingual language models are equally
right for the right reasons across languages, and
whether agreement with human rationales aligns
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with downstream performance.

Contributions Our contributions are as follows:
(a) We present a trilingual corpus of human ratio-
nales, based on post-corrected translations of the
Stanford Sentiment Treebank (Socher et al., 2013)
and annotated by native speakers. The corpus is
made publicly available at https://github.
com/RasmusKaer/BlackBox2022. (b) We
propose better metrics for comparing ranked ra-
tionales than has previously been used, as well as
a sequence-wise normalization of LIME’s token
scores to make scores comparable across sequences.
(c) We evaluate MBERT (Devlin et al., 2019) and
XLM-R (Conneau et al., 2019), in conjunction
with two interpretability methods, LIME (Ribeiro
et al., 2016) and SHAP (Lundberg and Lee, 2017),
across three languages, quantifying the extent to
which these models are equally right for the right
reasons.

2 Multilingual Rationale Annotation

Our multilingual corpus of human rationales is
based on post-corrected translations of the Stan-
ford Sentiment Treebank. We obtain Danish and
Italian translations of a sample of validation data,
correct the translations manually, and have native
speakers annotate the original English sentences,
as well as their post-corrected translations. We
then validate the annotations by quantifying human
inter-annotator agreement and by performing hu-
man forward prediction experiments (Doshi-Velez
and Kim, 2017; Nguyen, 2018; Hase and Bansal,
2020; Gonzalez and Søgaard, 2020; González et al.,
2021). We describe each step in detail in this sec-
tion.

Stanford Sentiment Treebank (SST) Our
dataset builds on a sample of the Stanford Senti-
ment Treebank, which originally consists of 11,855
sentences from movie reviews, annotated with sen-
timent labels, and split in training, validation and
evaluation sections of 8,544, 1,101, and 2,210 sen-
tences. The sample selected for annotation of the
rationales consists of 250 sentences from the vali-
dation section.

Translation We translate the English dataset into
the target languages using Google Cloud API2.
We carefully correct the translations of the ratio-
nales set manually and assess the quality of corpus

2Advanced version (v3), September 2021

through a language analysis. The post-correction
process is presented in 6. We are aware that it
would have been beneficial to have a set of lan-
guages that was more representative of linguistic
diversity, but for this work we only had access to
professional annotators in the three languages.

Annotation We ask native speakers of English,
Danish and Italian to annotate the sample with ra-
tionales. Our aim is to identify two types of in-
formation for each sentence: the rationales span,
snippets of text that support the outcome; and the
rank, the most meaningful words to justify the sen-
timent of the sentence. Inspired by previous ex-
plainability work in NLP using human rationale
annotations (Mathew et al., 2020; DeYoung et al.,
2019; Zhang et al., 2016), we follow the annotation
guidelines in Zaidan et al. (2007). For the rank, we
are interested in single words that carry a semantic
meaning for the output (positive or negative sen-
timent). Annotators are asked to rank up to five
words from most (1) to least (5) meaningful. See
Table 2 for an example. The four annotators used
in this study had linguistic training and participated
on a voluntary basis.

S John and Adam are such likeable actors.
R John and Adam are such [2] likeable [1] actors.
S A warm , funny , engaging film.

R A warm [3], funny [1], engaging [2] film.

Table 2: Text annotation showing span (S) annotation
and rank (R) annotation.

Annotator agreement The inter-annotator agree-
ment is measured as Cohen’s κ (Cohen, 1960) and
accuracy; see Table 3. The κ coefficients suggest
that the two annotators for each language have sub-
stantial agreement across all languages.

Lang. κ Acc. Span Rank Tokens

DA 0.705 0.882 1,114 722 4157
EN 0.731 0.890 1,250 770 4232
IT 0.642 0.857 1,067 736 4411

Table 3: Annotator agreement and rationales by token.
The minimum sentence length is 3 tokens for all three
languages. The average length for both EN and DA is 17
and the maximum is 42 tokens per sentence, while in IT
it is, respectively, 18 and 44 tokens per sentence.

