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Abstract

We introduce Doctor XAvIer —a BERT-based
diagnostic system that extracts relevant clinical
data from transcribed patient-doctor dialogues
and explains predictions using feature attribu-
tion methods. We present a novel performance
plot and evaluation metric for feature attribu-
tion methods —Feature Attribution Dropping
(FAD) curve and its Normalized Area Under
the Curve (N-AUC). FAD curve analysis shows
that integrated gradients outperforms Shapley
values in explaining diagnosis classification.
Doctor XAvIer outperforms the baseline with
0.97 F1-score in named entity recognition and
symptom pertinence classification and 0.91 F1-
score in diagnosis classification.

1 Introduction

Previous studies have shown that electronic med-
ical record (EMR) data are difficult to use in ma-
chine learning systems due to the lack of regulation
in data quality —EMR data are often incomplete
and inconsistent (Weiskopf and Weng, 2013; Roth
et al., 2009). Recently, there have been attempts to
improve automated clinical note-taking by extract-
ing relevant information directly from physician-
patient dialogues (Khattak et al., 2019; Kazi and
Kahanda, 2019; Du et al., 2019). This can alleviate
physicians of tedious data entry and ensures more
consistent data quality (Collier, 2017).

Due to the potential in reducing costs associated
with collecting patient information and diagnostic
errors, there is increasing interest in using informa-
tion extraction techniques in automatic diagnostic
systems (Xu et al., 2019; Wei et al., 2018). Je-
blee et al. (2019) introduced a system that extracts
pertinent medical information from clinical con-
versations for automatic note taking and diagno-
sis. However, their methodology did not explore
state-of-the-art natural language processing (NLP)
techniques —entity extraction was done by search-
ing the transcript for entities from medical lexicons

Speaker Utterance
DR So how are you feeling [PATIENT NAME]?

O O O O O O
PT Not good. I’m having back and neck pain.

O O O O B-symptom O B-symptom I-symptom
DR And when did this start?

O B-time-expr O O B-time-expr
PT Around three days ago.

O B-time-expr I-time-expr I-time-expr
DR I see. Do you take any pain killers?

O O O O O O B-medication I-medication
PT Yes, acetaminophen and ibuprofen.

O B-medication O B-medication

Table 1: Synthetic physician-patient dialogue with IOB
labels. The IOB labels are italicized underneath each
utterance. The B- prefix indicates that the token is the
beginning of an entity label, the I- prefix indicates that
the token is inside the entity label, and the O indicates
that the token belongs to no entity label.

and tf-idf was used for text classification. Although
there is existing work that employs more sophis-
ticated NLP techniques to patient-physician dia-
logues (Krishna et al., 2020; Selvaraj and Konam,
2019), there is a lack of end-to-end diagnostic sys-
tems that employ such techniques. Furthermore, all
of the previous works mentioned fail to address the
black-box nature of deep learning in the medical
industry. Most physicians are reluctant to rely on
opaque, AI-based medical technology —especially
in high-risk decision-making involving patient well-
being (Gerke et al., 2020).

In this work, we present Doctor XAvIer —a
BERT-based diagnostic system that extracts rel-
evant clinical data from transcribed patient-doctor
dialogues and explains predictions using feature at-
tribution methods. Feature attribution methods are
explainable AI (XAI) methods that compute an at-
tribution score for each input feature to represent its
contribution to the model’s prediction. We report
feature attribution scores using integrated gradients
(IG) (Sundararajan et al., 2017) and Shapley values
(Lundberg and Lee, 2017) to provide insight as to
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which features are important in diagnosis classifica-
tion. Descriptions of integrated gradients and Shap-
ley values are provided in Appendix A. Feature
attribution scores could potentially help physicians
build confidence in the model’s prediction or give
additional insight about the relationships between
different diseases and relevant patient information
(Markus et al., 2021). Finally, we present a novel
performance plot and evaluation metric for feature
attribution methods —the Feature Attribution Drop-
ping (FAD) curve and its Normalized Area Under
the Curve (N-AUC).

2 FAD Curve Analysis

We introduce Feature Attribution Dropping (FAD)
curve analysis for evaluating feature attribution
methods. FAD curve analysis requires no modi-
fications to the original machine learning model
and is simple to implement.

2.1 FAD Curve

The FAD curve illustrates the explainability of a
feature attribution method by plotting the perfor-
mance metric (e.g., accuracy) against the percent-
age of features dropped in descending order of im-
portance ranked by the feature attribution method
(see Fig. 1). We define the feature importance as
the absolute value of the feature attribution score
to represent the magnitude of the contribution of
each feature to the model’s prediction. Features
are dropped by modeling the absence of such fea-
tures in the input. For standard machine learning
inputs, continuous features can sometimes be set
to their means or image pixels can sometimes be
set to black (Sundararajan et al., 2017). A careful
consideration of the nature of the data is, of course,
required beforehand.

