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Abstract
Antibiotic resistance has become a growing
worldwide concern as new resistance mech-
anisms are emerging and spreading globally,
and thus detecting and collecting the cause
– Antibiotic Resistance Genes (ARGs), have
been more critical than ever. In this work,
we aim to automate the curation of ARGs by
extracting ARG-related assertive statements
from scientific papers. To support the research
towards this direction, we build SCIARG, a
new benchmark dataset containing 2,000 man-
ually annotated statements as the evaluation
set and 12,516 silver-standard training state-
ments that are automatically created from sci-
entific papers by a set of rules. To set up
the baseline performance on SCIARG, we
exploit three state-of-the-art neural architec-
tures based on pre-trained language models
and prompt tuning, and further ensemble them
to attain the highest 77.0% F-score. To the best
of our knowledge, we are the first to leverage
natural language processing techniques to cu-
rate all validated ARGs from scientific papers.
Both the code and data are publicly available
at https://github.com/VT-NLP/SciARG.

1 Introduction

Antibiotic resistance (AR), the ability of bacteria
to survive and propagate in the presence of antibi-
otics, is a prevalent phenomenon worldwide and
poses a serious health threat to humans and ani-
mals. Automatically detecting the antibiotic re-
sistance genes (ARGs- the root cause of AR) in
clinical and natural environments has been critical
for mitigating the spread of AR. However, though
the research on ARGs has grown exponentially
over the past 10-15 years, existing ARG databases,
such as CARD (Alcock et al., 2020), ARDB (Liu
and Pop, 2009), ARGO (Scaria et al., 2005), and
ARGMiner (Arango-Argoty et al., 2020), only con-
tain a fraction of ARGs that have been discovered
and validated by researchers, making it difficult to
fully keep track of the research on ARGs.

Statement 1: Gram-negative Enterobacteriaceae with resistance
to carbapenem conferred by New Delhi metallo-beta-lactamase 1
(blaNDM-1) are potentially a major global health problem. 

Statement 2: The NDM 1 producing Gram-negative bacteria are
mainly Enterobacteriaceae, which can cause colonization or fatal
infections, with worrying antimicrobial susceptibility profiles: some
isolates have developed resistance to practically all available
antibiotics.

Figure 1: Example of assertive statements for ARGs.
The red color shows the target genes while blue back-
ground indicates the contextual features.

To automate the process of collecting validated
ARGs to enrich the ARG databases, we propose
a literature mining approach to automatically ex-
tract the assertive statements that indicate the an-
tibiotic resistance property of genes from scientific
papers with computational approaches. Based on
these assertive statements, we can easily collect
all the validated ARGs in the literature. Taking
the two statements extracted from (Kumarasamy
et al., 2010) in Figure 1 as examples, we can con-
fidently infer the antibiotic resistance of NDM-1
based on the highlighted contextual words as beta-
lactamases are enzymes produced by bacteria that
provide multi-resistance to beta-lactam antibiotics.

In this paper, we introduce SCIARG, the first
benchmark dataset for extracting statements that
indicate antibiotic resistance of genes from scien-
tific publications. SCIARG contains 2,000 and
286 statements with target genes that are manu-
ally annotated by domain experts as the test and
dev dataset, and about 12,516 silver-standard train-
ing statements which are automatically created by
a set of rules. The rules are carefully designed
by two experts in ARG research. Each statement
is a natural language sentence containing a target
gene, and is labeled as Positive or Negative, in-
dicating whether the statement implies antibiotic
resistance of the target gene or not. To establish
the baseline performance on SCIARG, we design
three approaches by leveraging the state-of-the-art

https://github.com/VT-NLP/SciARG
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pre-trained language model and prompt tuning. As
the training statements are created based on rules,
the approaches are very easily overfitting to the
keywords from the rules. To mitigate overfitting,
we employ a mask language model pre-training
strategy which is shown effective in improving the
generalization of the baseline approaches. The en-
semble of the three supervised approaches attain
the highest 77.0% F-score on SCIARG. In sum-
mary, we make the following contributions:

• To the best of our knowledge, we are the first
to curate ARGs from scientific papers by lever-
aging natural language processing techniques.