Forward prediction Besides calculating the
inter-annotator agreement, we also validate the
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quality of our annotations through human forward
prediction (Doshi-Velez and Kim, 2017; Nguyen,
2018; Hase and Bansal, 2020; Gonzalez and Sø-
gaard, 2020; González et al., 2021). We recruited
9 annotators from our professional network, and
everyone had degrees in computer science or lin-
guistics. In a small-scale side experiment, we show
participants 28 examples in which rationales identi-
fied by the annotators are highlighted. Participants
are then asked to guess the ground truth (positive or
negative sentiment) from these highlighted spans.
We compare this to a baseline setting in which our
participants have to guess the ground truth from
raw text. We explicitly mentioned in the task that
the results will be used for scientific research. If
the rationales help participants predict the ground
truth, they have been shown to be good rationales.
Humans predicted the ground-truth for 82% of the
examples with rationales, compared to 70% of the
examples without rationales. For example, without
rationales provided, 22.2% of annotators struggled
in identifying the correct sentiment of a review
such as "Turns a potentially forgettable formula
into something strangely diverting", while having
less difficulties with equally challenging reviews
when the rationales are provided. The high inter-
annotator agreement and the usefulness of our ra-
tionales together indicate that our annotations are
of high quality.

3 Comparing Ranked Rationale Lists

To evaluate the agreement between human ratio-
nales and rationales identified by interpretability
methods applied to automatic sentiment analyses,
we need a similarity measure for comparing ranked
rationale lists. Common correlation tests are not
sufficient, because the measure must be applica-
ble to non-conjoint, uneven lists and should put a
higher weight on higher-ranked words.

The human annotator selects the most relevant
words in a sentence until exhausted. The ranking is
ordered, but may only contain a few words. On the
other hand, the interpretability methods provide by
design a rank for each word in a sentence. Thus,
the annotator’s ranking is typically incomplete (not
all items are ranked), while the automatically com-
puted ranking is complete. That is, the two rank-
ings are mutually non-conjoint. Furthermore, we
need to deal with indefiniteness (Webber et al.,
2010) in the sense that the annotator may truncate
the complete list at an arbitrary depth. The mea-

sure we propose for evaluating rationale rankings
is the extrapolated version of the rank-biased over-
lap (Webber et al., 2010), RBOEXT, which is a gen-
eralization of average based overlap for indefinite
rankings. It ranges from 0 (disjoint) to 1 (identical).
The RBOEXT measure satisfy the criteria needed
for evaluating the agreement of list rationale rank-
ings of both sentences and documents by being able
to handle tied ranks, rankings of different lengths
and top-weighted rankings.

The degree of top-weightedness is determined
by a parameter p ∈ [0, 1]. Consider a person com-
paring two rankings by sequentially going through
the lists starting with the highest rank. In each
step, one additional rank is considered. That is, in
the beginning only the highest ranked elements
are compared, then additionally the top two el-
ements are compared, and so on. At each step,
the person stops the comparison with a probability
1 − p. Roughly speaking, RBOEXT measures the
expected similarity computed by this randomized
comparison. The parameter p induces a weighting
of the ranks that decreases with decreasing rank
(i.e., decreasing importance). Following Webber
et al. (2010), we choose p such that 86% of the
weight is concentrated on the first d ranks. They
show that the concentration of weights on the first
d ranks given p can be computed as

1− pd−1 +
1− p

p
d

(
ln

1

1− p
−

d−1∑

i=1

pi

i

)
.

Table 3 shows that annotators on average rank 3
words per sentence. Hence, we set p = 0.68, be-
cause this leads to a concentration of roughly 86%
for d = 3. The annotators were asked to rank up
to 5 words. Therefore, we also considered only
the top-5 elements in the rankings produced by the
interpretability methods (still, we apply RBOEXT
as derived for indefinite rankings).