The intuition behind FAD curves is inspired by
counterfactual explanations —which describes how
the prediction of a model changes when the input is
perturbed (Wachter et al., 2018) —and the Pareto
principle —which states that for many situations,
approximately 80% of the outcome is due to 20%
of causes (the "vital few") (Pareto, 1964; Roccetti
et al., 2021). If a feature attribution method accu-
rately ranks the most important features for a cer-
tain prediction and the Pareto principle holds true,
then cumulatively dropping the most important fea-
tures in descending order should yield a smaller
and smaller decrease in model performance for that
prediction. In other words, the model’s ability to

Figure 1: Example of an idealized FAD curve with
β=20. The maximum FAD Curve AUC bounded from
0% to β% is shaded in pink. The actual FAD curve
AUC bounded from 0% to β% is shaded in blue and
overlaps the pink area. The N-AUC is the ratio of the
blue area to the pink area.

make correct predictions is mostly attributed to a
small subset of important features. This entails that
the steeper the FAD curve is early on, the better the
feature attribution method.

2.2 N-AUC

We present the FAD curve Normalized Area Under
the Curve (N-AUC) as a performance metric for
feature attribution methods. An intuitive way to
quantify how much the FAD curve decreases early
on is to calculate the Area Under the Curve (AUC)
bounded from 0% to β% of features dropped in
descending order of importance. We choose β=20
using the Pareto principle, but this number is just
an estimate.

Since steeper FAD curves have smaller AUCs,
FAD curves with smaller AUCs indicate a better
feature attribution method than FAD curves with
larger AUCs. The area under the curve is approxi-
mated using the trapezoidal rule (Tai, 1994), as de-
scribed in Appendix B. Although any performance
metric can be used for FAD Curve analysis, we
will use accuracy in our explanation for the sake
of simplicity. The range of the FAD curve AUC is
(0, β ×max(accuracy)] where max(accuracy)
is the maximum FAD curve accuracy of all the fea-
ture attribution methods for a model’s prediction
and β is the x-axis upper bound. Note that the min-
imum FAD curve AUC can only equal zero if the
model performance is zero in the bounded range.
This case is excluded from FAD curve analysis
since this scenario is rare and uninformative. In
order to easily compare feature attribution methods,
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we normalize the FAD curve AUC:

N -AUC =
AUC

β ×max(accuracy)
(1)

Thus, the range of the FAD curve N-AUC is (0, 1].

3 Methods and Experiments

We introduce Doctor XAvIer —a medical diagnos-
tic system composed of joint Named Entity Recog-
nition (NER) and intent (i.e. symptom pertinence)
classification, primary diagnosis classification, and
FAD curve analysis. In this section we discuss each
component in detail and evaluate each component.

3.1 Dataset
The Verilogue dataset (Jeblee et al., 2019) is a col-
lection of 800 physician-patient dialogues as audio
files and their corresponding human-generated tran-
scripts with speaker labels. Each dialogue includes
the patient’s information as well as the primary di-
agnosis. The distribution of the primary diagnoses
in the dataset is shown in Appendix C. The patient’s
information consists of the patient’s age, gender,
height, weight, blood pressure, smoking status, em-
ployment status, and ongoing treatments. Entities
—including symptoms, medications, anatomical
locations, time expressions, and therapies —are an-
notated by physicians in each transcript. Additional
details about the dataset can be found in Jeblee et al.
(2019).

3.2 Joint NER and Intent Classification
A diagnosis requires relevant clinical entities and a
measure of pertinence of such entities. For exam-
ple, a patient might mention a relevant symptom
that was experienced by someone else and there-
fore not pertinent to diagnosis. For each sequence
in the physician-patient dialogue, we extract clini-
cal entities with NER and classify the intent of the
speaker. We identify the clinical entities identified
in Table 2. We label each word in each sequence
in the dataset using the Inside-Outside-Beginning
(IOB) format (Ramshaw and Marcus, 1995). In
this paper, we focus on identifying the pertinence
of symptoms. We define the intents of the patient
as: confirm/deny/unsure of symptom and the intent
of both the patient and physician as: closing (i.e.,
ending the conversation). Of the 407 annotated
dialogues we randomly select 40 to use as a test set
for NER and intent classification.

