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Abstract

Self-supervised pre-training methods have
brought remarkable breakthroughs in the un-
derstanding of text, image, and speech. Recent
developments in genomics has also adopted
these pre-training methods for genome un-
derstanding. However, they focus only on
understanding haploid sequences, which hin-
ders their applicability towards understanding
genetic variations, also known as single nu-
cleotide polymorphisms (SNPs), which is cru-
cial for genome-wide association study. In
this paper, we introduce SNP2Vec, a scalable
self-supervised pre-training approach for un-
derstanding SNP. We apply SNP2Vec to per-
form long-sequence genomics modeling, and
we evaluate the effectiveness of our approach
on predicting Alzheimer’s disease risk in a Chi-
nese cohort. Our approach significantly out-
performs existing polygenic risk score methods
and all other baselines, including the model
that is trained entirely with haploid sequences.
We release our code and dataset on https:
//github.com/HLTCHKUST/snp2vec.

1 Introduction

Self-supervised pre-training has become an indis-
pensable step for almost all natural language pro-
cessing (NLP) tasks (Devlin et al., 2019; Liu et al.,
2019; Yang et al., 2019). Pre-trained language mod-
els, thanks to the usage of massive text corpora,
are effective in handling data scarcity and gener-
alizing to unseen examples (Brown et al., 2020;

⇤These authors contributed equally.

Cahyawijaya et al., 2021; Wilie et al., 2020; Yu
et al., 2021; Liu et al., 2021; Winata et al., 2021).
Inspired by the success of pre-trained language
models, pre-trained genomic models have been pro-
posed to cope with genomic sequence prediction
tasks (Zaheer et al., 2020; Ji et al., 2021). How-
ever, these models only focus on modeling the four
nucleobases (i.e., A, T, C, and G), while ignoring
genomic variations in the pre-training stage. Al-
though they are effective in haploid pattern analy-
sis, such as promoter region and chromatin-profile
prediction, they fail to tackle more complex and
challenging tasks, such as genome-wide associa-
tion study (GWAS) (The Wellcome Trust Case Con-
trol Consortium, 2007; Corvin et al., 2010; Bush
and Moore, 2012), which require an in-depth un-
derstanding of long genomic sequences and the
genomic variation between a homologous chromo-
some pair.

To address these shortcomings, we introduce
a self-supervised pre-training approach called
SNP2Vec, which leverages the single-nucleotide
polymorphism (SNP, pronounced ‘snip’) informa-
tion gathered from a large-scale SNP database to
inject genomic variations in the pre-training stage.
SNP2Vec enables the model to learn the seman-
tics of a diploid sequence (genotype) pattern in
a diploid cell. We apply SNP2Vec to a linear-
attention model, Linformer (Wang et al., 2020), to
allow the model to encode long genomic sequences
for Alzheimer’s disease risk prediction in a Chinese
cohort. We compare SNP2Vec with non-pretrained
models, as well as an existing strong baseline poly-
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genic risk scoring (PRS) model, to demonstrate the
effectiveness of our approach.

Our contributions are summarized as follows:

• We are the first to introduce a scalable self-
supervised pre-training approach (SNP2Vec)
to learn genomic variations, which is popular
for genome-wide association study.

• We demonstrate a method for modeling long
diploid sequences with a length of >20,000
base pairs (bps) using an attention-based
model within a single forward pass.

• We demonstrate the effectiveness of SNP2Vec,
which significantly outperforms all the base-
lines, including a widely-used polygenic risk
scoring (PRS) method, by 5-7% accuracy and
AUROC for the Alzheimer’s disease predic-
tion task in a Chinese elderly cohort.

• We conduct comprehensive analyses to show
the effectiveness of SNP encoding and Byte
Pair Encoding (BPE) tokenization compared
to the other commonly used methods for ge-
nomics modeling.

2 Related Works

2.1 Genome-Wide Association Study

To this day, predicting the risk of hereditary dis-
eases from a given genotype is done through
genome-wide Associaction Study (GWAS) by ap-
plying a polygenic risk score (PRS). PRS utilizes
GWAS data to identify important single nucleotide
variations (SNVs) over a certain range from the
gene of interest. The SNVs are first filtered ac-
cording to a statistical measure to reduce the bias
towards a certain population and the filtered SNVs
are then used to build a classifier, which can be
applied to a new genotype to determine the like-
lihood of getting the disease. This method has
been applied by many works and has provided valu-
able insights for researchers to diseases including
heart attack, diabetes, and different types of can-
cer (Lello et al., 2019). Moreover, PRS model has
also been used in research and clinical practice for
Alzheimer’s disease (Zhou et al., 2021). Never-
theless, all these methods fail to incorporate the
patterns of the genomics sequence that determines
the actual function. This is likely to lead the model
towards non-representative bias, especially when
the experimental data is small.