4 Experiments

Our experiments below rely on two pretrained mul-
tilingual language models, which we briefly intro-
duce, three different experimental protocols, and
two different interpretability methods.

Pretrained language models The experimen-
tal protocol is based on two pretrained multilin-
gual transformer language models (Vaswani et al.,
2017), namely MBERT (Devlin et al., 2019)3 and

3https://huggingface.co/bert-base-multilingual-cased
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XLM-R (Conneau et al., 2019)4. We used the base,
cased version from the Hugging Face transformers
library5. Following (Devlin et al., 2019), we added
a classification layer on top of the [CLS] token. We
fine-tuned these models for 3 epochs on a single
Tesla K80 GPU, with a training batch size of 16
and a learning rate of 3 · 10−5. The parameters
were found using manual hyperparameter tuning
based on the authors’ recommendations of batch-
sizes {16, 32}, epochs {2, 3, 4}. The learning rate
was fine-tuned over {2 · 10−5, 3 · 10−5, 5 · 10−5}
with 3 trials each.

Experimental protocols In our experiments, we
fine-tune MBERT and XLM-R on the SST train-
ing data and/or translations thereof (into Danish or
Italian). We rely on three standard protocols, which
we call the BASE-SETTING, the CROSS-SETTING,
and the MULTI-SETTING. In the BASE-SETTING,
we fine-tune MBERT and XLM-R on a single lan-
guage, e.g., English, and evaluate them on the eval-
uation data in the same language. This corresponds
to the situation in which you use a multilingual lan-
guage model to learn a monolingual model in the
presence of training data. This scenario is common
for medium-resourced languages. In the CROSS-
SETTING, we evaluate such models, e.g., trained
on English, on another language. This scenario is
common for low-resourced languages. Finally, in
the MULTI-SETTING, we train and evaluate on all
three languages, inducing a multilingual sentiment
analysis model for three languages. In all three set-
tings, we evaluate the extent to which the fine-tuned
MBERT and XLM-R models align with human
rationales, relying on interpretability methods.

Interpretability methods A variety of methods
for deriving explanations are currently being used
by the NLP community. Examples of such methods
are LIME (Ribeiro et al., 2016) and SHAP (Lund-
berg and Lee, 2017), LRP (Bach et al., 2015), and
DTD (Montavon et al., 2017). For this study, we
consider SHAP and LIME, since they are two
of the most widely used post-hoc model inter-
pretability methods, also used in similar studies
such as ERASER (DeYoung et al., 2020) and Hat-
eXplain (Mathew et al., 2020). LIME is a model-
agnostic approach that returns an explanation for a
prediction on an input example (a text) by virtue of
a local linear approximation of the model’s behav-

4https://huggingface.co/xlm-roberta-base
5https://huggingface.co/docs/transformers, V4.15.0

ior around that example. The linear approximation
is a sparse linear model induced from hundreds
of perturbations of the example. In the case of
text examples, perturbations are obtained by ran-
domly removing tokens or words. SHAP is also
model-agnostic and based on Shapley values (Shap-
ley, 1953), a concept from cooperative game the-
ory, which refers to the average of the marginal
contributions to all possible coalitions. When ap-
plied to text, the method, like LIME, produces
explanations in terms of tokens or words. We kept
the hyperparameters of the two methods to their
default-setting, except for the size of neighbour-
hood used to learn linear models for LIME, which
we set to 500 for computational reasons.

5 Results

Table 4 presents the results of the experimental
protocol on our trilingual corpus. We compare the
effectiveness of LIME and SHAP on human ra-
tionales. The agreements is evaluated using ROC
AUC for rationale span and RBOEXT for rank simi-
larity based on all 250 samples. The protocol sets
two properties for fine-tuning: a single language,
denoted by DA, EN and IT, or multiple languages,
denoted MULTI. The fine-tuned models are tested
across DA, EN and IT with 3 runs per setting.

Performance of MBERT and XLM-R The ac-
curacy of the multilingual models across languages
and settings is presented in Table 4. The results con-
firm the findings of the original works (Conneau
et al., 2019), that XLM-R is consistently better
than MBERT.