• We build the first benchmark dataset to sup-
port the research on ARG-related assertive
statement prediction and establish baseline
performance based on state-of-the-art pre-
trained language models and prompt tuning
techniques.

2 Dataset Design

2.1 Statement Collection

To collect the positive statements, we need to first
get a collection of validated ARGs as the target
genes. To do so, we leverage the CARD (Alcock
et al., 2020) database which is a rigorously cu-
rated collection of characterized, peer-reviewed re-
sistance determinants and associated antibiotics.
CARD contains 3,100 ARGs while for 2,207 of
them, CARD provides related PMIDs or PMCIDs
from PubMed as reference. To collect the state-
ments about these target ARGs, we leverage the
Pubtator API1 to get the full-text articles based on
the PMCIDs of each target gene. As many arti-
cles are not freely available, we finally crawl 102
full-text articles for 91 ARGs.

For each of the 102 full-text articles, we segment
them into sentences and extract the sentences that
contain the target ARG as candidate statements.
To enrich the context of each statement, we also
prepend the preceding sentence and append the
following sentence. In this way, we collect 2,286
statements for 91 confirmed ARGs. We then ask
a senior student majoring in Biomedical Sciences
to verify the statement in terms of whether they
indicate the antibiotic resistance property of the
target ARG, and an expert PhD student who has

1https://www.ncbi.nlm.nih.gov/research/
pubtator/api.html

done extensive research on ARG to verify 100 sam-
ples randomly selected from the annotations. The
inter-annotator-agreement is 88%, indicating that
the annotations are mostly correct. In cases of
disagreement between the two annotators, we ask
them to discuss and achieve an agreement in terms
of the label. We take 286 manually annotated state-
ments as the dev set and the remaining 2,000 as
the test set. The dev set is carefully chosen such
that it has perfectly balanced classes, while the
test set contains 1,083 positive and 917 negative
statements.

2.2 Silver Training Set Creation

To create the training dataset, we take the remain-
ing 2,105 PMIDs/PMCIDs for which we cannot
successfully collect any full-text articles as seeds,
and apply the Entrez API2 to retrieve the papers that
cite or are being cited by these seed papers. The
assumption is that, if a paper cites or is cited by
the paper about a particular ARG, it’s more likely
about ARGs as well. Based on this assumption, we
follow the same procedures as Section 2.1 to col-
lect additional 24,733 statements for 1,133 target
ARGs. As it’s very expensive and time consuming
for a human to manually annotate these statements,
we design the following rules based on the antibi-
otic resistance mechanisms to automatically create
the positive training statements:

Rule 1: If a statement mentions a particular an-
tibiotic, together with “resistan” (the stem of resis-
tance) or “efflux”, it will be labeled as positive.

The rule is based on the fact that the efflux of the
drug from the bacterial cell is a key antibiotic resis-
tance mechanism generally found in gram-negative
bacteria. To apply this rule, we collect 604 antibi-
otics from the CARD database which cover the
synonyms, abbreviations and common names of
antibiotics. Two examples are shown in Table 1.

Rule 2: If a statement mentions any of the en-
zymes produced by bacteria that catalyzes antibi-
otic hydrolysis, it will be labeled as positive.

The enzystome4 is a community of thousands of
enzymes and its mutants, responsible for antibiotic
resistance. These enzymes act by modifying the

2https://www.ncbi.nlm.nih.gov/pmc/tools/
cites-citedby/

3mdtEF is a multidrug transport class of efflux pump that
confers resistance to a variety of drugs

4https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC6351036/

https://www.ncbi.nlm.nih.gov/research/pubtator/api.html
https://www.ncbi.nlm.nih.gov/research/pubtator/api.html
https://www.ncbi.nlm.nih.gov/pmc/tools/cites-citedby/
https://www.ncbi.nlm.nih.gov/pmc/tools/cites-citedby/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351036/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351036/
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Rule Examples

Rule 1
Example 1: Detection of rpsI-associated integrases in Bacillus and S . aureus reveals a
potential for broad-host range dissemination of the novel methicillin resistance gene mecD.
Macrococcus is evolutionarily closely related to the genus Staphylococcus, but possesses a
distinctly smaller genome with a size of 2

Example 2: Deletion of mdtEF 3 completely suppressed GadX-mediated multidrug resis-
tance. Our results indicate that the GadX regulator, in addition to its role in acid resistance,
increases multidrug resistance in E . coli by activating the MdtEF multidrug efflux pump .

