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Abstract

Biomedical relation extraction, aiming to auto-
matically discover high-quality and semantic
relations between the entities from free text, is
becoming a vital step for automated knowledge
discovery. Pretrained language models have
achieved impressive performance on various
natural language processing tasks, including re-
lation extraction. In this paper, we perform ex-
tensive empirical comparisons of encoder-only
transformers with the encoder-decoder trans-
former, specifically T5, on ten public biomedi-
cal relation extraction datasets. We study the re-
lation extraction task from four major biomed-
ical tasks, namely chemical-protein relation
extraction, disease-protein relation extraction,
drug-drug interaction, and protein-protein in-
teraction. We also explore the use of multi-task
fine-tuning to investigate the correlation among
major biomedical relation extraction tasks. We
report performance (micro F-score) using T5,
BioBERT and PubMedBERT, demonstrating
that T5 and multi-task learning can improve the
performance of the biomedical relation extrac-
tion task.

1 Introduction

The scientific literature provides a rich source of
biomedical knowledge (e.g., drug-drug interac-
tions), and due to its rapid growth, it becomes in-
creasingly difficult for scientists to keep up-to-date
with the most recent discoveries hidden in literature
(Zhang and Lu, 2019; Yadav et al., 2020). More-
over, manual curation of information from biomed-
ical literature is time-consuming, costly, and in-
sufficient to keep up with the rapid growth of the
literature (Herrero-Zazo et al., 2013). Hence, there
has been growing interest in using natural language
processing (NLP) techniques for automatic relation
extraction (RE) between biomedical entities from
texts.

Recently, a variety of approaches based on pre-
trained language models such as BERT (Devlin

et al., 2019) and other variants have shown promis-
ing results in various NLP tasks such as relation
extraction (drissiya El-allaly et al., 2021b,a), ques-
tion answering (Sarrouti et al., 2021c,a), text sum-
marization (Goodwin et al., 2020; Yadav et al.,
2021), and misinformation detection (Sarrouti et al.,
2021b). In particular, RE with classification-based
encoder-only pretrained transformers (BERT and
variants) has been extensively studied (Lee et al.,
2019; Peng et al., 2019a; Gu et al., 2022). In con-
trast, RE with pretrained language models based
on encoder–decoder architecture, specifically Text-
to-Text Transfer Transformer (T5) (Raffel et al.,
2020), has not been well-studied. Unlike encoder-
only transformers, which are designed to predict
a single prediction for an input sequence, T5 gen-
erates target tokens based on an encoder-decoder
architecture.

In this paper, our goal is to compare pre-
trained sequence-to-sequence transformers with the
encoder-only transformers for RE from biomedi-
cal texts. In order to satisfy this aim, we compare
T5 with in-domain BERT-based models such as
BioBERT and PubMedBERT on ten biomedical
RE benchmark datasets. We also explore the use
of multi-task fine-tuning (MTFT) on ten biomed-
ical RE datasets (each with different entities and
relation types) to investigate the correlation among
four major biomedical RE tasks, namely chemical-
protein relation extraction, disease-protein rela-
tion extraction, drug-drug interaction, and protein-
protein interaction. Our experiments show that T5
performs better than in domain BERT-based mod-
els (encoder-only) such as BioBERT and PubMed-
BERT. The results also show that fine-tuning T5
with multi-task learning substantially improves the
performance compared to single task fine-tuning.

2 Related Work

There has been a recent surge in interest from
the NLP community to automatically extract re-
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lations between biomedical entities (proteins, gene,
diseases, etc.) from the biomedical literature
(Krallinger et al., 2008; Segura-Bedmar et al., 2013;
Krallinger et al., 2017; Miranda et al., 2021). Re-
cently, with the success of pretrained language
models, several techniques based on transform-
ers are widely utilized for extracting the relation-
ships between entities from biomedical literature
(Thillaisundaram and Togia, 2019; Wei et al., 2019;
Hebbar and Xie, 2021; Hiai et al., 2021; Liu et al.,
2021; Zhou et al., 2021; Su et al., 2021; Chang
et al., 2021; Weber et al., 2021). The success
of these systems has primarily been a result of
encoder-only transformers such as BERT (Devlin
et al., 2019) and its variants like SciBERT (Belt-
agy et al., 2019), BioBERT (Lee et al., 2019),
and PubMedBERT (Gu et al., 2022). Unlike RE
with classification-based encoder-only transform-
ers which have been widely studied, RE with
encoder-decoder transformers has not been well-
explored. Encoder–decoder-based transformer,
specifically T5, (Raffel et al., 2020) has shown
strong performance in various NLP tasks such as
question answering and text summarization, etc.

