
Proceedings of the BioNLP 2022 workshop, Dublin, Ireland, pages 241–251
May 26, 2022. ©2022 Association for Computational Linguistics

241

BioCite: A Deep Learning-based Citation Linkage Framework for
Biomedical Research Articles

Sudipta Singha Roy
University of Western Ontario

ssinghar@uwo.ca

Robert E. Mercer
University of Western Ontario
mercer@csd.uwo.ca

Abstract

Research papers reflect scientific advances. Ci-
tations are widely used in research publications
to support the new findings and show their ben-
efits, while also regulating the information flow
to make the contents clearer for the audience. A
citation in a research article refers to the infor-
mation’s source, but not the specific text span
from that source article. In biomedical research
articles, this task is challenging as the same
chemical or biological component can be rep-
resented in multiple ways in different papers
from various domains. This paper suggests a
mechanism for linking citing sentences in a
publication with cited sentences in referenced
sources. The framework presented here pairs
the citing sentence with all of the sentences in
the reference text, and then tries to retrieve the
semantically equivalent pairs. These semanti-
cally related sentences from the reference paper
are chosen as the cited statements. This effort
involves designing a citation linkage frame-
work utilizing sequential and tree-structured
siamese deep learning models. This paper also
provides a method to create an automatically
generated corpus for such a task.

1 Introduction

Research articles from different domains use vary-
ing writing styles and formats. They serve different
purposes as well. A research publication may dis-
cuss current research trends, a novel discovery, or
alternative approaches to solving a problem in a
given domain. While writing a research article, the
author mentions prior research that was either sig-
nificant in resolving the same topic or impacted the
author’s views mentioned in the current research
paper. This referencing another document in a re-
search piece is referred to as a citation (Houngbo,
2017). This way, citations establish connections
between distinct research literature as well as alle-
viating authors’ writing burden by preventing them
from having to write the same thing mentioned in

another research article again. Simultaneously, it
assists readers in acquiring prior knowledge about
a subject that may be necessary to comprehend the
ideas contained in the ongoing research work.

The idea of citation indexing was first introduced
in 1964 where indexes contain the references in a
research document. Citation-based bibliometrics
are utilized to evaluate the significance of a re-
search work (Garfield, 1972). In response to the
growing popularity of citation indexing, a more crit-
ical analysis of citing was later suggested. Garzone
and Mercer (Garzone and Mercer, 2000) devised a
mechanism for determining the objective of a refer-
ence in biochemistry and physics research publica-
tions. Moreover, citations help to keep track of the
logical argumentation across various research arti-
cles (Mercer, 2016). Prominent applications of ci-
tation incorporate maintaining the trail of scientific
research argumentation across different research ar-
ticles (Palau and Moens, 2009) and summarization
of these documents (Radev et al., 2000).

In scientific research publications, a citation
refers to the source article from which the cited
notion is drawn. However, in experimental biomed-
ical research articles, a citing sentence usually only
relates to a small text span of the cited document’s
contents. This small span of text can be from the
method section, result analysis section or any other
section of the reference document (Singha Roy
et al., 2020). The above-mentioned applications
would substantially benefit if such a text span could
be extracted from the original document. It would
also free up the readers from having to read the full
document to locate the cited piece of text.

The citation linkage task is more complicated for
biomedical research papers as the same chemical
or biological component has various representation
formats and the use of these variations is very com-
mon in such research articles. For example, the
chemical compound carbon dioxide can be repre-
sented as CO2 as well as O=C=O, whereas in some
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articles the writers write the whole name in plain
text (carbon dioxide). Similarly, there are multiple
representations to indicate the same reactions be-
tween various genes, chemicals, and drugs. On top
of that, the only human annotated corpus available
for the citation linkage task in the biomedical do-
main is from (Houngbo and Mercer, 2017) which
comes with 3857 sentence pairs which are highly
imbalanced with only 2% positive samples and
98% negative samples. The size and imbalanced
nature of this corpus makes it difficult to train deep
learning models on this dataset. To overcome this,
we propose an automatically generated corpus for
this task containing 74,568 sentence pairs.

