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Abstract

Clinical risk scores enable clinicians to tabu-
late a set of patient data into simple scores to
stratify patients into risk categories. Although
risk scores are widely used to inform decision-
making at the point-of-care, collecting the in-
formation necessary to calculate such scores
requires considerable time and effort. Previ-
ous studies have focused on specific risk scores
and involved manual curation of relevant terms
or codes and heuristics for each data element
of a risk score. To support more generaliz-
able methods for risk score calculation, we
annotate 100 patients in MIMIC-III with el-
ements of CHA2DS2-VASc and PERC scores,
and explore using question answering (QA) and
off-the-shelf tools. We show that QA models
can achieve comparable or better performance
for certain risk score elements as compared
to heuristic-based methods, and demonstrate
the potential for more scalable risk score au-
tomation without the need for expert-curated
heuristics. Our annotated dataset will be re-
leased to the community to encourage efforts
in generalizable methods for automating risk
scores.

1 Introduction

Clinical risk scores are standardized metrics to es-
timate the risk of a particular future outcome based
on available clinical parameters and are commonly
used at the point-of-care to inform decision-making
around diagnosis and treatment (Steyerberg et al.,
2019). An example of this is the CHA2DS2-VASc
score (Lip et al., 2010), which uses 7 patient data el-
ements to estimate the risk of stroke in patients with
non-valvular atrial fibrillation and thus guide strate-
gies around stroke prevention. It has successfully
demonstrated clinical impact and is referenced in
the practice guidelines for management of atrial
fibrillation released by the American Heart Associ-
ation, American College of Cardiology, and Heart
Rhythm Society in 2014 (January et al., 2014).

In general, data elements that contribute to a risk
score may include information about the patient’s
age, gender, medical history, presenting symptoms,
medication use, etc. While risk scores are generally
designed for use at the point-of-care, calculating
them can require considerable time and effort, as
each data element must be manually gathered, often
from multiple locations within the electronic health
record (EHR). A previous study investigating the
feasibility of automating clinical score calculation
identified 534 unique patient data elements from
168 externally validated clinical scores, with each
score requiring anywhere from 3 to 31 elements
(Aakre et al., 2017). Automating extraction of clin-
ical data elements necessary to calculate risk scores
could save clinicians time and help them more ef-
fectively leverage risk scores to improve care at the
bedside (Aakre et al., 2017).

Prior efforts to automate data extraction for risk
score calculations have targeted specific risk scores.
Some of these efforts focused only on leveraging
information from structured EHR data. Koziatek
et al. (2018) developed and automated a structured-
data-only version of the Wells and revised Geneva
risk scores for estimating pulmonary embolism
(PE) risk. Similarly, in automating the Padua Pre-
diction Score for venous thromboembolism risk,
Pavon et al. (2018) either operationalized variables
to rely only on structured data or omitted them
entirely. Other efforts have also incorporated un-
structured EHR data into their work. Jonnagaddala
et al. (2015) used a rule-based text mining system
to extract elements of the Framingham risk score
for coronary artery disease. Mark et al. (2018)
and Zhang et al. (2022) used text string searches
on a set of custom-built keywords/search phrases
to automate coronary risk scores and Wells score
for PE, respectively. Bean et al. (2019), Grouin
et al. (2011), and Elkin et al. (2021) explored the
use of named entity recognition (NER) tagging
combined with heuristics to automatically calculate
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Figure 1: Demonstration of how our proposed QA-based risk score analysis system would work in conjunction with
a physician.

the CHA2DS2-VASc score over unstructured EHR
data. While these efforts found strong agreement
with expert human evaluators, heuristic-based ap-
proaches are often rigid and struggle to generalize
to other problems. Thus, we propose using off-
the-shelf tools and pretrained language models to
extract evidence from both structured and unstruc-
tured EHR data, without the need for manually-
curated rules.

In this study, we explore two commonly used
risk scores – the CHA2DS2-VASc score for atrial
fibrillation stroke risk (Lip et al., 2010) and the
Pulmonary Embolism Rule-out Criteria (PERC)
rule (Kline et al., 2004) – to demonstrate our ap-
proach. We use a transformer-based model trained
on emrQA (Pampari et al., 2018) and an off-the-
shelf biomedical ontology linker paired with a SQL
query component to extract evidence from unstruc-
tured and structured EHR data, respectively, for
each element of the two risk scores (Figure 1). The
main contributions of this work are:

• the first community-shared dataset based on
MIMIC-III for automating risk scores,

• a demonstration of the potential for off-the-
shelf tools and QA models to automate risk
scores over heuristics and rules,

• the need for better negation/hypothetical de-
tection and clinical knowledge embeddings.