While MBERT-based models consistently ob-
tain their highest accuracy in the BASE-SETTING,
XLM-R-based models always perform best on En-
glish as the target language, independently from
the source language. MBERT-based models ex-
hibit a high variation in the CROSS-SETTING (5.11
p.p. difference between the average accuracy of the
BASE compared to the CROSS settings), e.g., EN-
MBERT achieves 81.48% accuracy when tested on
the English test set, but has only 70.42% accuracy
on Danish. In contrast, XLM-R shows less varia-
tion between BASE and CROSS settings (0.52 p.p.
difference).

But does a higher performance correspond to
higher agreement with human rationales? Table 4
presents the results for agreement, evaluated using
ROC AUC for rationale span and RBOEXT for rank
similarity of the two list rankings. The results sug-
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Protocol settings SHAP LIME
Source Model Target Acc. ROC AUC RBOEXT ROC AUC RBOEXT

English

EN-MBERT
EN 81.48 ± 0.3 68.69 ± 0.7 51.63 ± 0.0 67.08 ± 0.0 53.76 ± 0.0

IT 74.28 ± 0.6 70.11 ± 1.0 49.92 ± 0.0 66.18 ± 0.0 47.77 ± 0.0

DA 70.42 ± 0.9 67.41 ± 1.0 44.38 ± 0.0 62.05 ± 0.0 42.35 ± 0.0

EN-XLM-R
EN 85.37 ± 0.2 69.95 ± 1.4 52.78 ± 0.0 66.83 ± 0.0 56.87 ± 0.0

IT 82.16 ± 0.2 69.80 ± 0.4 48.52 ± 0.0 68.05 ± 0.0 54.48 ± 0.0

DA 82.50 ± 0.3 68.85 ± 0.7 50.68 ± 0.0 66.19 ± 0.0 53.33 ± 0.0

Italian

IT-MBERT
IT 80.66 ± 1.2 69.24 ± 1.1 53.24 ± 0.0 68.23 ± 0.0 55.37 ± 0.0

EN 76.08 ± 1.7 68.79 ± 1.0 50.46 ± 0.0 66.04 ± 0.0 48.62 ± 0.0

DA 68.94 ± 0.5 65.13 ± 0.6 43.11 ± 0.0 62.66 ± 0.0 43.95 ± 0.0

IT-XLM-R
IT 82.56 ± 0.0 71.79 ± 1.2 52.79 ± 0.0 69.94 ± 0.0 56.72 ± 0.0

EN 84.15 ± 0.7 70.62 ± 0.8 55.48 ± 0.0 66.79 ± 0.0 55.22 ± 0.0

DA 81.24 ± 1.0 69.59 ± 0.4 53.03 ± 0.0 66.16 ± 0.0 52.98 ± 0.0

Danish

DA-MBERT
DA 79.17 ± 0.5 67.40 ± 2.0 49.07 ± 0.0 66.37 ± 0.0 51.33 ± 0.0

IT 72.10 ± 0.3 68.36 ± 0.8 45.84 ± 0.0 64.74 ± 0.0 45.39 ± 0.0

EN 75.60 ± 0.7 69.95 ± 0.5 49.50 ± 0.0 66.17 ± 0.0 48.37 ± 0.0

DA-XLM-R
DA 83.41 ± 0.5 69.74 ± 1.6 55.88 ± 0.0 65.99 ± 0.0 53.27 ± 0.0

IT 82.07 ± 0.6 69.16 ± 0.6 49.75 ± 0.0 67.57 ± 0.0 52.12 ± 0.0

EN 84.80 ± 0.2 70.39 ± 1.1 53.63 ± 0.0 66.34 ± 0.0 52.59 ± 0.0

Multi

MULTI-MBERT
EN 81.51 ± 0.1 65.02 ± 2.1 43.49 ± 0.0 65.97 ± 0.0 51.68 ± 0.0

IT 80.62 ± 0.2 66.16 ± 1.6 45.57 ± 0.0 66.21 ± 0.0 49.60 ± 0.0

DA 78.34 ± 0.9 63.99 ± 0.4 42.65 ± 0.0 63.89 ± 0.0 49.71 ± 0.0

MULTI-XLM-R
EN 85.83 ± 0.4 67.79 ± 0.8 50.45 ± 0.0 64.48 ± 0.0 48.66 ± 0.0

IT 83.67 ± 0.3 69.10 ± 0.7 46.41 ± 0.0 66.52 ± 0.0 51.88 ± 0.0

DA 82.88 ± 0.7 66.99 ± 1.3 48.89 ± 0.0 64.61 ± 0.0 49.59 ± 0.0

Table 4: Evaluation results on the multilingual corpus of rationales. All results are averaged over three trials. We
report the results in percentages. We observe that generally models perform well on the languages they are trained
on (source languages), and align best with human rationales in these languages. Generally, MBERT aligns better
with human rationales, but XLM-R performs better. We also observe, however, that performance is high on English,
even when not a source language, but that this performance is not accompanied by higher alignment with human