This paper has two objectives: first, introducing
an automatically generated corpus for the citation
linkage task for biomedical research papers and sec-
ond, providing a framework for this task to retrieve
the cited text span from the reference paper given
the citing sentence by means of measuring the se-
mantic similarities between the citing sentence and
candidate cited sentences from the referenced pa-
per. The cited text span can be a single sentence,
part of a sentence or even one or more paragraphs
(Houngbo and Mercer, 2017). However, for this
task this text span is restricted to a single sentence
like Li et al. (2017). Considering the first objective,
we introduce an automatically generated corpus
containing 74,568 sentence pairs and also an ap-
proach to annotate data automatically without any
human effort. The quality of the data annotation
is evaluated by annotating a portion of the dataset
by human experts and then measuring Cohen’s κ
among the human annotators’ decisions and the au-
tomatically generated annotation labels. Sentence
pairs from this dataset are used only for training
the models for the citation linkage task. And for
the second aspect, we have investigated multiple
sequential and tree-structured neural networks and
presented one ensemble architecture, which we call
BioCite, that computes the semantic similarity be-
tween the citing statement and all of the sentences
in the referred document. The performance of the
model is tested against the expert annotated dataset
from Houngbo and Mercer (2017) which contains
citing sentences that refer to methods statements in
the cited documents. The outline for the paper is:
Section 2 gives a brief description of the citation
linkage task and Section 3 mentions and discusses
a few prominent works for the citation linkage task.
Section 4 discusses the automatically generated

corpus creation and the framework design. The per-
formance of the models are reported and analyzed
in Section 5. The parameters of the models are
also described in this section. The paper ends with
a brief summary and possible future directions of
this research.

2 Citation Linkage

Citations construct semantic bridges between cit-
ing and cited manuscripts. To support the find-
ings, claims and hypotheses, authors cite several
resources while preparing manuscripts. They also
try to address the results and findings of the other
research works. It is also important to mention
others’ works, in order to demonstrate the authors’
significance and progress with their current work.

A citation in any research paper focuses on some
specific sections of the referenced article acknowl-
edged as the citation context. This citation context
often focuses on a specific idea or issue in the ref-
erenced manuscript (Houngbo, 2017). The intent
of a using citation is to provide the readers with the
apposite background information for a better un-
derstanding of the concepts introduced in the citing
paper. The citation context can reveal information
about a cited publication’s hypotheses, findings,
methodologies, etc. In order to improve the per-
formance or make the method compatible with the
domain for which it is intended to be used, an au-
thor may adapt or modify the method described in
the citing paper to the extent necessary. Aside from
that, the author may undertake experiments based
on the idea presented in a cited paper to confirm or
refute the idea presented in that work. References
to the hypotheses and methodologies that were em-
ployed in the referenced paper aid the readers to
grasp the concepts presented in the current work.

However, citations only provide the source of
information which is being referred. The current
citation indexing approach does not provide a way
to indicate which text span from the cited research
manuscript is actually being touched on. It provides
no method other than going through the whole ref-
erenced article for the reader if he or she wants
to grasp the idea properly. On the other hand, re-
search articles that include detailed information on
the study’s discoveries, as well as relevant back-
ground information, are more appealing to readers.
This necessity has influenced the work we are pre-
senting in this paper.

The author can cite a paper by paraphrasing the
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statements from the cited paper. He or she can also
elaborate some statements from the cited paper. For
example in the citing statement, “DNA samples
are frequently harmed by exposure to excessively
acidic environment”, Wang et al. (2009) explains
that "pH4" is an “excessively acidic environment”
when citing “DNA is fairly stable in mildly acidic
solutions, although the beta glycosidic link in the
purine bases is hydrolyzed at around pH4.” (Bonin
et al., 2003). Sometimes these citations are the in-
terpretations of the cited statements, e.g., the citing
sentence “Different PCR buffer systems and/or Taq
polymerases may produce variable results in real
time PCR.” (Huijsmans et al., 2010) is nothing but
an interpretation of the cited sentence “There is
a significant disparity between the outcomes ob-
tained using the various DNA polymerase-buffer
solutions.” (Wolffs et al., 2004). As these exam-
ples demonstrate, precise mapping between words
and sentences is required to establish a connection
between the citing and cited sentences.

