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Abstract
Named entity recognition (NER) is one of the
core technologies for knowledge acquisition
from text and has been used for knowledge ex-
traction of chemicals and medicine. As one
of the NER improvement approaches, multi-
task learning that learns a model from multi-
ple training data has been used. Among multi-
task learning, an auxiliary learning method,
which uses training data of an auxiliary task
for improving its target task, has shown higher
NER performance than conventional multi-
task learning for improving all the tasks simul-
taneously. The conventional auxiliary learn-
ing method uses only one auxiliary training
dataset. We propose Multiple Utilization of
NER Corpora Helpful for Auxiliary BLESsing
(MUNCHABLES). MUNCHABLES utilizes
multiple training datasets as auxiliary training
data by the following methods : the first one is
to fine-tune the NER model of the target task
by sequentially performing auxiliary learning
for each auxiliary training dataset, and the
other is to use all training datasets in one aux-
iliary learning. We evaluate MUNCHABLES
on eight chemical/biomedical/scientific do-
main NER tasks, where seven training datasets
are used as auxiliary training data. The exper-
iment results show that our proposed methods
achieve higher NER performance than conven-
tional multi-task learning methods on average
and that NER performance can be improved by
using multiple auxiliary training data. Further-
more, the proposed models outperform state-
of-the-art models on the datasets.

1 Introduction

Named entity recognition (NER) is a fundamen-
tal natural language processing technology for ex-
tracting named entity (NE) and technical terms
from input texts and has been put to practical
use in various situations. For example, NER is
used as one of the core technologies for struc-
turing and accumulating information on interrela-
tionships among chemical substances and physical

properties of chemical substances, which are re-
ported daily in papers and patents, to develop new
materials and products.

NER has been actively studied for a long time,
and many NER methods have been proposed. In
recent years, neural network (NN)-based meth-
ods have become dominant, and a BiLSTM-CRF
model (e.g., Huang et al. (2015)), composed of
two recurrent neural networks (RNNs) and con-
ditional random fields (CRF), and a Transformer-
based model (e.g., Lee et al. (2019)) have achieved
high performance in NER.

In addition, it has been reported that the per-
formance of an NER model is improved by
multi-task learning, which uses training data of
a task different from the target task and simulta-
neously learns features from multiple NER train-
ing datasets (Wang et al., 2019a; Crichton et al.,
2017a; Khan et al., 2020; Mehmood et al., 2020;
Wang et al., 2019b). Remarkably, Wang et al.
(2019a) have shown that, an NER in the biotech-
nology field (BioNER) with an auxiliary learning
method, which is a variant of multi-task learn-
ing, achieves higher performance in the target
task, compared to a standard multi-task learning
method. The auxiliary learning uses a task other
than the target task as an auxiliary task for im-
proving the target task performance, in contrast
the standard multi-task learning learns models for
multiple tasks to improve performance of the mul-
tiple tasks.

We propose a new auxiliary learning paradigm
that uses multiple NER datasets as auxiliary train-
ing data, Multiple Utilization of NER Corpora
Helpful for Auxiliary BLESsing (MUNCH-
ABLES), whereas existing auxiliary learning uses
only one type of auxiliary training data. Specif-
ically, we propose two types of multi-auxiliary
learning: the first one is to fine-tune the NER
model of the target task by sequentially perform-
ing auxiliary learning for each auxiliary training
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dataset (MUNCHABLES-stack model), and the
other is to use all types of training data in single
auxiliary learning. As for the latter, we propose
two models: one is to concatenate all the multiple
auxiliary training datasets and make a batch
by randomly selecting data from the auxiliary
training dataset (MUNCHABLES-concatenation
model), and the other is to change auxiliary
training datasets every epoch (MUNCHABLES-
iteration model).

We compare the proposed MUNCHABLES
models with standard multi-task learning and sin-
gle auxiliary learning on eight chemical/ biomed-
ical/ scientific domain NER tasks. As for our
proposed models, seven training datasets are used
as auxiliary training data in each task. The ex-
periment results show that the F1-scores of the
proposed models are higher than those of the
baselines on average and NER performance can
be improved by using multiple auxiliary train-
ing datasets. In addition, the proposed mod-
els achieve state-of-the-art performance in chem-
ical/biomedical/scientific NER.