rationales. This suggests that language models favor English, but do not facilitate successful transfer of rationales.

gest that the accuracy of the models does not gen-
erally seem to influence ROC AUC and RBOEXT
scores, since a much higher accuracy does not im-
ply better span prediction.

Interpretability methods Our evaluation of the
span agreement shows an average across all models
and languages of 68.50% for SHAP and 66.04%
for LIME, indicating that SHAP has a higher
(2.46 p.p.) agreement with human span rationales
than LIME. The average rank agreement across
all models and languages measured using RBOEXT
is 49.46% for SHAP and 51.07% for LIME, the
latter being 1.61 p.p. higher in agreement than
SHAP. These experiments show that we do not
have a single best method across rank and span.
Our results suggest a trend of SHAP being a more
successful method for capturing good weights for
span agreement and LIME being slightly more in
accordance with human ranking.

Languages The best rank agreement is achieved
when English is used as target language, with
the overall highest for both LIME (51.97%) and
SHAP (50.93%), as presented in Table 5.

Metric Method Target-EN Target-IT Target-DA

RBOEXT
SHAP 50.93 49.01 48.46
LIME 51.97 51.67 49.56

ROC
AUC

SHAP 68.90 69.22 67.39
LIME 66.21 67.18 64.74

Overall 59.50 59.27 57.54

Table 5: To investigate whether explanations are in equal
agreement across languages, we group target languages
together across the BASE, CROSS and MULTI settings.

The second best rank agreement is obtained in
Italian, while the worst is in Danish for both LIME
and SHAP. The highest average span score is
achieved on Italian, while English follows close
and Danish again remain the lowest in agreement.
While English is slightly higher in rank agreement,
Italian obtains a better span agreement. The lowest
span and rank agreement is generally seen with
Danish as target language. As we are interested
in how languages compare across models, settings
and metrics, we can derive the total from the target
languages column in Table 5. Altogether, these
results indicate that we have better explanations for
English (59.50%) than we have for Italian (59.27%)
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and Danish (57.54%). The explanations for English
are 1.96 p.p. higher in agreement with human ra-
tionales than the explanations derived from Danish,
while Italian is 1.73 p.p. higher than Danish.

Evaluation metrics An interpretation of the eval-
uation metrics across settings and languages shows
a span agreement that ranges from 62.05% to
71.79%, with an average of 67.27%. What we
can interpret from the score is a satisfactory span
agreement, suggesting that there is a 2

3 chance that
the model is able to distinguish a token inside a
span and a token outside a span. That is, the ma-
chine rationale agrees with a human rationale. Re-
garding the rank agreement across all settings and
languages, we see it ranges from 42.35% to 56.87%
with an overall average of 50.27%. The score can
be interpreted as neither disjoint nor identical, thus
implying a fair agreement.