This paper provides a citation linkage framework
for biomedical research articles along with an au-
tomatically generated corpus comprising 74,568
sentence pairs. The framework at first generates
sentence pairs with the citing sentence and all the
sentences from the referenced paper. Then, the
model measures the semantic similarity scores be-
tween the sentences in each pair. Based on these
similarity scores, it retrieves the actual cited sen-
tences from the referenced manuscript. We have
formulated this semantic similarity measurement
task as a binary classification task where each sen-
tence pair is predicted with either label 1 or label 0.
Sentence pairs predicted with label 1 are selected
as the cited sentences given the particular citing
sentence.

3 Related Work

The study of citations in scientific research has
led to a lot of work. Citation analysis attempts to
identify which section (i.e., abstract of the paper,
introduction of the problem statement, description
of methods, analysis of result, etc.) of the refer-
enced article this sentence refers to (Garfield, 1972;
Garzone and Mercer, 2000). However, this form of
study cannot pinpoint the citation span.

Another type of work is to determine the citation
span. PolyU (Cao et al., 2016) applied RankSVM
over chunks of sentences to predict the cited text
span. Baruah and Kolla (2018) computed cosine

similarity of word embeddings for the citation link-
age task. Yeh et al. (2019) applied majority voting
to six machine learning classifiers over the lexi-
cal, knowledge-based, corpus-based, syntactic and
surface features for this task.

The CL-SciSumm Shared Task tries to solve
three aspects: find the cited text span given the
citation sentence (“citance”), identifying the dis-
course facet of the cited sentence and summarise
the referred article using only the text spans that
are quoted many times in the referenced document.
However, the later two sub-tasks are out of the
scope of this work. Ma et al. (2017) applied differ-
ent classifiers and voting mechanism over similar-
ity, rule and position-based features to determine
the similarity between the citing and cited state-
ments for CL-SciSumm-17. The citation linkage
between citing and cited sentence pairs was deter-
mined by Li et al. (2017) utilizing inverse document
frequency and Jaccard similarity. In their following
works, they computed the sentence vectors by con-
catenating 200 dimensional word vectors (Li et al.,
2018) and then applying a convolutional neural
network (CNN) over that concatenated vector rep-
resentation (Li et al., 2019). In both cases, the cited
text span is determined by measuring the cosine
similarities between the citing and candidate cited
statements. Other works, such as AbuRa’ed et al.
(2017) have also worked with the CL-SciSumm
corpus.

Recently, BERT-based models have been de-
ployed for the citation linkage task and are being
used in many experiments. Gidiotis et al. (2020)
fine-tuned BERT to determine the referred cited
sentences from the cited document. Zerva et al.
(2019) applied a CNN over SciBERT-based fea-
tures (Beltagy et al., 2019) to determine which
text span in the cited article is actually being re-
ferred. They concatenated the features from the
BERT-based model for feature generation. Uma-
pathy et al. (2020) utilized key-phrase similarity
using the Rapid Automated Keyword Extraction
Algorithm (Rose et al., 2010) and a BERT-based
architecture for cited text span identification.

However, only a few citation linkage works are
found for biomedical research papers. Citation
linkage for biomedical research articles is more
challenging due to various representations of the
same component. One notable work for this do-
main is from 2017, where Houngbo and Mercer
(2017) used traditional machine learning approach
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over their own small expert-annotated corpus. And
so far, this is the only human annotated corpus for
the citation linkage task in the biomedical domain.

4 BioCite: Description of the Framework

The development of the framework involves two
major steps: creating a balanced automatically gen-
erated training corpus of reasonable size and build-
ing a framework for determining the referred state-
ments from the cited document for a particular cit-
ing statement.