2 Existing Multi-Task Learning

This section describes existing multi-task learning
methods which use training data of a different task
other than the target task. We first outline the
NER model used as the base model, and then de-
scribe an extension of the NER model to multi-
task learning, where multiple tasks are trained si-
multaneously. In this multi-task learning, the tar-
get task and the other tasks are treated equally.
Then, we explain an existing auxiliary learning
model, which uses training data for a different task
from the target task as auxiliary training data.

2.1 Multi-Task Learning Model
In this study, we use the BiLSTM-CRF model pro-
posed by Huang et al. (2015) as our baseline NER
model. The BiLSTM-CRF model is a sequence
labeling model composed of bi-directional LSTM
and CRF.

The BiLSTM-CRM model first computes the in-
termediate representation of each word in an input
sentence using bidirectional LSTM. Let an input
sentence be w = w1, w2, · · · , wN and the embed-
ding vectors outputted by an embedding layer be
x = x1,x2, · · · ,xN. The intermediate representa-
tion ei of the word wi is calculated as follows:

−→
hi = LSTM (f)(xi,

−−→
hi−1), (1)

←−
hi = LSTM (b)(xi,

←−−
hi+1), (2)

hi = [
−→
hi;
←−
hi], (3)

ei = W(e)hi, (4)

where → and ← denote forward and back-
ward directions, respectively, and LSTM (f) and
LSTM (b) are forward and backward LSTMs, re-
spectively. “;” denotes the concatenation of vec-
tors. W(e) ∈ Rk×d is a weight matrix, d is the
dimension of the hidden state vector hi, and k is
the number of labels to be identified.

Then, the intermediate representations e com-
puted by the bi-directional LSTM are fed to the
CRF layer to obtain a label sequence. The
score function for the label sequence y =
(y1, y2, · · · , yN ) is defined by using the score ma-
trix P = (e1, e2, · · · eN)T , which is converted
from the intermediate representations e, and the
transition score matrix A as follows:

s(e,y) =

N∑
i=0

Ayi,yi+1 +

N∑
i=1

Pi,yi , (5)

where Ai,j represents the transition score from the
label i to the label j. The output label sequence y∗

is obtained by finding y that maximizes the score
as follows:

y∗ = arg max
ỹ∈Yw

s(e, ỹ), (6)

where Yw is the set of all possible label sequences
for the input sentence w.

Using the score function, the output probability
of the label sequence y is defined by the softmax
function as follows:

p(y|w) =
exp(s(e,y))∑

ỹ∈Yw
exp(s(e, ỹ))

. (7)

In training, the parameters that minimize the fol-
lowing loss function are obtained:

L = −
∑

(w,ŷ)∈D

log(p(ŷ|w)), (8)

where D is a training dataset.
Figure 1 shows an overview of the BiLSTM-

CRF model extended for multi-task learning. In
the model, the word embedding layer and BiL-
STM layer are shared by all the training datasets
and the weights of these layers are the same on all
the tasks. On the other hand, the CRF layer is pre-
pared for each dataset and the weights of the CRF
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Figure 1: Overview of a multi-task learning model

layer are not shared. The objective function of the
multi-task learning model is defined as follows:

Loss =
1

M

M∑
i=1

Li, (9)

where Li (i = 1, 2, · · ·M) is the loss in the CRF
layer for each training dataset (see Eq. 8), and M
is the number of training datasets.

In the multi-task learning model, training data
for the target task and that for the other tasks are
treated equally, and thus an NER model common
to all the tasks is learned. Larger datasets require
more batches during training. In inference, NER is
performed by using the CRF layer corresponding
to the target task in the learned NER model.

2.2 Auxiliary Learning Model

Wang et al. (2019a) have proposed an auxiliary
learning method, which is a multi-task learning
method that distinguishes between training data
for the target task (main training data) and that for
the other task (auxiliary training data), and have
improved NER performance for the target task.
The auxiliary learning model is trained by using
a main batch composed of main training data and
an auxiliary batch composed of auxiliary training
data. In each iteration, the model parameters are
updated by the auxiliary batch first, and then by
the main batch. This alternating updates by the
main and auxiliary batches are repeated until the
loss on the main training data converges.