Rule 2 Example: The emergence of one of the most recently described carbapenemases, namely,
the New Delhi metallo-lactamase (NDM-1), constitutes a critical and growingly important
medical issue . This resistance trait compromises the efficacy of almost all lactams (except
aztreonam), including the last resort carbapenems

Rule 3 Example: the bla NDM-type genes are found to be either plasmid- or chromosome-located,
and in the rare NDM-1-producing P . aeruginosa, the bla NDM-1 gene was found to be
chromosomally located . Investigations on the immediate genetic environment of bla NDM
genes revealed the presence of a conserved structure that always associated the complete
or truncated insertion sequence ISAba125 at the 5’-end and the ble MBL gene (encoding
resistance to the anticancer drug bleomycin) at the 3’-end of the bla NDM genes

Rule 4 Example: MIC values of beta-lactams for the E . coli TOP10 strain, which harbours
recombinant plasmid pTOPO-MUS-2, showed that the bacteria was resistant to amoxicillin
and ticarcillin and had a reduced susceptibility to piperacillin, in addition it showed an
increased resistance to extended-spectrum cephalosporins and carbapenems by at least
four-fold of MIC (Table 2) . Finally, PFGE analysis showed the three strains of M.

Table 1: Example statements of each rule. Green colour indicates the target ARG while Red colour highlights the
keywords from the corresponding rule.

cellular targets of various antimicrobial drugs, or
by modifying the antimicrobial drug itself. If a
statement contains any of the enzymes, we will
label it as positive. An example is shown Table 1.

Rule 3: If the prefix of the target gene is an ARG
indicator, we will label the statement as positive.

The prefix of the target gene sometimes provides
clues about whether the gene confers antibiotic re-
sistance or not. The indicator can be either “bla”
or “mec”: bla genes are resistant to beta-lactam an-
tibiotics and mec genes are resistant to methicillin
antibiotic. An example is shown Table 1.

Rule 4: If the statement mentions “MIC” and
“increase” or “fold” within a context window of 10
words, we will label it as positive.

Minimum inhibitory concentration (MIC) is the
lowest concentration of an antibiotic that inhibits
visible growth of the microorganism. Antimicro-
bial susceptibility tests (ASTs) measures the ability
of an antibiotic or other antimicrobial agent to in-
hibit the in vitro microbial growth. The results

of the test (e.g., increase in MIC, MIC becoming
multiple fold) tells us whether the organism is sus-
ceptible to the antibiotic or resistant. An example
is shown in Table 1.

Statistics Train Dev Eval

# of Target Genes 1,886 56 91
# of Statements 12,516 286 2,000

Average Length of Statement 61.2 55.0 56.3
Minimum Length of Statement 3 9 8
Maximum Length of Statement 502 121 232

Table 2: Statistics of SCIARG

Based on the above rules, we collect 6,258 pos-
itive statements out of 24,733 candidates. To
collect negative statements, we first get a list
of human genes from HGNC5. If a gene is
not included in CARD (Alcock et al., 2020) or
ARGMiner (Arango-Argoty et al., 2020), we con-
sider it as a non-ARG and further collected papers

5The resource for approved human gene nomenclature
https://www.genenames.org/

https://www.genenames.org/
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Figure 2: Overview of the three approaches for ARG statement prediction.

about it and statements from the papers. If the
statement does not satisfy any of the above rules,
we take it as a negative training statement. Finally,
we randomly sample 6,258 negative training state-
ments and obtain 12,516 statements in total as the
training set. We name the dataset as SCIARG and
show the statistics of SCIARG in Table 2.