4.1 Corpus Creation

The only expert-annotated corpus for the biomed-
ical domain to serve the purpose of our work is
from Houngbo and Mercer (2017) which comes
with only 3857 sentence pairs. For training, the
major problem with this dataset is the class imbal-
ance: only 81 positive pairs which is only 2% of
the corpus. Eventually, training any model with
this corpus would make it biased towards negative
outcome. At the same time, manually annotating
enough data from biomedical and biochemical re-
search articles for this task is time consuming. So,
we have created an automatically generated corpus
of 74,568 sentence pairs spanning three biomedical
sub-domains: biochemistry, cell biology and chem-
ical biology. We are calling this corpus automati-
cally generated as no human annotation has been
used for generating these sentence pairs. For the
validation and testing of the models, we have used
the validation and testing sets from the Houngbo
and Mercer (2017) corpus (800 samples with 20
positive ones for validation and 3057 samples con-
taining 61 positives for test set). The sentence pairs
in the training set are annotated with 0 (not seman-
tically similar) or 1 (semantically similar) to make
it compatible with the validation and test set.

We collected 28,310 research documents from
BioMed Central spanning multiple biomedical sub-
domains. From these documents, 138 are ran-
domly chosen from the above-mentioned three sub-
domains and then corresponding citing statements
from 2736 papers (manually collected) citing these
138 articles are extracted manually. The citing state-
ments are then paired-up with all of the sentences
from the corresponding cited documents, ending-
up with 522,398 pairs.

Sentences of each pair are fed individually to the
Sent2Vec (Pagliardini et al., 2018) model, which
is trained over all of the research documents we

Figure 1: automatically generated corpus build-up: Sen-
tence pair creation and annotation.

accumulated, and the cosine similarity between the
paired sentences is measured. Pairs with cosine
similarity value greater than a cutoff value 0.57 (se-
lected after testing against the validation set) are
labelled 1, 0 otherwise. We experimented with dif-
ferent cut-off values and plotted the results on AUC
and ROC curves while testing on the validation set
from the expert annotated corpus (Houngbo and
Mercer, 2017). From there, we chose the cut-off
value for which the best validation accuracy was
found. From there As there are many fewer pos-
itive samples than negative ones, for each citing
statement, negative samples are randomly chosen
for each citing sentence to balance the classes. In
this automatically generated corpus, for each citing
sentence, an equal number of positive and negative
samples are preserved. The overall process of this
corpus creation is illustrated in Figure 1.

4.2 Semantic Similarity Measurement Module
The aim of building this citation linkage framework
is to link the citing sentence to the referenced text
span in the referenced biomedical research article.
To solve this challenge, we have used a variety of
supervised deep learning-based models to estimate
the semantic similarity between the citing and cited
text span where the text span is limited to a single
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sentence. The predictions of these models are set
to binary class labels: 0 and 1. Here 1 indicates
that the candidate cited and the particular citing
statement are semantically similar and it can be
interpreted as the candidate cited sentence is truly
being referenced by the citing sentence and if the
prediction value is 0, it represents the candidate
cited sentence is not being referred.

The base of the sequential and tree-structured
neural network models is InferSent (Conneau et al.,
2017): a siamese architecture. This is a supervised
sentence representation model which is able to
work with sentence pairs and has been used in many
cases for semantic relatedness measurement tasks
(Ahmed et al., 2019; Reimers and Gurevych, 2019).
The overview of the training process of InferSent
for the semantic similarity measurement task is
portrayed in Figure 2. In InferSent two identical
encoder neural network topologies are used with
identical parameter settings. The citing sentence
(Sciting) and the cited sentence (Scited) are encoded
by them in parallel. This is followed by generat-
ing a feature map that concatenates concatenation,
absolute point-wise difference, and point-wise mul-
tiplication. This feature map is then loaded into
the dense and softmax layers in sequence to predict
the binary class label. As the encoder models, four
sequential and four tree-structured neural networks
are used. The functioning principles of these mod-
els are first outlined, and then the ensembles of
them are discussed. The best encoder model for
the BioCite framework is chosen in the end based
on the performances of the investigated models.