Algorithm 1 shows the algorithm for the aux-
iliary learning method. In Algorithm 1, the sub-
scripts denote the target task (main) and the
auxiliary task (aux). Epoch and Iteration
are the number of epochs and the number of
iterations for the main task, respectively, and
BatchSize is the batch size. The number of it-
erations for each epoch is the total number of the
main training data divided by the batch size (i.e.,
Iteration = |Dmain|/BatchSize). The extract

Algorithm 1 Algorithm of an existing auxiliary
learning method
Data: main training dataset Dmain, auxiliary training

dataset Daux

1: for i = 1 to EPOCH do
2: for j = 1 to ITERATION do
3: Batchmain = extract(Dmain, BatchSize)
4: Batchaux = extract(Daux, BatchSize)
5: train(Model, Batchaux)
6: train(Model, Batchmain)
7: end for
8: is_convergemain(Model)

9: end for

Algorithm 2 Algorithm of the MUNCHABLES-
concatenation model
Data: main training dataset Dmain, M auxiliary training

datasets D(1)
aux, D

(2)
aux, · · · , D(M)

aux

1: Daux = [D
(1)
aux;D

(2)
aux; · · · ;D(M)

aux ]
2: for i = 1 to EPOCH do
3: for j = 1 to ITERATION do
4: Batchmain = extract(Dmain, BatchSize)
5: Batchaux = extract(Daux, BatchSize)
6: train(Model, Batchaux)
7: train(Model, Batchmain)
8: end for
9: is_convergemain(Model)

10: end for

function in lines 4 and 5 creates a batch by extract-
ing Batchsize data from the training dataset, and
the train function in lines 6 and 7 updates the pa-
rameters of the NER model Model by using the
batch data. The is_convergemain function in line
8 judges whether to stop training or not according
to the loss on the target task.

3 MUNCHABLES: Multi-Auxiliary
Learning

An existing auxiliary learning method uses
only one auxiliary training dataset. In this
section, we propose a new auxiliary learn-
ing paradigm, multi-auxiliary learning MUNCH-
ABLES, that utilizes multiple training datasets
as auxiliary training data. We first propose two
MUNCHABLES models that use multiple aux-
iliary training datasets in single auxiliary learn-
ing (MUNCHABLES-concatenation model and
MUNCHABLES-iteration model), and then pro-
pose a MUNCHABLES model that sequentially
fine-tunes a main model by auxiliary learning with
each auxiliary training dataset (MUNCHABLES-
stack model).

3.1 MUNCHABLES-Concatenation Model
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Algorithm 3 Algorithm of the MUNCHABLES-
iteration model
Data: main training dataset Dmain, M auxiliary training

datasets D(1)
aux, D

(2)
aux, · · · , D(M)

aux

1: for i = 1 to EPOCH do
2: for k = 1 to M do
3: for j = 1 to ITERATION do
4: Batchmain = extract(Dmain, BatchSize)

5: Batchaux = extract(D
(k)
aux, BatchSize)

6: train(Model, Batchaux)
7: train(Model, Batchmain)
8: end for
9: end for

10: is_convergemain(Model)

11: end for

The MUNCHABLES-concatenation model is a
multi-auxiliary learning model that concatenates
all the multiple auxiliary training datasets and
treats the concatenated training data as one aux-
iliary training dataset in single auxiliary learn-
ing. Algorithm 2 shows the algorithm of the
MUNCHABLES-concatenation model. Just like
the existing single auxiliary learning model, the
MUNCHABLES-concatenation model creates a
main batch from the main training data and an aux-
iliary batch from the concatenated auxiliary train-
ing data. Then, the updates of model parameters
with the auxiliary batch and with the main batch
are repeated alternately until the loss on the main
training dataset converges. The difference from
the existing single auxiliary learning model is that
an auxiliary batch is created from the concatenated
data of multiple auxiliary training datasets, and
thus an auxiliary batch can contain multiple types
of auxiliary training data.