6 Analysis

In this section, we present our analysis of our re-
sults and findings. First, we address whether mod-
els are equally right for the right reasons and how
performance compares to agreement. Next, we
analyze the translations and the post-corrections.
Lastly, we examine whether token scores predict
human rationales.

Are models equally right for the right reasons
across languages? The idea of being right for
the right reasons refers to learning from reliable
signals in your data, which are causally related to
the ground truth classification. While some models
can be used to illuminate complex causal dynamics,
others adapt Clever Hans strategies of relying on
pervasive, yet spurious correlations in the training
data. In this paper, we ask if multilingual language
models such as MBERT and XLM-R are equally
prone to spurious correlations across languages?
Or could it be that these models adopt Clever Hans
strategies for some languages, but not for others?

Our results show, very consistently, that MBERT
and XLM-R are less right for the right reasons for
Danish: When the training language is English or
Italian, or when multilingual training language is
used, Danish never aligns best with human ratio-
nales. For English and Italian, it comes in worst in
18/20 cases, and in the multilingual setting, Danish
is least right for the right reasons in 6/10 cases. For
English and Italian, things are more or less on par.
While English is slightly higher in rank agreement,

then Italian obtains a better span agreement, but the
lowest span and rank agreement is generally seen
with Danish as the target language. We conclude
that multilingual language models are not equally
right for the right reasons across languages.

How indicative is accuracy for agreement? It
seems intuitive that a good model with high perfor-
mance will also align better with human rationales,
but theoretically, models may adopt radically dif-
ferent strategies, if multiple strategies are possible.
Even if we expect a positive correlation between
performance and alignment, how strong is this cor-
relation in practice? To answer this question, we
compute the correlation between the accuracy of
the language models and the agreement of span and
rank. We use Spearman’s rank-order correlation
test and Pearson’s correlation test, across both ex-
planation methods and all datasets. Both tests show
that performance is only weakly (positively) cor-
related with alignment with human rationales; see
Table 6 for details. That is, we see better alignment
if models are better, but performance explains only
a little of the variance, suggesting multiple possi-
ble strategies for prediction exist. This aligns well
with our results, also, where a larger difference in
accuracy between models does not transfer into a
significant difference in agreement.

Lang. Spearman’s ρ Pearson’s ρ

Acc/AUC 0.059∗∗ 0.092∗∗

Acc/RBO 0.076∗∗ 0.153∗∗

Table 6: Correlation scores for performance (Acc) and
alignment with human rationales (AUC/RBO).

Humans may base their rationales on different
parts than machine-based rationales. While hu-
mans consider and necessary for the snippet of
deep and meaningful (see example in Table 1), a
model may not find it a useful predictor of sen-
timent. Humans and models may agree on the
sentiment, but for slightly different reasons.

Language analysis The translated corpus is post-
corrected to obtain a high overall quality, ensuring
that the corpus can be used to evaluate the inter-
pretability methods in our experiments. To quantify
the translations quality, we report the number or
sentences that needed corrections and the average
number of corrected words in Table 7. The percent-
age of sentences that needed to have corrections in
Italian and Danish are, respectively, 17.20% and
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Lang. % corrected sentences Avg. corrected words

DA 15.60 1.46
IT 17.20 1.74

Table 7: Percentage of corrected sentences and average
number of corrected words per sentence in Italian and
Danish.

15.60%. Among these corrected sentences, 1.74
words were corrected on average in Italian, 1.46 in
Danish. The results indicate that overall the quality
of the translations is high. This is also supported
by the performance of the fine-tuned models in
Table 4. A selection of original translation and
the post-corrected equivalent is presented in Table
8. We can highlight some limitations found dur-
ing post-correction. The original sentences some-
times present an informal register, sprinkled with
colloquial and slang words, which may result in
suboptimal and literal translations. Some of the
original sentences present idiomatic expressions
that might result in a literal translation, as in A-DA,
not corresponding to actual terms in the target lan-
guage. Moreover, some translations may contain

A-IT ORG. ..., sbalorditivo, assurdamente cattivo.
A-IT COR. ..., sbalorditivo, assurdamente brutto

B-IT ORG. Questo film fa impazzire.
B-IT COR. Questo film è esasperante.