2.2 Statistical Modeling for Genomics
Tokenization in Genomics k-mer (synonymous
to n-gram) tokenization is the most commonly used
tokenization method in existing genome modelling
works (Min et al., 2017; Shen et al., 2018). Gapped
k-mer tokenization (Ghandi et al., 2014; Shrikumar
et al., 2019) is a more efficient variant of k-mer
tokenization by introducing the gap parameter L,
which constitutes the stride between each k-mer
window. However, the gapped k-mer approach will
lead to the loss of some information when L is
larger than k. In recent years, subword tokeniza-
tion approaches (Sennrich et al., 2015; Kudo and
Richardson, 2018) have also been explored in ge-
nomics (Zaheer et al., 2020).

Machine Learning in Genomics The support
vector machine (SVM) is a traditional machine
learning approach used to quickly and accurately
interpret the nonlinear gapped k-mer (Shrikumar
et al., 2019). Hill et al. (2018) leverage a deep re-
current neural network (RNN) to discover complex
biological rules to decipher RNA protein-coding
potential. Zhuang et al. (2019) incorporate con-
volutional neural network (CNN) to predict en-
hancer–promoter interactions with DNA sequence
data. Shen et al. (2018) introduce a RNN to predict
transcription factor binding sites. They treat each
k-mer as a word and pre-train a word representation
model though word2vec algorithm (Mikolov et al.,
2013). Zaheer et al. (2020) propose BigBird and
pre-train it on the human reference genome and
improves the performance on downstream tasks.

2.3 Self-Supervised Pre-training
Recently, using self-supervised pre-training models
on large scale unlabeled data and then fine-tuning
them using a small amount of labeled data has be-
come the norm in machine learning. BERT (Devlin
et al., 2019) is a deep bidirectional transformer pre-
trained on BooksCorpus (Zhu et al., 2015) (800M
words) and English Wikipedia (2500M words) for
language understanding. Liu et al. (2019) intro-
duces Roberta, which has a similar architecture as
BERT but trained on a much larger corpus (160GB
of text) and consequently achieves better perfor-
mance. In recent years, pre-training generative
models (Radford et al., 2019; Raffel et al., 2019;
Lewis et al., 2019) has significantly improved the
performance of various language generation tasks
such as machine translation, question answering,
conversational AI, etc.
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Self-supervised learning approaches have also
been adopted in genomics (Zaheer et al., 2020;
Ji et al., 2021) and proteomics (Madani et al.,
2020; Elnaggar et al., 2021). These methods pre-
train models using large-scale unlabelled datasets
such as the human reference genome from the
Genome Reference Consortium (GRC) (Church
et al., 2011; Schneider et al., 2017) and protein
sequence databases such as SWISS-PROT and
TrEMBL (Boeckmann et al., 2003). In this paper,
we focus on genomics and conduct the human refer-
ence genome for pre-training. Genomics data does
not have the same structure as human languages; it
has no known syntax or grammatical rules and it
consists of very long sequences with only a number
of differences between each human subject.

3 SNP2Vec

Existing pre-training methods in genomics, such as
BigBird (Zaheer et al., 2020) and DNABERT (Ji
et al., 2021), are only optimized to understand the
pattern of a haploid sequence (haplotype) based
on the reference genome. This hinders the model
from learning genomic variations, which is essen-
tial for understanding traits in humans. In contrast
to prior works in genomics pre-training, we de-
velop SNP2Vec to enable pre-training for encoding
and understanding patterns of genomic variations
in a diploid sequence. Figure 1 depicts the overall
structure of the SNP2Vec pre-training method. We
elaborate on our SNP2Vec method in 3 subsections:
1) SNP Encoding, i.e., how we encode a diploid
sequence as a sequence of SNP tokens; 2) Self-
Supervised SNP Dataset, i.e., how we construct
a self-supervised dataset using the SNP token; 3)
Self-supervised SNP Pre-training, i.e., how we per-
form self-supervised pre-training for learning the
sequence pattern of SNP tokens.