3.2 MUNCHABLES-Iteration Model
The MUNCHABLES-iteration model is a multi-
auxiliary learning model which changes train-
ing datasets used as an auxiliary training dataset
every epoch. Algorithm 3 shows algorithm
of the MUNCHABLES-iteration model. The
MUNCHABLES-iteration model alternately re-
peats parameter updates with the main batch cre-
ated from the main training dataset and those with
the auxiliary batch created from an auxiliary train-
ing dataset until the loss on the main training
dataset converges as well as auxiliary learning
models described so far. The difference from the
MUNCHABLES-concatenation model is that an
auxiliary batch in the MUNCHABLES-iteration
model is created from a specific auxiliary training
dataset and the source auxiliary training dataset is

Algorithm 4 Algorithm of the MUNCHABLES-
stack model
Data: main training dataset Dmain, M auxiliary training

datasets D(1)
aux, D

(2)
aux, · · · , D(M)

aux

1: for k = 1 to M do
2: for i = 1 to EPOCH do
3: for j = 1 to ITERATION do
4: Batchmain = extract(Dmain, BatchSize)

5: Batchaux = extract(D
(k)
aux, BatchSize)

6: train(Model, Batchaux)
7: train(Model, Batchmain)
8: end for
9: is_convergemain(Model)

10: end for
11: end for

switched every epoch.

3.3 MUNCHABLES-Stack Model

The MUNCHABLES-stack model is a multi-
auxiliary learning model that fine-tunes a main
model as many as the number of auxiliary train-
ing datasets by sequential auxiliary learning with
each auxiliary training dataset. Each auxiliary
learning is performed by using a specific auxil-
iary training dataset as well as the existing sin-
gle auxiliary learning. When the loss on the
main training dataset converges, auxiliary data
is switched to a new auxiliary training dataset
and subsequently the main model is fine-tuned
using the new auxiliary training dataset. Al-
gorithm 4 shows the outline and algorithm of
the MUNCHABLES-stack model, respectively.
While, in the MUNCHABLES-concatenation
model and MUNCHABLES-iteration model, a
main model is trained only once (i.e., convergence
is only once), in the MUNCHABLES-stack model,
a main model is trained as many as the number of
auxiliary training datasets.

4 Experiment

4.1 Experiment Settings

We evaluated our proposed models on eight
chemical/biomedical/scientific domain NER tasks.
Table 1 shows each NER dataset. We compared
our three proposed models, the MUNCHABLES-
concatenation model (MUNCH.-Conc), the
MUNCHABLES-iteration model (MUNCH.-Iter),
and the MUNCHABLES-stack model (MUNCH.-
Stack), with three baseline models, the single
task learning model (SingleTask), the standard
multi-task learning model (MultiTask), and the ex-
isting single auxiliary learning model (SingleAux),
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which are described in Section 2. MultiTask learns
one NER model from all the eight datasets. Our
three MUNCHABLES models use all the datasets
other than the target task (i.e., seven datasets) as
auxiliary training data. SingleAux selected an
auxiliary training dataset on the development data
of the main task. Specifically, SingleAux used the
model that achieved the best performance (i.e.,
F1-score) on the development data among seven
models each of which is trained by single auxiliary
learning with a training dataset for a task other
than the target task, for testing. In MUNCH.-Iter
and MUNCH.-Stack, the seven auxiliary training
datasets were randomly sorted on condition that
auxiliary datasets with the same NE type are not
consecutive. We discuss the order of auxiliary
training datasets in Section 5.1.

We implemented each NER model by extending
the open framework FLAIR (Akbik et al., 2019).
For word embeddings, we used Contextual String
Embeddings (Akbik et al., 2018) and FastText (Bo-
janowski et al., 2017) provided by FLAIR, both
of which were trained from the PubMed abstracts,
a corpus of medical literature. The dimension of
the BiLSTM layer was set to 256. We used the
SGD optimizer, where a learning rate was adjusted
by the following scheduling policy: the learning
rate was reduced by a factor of two when the loss
per epoch was not less than the minimum loss so
far for four consecutive epochs, and training was
terminated when the learning rate fell below 1e-4.
We used the model at the end of training for test-
ing. In hyperparameter tuning, we tried 0.1 and
0.05 as the initial learning rate and 16 and 32 as
the batch size. Four models with these hyperpa-
rameter combinations were evaluated on the de-
velopment data, and the hyperparameter set with
the best performance was selected. In testing, we
trained an NER model from the training data and
the development data, and we reported and com-
pared the performance on the test data. NER per-
formance was evaluated by F1-score.