3 Approach

To set up the baseline performance on SCIARG,
we exploit three supervised approaches.

3.1 Supervised Classification
As Figure 2 (b) shows, given an input state-
ment X = [x0, x1, ..., xn] for a target gene g =
[xi, ..., xj ], we first apply the tokenizer of Pub-
MedBERT (Shin et al., 2020a), a state-of-the-art
pre-trained language model from PubMed papers,
and concatenate all tokens to form a new sequence
[[CLS], X, [SEP]], where [CLS] is a special token
used for classification and [SEP] is a delimiter. We
use a position label 1 to indicate the tokens from
the target gene and 0 for all the remaining tokens
from the statement. Then each token is initialized
with a vector by summing the corresponding to-
ken, segment and position embeddings from the
pre-trained PubMedBERT, and encoded into a hid-
den state. We use [Hcls,Hx0 , ...,Hxn ,Hsep] to
denote the encoding outputs. Finally, we predict a

label for the statement based on Hcls, and use the
negative log likelihood as the training objective:

L = − log(softmax(W1Hcls)) (1)

where W1 is a learnable parameter matrix.
It turns out that the model easily overfits to

the keywords of the rules (e.g., efflux, resistance,
MIC) that are used to create the training sam-
ples. To overcome this issue, we further add a
mask languge modeling (MLM) pre-training strat-
egy to encourage the model to learn more fea-
tures from context. As Figure 2 (a) shows, given
an input statement, we find all the keywords that
are from the rules, and randomly replace m ∈
{0%, 25%, 50%, 75%, 100%} of such tokens with
[MASK]. Then, we apply the same MLM objective
as PubMedBERT to ask the model to recover the
original token for each [MASK]. The training ob-
jective of MLM is also based on the negative log
likelihood:

L = − log(softmax(W2Hmask)) (2)

where W2 is another learnable parameter matrix.
We explore two training strategies: optimizing

the MLM objective (Equation 2) and the super-
vised classification objective (Equation 1) simul-
taneously or sequentially. The sequential training
strategy shows better performance.
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3.2 Prompt Tuning

To predict the antibiotic resistance property of
genes, it also requires extensive domain spe-
cific knowledge, e.g., interpreting results of ASTs,
knowledge of the enzymes or efflux pumps that are
responsible for antibiotic resistance, which is likely
to have been captured by the large-scale pre-trained
language models. To better induce such knowledge,
we further exploit prompt tuning based approaches.

Specifically, we design two prompts: (P1) “The
<target gene> is antibiotic resistant [MASK]”, and
(P2) “The <target gene> is [MASK] antibiotic resis-
tant”, where <target gene> refers to the gene of in-
terest in each input statement. As shown in Figure 2
(c) and (d), we concatenate each input statement
with each prompt as [[CLS], X, [SEP], P, [SEP]],
and get a contextual representation for each token
within the sequence based on PubMedBERT. Based
on the contextual representation of [MASK] in the
prompt, we apply a linear function with softmax
to predict a probability for each token in the target
vocabulary.

L = − log(softmax(WPHmask|P )) (3)

where P ∈ {P1, P2}. WP are learnable parame-
ters for each prompt learning approach. Hmask|P
denotes the contextual representation of [MASK]
from the corresponding prompt.

For prompt P1, we use true and false as the la-
bel of positive and negative category respectively,
and compare their probabilities to get the final la-
bel. Similarly, for prompt P2, we use possibly and
not to predict the label of each statement. Simi-
lar as the supervised classification approach, we
first pre-train the PubMedBERT with the MLM
objective (Equation 2) and then fine-tune it with
the prompts based on the negative log likelihood
objective (Equation 3).

4 Experiments

4.1 Experiment Setup

We compare our approaches with baseline methods
that are based on the rules illustrated in Section 2.2.
We use the classification F-score on the positive
statements as the evaluation metric, and use grid
search to tune the parameters: training epochs 10,
learning rate ∈ {2e-5, 3e-5, 5e-5}, training batch
size ∈ {8, 12, 16, 20}.