3.1 Preliminaries
What are haploid and diploid sequences? A
diploid is a cell or organism that has paired chro-
mosomes, one from each parent 1. Human cells
are mostly diploid, except for the sex cells. In this
sense, a diploid sequence (genotype) refers to a pair
of homologous sequences (allele) inside the diploid
chromosome, while a haploid sequence (haplotype)
refers to the DNA sequence from the specific allele
of the diploid sequence. The haploid sequence is

1https://www.genome.gov/
genetics-glossary/Diploid

suitable for understanding the regulatory function
of a DNA pattern (Zhou and Troyanskaya, 2015;
Ouyang et al., 2008), such as determining a binding
site for a certain type of protein, as it provides the
representation of the actual nucleotides. A diploid
sequence, on the other hand, is more suitable for
understanding the phenotype (Levy et al., 2007;
Wang et al., 2008) over population since it allows
understanding of the genomic variations between
two homologous DNA sequences, which tells the
dosage information and the gene expression level
of a variation. These genomic variations are gath-
ered by comparing them to a genome reference
sequence, and they can be categorized based on its
dosage, i.e., wild-type (normal), heterozygous, or
homozygous, and based on their differences, i.e.,
substitution, insertion, and deletion. The depiction
of haploids and diploids along with their variations
is shown in Figure 2.

How do we get the haploid and diploid se-
quence? As most human cells are predominantly
diploid, performing genome sequencing on such
homologous chromosome pair will produce a
diploid sequence rather than a haploid sequence,
because the primer binds to both of the homol-
ogous regions from each chromosome (Ye et al.,
2012). Extracting haploid sequences from a diploid
sequence requires an additional step through an es-
timation process called phasing (Stephens et al.,
2001). Despite their effectiveness, the quality of
phasing methods (Browning and Browning, 2007,
2009; Patterson et al., 2014) is not perfect and tends
to decrease significantly especially when the gap
between the SNPs is large (Choi et al., 2018).

3.2 SNP Encoding

We first extend the nucleotide tokens from 5 to-
ken types ‘A’, ‘T’, ‘C’, ‘G’, and ‘N’ into 11 tokens
by adding 6 insertion-deletion (indel) tokens ‘AI’,
‘TI’, ‘CI’, ‘GI’, ‘NI’, and ‘DEL’, where ‘XI’ to-
ken represents any insertion after the nucleotide
‘X’, and ‘DEL’ represents the nucleotide deletion.
There can be many different possibility for inser-
tion, e.g., a nucleotide ‘T’ can be inserted into
“TG”, “TGGG”, or “TAAA”; therefore we aggre-
gate all the insertions into a single token to reduce
the sparsity of the indel representaton as indel oc-
curs relatively rarely compared to substitution, with
an around 1:5 ratio (Chen et al., 2009). To encode
a diploid sequence, we construct all the combina-
tions with replacement (nCR

r ) of the 11 haploid
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Figure 1: SNP2Vec Pre-training Pipeline. SNP2Vec merges information from reference genome and SNP database
to form a chromosome matrix which is then utilized to construst SNP pre-training dataset following the SNP
encoding’s token format. This pre-training dataset is employed to train a genome language model through the
masked language modeling task.

Figure 2: Diploid sequence variations. The box on the
top-left shows the wild-type sequence, while others are
its variations. H1 and H2 denote the haploid sequence
for each parent allele. D represents the diploid sequence
of the two alleles.

and indel tokens with n = 11 and r = 2, produc-
ing a total of 66 types of SNP tokens consisting
of wild-type, heterozygous, and homozygous vari-
ation tokens. The resulting SNP tokens are rep-
resented as ‘X1/X2”, where ‘X1’ and ‘X2’ denote
aligned nucleotide or indel tokens from the two
alleles ordered alphabetically. A depiction of the
SNP tokens is shown in Figure 3. To reduce the size
and facilitate more straightforward representation
for downstream processes such as pre-processing,
tokenization, and modeling, we map the SNP to-
kens into a single character representation. The
mapping of the SNP token into a single character
representation is shown in Appendix A.

By incorporating the SNP encoding, variant call-

ing information gathered from the DNA sequencing
machine can be directly converted into a sequence
of SNP tokens, that are then used for the model
fine-tuning and inference. However, this is not di-
rectly applicable for self-supervised pre-training
since DNA sequencing data is hard to obtain and
it is unethical to share publicly as it contains very
sensitive and personal information of the human
subject. In the next section, we discuss in detail
how we can construct an inexpensive and reliable
pre-training dataset to perform self-supervised pre-
training on the SNP tokens by utilizing publicly
available genomics data sources.

3.3 Self-Supervised SNP Dataset
Prior self-supervised pre-training approaches in ge-
nomics (Zaheer et al., 2020; Ji et al., 2021) only
utilize the human reference genome (Church et al.,
2011; Schneider et al., 2017) as the unlabelled data
for haploid genomics pre-training, the latter does
not capture any genomic variations. We extend
these haploid modeling techniques into a diploid
modeling method, which allows the model to learn
patterns of genomic variations by generating unla-
belled pre-training data for learning SNP tokens.
More specifically, we use the genome sequence
from the human reference genome and genome
variation from a large-scale SNP database, namely
dbSNP (Smigielski et al., 2000), to generate the
pre-training data.