4.2 Experiment Results

Table 2 shows the experiment results. As can
be seen in the table, SingleAux outperforms Sin-
gleTask and MultiTask on micro and macro aver-
age F1-scores. This suggests that auxiliary learn-
ing is more effective than the multi-task learn-
ing method where the training data for the tar-
get task and the other training data are equally

treated. The observation is consistent with previ-
ously reported results. Table 2 also shows that
MUNCH.-Iter and MUNCH.-Stack achieve higher per-
formance than SingleAux on average and at least
one of the MUNCHABLES models is better than
SingleAux on all the tasks. These results experi-
mentally demonstrate that NER performance can
be improved by using multiple auxiliary training
datasets in auxiliary learning as in the proposed
models, which shows the effectiveness of the pro-
posed auxiliary learning paradigm for NER.

In MUNCH.-Iter and MUNCH.-Conc, the main
model only needs to be trained once, while
MUNCH.-Stack requires fine-tuning on each auxil-
iary training dataset individually, so the training
time for MUNCH.-Stack is longer than the other
two MUNCHABLES models. Table 2 shows that
MUNCH.-Stack achieves the best performance on
two out of the eight tasks and its micro and macro
average scores are the highest. This indicates the
necessity of MUNCH.-Stack on some NER tasks
even at longer training time.

5 Discussion

5.1 Discussion on the Order of Auxiliary
Training Datasets

The performance of MUNCH.-Iter and MUNCH.-
Stack might be affected by the order of auxiliary
training datasets (D(1)

aux, D
(2)
aux, · · · in Algorithms 3

and 4). This section discusses the impact of the
order to NER performance.

In the experiments of Section 4, the auxiliary
datasets were randomly sorted on condition that
auxiliary datasets with the same NE type are not
consecutive, in MUNCH.-Iter and MUNCH.-Stack.
However, we conjecture that, in MUNCH.-Iter and
MUNCH.-Stack, the auxiliary training dataset closer
to the end of the training of the main model have a
larger impact. Based on the conjecture, we sort the
auxiliary training datasets in order of the degree of
contribution to the performance improvement of
the target task. Hereafter, the models are denoted
as MUNCH.-Iter (sort) and MUNCH.-Stack (sort).
Specifically, we first evaluated the performance on
the development data of the single auxiliary learn-
ing model with each auxiliary training dataset,
and then sorted the auxiliary training datasets in
ascending order of its single auxiliary learning
models’ performance and used the sorted training
datasets in MUNCH.-Iter and MUNCH.-Stack.

We describe the order of auxiliary train-
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Dataset Type of NE
# of Sentences # of Words # of Annotations

Train Dev Test Train Dev Test Train Dev Test
NCBI Disease

Disease 5,424 923 940 135,701 23,969 24,497 5,134 787 960
(Doğan et al., 2014)

BC5CDR
Disease 4,560 4,581 4,797 118,170 117,453 124,750 4,182 4,246 4,424

(Li et al., 2016)
BC5CDR

Drug/Chem 4,560 4,581 4,797 118,170 117,453 124,750 5,203 5,347 5,385
(Li et al., 2016)
CHEMDNER

Drug/Chem 30,682 30,639 26,364 893,685 887,805 767,636 29,478 29,486 25,346
(Krallinger et al., 2015)

BC2GM
Gene/Protein 12,574 2,519 5,038 355,405 71,042 143,465 15,197 3,061 6,325

(Smith et al., 2008)
JNLPBA

Gene/Protein 14,690 3,856 3,856 443,653 117,213 114,709 32,178 8,575 6,241
(Kim et al., 2004)

LINNAEUS
Species 11,935 4,078 7,142 281,273 93,877 165,095 2,119 711 1,433

(Gerner et al., 2010)
s800

Species 5,733 830 1,630 147,291 22,217 42,298 2,557 384 767
(Pafilis et al., 2013)

Table 1: NER datasets

NCBI- BC5CDR BC5CDR CHEMD BC2GM JNLPBA LINN s800 MA. MI.
Disease Disease Chem NER AEUS AVG. AVG.

SingleTask 87.56 86.65 94.12 92.25 83.63 77.31 88.06 75.41 85.62 88.46
MultiTask 87.72 86.12 94.53 92.00 83.44 77.86 89.06 76.71 85.93 88.44
SingleAux 88.41 86.53 94.27 92.29 83.24 77.71 88.88 76.80 86.02 88.63

MUNCH.-Conc 89.14 86.73 94.23 92.36 82.57 77.48 89.46 76.42 86.05 88.49
MUNCH.-Iter 88.33 86.85 94.52 92.18 82.90 77.78 88.98 77.20 86.09 88.52

MUNCH.-Stack 87.69 86.98 94.33 92.32 83.80 77.62 89.42 76.65 86.10 88.67

Table 2: Experiment results (F1-score (%)). MA. AVG. and MI. AVG. indicate macro average and micro average,
respectively. Each bold font value indicates the best result of each task.