In this work, we perform comprehensive com-
parisons of encoder-only transformers with the
encoder-decoder transformer, specifically T5, on
ten public biomedical relation extraction datasets.
We also explore the use of multi-task learning to
learn the shared complementary features across
multiple biomedical relation extraction datasets.

3 Experiments

3.1 Problem statement

Given an input sentence S consisting of n tokens,
i.e., S = {w1, w2, ..., wn} and a pair of entities
(e1, e2) where e1 ∈ S and e2 ∈ S, RE models are
tasked with predicting the maximum probable label
ŷ from the set of labels in annotated data, y.

3.2 Datasets and processing

We explore ten benchmark datasets of RE between
various entity types such as protein-protein, drug-
drug, chemical-protein and disease-protein. Since
the vast majority of relation instances are within sin-
gle sentences in datasets of the aforementioned rela-
tion types, we model the RE task as sentence-level
relation classification. The statistics of biomedical
RE datasets are listed in Table 1.
Protein-protein interactions. We use five bench-
mark datasets, namely BioInfer, AIMed, IEPA,

HPRD50, and LLL. These datasets are converted to
a unified format by Pyysalo et al. (2008). Sentences
that contain a pair of proteins are selected to gen-
erate positive and negative instances. All protein-
protein pairs that occur in a sentence and do not
have an explicit label in aforementioned datasets
are considered as negative instances. Following
previous work, we anonymized target named enti-
ties in a sentence using the pre-defined tag @PRO-
TEIN$. For instance, a sentence with two protein
names is represented as “The POU domains of the
@PROTEIN$ and Oct2 transcription factors medi-
ate specific interaction with @PROTEIN$.”.

Drug-drug interactions. We use an existing pre-
processed version of the Drug-Drug Interaction
(DDI) 2013 corpus (Herrero-Zazo et al., 2013)
and its corresponding train/dev/test split created by
Peng et al. (2019b). Drug names were anonymized
using the tag @DRUG$. For instance, a sentence
with a pair of drug names is represented as “Ke-
toconazole: @DRUG$ may inhibit both synthetic
and catabolic enzymes of @DRUG$”. We evaluate
four types of DDI relationships: “mechanism”’,
“effect”, “advice”, and “Int”. The “mechanism”
class defines the DDIs that are described by their
pharmacokinetic mechanism. The “effect” type
describes an effect or a pharmacodynamic mecha-
nism in DDIs. The “advice” class describes DDIs
that mention a recommendation or advice regard-
ing a drug interaction. The “int” class is used when
the text describes an interaction between drugs but
without providing any additional information.

Disease-protein relationships. We use the ex-
isting preprocessed versions of the Genetic As-
sociation Database corpus (GAD) (Bravo et al.,
2015) and EU-ADR datasets (van Mulligen et al.,
2012). For both datasets, we use their correspond-
ing train/dev/test splits created by Lee et al. (2019).
Targeted entities were anonymized using the tags
@DISEASE$ and @GENE$. For instance, a sen-
tence with a pair of two entities (gene and dis-
ease in this case) is represented as “In conclusion,
@GENE$ 8092C > A polymorphism may mod-
ify the associations between cumulative cigarette
smoking and @DISEASE$ risk.”

Chemical-protein relationships. We use
ChemProt (Krallinger et al., 2017) and Drug-
Prot (Miranda et al., 2021) datasets that contain
gene–chemical relations. For ChemProt, we use
an existing preprocessed version and their corre-
sponding train/dev/test split created by Peng et al.
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Dataset Train Dev Test Metrics
AIMed 4938 - 549 micro F1
BioInfer 8544 - 950 micro F1
HPRD50 389 - 44 micro F1
IEPA 734 - 82 micro F1
LLL 300 - 34 micro F1
DDI 2937 1004 979 micro F1
ChemProt 4154 2416 3458 micro F1
DrugProt 17277 3765 - micro F1
GAD 4796 - 534 micro F1
EU-ADR 318 - 37 micro F1

Table 1: Statistics of the biomedical relation extraction
datasets. For DrugProt, we use the dev set as a test set.