Human reference genome The human reference
genome is a genome sequence derived from the
DNA collected from a number of people (Pollard
et al., 2017), which was first released in 2000
and is periodically updated. There are two most
commonly used versions of the human reference
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Figure 3: SNP tokens consist of a total of 66 types
of token covering all possible variations in a diploid
sequence including wild-types, heterozygous variations,
and homozygous variations.

genome, namely GRCh37 (Church et al., 2011) 2

and GRCh38 (Schneider et al., 2017) 3. A human
reference genome consists of the genome sequence
information for all human chromosomes with ⇠3B
sequence length in total. Most of the positions are
mapped and represented as either ‘A’, ‘T’, ‘C’, or
‘G’, while the others are unmapped and flagged
with the unknown (‘N’) token.

dbSNP dbSNP (Smigielski et al., 2000) 4 is a
central public repository of human SNPs. dbSNP
covers a broad collection of simple genetic vari-
ations with a length of variation 50 bps long,
which includes single-base nucleotide substitutions,
small-scale multi-base deletions, and small-scale
multi-base insertions. A single SNP in the db-
SNP contains the following information: chromo-
some number, position in the chromosome, SNP
identifier, reference sequence (REF), alternative
sequence(s) (ALTS), probability of the REF and
ALTS, and other metadata. The REF is a single-
base or multi-base sequence that comes from the
human reference genome used for detecting the
SNPs. The ALTS can consist of one or more alter-
native variations and each can represent a substitu-
tion, a deletion, or an insertion.

Dataset Construction We construct a pre-
training dataset consisting of sequences of SNP to-

2https://www.ncbi.nlm.nih.gov/
assembly/GCF_000001405.13/

3https://www.ncbi.nlm.nih.gov/
assembly/GCF_000001405.26/

4https://www.ncbi.nlm.nih.gov/
projects/SNP/snp_summary.cgi

kens by combining the sequence information from
the human reference genome and the genomic vari-
ations from the dbSNP. For each chromosome, we
generate an 11⇥N matrix, where N is equal to the
length of the corresponding chromosome and 11
represents the probability of each nucleotide and
indel token. We name this matrix a chromosome
matrix. We fill the chromosome matrix using all
SNPs labelled as COMMON in the dbSNP by filling
the corresponding matrix position with the REF
and ALTS probability of the corresponding SNP
record. Since the SNPs from the dbSNP do not
cover all of the genome positions, we fill up all the
other gap positions with a probability of 1 to the
nucleotide token in the corresponding position on
the human reference genome.

For constructing the self-supervised pre-training
dataset, we closely follow the setup in the typi-
cal NLP pre-training dataset construction pipeline.
Specifically, we convert the chromosome matrix
into a set of segments S where each segment s 2 S

comprises of a number of SNP tokens. To construct
the sentences S, we sample multiple sequences
from different positions of a chromosome. For
each position in the sequence, we apply a sampling
function F to collect ‘X1’ and ‘X2’ (the nucleotide
or indel tokens on the corresponding position) and
construct the SNP token “X1/X2”. The dataset con-
struction method can be applied to all the chromo-
some pairs except for the sex chromosome, which
is always haploid. The details of our dataset con-
struction approach is shown in Algorithm 1.

3.4 Self-Supervised SNP Pre-training

Inspired by BERT (Devlin et al., 2019), SNP2Vec
is trained using the masked language model-
ing (MLM) objective using a transformer-based
model (Vaswani et al., 2017). The goal of MLM is
to predict the representations of the masked tokens
given their neighbouring sequence as the context.
As complex genomic tasks, such as disease risk
prediction, require the understanding long-genome
sequence (>1000 bps), we apply two methods to
process long input sequences. First, we apply a
transformer variant with a linear-attention mecha-
nism, which enables the model to reduce the com-
putational complexity from O(N2) to O(N). Sec-
ond, we apply a BPE tokenization (Sennrich et al.,
2015) to encode the sequence of SNP tokens to
compress the sequence via aggregation of neigh-
bouring tokens. Unlike k-mer (Min et al., 2017; Ji
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Algorithm 1 Self-Supervised Pre-training dataset
construction for diploid SNP Encoding
Require: C: chromosome matrix
Require: f : SNP sampling function
Require: T : number of iterations
Require: K: start position threshold
Require: L

inf : lower bound of segment length
Require: Lsup: upper bound of segment length

1: Initialize S = ;
2: P = sample T positions from range [0 . . .K]
3: for all p 2 P do
4: while p < |C| do
5: l ⇠ U(Linf

, L
sup)

6: z = segment from p to p+ L in C

7: s = Sample SNP tokens using f from
each position in z

8: S = S [ s

9: p = p+ l

10: end while
11: end for

et al., 2021) and gapped k-mer (Ghandi et al., 2014;
Shrikumar et al., 2019) tokenizations, BPE tok-
enization can merge dynamic-length tokens based
on their co-occurrences efficiently without losing
any information.