4.2 Results and Analysis

Table 3 shows the performance of varying ap-
proaches on SCIARG. We can see that, (1) the
precision, recall and F-score of different rules vary
a lot across the development and evaluation sets.
For example, Rule 2 results in the highest precision
and recall among the four rules on the development
set while the Rule 3 yields the highest recall on the
evaluation set. We ascribe it to the sampling of the
evaluation instances - though we carefully select
the evaluation subset to make sure it’s balanced
in terms of the target positive/negative labels, we
cannot guarantee that the rationals for the target
labels are also balanced. (2) the supervised ap-
proaches perform significantly better than the rule
based methods, especially on recall, demonstrating
that the rules are not enough to retrieve most of
the positive statements; (3) the classification based
approach with MLM pre-training outperforms the
two prompt-tuning based methods, due to the pos-
sible reason that the prompts were hand engineered
and could be sub-optimal. However, by analyz-
ing the errors of the three supervised approaches,
we also notice that the prompt-tuning based meth-
ods tend to make more positive predictions, and
perform better on the statements with complex or
ambiguous context. Taking the following sentence
as an example:

“aeruginosa, is underway . The combined effects
of various signals mediated by multiple regulators,
including CpxR and MexR, on MexAB-OprM ex-
pression will be understood in a broader physio-
logical context in the near future . For the determi-
nation of putative orthologous proteins, a primary
BLASTP search in a given genome was conducted
for the gene with the highest similarity.”

The classification approach mistakenly predicted
it as negative. However, MexAB-OprM is a major
efflux pump of P. aeruginosa, a common disease
causing gram-negative bacteria, that contributes
to clinical antibiotic resistance. Such knowledge
is possibly captured by the pre-trained language
model and the prompt-tuning methods can better
induce such knowledge from PubMedBERT and
thus make correct predictions.

Based on the above observation, we further en-
semble the three supervised approaches based on
their predicted label for each statement. 6 Specifi-
cally, for each statement, we label it as positive if

6We tried several ensembling strategies and the one we
discussed provides the best performance.
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Model Dev (%) Eval (%)

Precision Recall F-Score Precision Recall F-Score
Baseline w/ Rule 1 40.0 2.8 5.3 85.9 4.5 8.6
Baseline w/ Rule 2 72.2 9.1 16.2 96.6 10.5 19.0
Baseline w/ Rule 3 20.6 4.9 7.9 89.9 20.5 33.4
Baseline w/ Rule 4 50.0 2.1 4.0 84.8 2.6 5.0

Baseline w/ All Rules 37.1 16.1 22.4 89.3 32.2 47.4

Classification w/ MLM 57.0 88.1 69.2 63.3 92.7 75.2
Prompt 1 w/ MLM 52.4 97.9 68.3 57.7 97.2 72.4
Prompt 2 w/ MLM 53.8 95.1 68.7 58.6 94.9 72.4

Ensemble 61.3 85.3 71.3 67.8 89.0 77.0

Table 3: Comparison of varying approaches

and only if all the three individual models predict a
positive label, otherwise, it will be labeled as nega-
tive. As Table 3 shows, the ensembling approach
further provides significant improvement over each
individual method.

4.3 Impact of MLM pre-training

Figure 3 shows the effect of MLM pre-training
strategy based on different percentages of masked
keywords for each supervised approach. As we
can see, it provides improvement to all the three
supervised approaches, demonstrating that it can
encourage the language model encoder to better
capture contextual features and generalize to other
clues and indicators that are not from the rules.

4.4 Limitation of the Rule-based Methods

It’s not surprising that rule-based methods show
very low recall on the manually annotated test
dataset as (1) there are a large number of resis-
tance mechanisms while most of them also facil-
itate the biological processes that are not related
to antibiotics. For instance, the tolC-hlyD-hlyB
and related systems are nearly ubiquitous type 1
secretion systems that facilitate secretion of a very
broad range of substrates, such as virulence factors,
bacteriocins; (2) there are a lot of other terms that
could have been included in the rules but their mere
mentions are not enough to indicate the antibiotic
resistance of genes. For instance, plasmids fre-
quently but not always carry antibiotic resistance
genes, and similar terms also include transposon,
integron, genomic island and so on.