A-DA ORG. Der er parcelhuller, der er store nok til, ...
A-DA COR. Der er plothuller, der er store nok til, ...

B-DA ORG. Det er en greb taske med genrer, ...
B-DA COR. Det er en rodekasse med genrer, ...

Table 8: Examples of corrected translations (COR.) and
the original translations (ORG.).

subpar syntactic structure or lexicon, e.g., in A-IT

brutto is more suiting to refer to films, although it
presents the same polarity and magnitude of the
original adjective. In B-IT the sentiment of the
expression could be misinterpreted, since fa im-
pazzire is sometimes used in a positive connotation.
Lastly, sometimes the original English sentences
contain typos and other errors, which the model
is understandably not able to correct or process,
therefore transferred into the translations.

Do token scores predict human rationales
Meaningful token scores produced by an inter-
pretability method should be predictive of human
rationales (Doshi-Velez and Kim, 2017; Nguyen,
2018; DeYoung et al., 2019). To verify this, we

map the token score s(w) of a word w to an es-
timate of the probability that the word is in the
rationales span. We assume a logistic model

P (w in rationales span | s(w)) = σa,b(|s(w)|) ,

where σa,b(x) = (1 + exp(ax+ b))−1 with scalar
parameters a and b. These parameters are deter-
mined by maximum likelihood estimation on a
training set pairing token scores and corresponding
human annotations. We consider the absolute value
of the score because we are interested in the impor-
tance of a word regardless of whether it contributes
to a positive or negative sentiment. This approach
corresponds to calibrating the (absolute) scores to
posterior probabilities as suggested by Platt (Platt,
1999; Niculescu-Mizil and Caruana, 2005). It can
also be viewed as logistic regression from the ab-
solute score to the dependent variable indicating
whether a word is in the rationale span or not.

The logistic model gives us the probability of
a word being a rationale, which allows for an in-
terpretation of token scores and a comparison of
scores across different interpretability methods. In
particular, the model suggests a criterion for decid-
ing whether a word should be considered part of
the rationales span or not by applying the natural
50% threshold on the probabilities (we pay for this
additional information by using training data to fit
the models). To fit the model and to compare the
different interpretability methods, we split our data
into a training and a validation set. We used 25
positive and 25 negative samples for validation and
trained on the remaining 200 data points.

Let s = (s(w1), s(w2), . . . )
T denote the vec-

tor of scores for a word sequence w1, w2, . . . and
min(s) and max(s) the minimum and maximum
element of s, respectively. To compare token
scores across sequences, their scaling should not
differ across the sequences. That is, because we
can assume that each sequence contains at least one
word within and one outside the span, for two se-
quence s and s′ we should have min(s) = min(s′)
and max(s) = max(s′). We found this property
to be violated, in particular for LIME. Thus, we
normalized the scores at the sequence level using

s(w)← s(w)−min(s)

max(s)−min(s)

for each score s(w) in a sequence with scores s.
Table 9 shows the accuracies on the held-out sets

in BASE-SETTING. Both methods performed better
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LIME LIME SHAP SHAP BASE
MBERT XLM-R MBERT XLM-R LINE

(A)
EN 70.03 71.51 71.68 72.76 67.74
DA 69.50 70.23 70.83 72.75 67.49
IT 70.94 72.73 72.73 73.78 67.80

(B)
EN 73.75 73.03 70.97 71.68 67.74
DA 72.34 72.75 71.47 72.70 67.49
IT 73.47 75.44 73.30 73.13 67.80

Table 9: The accuracies on the hold-out sets in BASE-
SETTING. The BASELINE is a majority classifier that
naively predicts all tokens as not a rationale. (A) refers
to the original token scores and (B) to the normalized
token scores.

than simply predicting the majority class. Without
normalization, SHAP outperformed LIME on our
(rather small) validation data set. LIME was only
slightly better than the baseline, but after normaliza-
tion LIME surpassed SHAP, which did not profit
from the normalization. When evaluating explana-
tions on how well the token scores generalize to
human rationales, we see a similar pattern of Italian
and English sharing the highest agreement where
Danish consistently shows the lowest agreement.