(2019b). We evaluate the same five classes: CPR:3,
CPR:4, CPR:5, CPR:6 , CPR:9. The CPR:3 class
describes upregulator, activator, and indirect up-
regulator. The CPR:4 class describes downreg-
ulator, inhibitor and indirect downregulator rela-
tion types. The CPR:5 category describes ago-
nist, agonist activator and agonist inhibitor rela-
tion types. The CPR:6 type describes the antag-
onist relation. The CPR:9 class describes the fol-
lowing relation types: substrate, product of, and
substrate product of. For DrugProt, we use the
standard training and development sets in the Drug-
Prot shared task and evaluate the same 13 classes:
Activator, Agonist, Agonist-Inhibitor, Antagonist,
Direct-Regulator, Indirect-Downregulator, Indirect-
Upregulator, Inhibitor, Part-Of, Product-Of, Sub-
strate, Substrate_Product-Of, Agonist-Activator.
We first split abstracts into sentences using NLTK
and then anonymized target entities in a sentence
using the tags @CHEMICAL$ and @GENE$. For
instance, a sentence with a pair of two entities
(chemical and gene in this case) is represented as
“During differentiation, @CHEMICAL$ promoted
early expression of osteoblast transcription factors,
@GENE$ and osterix.”

3.3 Models and setups
We compare in-domain BERT-based language mod-
els such as BioBERT (Lee et al., 2019) and Pub-
MedBERT (Gu et al., 2022) with T5 (Raffel et al.,
2020) and its variant SciFive (Phan et al., 2021),
which is trained on biomedical texts (PubMed ab-
stracts). For BERT-based models, we use a [CLS]
token for the classification of relations. The [CLS]
representation is fed into a softmax layer for a
multi-way classification. For the T5-based models,
the input sequence for the relation extraction task is
“Processed sentence: [s] Relation: [r]”. We fine-

tuned T5 to generate tokens of relation types which
are the ground truth labels in training datasets.

We also explore the use of MTFT on ten biomed-
ical RE datasets. Figure 1 illustrates MTFT for RE
tasks. We used the proportional and temperature-
scaled task mixing as in (Raffel et al., 2020) for
data mixture. During fine-tuning, a task-specific to-
ken (in our case, name of the dataset) is prepended
to the input sequence.

In our experiments, we used the BioBERT (v1.1-
base-PubMed), PubMedBERT, T5-base, and Sci-
Five (SciFive-base-Pubmed) implementations pro-
vided in HuggingFace’s Transformers package ver-
sion 4.16.2 (Wolf et al., 2020). All models were
trained with a batch size of 16 and maximum se-
quence length of 300 tokens for 10 epochs using
single GPU (16 GB VRAM) on Amazon Sage-
Maker. Adam optimiser with a learning rate of
1e-5 was used.

Figure 1: Multi-task learning for biomedical RE

3.4 Results
In Table 2, we show the results of T5-based mod-
els compared to the in-domain and SOTA BERT-
based models (pretrained on biomedical text) on
ten benchmarking biomedical RE datasets, listed
in Table 1. We compare the micro F1 scores ob-
tained by T5 and its variant SciFive (pretrained on
PubMed abstracts) to the BioBERT and PubMed-
BERT. On average (micro), T5 which was only pre-
trained on the general domain corpus, obtained a
higher F1 score than BioBERT and PubMedBERT.
T5 achieved the highest F1 scores on 5 out of 10
biomedical RE datasets. Models using biomedical
text in pre-training generally perform better than
models which pre-trained on general domain cor-
pus. However, we observe that T5-scifive which
was pre-trained on biomedical text (PubMed ab-
stracts) did not perform well compared to T5.

We also explored the impact of MTFT on four
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Relation Datasets BioBERT PubMedBERT T5 T5-SciFive T5-MTFT

Protein-protein

AIMed 92.36 93.31 94.35 94.17 93.62
BioInfer 95.97 94.59 95.36 95.89 95.16
HPRD50 85.45 90.56 84.09 90.90 95.95
IEPA 86.58 86.46 87.80 87.80 90.24
LLL 88.24 100.0 97.05 94.11 97.05

Drug-drug DDI 89.67 90.69 91.01 90.60 91.83

Chemical-protein
ChemProt 90.11 91.64 90.45 92.39 96.56
DrugProt 88.69 89.40 88.71 89.56 89.37

Disease-protein
GAD 79.91 80.87 81.46 81.27 80.71
EU-ADR 57.42 64.63 78.38 75.67 83.78