Batch Size 16 32
Learning Rate 0.05 0.1 0.05 0.1

NCBI-Disease 89.98 90.03 89.69 90.08
BC5CDR Disease 89.95 90.08 89.87 89.93

Single BC5CDR Chem 90.05 90.16 90.00 90.03
Aux BC2GM 89.95 89.92 89.88 89.91

JNLPBA 89.90 89.93 89.88 89.89
LINNAEUS 90.15 90.02 89.90 90.04

s800 89.88 90.01 89.89 89.94
MUNCH.-Iter (sort) 90.04 90.11 90.03 90.14

MUNCH.-Stack (sort) 90.24 90.07 89.75 90.14

Table 3: Tuning of hyperparameters and the order of
auxiliary training datasets of MUNCH.-Iter (sort) and
MUNCH.-Stack (sort) on the CHEMDNER task (i.e.,
F1-score (%) on the CHEMDNER development data).
In MUNCH.-Iter (sort) and MUNCH.-Stack (sort), the
best result is shown in bold font value.

ing datasets in MUNCH.-Iter (sort) and MUNCH.-
Stack (sort) for the CHEMDNER task as an ex-
ample. Table 3 shows the performance on the
CHEMDNER development data of SingleAux with
each auxiliary NER training dataset for all combi-
nation of hyperparameters. Note that each model
is trained from only training data to evaluate the
performance on development data. As for MUNCH.-
Iter (sort) and MUNCH.-Stack (sort), the auxiliary
training datasets are sorted on the basis of the per-
formance of SingleAux with the same hyperparam-

Model MUNCH.-Iter MUNCH.-Stack
Sort w/o w/ w/o w/

NCBI-Disease 88.33 88.50 87.69 87.90
BC5CDR Disease 86.85 86.85 86.98 86.86
BC5CDR Chem 94.52 94.33 94.33 94.47
CHEMDNER 92.18 92.39 92.32 92.35

BC2GM 82.90 83.59 83.80 83.84
JNLPBA 77.78 77.28 77.62 77.21

LINNAEUS 88.98 88.82 89.42 88.87
s800 77.20 76.36 76.65 76.46

MA. AVG. 86.09 86.02 86.10 86.00
MI. AVG. 88.52 88.64 88.67 88.64

Table 4: Impact of the order of auxiliary training
datasets. Each bold font value indicates the better re-
sult with or without sorting.

eter setting. From the table, for MUNCH.-Iter (sort),
the batch size and learning rate were set to 32 and
0.1, respectively, and the order of the auxiliary
training datasets was set to “JNLPBA→ BC2GM
→ BC5CDR-Disease→ s800→ BC5CDR-Chem
→ LINNAEUS → NCBI-Disease.” For MUNCH.-
Stack (sort), the batch size and learning rate were
set to 16 and 0.05, respectively, and the order of
the auxiliary training datasets was set to “s800
→ JNLPBA → BC5CDR-Disease → BC2GM
→ NCBI-Disease → LINNAEUS → BC5CDR-
Chem.”

Table 4 shows the performance of MUNCH.-Iter,
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NCBI- BC5CDR BC5CDR CHEMDNER BC2GM JNLPBA LINNAEUS s800
Disease Disease Chem

SingleAux (reimpl) 88.41 86.53 94.27 92.29 83.24 77.71 88.88 76.80
BioBERT 89.36 86.56 93.44 91.41 84.4 77.59 89.81 75.31
HanPaNE - - - 92.57 - - - -
SciBERT 88.57 - - - - 77.28 - -

BioMegatron 87.0 88.5 92.5 - - - - -
SciFive 88.46 87.62 94.61 91.56 83.57 77.55 - 76.33

PubMedBERT (PubMed) 87.82 85.62 93.33 - 84.52 79.10 - -
PubMedBERT (+PMC) 88.04 85.76 93.34 - 84.37 79.16 - -