Human annotated rationales include connectives,
determiners, and similar, which are irrelevant for
our binary task and are therefore not used by the
logistic models. This suggests that methods for
adding the relevance of these could be a promis-
ing direction for improving our approach and the
evaluation between human and machine rationales.

7 Related work

Transformer-based multilingual models have been
analyzed in many ways: Researchers have, for ex-
ample, looked at performance differences across
languages (Singh et al., 2019b), looked at their or-
ganization of language types (Rama et al., 2020),
used similarity analysis to probe their representa-
tions (Kudugunta et al., 2019), and investigated
how learned self-attention in the Transformer
blocks affects different languages (Ravishankar
et al., 2021). Human rationales have been used
to supervise attention for various text classifica-
tion tasks, such as sentiment analysis (Zhong et al.,
2019) and machine translation (Yin et al., 2021).
Feature attribution methods such as LIME and
SHAP have also been applied to multilingual mod-
els: LIME has been applied to MBERT for analy-
sis of hate speech models (Aluru et al., 2020), and
SHAP has been applied to MBERT in biomedi-
cal NLP (Zaragoza, 2021). LIME has also been
applied to XLM-R in the context of hate speech

(Socha, 2020), as well as in a biomedical context
(Koloski et al., 2021). Shapley values have also
been used to estimate the influence of source lan-
guages on the final predictions of models based on
MBERT (Parvez and Chang, 2021). None of these
applications have been evaluated, however. Fea-
ture attributions have been applied to monolingual
models, especially for English, more often than
multilingual models. For English, we have a set of
datasets with human rationales that we can use to
evaluate feature attribution methods. These include
BeerAdvocate (Bastings et al., 2019) and e-SNLI
(Camburu et al., 2018b), as well as other datasets,
several of which were collected in the ERASER
benchmark (DeYoung et al., 2020). The reason
feature attribution methods have not been prop-
erly evaluated in a multilingual context, is simple:
There was, until now, no gold standard with which
to evaluate the rationales produced by multilingual
models.

8 Conclusions

We introduced a new trilingual, parallel corpus of
human rank and span rationales in three related
languages, English, Danish and Italian. We pro-
posed rank-biased overlap as a better metric for
rank evaluation when common correlation tests are
not sufficient. We found that a sequence-wise nor-
malization of LIME’s token scores is required to
make scores comparable across sequences. Evalua-
tions on the corpus showed that generally, models
perform well on the languages they are trained on,
and align best with human rationales in these lan-
guages. Models can be right for different reasons.
The main results suggest that multilingual models
are not equally right for the right reasons in the
sense that interpretability methods indicate that the
models not necessarily put emphasis on the same
words as humans. We also observed that perfor-
mance is high on English, even when it is not a
source language, but that this superior performance
is not accompanied by higher alignment with hu-
man rationales. In other words, this zero-shot ad-
vantage of English as a target language seems to
come at the cost of being more prone to spurious
correlations. With this work, we hope to inspire
further progress on multilingual interpretation and
collection of rationales in different languages.
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9 Limitations

All the languages chosen for the presented work be-
long to the Indo-European language family, since
we only had access to professional annotators in
the three languages. A clear limitation of this
study is the lack of linguistic diversity in the set
of languages used. It would be beneficial in the
future to build larger rationale datasets for less
related languages, including languages from dif-
ferent language families. Another limitation to be
highlighted is the limited size of the multilingual
parallel corpus of rationales, consisting on 250 an-
notations per language. Finally, although the paral-
lel corpus was post-corrected, the language models
are fine-tuned on the translations.
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