5 Remaining Challenges

To understand the remaining challenges of
SCIARG, we randomly sample 100 prediction er-
rors of the ensembling approach from the develop-
ment set, and summarize the following three key
remaining challenges.

Challenge 1: Lack of Domain Specific Knowl-
edge The ARG statement prediction requires ex-
tensive domain specific knowledge to help the mod-
els better understand the text and disambiguate the
meanings. For example, in the following statement:

“Minimal inhibitory concentrations (MICs) of
ciprofloxacin, ofloxacin, ceftazidime, cefsulodin,
and aztreonam, but not amikacin, were increased
at least 4-fold by ectopically expressed CpxR in
PA14 and PA14DeltacpxR strains (Table 2) in a
manner dependent on MexA, but not MuxA . In
this case, ectopically expressed CpxR failed to in-
crease the MICs of the tested antibiotics in a mexA
null-mutant PA14DeltamexA strain . In contrast,
the MIC increases caused by the ectopically ex-
pressed CpxR were not altered in a muxA null-
mutant PA14DeltamuxA strain (Table 2)”

The term “ectopic expression” either refers to
“heterologous expression” or “a specific experimen-
tal condition”, which lead to distinct predictions.
The model cannot correctly interpret the meaning
and thus made a wrong prediction.

Challenge 2: Limited Contextual Cues about
the Target Gene For many statements, the con-
text is not enough to confidently infer whether the
target gene is an ARG or not. For instance, in the
following statement:

“MphI shares high sequence identity (94%) to
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Figure 3: Impact of MLM pre-training with different
percentages of masked keywords.

homologs found in related surface Paenibacillus
sp . , indicating the functional divergence of MphI
is not recent . The Bacillus cereus group have two
genetically and functionally distinct Mph enzymes;
one that modifies a broad range of macrolides and
another that cannot modify macrolides with 16-
membered rings”

Our ensembling approach mistakenly predicts it
as positive while the source article concluded that
mphI does NOT encode an ARG. The description of
“MphI modifies macrolides” does not necessarily
imply that it neutralizes or inactivates macrolides,

a class of antibiotics, thereby causing resistance.
This is a special case that will happen occasionally
- where the statements are characterizing an ARG
homolog, but not an ARG.

Challenge 3: Noisy and Insufficient Training
Data The training is created based on a set of
rules, which leads to two major problems: (1) It in-
troduces noise since the rules are not 100% precise.
As Table 3 shows, the precision ranges from 20.6%
for Rule-3 to 72.2% for Rule-2; (2) The positive
ARG statements covered in the training data is not
diverse enough as they are constrained by the 4
rules. Though the MLM strategy helps the model
generalize to more broad contextual features, it still
suffers from the low recall. Many types of ARG
statements in the development and test sets are not
covered in the training set. For instance, for the
following statement from the development set:

“The nature of the activating ligand for VanSA
has not been identified, therefore this work sought
to identify and characterise ligand(s) for VanSA. In
vitro approaches were used to screen the struc-
tural and activity effects of a range of poten-
tial ligands with purified VanSA protein. Of the
screened ligands (glycopeptide antibiotics van-
comycin and teicoplanin, and peptidoglycan com-
ponents N-acetylmuramic acid, D-Ala-D-Ala and
Ala-D-y-Glu-Lys-D-Ala-D-Ala) only glycopeptide
antibiotics vancomycin and teicoplanin were found
to bind VanSA with different affinities (vancomycin
70 muM; teicoplanin 30 and 170 muM), and were
proposed to bind via exposed aromatic residues
tryptophan and tyrosine.”

The reason that “VanSA” is labeled as an ARG
is that “the ligand interaction of VanSA with gly-
copeptide antibiotics (GPA).” implies that VanSA
is an ARG since it inactivates the antibiotic van-
comycin by binding to it, while such rules are not
covered in the current training dataset.