MUNCH.-Conc 89.14 86.73 94.23 92.36 82.57 77.48 89.46 76.42
MUNCH.-Iter 88.33 86.85 94.52 92.18 82.90 77.78 88.98 77.20

MUNCH.-Stack 87.69 86.98 94.33 92.32 83.80 77.62 89.42 76.65

Table 5: Comparison with previous results (F-measure (%)). These results are BioBERT (Lee et al., 2019), Han-
PaNE (Watanabe et al., 2019), SciBERT (Beltagy et al., 2019), BioMegatron (Shin et al., 2020), SciFive (Phan
et al., 2021), and PubMedBERT (Gu et al., 2021). Each bold font value indicates the best result of each task.

MUNCH.-Iter (sort), MUNCH.-Stack, and MUNCH.-
Stack (sort) on each test data. Table 4 shows
that MUNCH.-Iter (sort) obtained a higher micro av-
erage than MUNCH.-Iter while the macro average
of MUNCH.-Iter (sort) and the micro and macro
averages of MUNCH.-Stack (sort) are worse than
those of MUNCH.-Iter and MUNCH.-Stack, respec-
tively. The results indicate that the performance of
MUNCH.-Iter and MUNCH.-Stack are affected by the
order of auxiliary training datasets and the perfor-
mance could be improved by reordering auxiliary
training datasets in ascending order of the perfor-
mance on the development data of SingleAux on
some NER tasks. We conjecture that sorting order
of auxiliary training datasets might be affected by
similarity of development data and test data. We
will leave its further analysis for future work.

6 Related Work

Previous Methods MUNCHABLES common
v.s. Method MA. AVG. Iter Stack tasks
BioBERT 85.99 86.09 86.10 8
HanPaNE 92.57 92.18 92.32 1
SciBERT 82.93 83.05 82.66 2

BioMegatron 89.33 89.90 89.67 3
SciFive 85.67 85.68 85.63 7

PubMedBERT (PubMed) 86.08 86.08 86.08 5
PubMedBERT (+PMC) 86.13 86.08 86.08 5

Table 6: Summary of macro average F-measure (%).
The common tasks indicates the number of tasks used
by both of our MUNCHABLES and previous methods.
We compared our MUNCHABLES methods with pre-
vious methods in terms of macro average F-measure
on the common tasks. The bold font indicates that a
MUNCHABLES model is better than the correspond-
ing previous result.

6.1 Comparison with Previous Results

We compared our MUNCHABLES models with
previous results1 including state-of-the-art meth-
ods. Table 5 shows the results, and Table 6
shows a summary of the comparison, where we
report macro average F-measure on the common
tasks used by both of the MUNCHABLES and
previous methods. As can be seen in Tables 5
and 6, in general, our MUNCHABLES models
obtain competitive or better NER performance
than previous results. These results show that
our MUNCHABLES models achieve state-of-the-
art performance on chemical/biomedical/scientific
NER tasks. Another remarkable point is MUNCH-
ABLES can be combined with the previous work.
In other words, in order to improve the previous
work, we can use MUNCHABLES in the previous
work.

v.s. BioBERT BioBERT (Lee et al., 2019) is
a BERT-based pre-training model trained with
biomedical domain text. We compared BioBERT
v1.0 with PubMed + PMC for its pre-training with
our MUNCHABLES models. The macro aver-
age of BioBERT was 85.99 and those of MUNCH.-
Iter and MUNCH.-Stack are 86.09 and 86.10. Our
MUNCHABLES models obtained a higher perfor-
mance than BioBERT.

v.s. HanPaNE HanPaNE (Watanabe et al.,
2019) is a BiLSTM-CRF NER model that jointly
learns an LSTM-based chemical compound para-
phrase model through multi-task learning. Han-
PaNE showed 92.57 F-measure on CHEMDNER,
which is the state-of-the-art performance on the

1If results obtained by different parameters were reported,
we listed the results of the model that showed the best macro
average F-measure on the NER datasets.
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dataset. MUNCH.-Stack and MUNCH.-Iter are worse
than HanPaNE. However, our MUNCHABLES
model is compatible with HanPaNE and the mod-
els must complement each other. Therefore, we ex-
pect higher performance by combining MUNCH-
ABLES with HanPaNE.