We fine-tune Bio+Clinical BERT (Alsentzer
et al., 2019) jointly on these two classification tasks.

This model was initialized from BioBERT (Lee
et al., 2019) and trained on all notes from MIMIC-
III (Johnson et al., 2016) —a database containing
electronic health records from ICU patients. Lan-
guage models pre-trained on domain-specific text
yield improvements on clinical NLP tasks as com-
pared to language models pre-trained on a general
corpus (Grouchy et al., 2020). Since a majority
of interactions between the physician and patient
in the dataset are in question-and-answer format, it
is beneficial to concatenate the previous sequence
with the current sequence, including the respective
speaker codes, to give more context to the model.
This is done for each sequence before tokenization
and improves NER accuracy from 89% to 96%.

For NER, we concatenate the last four hidden
layers of Bio+Clinical BERT and feed this repre-
sentation into an output layer for token-level clas-
sification. For intent classification, we feed the
[CLS] representation of Bio+Clinical BERT into
an output layer for sequence classification. We
train with a batch size of 16 sequences and a maxi-
mum sequence length of 128 tokens for 5 epochs
and select the model with the lowest validation loss.
We use AdamW with learning rate of 2e-5, β1 =
0.9, β2 = 0.999, L2 weight decay of 0.01, and linear
decay of the learning rate (Loshchilov and Hutter,
2017). We use a dropout probability of 0.1 on all
layers except the output layers.

For the loss function, we propose a linear in-
terpolation between the intent classification Cross-
Entropy (CE) loss and the average NER Negative
Log Likelihood (NLL) loss with α = 0.5. The
intent classification CE loss is defined as:

L1(f1(x;θ),y1) = −
N∑
i=1

y1,ilogf1,i(xi;θ) (2)

where f1,i(x;θ) is the ith element of the softmax
output of the intent classes, y1,i is the ith element of
the one-hot-encoded intent label, N is the number
of intent classes, x is the input, and θ is the set of
model parameters. The average NER NLL loss is
defined as:

L2(f2(x;θ),y2) = −
∑M

j=1 logf2,j(xj ;θ)

M
(3)

where f2,j(x;θ) is the softmax output of the entity
classes —for each token in the sequence —at the
target class j, y2 is the set of entity labels, and
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Entity Instances P R F1
Other 158,018 0.98 0.98 0.98
Anatomical Location 598 0.73 0.65 0.69
Bodily Function 6 0.00 0.00 0.00
Diagnosis 1,345 0.79 0.75 0.77
Therapy 1420 0.62 0.69 0.65
Medication 3,324 0.90 0.81 0.85
Referral 256 0.71 0.79 0.74
Symptom 3,574 0.57 0.66 0.61
Substance Use 68 0.00 0.00 0.00
Time Expression 4,062 0.90 0.84 0.87
Weighted Avg 172,671 0.97 0.96 0.97

Table 2: Named entity recognition results.

Intent Instances P R F1
Confirm Symptom 228 0.70 0.69 0.70
Deny Symptom 52 0.73 0.69 0.71
Unsure of Symptom 73 0.34 0.65 0.62
Closing 28 0.29 0.47 0.36
Other 6,425 0.99 0.99 0.99
Weighted Avg 6,806 0.97 0.97 0.97

Table 3: Intent classification results.

M is the number tokens in the sequence. The full
loss function is defined in Appendix D.1. [PAD]
tokens are excluded from the loss function using
masking.

As seen in Table 2 and Table 3, the model yields
approximately 0.97 weighted precision, recall, and
F1-score on both tasks, outperforming Jeblee et al.
(2019)’s models. However, the exact results are
difficult to compare since Jeblee et al. (2019) tested
their model on a smaller subset of the dataset.

3.3 Primary Diagnosis Classification

We classify the primary diagnosis for each
physician-patient dialogue using the the patient’s
information —such as the patient’s age, weight,
blood pressure, and smoking status —and the ex-
tracted symptoms from the conversation. Since
the same symptom can be said in various differ-
ent ways, we compile a set of symptoms of all the
diseases in the dataset according to WedMD and
assign each extracted symptom to one of the pre-
defined symptoms. We use a pre-trained Sentence-
BERT (SBERT) model (Reimers and Gurevych,
2019) to embed each extracted symptom and all the
pre-defined symptoms. Each extracted symptom
is assigned to its most similar pre-defined symp-
tom measured by the cosine similarity between the
SBERT embeddings (Ngai et al., 2021). The most

similar pre-defined symptom is defined as:

s∗i = argmax
si

sim(emb(ej), emb(si)) ∀si ∈ S

(4)
where S = {s1, ..., sN} is the set of symptoms of
all diseases in the dataset, si is the ith symptom in
S, ej is the jth extracted symptom, emb(x) is the
SBERT embedding of text x, and sim(a, b) is the
cosine similarity between embeddings a and b. The
assigned pre-defined symptom is:

e∗j =

{
s∗i , if sim(emb(ej), emb(s∗i )) ≥ ϵ

None
(5)

where ϵ is a constant and None represents that
we do not use the extracted symptom ej for clas-
sification. We chose ϵ = 0.35 since it minimized
incorrect assignments of extracted symptoms in
the dataset while filtering out less than 10% of ex-
tracted symptoms.

The diagnosis classification model is a neural
network composed of 549 input features and three
hidden layers with 182K total parameters. The in-
put features consists of patient information and the
pertinence of extracted symptoms from the con-
versation. The model is evaluated using stratified
5-fold cross-validation. We train with a batch size
of 32 for 100 epochs and select the model with the
lowest validation loss. We use Adam (Kingma and
Ba, 2017) with learning rate of 1e-3, β1 = 0.9, β2
= 0.999, and ϵ = 1e-08. We use a GELU activation
(Hendrycks and Gimpel, 2016) on all hidden layers.
The training loss is the standard CE loss.

As seen in Table 4, Doctor XAvIer yields a sig-
nificant improvement in weighted precision, recall,
and F1-score for diagnosis classification compared
to the baseline (Jeblee et al., 2019).

3.4 Evaluation of Explainability Methods
For each test fold and model trained on the train
fold in the stratified 5-fold cross-validation of the
diagnosis classification model, we evaluate each
feature attribution method using FAD curve analy-
sis. We choose accuracy as the performance metric
for FAD curve analysis.

As seen in Table 5, integrated gradients outper-
forms Shapley values according to FAD curve anal-
ysis —achieving smaller N-AUCs for all diagnoses.
As seen in Figures 2, 3, and 4 and Appendix F.2,
integrated gradients yields noticeably steeper FAD
curves than Shapley values for all of the diagnoses
except Type II Diabetes. The sporadic shapes of
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Diagnosis Model P R F1
ADHD Doctor XAvIer 0.95 0.97 0.96

(Jeblee et al., 2019) 0.84 0.84 0.83
Depression Doctor XAvIer 0.92 0.93 0.92

(Jeblee et al., 2019) 0.80 0.64 0.71
Osteoporosis Doctor XAvIer 0.85 0.69 0.75

(Jeblee et al., 2019) 0.81 0.78 0.78
Influenza Doctor XAvIer 1.00 0.99 0.99

(Jeblee et al., 2019) 0.91 0.95 0.93
COPD Doctor XAvIer 0.93 0.93 0.93

(Jeblee et al., 2019) 0.75 0.65 0.68
Type II Diabetes Doctor XAvIer 0.52 0.47 0.48

(Jeblee et al., 2019) 0.81 0.75 0.76
Other Doctor XAvIer 0.73 0.80 0.76

(Jeblee et al., 2019) 0.71 0.82 0.76
Weighted Avg Doctor XAvIer 0.91 0.91 0.91

(Jeblee et al., 2019) 0.82 0.80 0.80

Table 4: K-fold cross-validation primary diagnosis clas-
sification results.

Diagnosis Instances IG Shapley
ADHD 20 0.48 0.77
Depression 14 0.63 0.85
Osteoporosis 5 0.24 0.36
Influenza 19 0.72 0.95
COPD 11 0.33 0.59
Type II Diabetes 3 0.59 0.73
Other 9 0.71 0.95

Table 5: K-fold cross-validation FAD curve N-AUC
from 0% to 20% of dropped features comparing inte-
grated gradients and Shapley values.

the Type II Diabetes FAD curves can potentially
be explained by the lack of dialogues with Type
II Diabetes as their primary diagnosis —there are
only 3 instances. This suggests that we could po-
tentially improve performance by collecting more
instances of the infrequent classes or performing
regularization.

It is important to note that some features in the
dataset may be correlated. Therefore, dropping fea-
tures that are correlated with other features may
lead to an increase —instead of a decrease —in
the performance metric despite dropping features
in descending order of importance. We could po-
tentially mitigate this by using feature selection
methods before performing FAD curve analysis.

4 Conclusion

Doctor XAvIer yields significant improvements in
NER, symptom pertinence classification, and di-
agnosis classification compared to previous work
(Jeblee et al., 2019), while also explaining why
the model made each diagnosis. We also present a
novel performance plot and evaluation metric for

Figure 2: K-fold cross-validation ADHD and Depres-
sion FAD curves.