6 Related Work

Machine Learning for Antibiotic Resistance
Prediction Traditional antimicrobial susceptibil-
ity testing (AST) is time-consuming, low through-
put and viable only for cultivable bacteria, thus
rapid and accurate AMR diagnostic methods are
very urgently needed. Recent years, machine learn-
ing based methods have been widely explored as
clinical decision support tools for the prediction of
antimicrobial resistance (AMR) (Feretzakis et al.,
2021, 2020; Martínez-Agüero et al., 2019; Oon-
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sivilai et al., 2018). Ren et al. (2021) compared
four different machine learning methods (Random
Forests, Logistic Regression, Support Vector Ma-
chines and Convolutional Neural Networks) for the
prediction of AMR based on different encodings
and whole-genome sequencing data without previ-
ously known knowledge. Deep learning algorithms
have also shown significant potential for predicting
new antibiotic drugs, AMR genes and AMR pep-
tides (Kumaresan et al., 2018; Stokes et al., 2020;
Veltri et al., 2018). However, these studies focused
on genome variants (such as single-nucleotide poly-
morphisms, SNPs) or other features only related
to resistant genes identified in previous studies or
resistant databases, while in this work, we focus on
curating antimicrobial susceptibility data by lever-
aging computational approaches and large-scale
scientific papers. In addition, we approach the
ARG curation as a entity classification task instead
of recognition as genes are easily detected based
on the existing knowledge bases and it’s more chal-
lenging to infer the antibiotic resistance the genes
based on the context. The curated ARG database
can provide clinicians useful information regarding
possible antibiotic resistance and aid clinicians in
selecting appropriate empirical antibiotic therapy
by taking into consideration the local antimicrobial
resistance ecosystem.

Prompt Learning Prompt learning aims to learn
a task-specific prompt while keeping most of the pa-
rameters of the model freezed (Li and Liang, 2021;
Hambardzumyan et al., 2021; Brown et al., 2020).
It has shown competitive performance in a wide
variety of applications in natural language process-
ing (Raffel et al., 2020; Brown et al., 2020; Shin
et al., 2020b; Jiang et al., 2020; Lester et al., 2021;
Schick and Schütze, 2021b). Previous work either
use a manual (Petroni et al., 2019; Brown et al.,
2020; Schick and Schütze, 2021a) or automated
approach (Jiang et al., 2020; Yuan et al., 2021; Li
and Liang, 2021) to create prompts. In this work,
we mainly explore two manually defined prompts
for ARG statement extraction task. The reason
of applying prompt learning for ARG statement
classification lies that though the training dataset
size is not small, the clues of indicating antibiotic
resistance covered in the training set is limited to
the manually defined rules, thus applying prompt
learning can to some extent leverage the knowledge,
especially antibiotic resistance related knowledge
captured by the large-scale language models dur-

ing pre-training. Based on the experimental results
of the ensembling approach, we see that although
the prompt learning based approaches do not per-
form as well as the supervised classification based
method, they are still complimentary to each other.

7 Conclusion and Future Work

In this work, we present the first computational
framework that aims to automatically curate ARGs
by extracting ARG-related assertative statements
from scientific papers in PubMed. To support the
research, we introduce SCIARG, a dataset that con-
tains 2,000 manually annotated statements as the
test set and 12,516 silver-standard training state-
ments that are automatically created from scientific
papers by a set of rules. We also present extensive
empirical results by comparing various state-of-
the-art neural architectures based on pre-trained
language models for statement classification, and
demonstrate that there is still a large room to im-
prove based on the current highest 77% F-score on
SCIARG.

Considering the remaining challenges that we
have discussed, there are multiple future directions:
(1) developing more advanced frameworks that in-
corporate domain-specific knowledge from exter-
nal resources or knowledge bases to better inter-
pret the statements; (2) learning contextual features
of target genes from more broad context, such as
the paragraph, chapter or the whole document; (3)
leveraging self-training or co-training framework to
take advantage of the large-scale unlabeled corpus
from PubMed to enrich the training samples.
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