2 Dataset

To evaluate our models, we randomly sample 100
patients from the Medical Information Mart for In-
tensive Care III (MIMIC-III) dataset (Johnson et al.,
2016) to annotate with elements of CHA2DS2-
VASc and PERC. CHA2DS2-VASc uses 7 patient

data elements to estimate the risk of stroke in pa-
tients with non-valvular atrial fibrillation: conges-
tive heart failure (CHF), hypertension, age, di-
abetes mellitus, stroke/transient ischemic attack
(TIA)/thromboembolism (TE), vascular disease
(prior myocardial infarction, peripheral artery dis-
ease, or aortic plaque), and sex. PERC uses 8
elements to evaluate the risk of PE in low-risk pa-
tients: age, heart rate, oxygen saturation, unilateral
leg swelling, hemoptysis, recent surgery or trauma,
prior PE or deep venous thrombosis (DVT), and
hormone use.

We frame our scenario as a new patient being
seen in the emergency department (ED) requiring
calculation of CHA2DS2-VASc or PERC because
of suspected atrial fibrillation or PE, respectively,
and the data in MIMIC-III is the available past
medical history for this patient. Therefore, we
limited our dataset to non-expired patients at least
18 years of age at time of last discharge with at least
one discharge summary. Since PERC only rules
out PE when none of the criteria are met, one of
which is age ≥ 50, we further adjust our sampling
such that at least half of the patients selected are
under 50 years of age at time of last discharge to
ensure non-trivial calculation of PERC.

The dataset was annotated by two independent
annotators, with a 20% overlap for inter-annotator
agreement (κ = 0.800), and then reviewed by a
physician. Annotators reviewed the entire EHR
data provided in MIMIC-III, including both struc-
tured and unstructured sources, and annotated ev-
idence relevant to each risk score element. Evi-
dence in structured data include coded diagnoses,
procedures, and past medical history. Evidence
in unstructured data consist of text snippets from
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Patient Risk Score Element Evidence Source Evidence Text Answer
1234 CHA2DS2-VASc CHF noteevents.row_id = xxxx 88 yo M with h/o dCHF yes

noteevents.row_id = xxxx Findings compatible with moderate congestive heart
failure, with interval worsening since [**2157-8-30**]

diagnoses_icd.icd9_code = 4280 Congestive heart failure, unspecified
1234 CHA2DS2-VASc Hypertension noteevents.row_id = xxxx Hypertension yes

diagnoses_icd.icd9_code = 4019 Unspecified essential hypertension
1234 CHA2DS2-VASc Stroke/TIA/TE NA no data
1234 CHA2DS2-VASc Vascular disease chartevents.value = CAD CAD yes
1234 PERC Hemoptysis NA no data
1234 PERC Recent

surgery/trauma
noteevents.row_id = xxxx s/p Pedestrian struck by auto yes
noteevents.row_id = xxxx presented to an outside hospital after reportedly being

struck by a car traveling at 35mph

Table 1: Example of annotated dataset. Under Evidence Source, NA indicates not applicable because no evidence
found, noteevents indicates unstructured EHR data (xxxx indicates elided data), and all other sources are considered
structured EHR data.

discharge summaries, admission notes, progress
notes, and their addenda. Patients in our subset had
an average of 44 notes with average length of 289
tokens.

Since we frame our scenario as a new patient
being seen in the ED, vital signs (e.g., heart rate,
oxygen saturation) as recorded in their history (i.e.,
MIMIC-III in our scenario) would not be relevant
and are therefore excluded from annotation. For
other elements in PERC that may also be time-
sensitive, since the exact time frame is not always
apparent from the given documentation, for the
purposes of this study, we annotate all instances
of unilateral leg swelling, hemoptysis, surgery and
trauma as evidence for their respective elements
regardless of when they occurred. In addition to
the evidence, annotators also provided an overall
answer for each risk score element: "Yes", "No",
"Unclear" (evidence present but conflicting or
inconclusive), or "No data". A sample of the
annotated dataset is presented in Table 1.

3 Task Setup

To extract information relevant to the specified risk
score, we query the system with risk score elements
expressed as short natural language phrases con-
taining the entities (e.g., "hypertension"). Elements
containing multiple concepts are split into multiple
phrases, each containing a single concept. For the
purposes of evaluation, "Yes" and "Unclear"
in the ground truth are considered to be equiva-
lent because both provide some positive evidence,
while "No" and "No data" are considered to be
equivalent because in practice, lack of data would
be presumed to be negative.