Figure 3: K-fold cross-validation COPD and Type II
Diabetes FAD curves.

feature attribution methods —FAD curve analysis
and its N-AUC. FAD curve analysis shows that in-
tegrated gradients outperforms Shapley values in
explaining diagnosis classification in the Verilogue
dataset. In our future work, we will calculate β in a
data-driven manner to standardize FAD curve anal-
ysis for a given dataset. We will also apply FAD
curve analysis to other feature attribution methods,
AI domains, and datasets to evaluate its generaliz-
ability.

Figure 4: K-fold cross-validation Osteoporosis and In-
fluenza FAD curves.
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Appendix

A Feature Attribution Methods

A.1 Shapley Values

The Shapley value (Lundberg and Lee, 2017) —a
method from cooperative game theory —assigns
payouts to players depending on their contribution
to the total payout in a cooperative game. Play-
ers cooperate in a coalition and receive a certain
profit from this cooperation. In explainable AI, the
game is the prediction task for a single instance in
the dataset, the players are the feature values of a
single instance that collaborate to make a predic-
tion, and the gain is the prediction for an instance
minus the average prediction for all instances (Sun-
dararajan and Najmi, 2019). In other words, the
Shapley value measures the contribution of each
input feature to a model’s prediction for a single
instance.

A.2 Integrated Gradients

Integrated gradients (Sundararajan et al., 2017) is
an XAI technique which attributes the prediction
of a deep neural network to its input features. In-
tegrated gradients attributes blame to an input fea-
ture by using the absence of the input feature as a
baseline for comparing outcomes. For most deep
networks, there exists a baseline in the input space

Primary Diagnosis Dialogues
ADHD 99
Depression 72
Osteoporosis 26
Influenza 95
COPD 55
Type II Diabetes 14
Other 46

Table 6: Distribution of primary diagnoses in the Veri-
logue dataset.

where the prediction is neutral. For example, the
baseline for an object recognition network can be
a black image. Mathematically, integrated gradi-
ents is defined as the path integral of the gradients
along the straightline path from the baseline x′ to
the input x.

B Area Under the Curve Approximation

The area under the curve is approximated using the
trapezoidal rule (Tai, 1994):

AUC =

∫ 20

0
f(x) dx

≈
N∑
k=1

f(xk−1) + f(xk)

2
∆xk

(6)

where 0 = x0 < x1 < ... < xN−1 < xN = 20
and ∆xk = xk − xk−1.

C Additional Dataset Details

Table 6 shows the distribution of diagnoses in the
Verilogue dataset.

D Additional Details for Joint NER and
Intent Classification

D.1 Loss Function Equations
Combining Eq. 2 and Eq. 3, the joint intent classi-
fication and NER loss function is defined as:

L(f1(x;θ),y1, f2(x;θ),y2, α)

= αL1(f1(x;θ),y1)

+ (1− α)L2(f2(x;θ),y2)

(7)

where α ∈ [0, 1].

D.2 Training Hardware
Training of the joint NER intent classiciation model
was performed on a NVIDIA Quadro RTX 6000
GPU and took approximately two hours to finish
training.
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Feature Attribution %
Age 0.015
Trouble making decisions and remembering things 0.013
Taking Adderall 0.009
Trouble focusing on a task 0.007
Easily distracted 0.004
Restlessness 0.003

Table 7: Examples of top features for classifying ADHD
ranked by integrated gradients.

Feature Attribution %
Weight 0.003
Age 0.002
Trouble focusing on a task 0.002
Trouble making decisions and remembering things 0.002
Easily distracted 0.002
Systolic Blood Pressure 0.002

Table 8: Examples of top features for classifying ADHD
ranked by Shapley values.

E Additional Details for Primary
Diagnosis Classification

E.1 Training Hardware

Training of the primary diagnosis classification
model was performed on a NVIDIA Tesla K80
GPU and took approximately an hour to finish train-
ing and evaluating all five models.

F Additional Details for FAD Curve
Analysis

F.1 Feature Attribution Examples

Examples of top features for classifying ADHD
ranked by integrated gradients are shown in Table 7
and examples of top features for classifying ADHD
ranked by Shapley values are shown in Table 8.

F.2 Additional FAD Curves for Diagnosis
Classification

The FAD curve for the diagnosis Other is seen in
Figure 5.

Figure 5: K-fold cross-validation Other FAD curves.

G Code

The code is available at: https://github.
com/hillary-ngai/doctor_XAvIer.
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