4.3 Sequential Encoders

As the encoder for the InferSent model, four se-
quential models are applied. The first one is the
Bi-LSTM with a following max-pooling layer. The
second encoder model applies inner attention (Liu
et al., 2016) over the Bi-LSTM output features for
producing the sentence representations. The third
encoder model utilizes the hierarchical attention
(Yang et al., 2016) in place of inner attention over
the Bi-LSTM. This attention mechanism was in-
troduced for document classification where at the
first layer it attends on the words for generating
sentence representation and in the second layer it
attends over the sentences for paragraph or doc-
ument representation. As our work is limited to
single sentences, we have used only the first layer
of this attention mechanism. This approach is de-

Figure 2: InferSent training for the citation linkage task.

signed in such a way that it can focus on four dif-
ferent parts of the sentence. Thus it generates four
sentence representations, which are concatenated
to form the sentence vector. The last sequential
encoder we investigated is the hierarchical CNN
with four layers of convolution operations, each
followed by one max-pooling operation. These
four feature maps are concatenated in the end to
generate the sentence representation vector.

4.4 Tree-Structured Encoders

Sequential neural networks provide reasonable sen-
tence representations. However, they can’t preserve
structural information and miss semantic composi-
tionality. Tree-structured neural networks, on the
other hand, can preserve both semantic and syntac-
tic properties of the text by working with the parse
tree. For the tree-structured neural network models
we investigated the dependency and constituency
tree-transformers with both multi-head and multi-
branch attention mechanisms over child nodes’ rep-
resentations (Ahmed et al., 2019). For complete-
ness, we provide details of these tree-transformers
that are developed therein.

A constituency tree contains words at leaf nodes
only, whereas a dependency tree has a word at each
node. So, while traversing a dependency tree, it
is required to consider both the child and corre-
sponding parent nodes whereas for constituency
tree, only after traversing every sub-tree the non-
terminal intermediate nodes can be calculated.
So, in both cases, the children nodes are consid-
ered. This approach (Ahmed et al., 2019) uses
self attention mechanism for attending the child
nodes. This attention mechanism uses three ma-
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trices: key, value and query like the transformer
model (Vaswani et al., 2017) (Equ. 1).

α = softmax(
query keyT√

dk
)value (1)

Here dk is the dimension of the key, value and
query matrices. For this experiment the dimension
of all these matrices are kept the same. n copies of
these matrices are generated for n branches of the
multi-branch attention mechanism. Here, n is the
number of branches to be used. Then scaled dot
product is used as in Equ. 2:

βi = αi∈[1,n](queryi ω
q
i , keyi ω

k
i , valuei ωv

i ) (2)

where ωq
i , ωk

i , ω
v
i are the hyper-parameter weight

matrices for query, key, and value, respectively.
Following this scaled dot product operation, a

residual connection is employed over these tensors
β. A layer-wise batch normalization is used in the
following step which is multiplied with a scaling
factor τ (Equ. 3). Over every β̃, position-wise CNN
(PCNN) is then employed (Equ. 4). By applying
weighted summation then, the attention encoded
semantic sub-spaces’ representation are generated
(Equ. 5). Here γ ∈ Rn is a hyper-parameter. In
the end, another residual connection is established
with BranchAttn which is then fed to a non-
linearity function tanh and an element-wise sum-
mation function EWS is done to produce the parent
node representation (Equ. 6) (Ahmed et al., 2019).

β̃i = LayerNorm(βiω
b
i + βi)× τi (3)

PCNN(x) = Conv(Relu(Conv(x) + b1)) + b2
(4)

BranchAttn =

n∑
i=1

γiPCNN(β̃i) (5)

ParentNodeRep = EWS(tanh((χ̃+ χ)ω + b))
(6)

For multi-head attentions, attention matrices key,
value and query are projected h times (Vaswani
et al., 2017) and it is calculated as follows:

(7)MultiHead(query, key, value)
= Concat(head1, ...,headh)W

O

where, for each head,

headi = α(queryW q
i , keyW k

i , valueW v
i ) (8)

All of the W s are the hyper-parameter matrices
which get updated during training.

4.5 Ensemble Architectures

After investigating the sequential and tree-
structured neural network models, we experi-
mented with two ensemble models. The first en-
semble architecture utilizes all the models investi-
gated here. After all the models are trained sepa-
rately, each sentence pair is fed to all the models
in parallel. Each model individually predicts the
semantic similarity score and in the end, the final
similarity value is selected by applying a winner-
takes-all approach (Roy et al., 2018) over all the
predictions. In the second approach we used only
the tree-transformer models. The dependency tree-
transformer is able to preserve the word level de-
pendency between different part of the sentence,
whereas the constituency tree-transformer can pre-
serve phrase-level information. To benefit from
both of these models, we concatenated the feature
representations generated from both of the tree-
transformers and used it as the vector representa-
tion of the sentence. This sentence vector is then
fed to a multi-layer perceptron for the similarity
score prediction.