Average score 85.44 88.22 89.47 89.23 91.42

Table 2: Biomedical relation extraction test results. In T5-MTFT, we fine-tuned T5 with multi-task learning on ten
datasets and then evaluate on the test set for each dataset.

benchmark biomedical RE tasks, i.e., drug-drug
interaction, protein-protein interaction, chemical-
protein relation extraction, and disease-protein re-
lation extraction. On average, the results clearly
show that the performance improves when using
MTFT (an improvement of 1.95 F-score over the
best single performing model). For instance, on the
ChemProt dataset, T5-MTFT was able to achieve
significant performance improvement of 6.11 and
6.45 F-score points over T5 and BioBERT respec-
tively. While overall results indicate that MTFT
provides improved RE performance on the four
biomedical RE tasks (tasks with clear knowledge
transfer), we observe a slight drop in the perfor-
mance on some datasets such as AIMed, BioInfer,
and GAD. In MTFT, we believe that in addition
to the sample size of each task, the difficulty of
the task/dataset can have an impact on the over-
all performance (the model underfits or overfits
a dataset). More efforts and ablation studies are
needed to study the impact of different biomedical
RE tasks/datasets on downstream performance.

3.5 Error analysis
We performed a manual analysis of the test sets
where the best performing model (T5-MTFT) pre-
dicted an incorrect label. Table 3 presents some
examples.
Protein-protein interaction. The error analysis
has shown that sentences are mostly classified in-
correctly when they contain repetitive protein men-
tions (examples #1 and #3). Multiple protein men-
tions tend to add noise, which can prevent the
model to extract the relevant contextual informa-
tion. In addition, numerical or statistical findings
might be a cause of error (example #1). We also
observed that when the protein interacting words

(e.g., bind, interact, localization) are mentioned in
a sentence, the model predicts the class label “true”
(i.e, interacting) (examples #2, #3 and #4).

Drug-drug interaction. The model tends to clas-
sify “Int” class as “Effect” type (examples #5 and
#6). “Int” type is used whenever there exists an in-
teraction between two drugs (i.e., a coarse-grained
relation type). Having coarse-grained and fine-
grained categories can be a cause of error. We
also observed that when the input sentence contains
some class-specific words (e.g., effect, interact, in-
teraction, advise) that are not associated with the
target entities, the model fails to predict the correct
label (examples #7 and #8).

Chemical-protein relation extraction. Being a
common source of mis-classification, the CPR:3
type was often predicted as CPR:4 and vice versa
(examples #9 and #10). The CPR:3 class usually
describes up-regulation, and its instances usually
include up-regulation words such as “promote”,
“increase”, and “activate”. The CPR:4 class is usu-
ally related to down-regulation and contains down-
regulation words such as “decrease”, “inhibitor”,
and “deposition”. Having both up-regulation and
down-regulation words in the same sentence cre-
ates confusion, which can lead to mis-classification.
The model also misclassified some instances due
to the presence of multiple entities in a single sen-
tence (example #11). Multiple entities can also
create noise and make it difficult for the model to
identify if there is a relation between the two target
entities.

Disease-protein relation extraction. We found
that our model fails to predict the correct label
for instances (examples #12, #13, #14 and #15)
that contain association words (e.g., associated)
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Example

(1)
AIMed_sentence: Chemokines that could compete with high affinity for MIP-1beta binding could also compete for
monomeric gp120 binding, although with variable potencies; maximal @PROTEIN$ binding inhibition was 80% for
MCP-2, but only 30% for @PROTEIN$. Gold label: TRUE Predicted label: FALSE

(2) AIMed_sentence: We investigated whether @PROTEIN$, which binds to tyrosine-phosphorylated ITAM, interacts with
@PROTEIN$ following T cell activation. Gold label: FALSE Predicted label: TRUE

(3) AIMed_sentence: We further demonstrated that @PROTEIN$ and E3 but not @PROTEIN$ can decrease the fusogenic
activity of Abeta(29-42) via a direct interaction. Gold label: FALSE Predicted label: TRUE

(4)
BioInfer_sentence: In localization studies with mammalian cells, all fusion proteins showed the localization expected for
@PROTEIN$ in areas of high @PROTEIN$ dynamics, such as leading lamellae and ruffles induced by epidermal growth
factor. Gold label: FALSE Predicted label: TRUE