4 Experiment Settings

4.1 Dataset
For building the pre-training data, we utilize
GRCh37 as the human reference genome and db-
SNP version 153 5 as the SNP database. We utilize
a weighted random sampling based on the proba-
bility of SNPs on the corresponding position as the
sampling function f . For the downstream-task, we
construct a dataset of genome sequences for predict-
ing late-onset Alzheimer’s disease (LOAD) (Rabi-
novici, 2019) on a Chinese Cohort from 624 Hong
Kong elderly with a minimum age of 65. The sub-
jects are diagnosed with Alzheimer’s by a medical
professional through the Montreal Cognitive As-
sessment (MoCA) test (Nasreddine et al., 2005) ad-
justed for the demographic information. Out of 624
subjects, 384 are labelled as Alzheimer’s disease
carriers (ADs) and 240 are labelled as non-carriers
(NCs). For the genome sequence, we collect se-
quencing data from the APOE region located in
chromosome 19 from each subject, which is known

5https://ftp.ncbi.nih.gov/snp/archive/
b153/00readme.txt

to be highly correlated with Alzheimer’s disease in
the Chinese cohort (Zhou et al., 2019, 2020). We
use BWA-MEM (Li, 2013) assembler to align the
sequencing data with the human reference genome.

4.2 Training and Evaluation Setting
For our experiment, we build a BPE tokenizer with
a vocabulary size of 32,000 tokens. We pre-train a
6-layers linear-attention transformer-based model,
Linformer (Wang et al., 2020), using a maximum
sequence length of 4,096 tokens, a sequence pro-
jection length k of 128 tokens, and a model dimen-
sion size of 512. For simplicity, we refer to our
pre-trained SNP2Vec model as Dipformer. The
detail hyperparameters of the BPE tokenizer and
the Dipformer model are described in Appendix B.
We run MLM pre-training for 200,000 steps with a
15% token replacement rate, where we replace with
[MASK] 80% of the time, replace with a random
token 10% of the time, and keep the token as is
10% of the time. More detail about the pre-training
hyperparameter setting is shown in Appendix C.

For the fine-tuning, we apply SNP encoding to
the sequencing data, apply BPE tokenization, and
add a [CLS] token as the prefix of the sequence
to gather the sequence representation for predict-
ing the risk of having Alzheimer’s disease. We
apply fine-tuning for three input sequence length
settings, i.e., only APOE gene with 3,611 bps (
APOE only), APOE with additional 5,000 bps up-
stream and downstream (APOE+10k), and APOE
with additional 10,000 bps upstream and down-
stream (APOE + 20k). For each experiment, we
apply 10-fold cross validation to ensure the result is
significance. We evaluate the model performance
using three evaluation metrics: accuracy, area un-
der the ROC curve (AUROC), and area under the
precision-recall curve (AUPRC). More detail about
the fine-tuning setup is described in Appendix D.

4.3 Baselines
To evaluate the effectiveness of the SNP encoding,
we build two different deep learning models using
haploid token representation. First, we incorporate
DeepSEA (Zhou and Troyanskaya, 2015), a CNN-
based model develop for short sequence chromatin
profiling tasks (⇠200-1000 bps), and then we build
another Linformer model pre-trained with the hu-
man reference genome using haploid tokens, called
Hapformer. For the haploid token fine-tuning, we
generate the haploid sequence from the aligned
sequencing data. We generate the variant calling
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Models Acc AUROC AUPRC

DeepSEA 0.591 0.579 0.703
PLINK PRS 0.592 0.607 0.705
Hapformer 0.572 0.615 0.715

Dipformer 0.643 0.673 0.734

Table 1: Results of our model and baselines. We refer
the pre-trained SNP2Vec model as Dipformer.

data with GATK HaplotypeCaller (McKenna et al.,
2010; DePristo et al., 2011) and apply phasing
with Beagle (Browning and Browning, 2007, 2009).
During fine-tuning, we feed each haploid sequence
to the model and fuse the representation using a
linear transformation. We also incorporate a logis-
tic regression model from PLINK (Purcell et al.,
2007), which is a widely used approach for PRS.