5 Experimental Setup and Result
Analysis

In this section, the experimental setup and the re-
sults of the models investigated for the citation link-
age task are discussed. As the human annotated
test data is highly imbalanced, apart from F-1 score,
Matthews Correlation Coefficient (MCC) and Bal-
anced accuracy (BAcc) are also used to assess the
performance of the models.

5.1 Experimental Setup

Sent2Vec was trained with various parameter set-
tings. The cutoff value and the best model are
chosen based on the MCC and BAcc over the val-
idation set. The best hyper-parameter settings for
Sent2Vec are: 500d sentence embedding, window
size 20, learning rate 0.2, negative sampling loss
function and sampling threshold 0.0001. For the
four sequential models: hierarchical CNN (hCNN),
Bi-LSTM with max pooling, hierarchical and inner
attentions over Bi-LSTM; the learning rates (LR)
were initialized to 0.1. With a drop in validation
accuracy, the LR is multiplied by 0.2. The batch
size and LR threshold are set to 50 and 0.0001,
respectively. For training, stochastic gradient de-
scent is used as the optimizer. For hCNN, 4 layers
of convolution are used followed by max-pooling.
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Table 1: Statistics of the annotations by the experts and the automatically generated corpus for the 1500 samples

Annotator Group 1 Annotator Group 2
The Automatically
Generated Corpus

Positive samples (in total) 731 709 750
Negative Samples (in total) 769 791 750

Table 2: Analysis of the agreements among the expert annotators and the automatically generated corpus

Between Annotator
Groups 1 and 2

Between Annotator Between Annotator
Group 1 and Group 2 and

the Automatically the Automatically
Generated Corpus Generated Corpus

Agreed Positive Samples 706 715 701
Agreed Negative Samples 765 750 750

Cohen’s κ 0.96 0.95 0.93

Four context vectors are used for both hierarchi-
cal and inner attention mechanisms to focus on 4
distinct parts which are concatenated for final sen-
tence representations. For all of the tree-structured
transformer models, 6 parallel heads are used with
50d query, value and key matrices where 6 position-
wise convolution layers are used for multi-branch
attention. Two layers of CNN (first layer: 341
1d kernel and no dropout, second layer: 300 1d
kernels, 0.1 dropout) are used in the PCNN layer
as the composition function which is the same as
Ahmed et al. (2019). For parameter tuning, Ada-
grad (Duchi et al., 2011) with LR 0.0002 is used in
all cases.

5.2 Performance Analysis

We first evaluate the quality of the automatically
generated corpus. For analyzing the quality of the
data annotation, we randomly picked 750 positive
and 750 negative samples (labelled as such in the
automatically generated corpus) from the 74,568
citing and candidate cited sentence pairs. These
1500 sentence pairs were provided to two groups
of expert annotators. Each group consisted of three
people and each person annotated 500 samples. So,
each 500 sample chunk was annotated by two indi-
viduals, one from each group. Each reviewer also
mentioned their confidence level for each sample
annotation. We then used Cohen’s κ (Cohen, 1960)
to compute inter-annotator reliability between the
human annotators and the automatically generated
corpus. The overall statistics are shown in Table 1.
The first group identified 731 positive and 769 neg-
ative samples in the 1500 sentence pairs, and the
second group identified 709 positive and 791 nega-

tive samples. Table 2 shows the annotator groups’
decisions agreed for 706 positive and 765 nega-
tive samples. The reliability factor κ found here
is 0.96. While comparing the annotation provided
by the automatically generated corpus against the
first and second annotator groups, we see that the
annotation decisions match for 715 and 701 posi-
tive samples between the automatically generated
corpus and groups 1 and 2, respectively. For nega-
tive samples, the agreed decisions are 750 samples
in both cases. The κ values are 0.95 (between first
annotator group and the automatically generated
corpus) and 0.93 (between second annotator group
and the automatically generated corpus). These
values indicate that the automatically generated
corpus annotations match the experts’ annotations
quite well. When interpreting these high κ values,
it is important to recall that the data given to the
annotators were balanced (50/50 split of positive
and negative samples). From Table 2 it is clear that
the human annotators have high agreement for both
of their positive and negative choices.