For unstructured data, a system is tasked with
predicting the presence or absence of the given risk
score element. The system must also provide the

sentence it selected to make its decision. Predic-
tions considered true positives when compared to
the ground truth are further reviewed by a physi-
cian to ensure that the sentence used for prediction
can reasonably be used to determine if the patient
has the given condition; if the sentence used for
prediction cannot be used to logically determine
whether the patient has the given condition, the
prediction is marked as a false positive.

For structured data, the model is tasked with re-
trieving a Yes/No answer along with the relevant
billing code (when present) for each risk score el-
ement. We evaluate the system by matching the
retrieved Yes/No answer with the ground truth,
and calculating the precision, recall, and F1-score.

4 Models

4.1 Structured Data Information Retrieval

To extract answers from structured EHR data, we
employ a two step process. We (1) use MedCAT1

(Kraljevic et al., 2019), an off-the-shelf biomed-
ical ontology linker, to curate a set of Concept
Unique Identifiers (CUIs) for each risk score ele-
ment, which are then mapped to institution-specific
billing codes (here, ICD9 for MIMIC-III) using
the Unified Medical Language System (UMLS)
APIs2 (Bodenreider, 2004), and then (2) use these
element-specific code-sets to form SQL queries
(derived from emrKBQA (Raghavan et al., 2021))
to retrieve answers, i.e., Yes/No marked by the
presence/absence of element-specific codes for a
patient in the structured data. We evaluate our
output only against risk score elements with an-
swers from structured data (i.e., Evidence Source
̸= noteevents). Results are presented in Table 2.

1https://github.com/CogStack/MedCAT
2https://documentation.uts.nlm.nih.gov/rest/home.html



429

Risk Score Element Count R P F1
CHA2DS2-VASc CHF 16 1.0 0.94 0.97
CHA2DS2-VASc Hypertension 43 0.97 0.81 0.89
CHA2DS2-VASc Stroke/TIA/TE 17 1.0 0.12 0.21
CHA2DS2-VASc Vascular disease 27 0.92 0.44 0.60
CHA2DS2-VASc Diabetes mellitus 18 0.87 0.72 0.79
CHA2DS2-VASc Overall 121 0.95 0.64 0.76
PERC Unilateral leg swelling 5 0 0 0
PERC Hemoptysis 1 0 0 0
PERC Recent surgery/trauma 79 0 0 0
PERC Prior PE/DVT 8 1.0 0.38 0.55
PERC Hormone use 0 NA NA NA
PERC Overall 93 0.84 0.17 0.29

Table 2: Performance of the structured data information
retrieval component. We only calculate performance on
risk score elements with structured data answers in the
ground truth.

4.2 Baseline Model
To ground the results of our QA model, we imple-
ment a NER-based approach based on Bean et al.
(2019). We use MedCAT to tag CUIs in the notes.
We then return the top sentence that contains rele-
vant affirmed CUIs based on the MedCAT negation
detection system. Bean et al. (2019) defines a set
of CUIs with respect to CHA2DS2-VASc. How-
ever, there is no such definition for PERC. We thus
find relevant CUIs for the main categories of PERC
(e.g., hormone use, surgery, etc.) and use all possi-
ble descendants of the selected CUIs based on the
UMLS hierarchy. Results are shown in Table 3.

4.3 Unstructured QA Model
To retrieve relevant information from unstructured
EHR data, we use ClinicalBERT (Alsentzer et al.,
2019; Devlin et al., 2019), a transformer-based
model pretrained on MIMIC-III. We sample 5% of
the data3 from the medication, relations, and risk
subsections and train on emrQA (Pampari et al.,
2018). Due to the vast number of notes likely
containing irrelevant information, we additionally
negative sample (1:1 ratio) unanswerable questions
from other notes in emrQA during training. Further,
due to the vague elements often used in risk scores
(e.g., recent surgery or trauma), we augment 20%
of existing emrQA questions containing a clinical
entity to instead contain its parent MeSH4 hierar-
chy entity. Similar to Bean et al. (2019), we select
model predicted relevant spans and use MedCAT’s
negation detector to determine whether or not the
patient has the given risk score element.

We additionally show how performance im-
proves when unstructured data predictions are
paired with structured data ones. To combine un-

3Yue et al. (2020) found that sampling 5% of the data was
equivalent to training on the entire dataset.