5 Results

The results of our model and baselines are shown
in Table 1. We find that Dipformer is able to outper-
form existing strong baselines, such as DeepSEA
and PLINK PRS, by a large margin. This confirms
the effectiveness of our SNP2Vec pre-training, and
the ability of our Dipformer to capture relevant
features for AD prediction. Interestingly, Hap-
former, which leverages large amounts of genomic
sequences for pre-training, only performs compa-
rably to DeepSEA and PLINK PRS. Moreover, by
learning genomic variations in a diploid sequence
during the pre-training, Dipformer significantly out-
performs Hapformer with an around 5-7% improve-
ment in terms of accuracy and AUROC metrics.
This shows that simply using an enormous amount
of pre-training data might not necessarily improve
the AD prediction, and an effective genomics pre-
training approach is essential to guarantee full use
of the unlabelled genomics data. More detail on
our results is shown in Appendix E.

6 Discussion

6.1 Effect of Different Tokenization Methods
in Genomics

In this section, we study different tokenization
methods for genome modeling, and explore their
effectiveness in terms of capturing genomic pat-
terns and features. We compare BPE tokenization
with other common methods, such as k-mer and
gapped k-mer (gkm) with various gap parameters.
To achive this, we conduct experiments on the chro-
matin profiling dataset from DeepSEA, which con-

Figure 6: Performance efficiency trade-off of using dif-
ferent tokenization approaches. The score is averaged
over the three models (Linear, CNN, and Transformer).
The size of the dots represents the vocabulary size of
the tokenization method.

sists of 4,863,024 chromatin profiles (4,400,000
training, 8000 validation, and 455,024 test) with
919 labels (690 transcription factor (TF) binding
sites, 125 DNase marks, and 104 Histone marks).
Three different models are incorporated in this ex-
periment: a linear model with bag-of-word (BoW)
representation, a CNN-based model following the
DeepSEA architecture, and a transformer model.
The models need to predict the TF, DNase, and
Histone labels based on the input sequences us-
ing various tokenization methods. Hence, for the
same model, a more effective tokenization method
will lead to a higher prediction accuracy. Addition-
ally, we use the average length of the tokenized
sequences to measure the efficiency of different to-
kenization methods as it determines the input size
for the model.

Table 2 provides the effectiveness and averaged
token length of different tokenization methods in
genome modeling. We find that, on the Linear BoW
model, BPE significantly outperforms all other
methods except 5-mer. On the CNN model, BPE
remarkably surpasses all gapped k-mer methods ex-
cept for the gkm (5,6). On the Transformer model,
BPE performs similarly to 3-mer and gkm (5,6),
and significantly outperforms 1-mer and other gkm
methods. Moreover, in terms of the averaged score
across all three models, BPE performs comparably
well to 3-mer, and remarkably outperforms 1-mer
and all gkm methods.

Figure 6 illustrates the trade-off between the
performance and efficiency of different tokeniza-
tion methods. We can see that compared to k-mer
methods, BPE performs comparably to 3-mer and
slightly worse than 5-mer, but it is much more ef-
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Tokenization 1-mer 3-mer 5-mer gkm (5,6) gkm (6,10) gkm (6,14) gkm (7,14) BPE
Avg. Token Length 500 498 496 83 50 36 36 81.19

BoW Linear 0.499 0.698 0.817 0.771 0.759 0.749 0.753 0.783*
CNN (DeepSEA) 0.890 0.903 0.898 0.808 0.764 0.749 0.751 0.811*
Transformer 0.727 0.788 0.825 0.785 0.771 0.761 0.762 0.789*

Average 0.706 0.796 0.847 0.788 0.765 0.753 0.755 0.795*

Table 2: Comparison of different tokenization methods in genome modeling (numbers denote the accuracy score),
where gkm (k,l) denotes the gapped k-mer tokenization with the gap parameter l constituting the stride between
each k-mer window. * denotes that BPE significantly outperforms the underlined baselines with a p-value < 0.01.

Figure 4: 10-folds AUROC Performance of Dipformer
with and without pre-training on the Alzheimer’s disease
risk prediction over different sequence length input.

Figure 5: 10-folds AUROC performance of pre-trained
Hapformer and Dipformer on the Alzheimer’s disease risk
prediction over different sequence length input.

ficient due to a much shorter average length. In
addition, BPE remarkably outperforms gkm meth-
ods with comparable or slightly worse efficiency.
Furthermore, from the size of the dots, we can see
that BPE has a much larger vocabulary size com-
pared to other methods, which indicates that BPE
can potentially capture richer genomics patterns.

6.2 Effect of Pre-training for Disease Risk
Prediction

In this section, we focus on exploring the effec-
tiveness of pre-training for disease risk prediction.
Figure 4 illustrates the 10-fold AUROC results of
our Dipformer model with and without pre-training
on Alzheimer’s disease risk prediction. The dashes
in the figure represent the average AUROC for all
10-fold results. As shown in Figure 4, the aver-
age AUROC scores for pre-trained Dipformer sig-
nificantly outperform the Dipformer without pre-
training in all sequence length settings, APOE +
10k, and APOE + 20. Table 3 presents the quan-
titative results with additional metrics. The accu-
racy, AUROC, and AUPRC scores of pre-trained
Dipformer consistently outperform the non-pre-
trained Dipformer in all sequence length settings.
By increasing the sequence length, the non-pre-

trained Dipformer performs slightly better, while
the pre-trained Dipformer improves by a large mar-
gin. This shows the importance of pre-training for
understanding long-sequence features.