Next we provide the citation linkage task out-
comes. To compare the performance of the model
against the previous models, we evaluated the
model with the gold standard human annotated data
from Houngbo and Mercer (2017) because the pre-
vious models were tested against this gold standard
corpus. This corpus focusses on citations of meth-
ods used in the citing and cited articles. Houngbo
(2017) suggests that in most cases the citation refers
to single sentences in the cited articles. As an ex-
ample, the citing statement “Recently, Chauhan
et al. employed SVM to predict the ATP binding
residues in ATP binding proteins using amino acid
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Table 3: Performance analysis of different architectures for the citation linkage task for biomedical research articles.
Models tagged with † are the investigated ones in this work. Here, CT: constituency tree, DT: dependency tree,
MB: multi-branch attention, MH: multi-head attention, TP: true-positive, FP: false-positive, TN: true-negative, FN:
false-negative.

Model TP FP TN FN F1 MCC
BAcc
(in %)

Previous Houngbo 34 995 2001 27 0.06 0.07 61.27
Works Li 39 779 2217 22 0.09 0.12 68.97

Sequential
Models

Hierarchical CNN † 45 580 2416 16 0.13 0.19 77.21
Bi-LSTM + Max-pooling † 54 361 2635 7 0.23 0.31 88.24
Inner attentive Bi-LSTM † 55 372 2624 6 0.23 0.31 88.87
Hierarchical Attentive Bi-LSTM † 56 355 2641 5 0.24 0.33 89.98

Tree
Structured

DT-Transformer (MH) † 57 301 2695 4 0.27 0.36 91.70
DT-Transformer (MB) † 58 287 2709 3 0.29 0.38 92.75
CT-Transformer (MH) † 57 315 2681 4 0.26 0.35 91.46
CT-Transformer (MB) † 57 309 2687 4 0.27 0.36 91.56

Ensemble
Winner-takes-all ensemble † 59 253 2743 2 0.32 0.41 94.14
BioCite † 60 240 2756 1 0.33 0.42 95.17

sequences and their evolutionary profiles” (Firoz
et al., 2011) indicates the cited sentence “Our SVM
module predicts a score for each residue in protein
(in range of -1.0 to 1.0), we define a threshold to
discriminate ATP interacting and non-interacting
residues” (Chauhan et al., 2009). Another approach
for such a task could have been ranking the can-
didate sentences as was one of the methods done
by Houngbo (2017). However, for the final clas-
sification step we used softmax, which gives a
probability to every possible outcome, so this ap-
proach could easily be modified to be a ranking
approach.

Table 3 reflects multiple performance metrics
found for the models used here along with the re-
sults from a few prominent works. Among the
sequential models, Bi-LSTM with the hierarchical
attention mechanism fed with Bio-RoBERTa em-
beddings performs the best based on the MCC and
BAcc (0.33 and 89.98% accordingly). However,
it can correctly extract only 56 out of 61 positive
samples. The inner attentive Bi-LSTM and simple
Bi-LSTM followed by a max-pooling layer cap-
tures 54 and 55 positive samples correctly with the
same MCC (0.31) and F1 score (0.23). However,
the inner attentive Bi-LSTM model earns a slightly
higher BAcc (88.87%) as it predicts more negative
samples correctly.