v.s. SciBERT SciBERT (Beltagy et al., 2019)
is a BERT-based pre-training model trained with
scientific domain text. SciBERT was evaluated on
NCBI-Diseases and JNLPBA, and the macro av-
erage was 82.93. MUNCH.-Iter obtained a higher
average (i.e., 83.05) than SciBERT.

v.s. BioMegatron BioMegatron (Shin et al.,
2020) is a biomedical adaptation of a transformer
model called Megatron-LM (Shoeybi et al., 2020).
BioMegatron was evaluated on NCBI-Disease,
BC5CDR Disease, and BC5CDR Chem. The
macro average of BioMegatron with a 50k biomed-
ical domain vocabularies and 345m parameters
was 89.33, whereas MUNCH.-Iter and MUNCH.-
Stack showed 89.90 and 89.67, which are higher
than BioMegatron.

v.s. SciFive SciFive (Phan et al., 2021) is
a domain-specific Text-to-Text Transfer Trans-
former (T5) (Raffel et al., 2020) model that has
been pre-trained on large biomedical corpora. Sci-
Five was evaluated on seven tasks out of the eight
tasks except for LINNAEUS. The macro aver-
age F-measure of SciFive with PMC pre-training
data was 85.67, whereas MUNCH.-Iter and MUNCH.-
Stack were 85.68 and 85.63.

v.s. PubMedBERT PubMedBERT (Gu et al.,
2021) is a BERT-based model trained with
biomedical domain text from scratch. PubMed-
BERT (PubMed) was trained with only PubMed
and PubMedBERT (+PMC) was trained with
PubMed and PMC and these two models were
evaluated on NCBI-Disease, BC5CDR Disease,
BC5CDR Chem, BC2GM, and JNLPBA for NER.
The macro average of PubMedBER (PubMed) was
86.08 and that of PubMedBERT (+PMC) was
86.13. MUNCH.-Iter and MUNCH.-Stack show the
comparable accuracy as PubMedBERT (PubMed),
however they showed lower accuracy than Pub-
MedBERT (+PMC). We think that this differ-
ence was caused by the pretraining data size.
The MUNCHABLES models were pretrained only
with PubMed. Therefore, further improvement by
increasing the amount of pretraining data is ex-

pected. Furthermore, the MUNCHABLES can be
incorporated into PubMedBERT, therefore, we ex-
pect higher performance by enhancing PubMed-
BERT with MUNCHABLES.

6.2 Multi-Task Learning

Multi-task learning is employed to boost the per-
formance of NLP systems (Liu et al., 2015; Luong
et al., 2016; Dong et al., 2015; Hashimoto et al.,
2017), including NER (Liu et al., 2018). Multi-
task learning of sequence labeling with language
models was proposed (Rei, 2017). Aguilar et al.
(2018) and Cao et al. (2018) proposed multi-task
learning of NER with word segmentation. Peng
and Dredze (2017) proposed multi-task learning
that leverages the performance of domain adapta-
tion. Clark et al. (2018) proposed multi-task learn-
ing of NER with several NLP tasks such as POS
tagging and parsing. Crichton et al. (2017b) and
Wang et al. (2018) proposed multi-task learning
of several tasks of biomedical NLP to increase
NER performance. Watanabe et al. (2019) pro-
posed multi-task learning of NER with chemical
compound paraphrase.

Sampling methods for multi-task learning have
also been proposed. Guo et al. (2019) is a two-
stage mulit-task pipeline, where the first stage
automatically selects the most useful auxiliary
tasks via a Beta-Bernoulli multi-armed bandit with
Thompson Sampling and the second stage learns
the training mixing ratio of these selected auxil-
iary tasks. Kung et al. (2021) proposed a sampling
method for training samples of auxiliary tasks
based on the assumption that the more similar to
the target task is, the more benefit is obtained for
the target task.

7 Conclusion

This paper proposed a new auxiliary learning
paradigm for NER, MUNCHABLES, that uti-
lizes multiple training datasets as auxiliary train-
ing data for improving the performance of its
target task. The experiments on eight chem-
ical/biomedical/scientific domain NER datasets,
showed that our proposed models achieved higher
performance on average than conventional multi-
task learning methods and an auxiliary learn-
ing method using only one auxiliary train-
ing dataset. Moreover, our proposed mod-
els achieved the state-of-the-art performance on
chemical/biomedical/scientific NER tasks.
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