6.3 Effect of the SNP Encoding in Genomics

To study the effect of the SNP encoding, we pre-
train and fine-tune a model with the same genomics
data but using haploid tokens called Hapformer, as
mentioned in the Section 4. Figure 5 shows the 10-
fold AUROC results of pre-trained Hapformer and
Dipformer on the AD risk prediction over different
sequence length inputs. Among all three sequence
length settings, Dipformer achieves better average
AUROC scores than Hapformer with a p-value of
0.046 for the APOE + 20k setting, which indicates
that the improvement of SNP encoding is signifi-
cant. Meanwhile, the results in Table 3 shows that
Dipformer also surpasses Hapformer in all other
evaluation metrics. In addition, we also observe
that both Hapformer and Dipformer achieve bet-
ter results when the input sequence is longer. This
shows that employing long sequence is essential for
handling complex genomics tasks such as disease
risk prediction.
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Model Accuracy AUROC AUPRC

Without Pre-training

Dipformer (APOE only) 0.567 0.532 0.667
Dipformer (APOE + 10k) 0.571 0.520 0.608
Dipformer (APOE + 20k) 0.588 0.551 0.668

With Pre-training

Hapformer (APOE only) 0.524 0.491 0.623
Hapformer (APOE + 10k) 0.565 0.591 0.705
Hapformer (APOE + 20k) 0.572 0.615 0.715

Dipformer (APOE only) 0.611 0.576 0.687
Dipformer (APOE + 10k) 0.574 0.612 0.710
Dipformer (APOE + 20k) 0.643 0.673 0.734

Table 3: Performance of Dipformer and Hapformer on
the Alzheimer’s disease risk prediction over different
lengths of the input sequences.

7 Conclusion

In this paper, we introduce SNP2Vec, a self-
supervised pre-training method for understanding
genomic variations in a diploid sequence. Unlike
prior methods in genomics, SNP2Vec represents
each genomics position with a SNP token which
allows the model to capture genomic variations
which is suitable for understanding complex ge-
nomics prediction tasks such as predicting pheno-
type. By utilizing SNP2Vec, we pre-train a Lin-
former model called Dipformer and evaluate it for
predicting late-onset Alzheimer’s disease risk in a
Chinese cohort. Experimental results suggest that
Dipformer significantly improves the prediction
quality by 5-7% Accuracy and AUROC over all
other baselines including the widely used polygenic
risk score model from PLINK, the haploid-variant
of Dipformer, and a CNN-based genomics model
called DeepSEA.

8 Future Work

For future works, we expect to focus on model
explainability by using multiple analysis methods,
such as analyzing the attention behaviour, analyz-
ing the gradient saliency map, etc, to gather and ver-
ify insights from the model. Evaluation on larger
scale dataset is also necessary to further demostrate
the effectiveness of SNP2Vec. Additionally, adop-
tion of SNP2Vec to other hereditary disorders and
other complex genomics tasks is also an essential
direction for future works.
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A Mapping of SNP Tokens

As our resulting SNP tokens are represented as
‘X1/X2”, to reduce the size and facilitate more
straightforward representation for the downstream
process in the NLP pipeline, such as pre-processing,
tokenization, and modeling, we map all SNP tokens
into a single character representation. The mapping
of the SNP tokens into a single character represen-
tation is shown in Table 4. We use non-alphabetical
characters as there are 66 SNP tokens in total, more
than the available alphabetical characters, which
consists of 52 characters (lower and upper case
from ‘A’ to ‘Z’) in total. Also note that, all the
SNP tokens related to the unkown token ‘N’ except
‘N/N’ (such as ‘A/N’, ‘G/NI’, ‘N/NI’, ‘NI/NI’, etc)
are never been used since there is no actual SNP
record corresponding to the unknown token ‘N’.
The combinations of all ‘N’ and ‘NI’ tokens are
listed on the table only for completion.

B Model Hyperparameters

We develop two Linformer (Wang et al., 2020)
models, i.e., Dipformer and Hapformer, which is
pre-trained using our proposed SNP tokens and
the original nucleotide tokens, respectively. The
two models have the same hyperparameter settings
resulting in an equal number of parameters. We
list all the hyperparameters of our Dipformer and
Hapformer models in Table 5.