4https://www.nlm.nih.gov/mesh/meshhome.html

structured and structured data, we use the struc-
tured data prediction if it predicts that the patient
has the given condition, otherwise we default to the
selected unstructured data answer. All results are
presented in Table 3.

5 Discussion

We make a few key observations. We find that
the structured data model is able to achieve ex-
tremely high performance in a number categories,
but unable to find any relevant information for the
rest. We hypothesize that this is due to chronic
conditions (e.g., CHF, hypertension) being more
consistently recorded in the structured data, while
acute events (e.g., PE/DVT, stroke/TIA/TE) are
coded only in the limited time frame when such
conditions are being actively managed. Also, struc-
tured data, in the form of billing codes, would not
be expected to capture symptoms without a formal
diagnosis (e.g., unilateral leg swelling). We addi-
tionally find that the QA model on unstructured
data alone is able to improve on the results of Bean
et al. (2019) on a number of categories, without
the need for expert-crafted heuristics. However, we
find that the QA model struggles due to a lack of
clinical knowledge and ability to distinguish hy-
pothetical mentions versus true affirmations of the
given condition.

With respect to vascular disease, an error analy-
sis of the QA-based model showed that 69% of the
false positives were due to a lack of clinical under-
standing, as the model considered a much broader
definition of vascular disease than the one speci-
fied in the CHA2DS2-VASc score. Similarly, with
respect to stroke/TIA/TE, we find that 93% of the
false positives can be attributed to imprecise under-
standing of medical terminology and the model’s
inability to use contextual clues to differentiate be-
tween stroke and other conditions. We additionally
see extremely low precision for PE/DVT. This can
largely be attributed to faulty negation detection,
as MedCAT often fails to distinguish between af-
firming and hypothetical/negated mentions in over
70% of the false positives.

One issue we found when implementing Bean
et al. (2019)’s approach is that it is nontrivial to
determine which CUIs to select, specifically for
general categories like surgery and trauma. Using
all UMLS descendants of surgery and trauma re-
sults in 3,413,446 unique CUIs, which will clearly
result in an enormous number of false positive re-
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Model Bean et al. (2019) QA
Data Unstructured Unstructured Structured + Unstructured

Risk Score Element Support R P F1 R P F1 R P F1
CHA2DS2-VASc CHF 16 0.385 0.294 0.333 0.615 0.533 0.571 0.938 0.789 0.857
CHA2DS2-VASc Hypertension 43 0.929 0.736 0.821 0.883 0.864 0.874 0.977 0.875 0.923
CHA2DS2-VASc Stroke/TIA/TE 17 0.588 0.303 0.400 0.385 0.263 0.312 0.538 0.333 0.412
CHA2DS2-VASc Vascular disease 27 0.423 0.846 0.564 0.810 0.250 0.382 0.870 0.290 0.435
CHA2DS2-VASc Diabetes mellitus 18 0.818 0.167 0.277 0.667 0.667 0.667 0.833 0.652 0.732
CHA2DS2-VASc Overall 121 0.679 0.435 0.530 0.741 0.488 0.588 0.876 0.550 0.676
PERC Unilateral leg swelling 5 0.200 1.000 0.333 0.500 0.375 0.429 0.500 0.375 0.429
PERC Hempoptysis 1 1.000 0.250 0.400 1.000 0.118 0.211 1.000 0.118 0.211
PERC Recent surgery/trauma 79 0.750 0.030 0.058 0.397 0.610 0.481 0.397 0.610 0.481
PERC Prior PE/DVT 8 0.714 0.161 0.263 0.750 0.064 0.118 0.833 0.106 0.189
PERC Hormone use 0 N/A N/A N/A N/A N/A N/A N/A N/A N/A
PERC Overall 93 0.611 0.078 0.138 0.440 0.270 0.335 0.455 0.287 0.352

Table 3: Performance of Bean et al. (2019) heuristics, QA model, and a combination structured and QA model
predictions.

sults when selecting sentences, as seen in Table 3.
We find that the QA-based approach significantly
outperforms the Bean et al. (2019)-based approach
with respect to identifying surgery/trauma. This
suggests that QA may offer a solution for these
more general categories.

6 Conclusion

We explore risk score automation using QA and
off-the-shelf ontology entity linkers without the
need for expert-curated rules, and demonstrate its
potential for easy adaptation to unexplored risk
scores. We find that QA models can achieve com-
parable or better performance for certain risk score
elements as compared to heuristic-based methods,
and demonstrate the potential for more scalable
risk score automation without the need for expert-
curated heuristics. Our annotated dataset will be
released to the community to encourage efforts in
generalizable methods for automating risk scores.
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