(5)

DDI_sentence: Other drugs which may enhance the neuromuscular blocking action of @DRUG$ such as MIVACRON
include certain antibiotics (e.g., aminoglycosides, tetracyclines, bacitracin, @DRUG$, lincomycin, clindamycin, colistin,
and sodium colistimethate), magnesium salts, lithium, local anesthetics, procainamide, and quinidine. Gold label: INT
Predicted label: EFFECT

(6) DDI_sentence: @DRUG$ may decrease the effectiveness of oral contraceptives, certain antibiotics, @DRUG$, theo-
phylline, corticosteroids, anticoagulants, and beta blockers. Gold label: INT Predicted label: EFFECT

(7)

DDI_sentence: Drugs Eliminated by Active Tubular Secretion: Although studies to assess drug-drug interactions with
Sanctura have not been conducted, @DRUG$ has the potential for pharmacokinetic interactions with other drugs that are
eliminated by active tubular secretion (e.g. digoxin, procainamide, pancuronium, morphine, @DRUG$, metformin and
tenofovir). Gold label: MECHANISM Predicted label: INT

(8)
DDI_sentence: Since Celontin (@DRUG$) may interact with concurrently administered @DRUG$, periodic serum level
determinations of these drugs may be necessary (eg methsuximide may increase the plasma concentrations of phenytoin
and phenobarbital). Gold label: ADVISE Predicted label: INT

(9)

ChemProt_sentence: EVn-50 possessed a broad spectrum of in vitro anticancer activity for those tested cancer cells,
especially sensitive to MDA-MB-435, SKOV-3, BXPC-3, SMMC-7721, MCF-7, HO-8910, SGC-7901, BEL-7402,
HCT-116, and 786-O, with the respective IC50 below 10mg/ml. Treatment with @CHEMICAL$ or VB1 resulted in
arresting the MDA-MB-435 and SMMC-7721 cells at G2/M phase, which was further supported by observations of
increased phosphorylation of Histone 3 at Ser10, phosphorylation of @GENE$ at Tyr15, expression of cyclin B1, and
decreased expression of Cdc25c. Gold label: CPR:3 Predicted label: CPR:4

(10) ChemProt_sentence: @CHEMICAL$ also increases Amyloid b (@GENE$) deposition and tau pathology. Gold label:
CPR:4 Predicted label: CPR:3

(11) ChemProt_sentence: Agonist and antagonist actions of yohimbine as compared to @CHEMICAL$ at alpha(2)-adrenergic
receptors @GENE$, serotonin (5-HT)(1A), 5-HT(1B), 5-HT(1D). Gold label: CPR:5 Predicted label: CPR:6

(12) GAD_sentence: Our results possibly indicate an association of @DISEASE$ with @GENE$ homozygosity (P=0.056).
Gold label: FALSE Predicted label: TRUE

(13) GAD_sentence: Our results suggest that the @GENE$ 168His variant is associated with reduced susceptibility to
@DISEASE$. Gold label: FALSE Predicted label: TRUE

(14) GAD_sentence: Our results indicate that the intron 2 CYP46 @GENE$ genotype may predispose to @DISEASE$, and
this association is independent of the apolipoprotein E genotype. Gold label: FALSE Predicted label: TRUE

(15)
GAD_sentence: Although there remains a possibility that the @GENE$ TaqI A polymorphism plays some role in
modifying the phenotype of the @DISEASE$, these results suggest that neither the A1 allele nor the homozygous A1
genotype is associated with alcoholism. Gold label: FALSE Predicted label: TRUE

Table 3: Examples of sentences that were incorrectly classified by the MTFT model.

with non-conclusive evidence (“possibly indicate”,
“suggest”, “may predispose”, “possibility”).

4 Conclusion

In this paper, we present a comprehensive evalu-
ation of encoder-only and encoder-decoder trans-
formers on four benchmark biomedical RE tasks.
We also explored the use of MTFT to investi-
gate the correlation among these biomedical RE
tasks. For that, we used ten popular datasets,
namely AIMed, BioInfer, HPRD50, IEPA, LLL,
DDI, ChemProt, DrugProt, GAD, and EU-ADR.
The experiments showed that T5 and MTFT
achieved better performance than BERT-based
models (BioBERT and PubMedBERT) in extract-
ing relations between bio-entities from texts. In

the future, we plan to study the impact of each RE
task/dataset on the downstream performance.
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