The tree-structured models outperform all of the
sequential models to extract the cited statements
from the referenced documents. The reason for this

is the constituency tree-transformer is able to cap-
ture phrase level information and the dependency
tree-transformer is able to preserve word level de-
pendencies. In biomedical articles, biological com-
ponents’ chemical names may comprise multiple
words. The constituency tree-transformer has the
capability to work better with such phrase level text.
And in a lot of cases, the citing statements are com-
plex in nature. The dependency tree-transformer
deals with such cases well. Another important
thing to notice here is that tree-transformers with
multi-branch attention perform better than the tree-
transformers with multi-head attention as multi-
branch attention applies multiple heads in each
branch and is thus able to obtain more information
about each sentence (Fan et al., 2020). Here, both
the constituency and dependency tree-transformers
with multi-head attention mechanism predict 57
positive samples correctly. Multi-branch attentive
dependency tree-transformer predicts 58 positive
samples correctly. Constituency tree-transformer
with multi-branch attention predicts 57 positive
samples correctly. However, it predicts 6 more neg-
ative samples correctly attaining a 0.10 percentage
point improvement in BAcc.

The two ensemble architectures investigated here
improve the performance of the citation linkage
task for biomedical research articles. The first ap-
proach ensembles all of the investigated individual
models with the winner takes all selection process.
This approach considers all the outcomes from dif-
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ferent models and the outcome with the highest
probability is chosen as the final prediction. It
successfully predicts 59 positive samples out of
61 with 94.14% BAcc, 0.41 MCC and 0.32 F1
score which are higher compared to any of the stan-
dalone models. The second ensemble architecture
considers only dependency and constituency tree-
transformers with multi-branch attention. There are
two reasons behind choosing only these two models
for ensemble in this case: firstly, the major inten-
tion was to investigate how the model performs if
we combine both the word dependency and phrase
level information, and secondly, these two models
showed better performance among all individual
models. This ensemble architecture extracts 60
true positive cited statements given the citing state-
ments for the citation linkage task. It also achieves
95.17% BAcc, 0.42 MCC and 0.33 F1 score. As
the best performance is attained by this last ensem-
ble architecture, for the BioCite citation linkage
framework, we choose this approach for extracting
cited statements from the referenced biomedical
research article given the citing statement from the
citing paper. Is the computationally more expen-
sive ensemble model justified for predicting only
a few more true-positives? We notice that the in-
crease in true-positives is approximately 2%. This
increase, especially in a larger corpus, would seem
to justify the extra computational cost. However, it
should also be noted that the false-positives have
decreased by almost 20%. The applications noted
in the introduction will benefit substantially by such
a decrease in false-positives. This decrease in false-
positives further justifies the extra computational
cost of the ensemble model.

Now, there remains one more question to be
discussed. Which one is actually improving the
performance, the automatically generated corpus
or the model? From Table 3, it is clear that, the per-
formance of BioCite is better than the other models.
To check the effectiveness of the proposed automat-
ically generated corpus, we trained all the models
over the human annotated small corpus (Houngbo
and Mercer, 2017). In this experiment we found all
the investigated models’ accuracies were very high
(around 98%). However, the BAcc, MCC and the
F1 scores were very poor as the models are strongly
biased towards the negative outcome. This gives
evidence of the effectiveness of training models
over our proposed automatically generated corpus.
Furthermore, analyzing the outcomes and going

through the predictions of the sentence pairs, we
found that this model can successfully predict cited
sentence given the citing statement when chemical
components and reactions are presented in different
ways. For example: the cited sentence “DNA is
fairly stable in mildly acidic solutions, although
the beta glycosidic link in the purine bases is hy-
drolyzed at around pH4.” (Bonin et al., 2003) is pre-
dicted successfully for the citing sentence “DNA
samples are frequently harmed by exposure to ex-
cessively acidic environment.”, Wang et al. (2009).
It indicates that this model has the ability to resolve
“pH4” as an “excessively acidic environment” and
“hydrolyzed” with “harmed”.

6 Conclusion

Biomedical literature is complex in nature due to
having complex biological and chemical compo-
nent names. Our framework, BioCite, performs
well when dealing with the human annotated test
set containing research articles accumulated from
the biomedical domain and outperforms the pre-
vious prominent works. However, there are still
a few avenues to investigate. The text span used
here is a single sentence. In future, it can be ex-
panded to the paragraph level which would capture
the contextual information as well. Graph-based
neural networks which perform well when working
with paragraphs (Zhang et al., 2020) could be used.
Moreover, BERT-based models can be explored as
well.
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