C Pre-Training Setup

During the pre-training phase, we build the BPE
tokenizer with a vocab size of 32,000 for both the
SNP tokens and nucleotide tokens datasets. We
perform pre-training on both Dipformer and Hap-
former models for 200,000 steps using masked lan-
guage modeling with the cross entropy loss. During
the pre-training, we apply a masking strategy simi-
lar to BERT (Devlin et al., 2019) with a 15% token
replacement rate, where we replace with [MASK]
80% of the time, replace with a random token 10%
of the time, and keep the token as is 10% of the time.
We run the pre-training using 5 units of 2080Ti
GPUs and an Intel(R) Xeon(R) Silver 4210 CPU.
We use the same hyperparameter settings for pre-
training both the Dipformer and Hapformer models.
The hyperparameters of our pre-training are shown
in Table 6.

D Fine-Tuning Setup

We fine-tune all models on Alzheimer’s disease
risk prediction on a Chinese cohort consisting of
624 subjects in total, 384 of which are labelled
as Alzheimer’s disease carriers (ADs) while 240
others are non-carriers (NCs). For predicting
Alzheimer’s disease, we append a [CLS] token
as the prefix of the sequence. During the fine-
tuning, we take the output of the [CLS] token
and perform a linear transformation on it to get
the disease risk prediction. We evaluate the per-
formance of all models using accuracy, area un-
derthe ROC curve (AUROC), and area under the
precision-recall curve (AUPRC). We show all the
hyperparameters of the fine-tuning phase in Table 7.
We experiment with different learning rate for each
model and find that the best setting is achieved
when using a learning rate of 1e-4 for models that
are not pre-trained (non-pre-trained Dipformer and
DeepSEA) and a learning rate of 1e-5 for all pre-
trained models (Dipformer and Hapformer).

E Detailed Results

In this section, we show the distribution of the 10-
fold results from our experiment in the Alzheimer’s
disease risk prediction task for all models (Dip-
former, Hapformer, DeepSEA, and PLINK) on
each evaluation metric. Figure 7 shows the dis-
tribution of the best 10-folds accuracy performance
on the Alzheimer’s disease risk prediction task. Fig-
ure 8 shows the distribution of the best 10-folds
AUROC performance on the Alzheimer’s disease
risk prediction task. Figure 9 shows the distribution
of the best 10-folds AUPRC performance on the
Alzheimer’s disease risk prediction task.
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Mapping of SNP Tokens

A/A A DEL/A L A/C ƒ AI/C 8 C/G ì CI/G ¬
C/C C DEL/AI ‘ A/G ? AI/CI ‘ C/N ∆ CI/GI T
G/G G DEL/C ⇤ A/N u AI/G k C/T $ CI/N æ
N/N N DEL/CI - A/T � AI/GI 8 C/CI f CI/NI ,
T/T T DEL/G Û A/AI � AI/N Ù C/GI ä CI/T )
AI/AI B DEL/GI ô A/CI ˙ AI/NI < C/NI � CI/TI ì
CI/CI D DEL/N f A/GI â AI/T ä C/TI ˙ G/GI ÿ
GI/GI H DEL/NI Z A/NI H AI/TI  GI/N f G/N Ÿ
NI/NI O DEL/T ê A/TI  N/NI ∑ GI/NI � G/NI °
TI/TI U DEL/TI � NI/T î N/T Í GI/T ~ G/T *
DEL/DEL X T/TI ” NI/TI ¨ N/TI ⌧ GI/TI “ G/TI Â

Table 4: Mapping of SNP tokens into a single character representation.

Hyperparams Value

#layers 6
dim 512
k 128
dropout 0.1
num heads 8
dim head 64
num embeddings 32000
single KV head False
shared KV False

Table 5: Model Hyperparameters

Hyperparams Value

batch size 240
optimizer AdamW
learning rate 1e-4
scheduler �1 1
scheduler �2 0.999991
#steps 200,000
warmup step 1000
loss fn Cross Entropy
random seed 0

Table 6: Pre-Training Hyperparameters

Hyperparams Value

batch size 16
optimizer AdamW
learning rate [1e-4..1e-6]
scheduler �1 1
scheduler �2 0.999991
#epoch 30
early stopping 3
loss fn Cross Entropy
random seed 0

Table 7: Fine-Tuning Hyperparameters

Figure 7: 10-folds accuracy performance of the best Dipformer, Hapformer, DeepSEA, and PLINK models on the
Alzheimer’s disease risk prediction.
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Figure 8: 10-folds AUROC performance of the best Dipformer, Hapformer, DeepSEA, and PLINK models on the
Alzheimer’s disease risk prediction.

Figure 9: 10-folds AUPRC performance of the best Dipformer, Hapformer, DeepSEA, and PLINK models on the
Alzheimer’s disease risk prediction.


