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Introduction

Two years after the appearance of GPT-3, large language models seem to have taken over NLP. Their ca-
pabilities, limitations, societal impact and the potential new applications they unlocked have been discus-
sed and debated at length. A handful of replication studies have been published since then, confirming
some of the initial findings and discovering new limitations. This workshop aims to gather researchers
and practitioners involved in the creation of these models in order to:

1. Share ideas on the next directions of research in this field, including—but not limited to—grounding,
multi-modal models, continuous updates and reasoning capabilities.

2. Share best-practices, brainstorm solutions to identified limitations and discuss challenges, such as
infrastructure, data, ethical & legal frameworks, evaluation, training efficiency, etc.

This workshop is organized by the BigScience1 initiative and will also serve as the closing session of
this one year-long initiative aimed at developing a multilingual large language model, which is gathering
1.000+ researchers from more than 60 countries and 250 institutions and research labs. Its goal is to
investigate the creation of a large scale dataset and model from a very wide diversity of angles.

1https://bigscience.huggingface.co/
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Abstract

Pretrained language models (PTLMs) are typi-
cally learned over a large, static corpus and fur-
ther fine-tuned for various downstream tasks.
However, when deployed in the real world, a
PTLM-based model must deal with data dis-
tributions that deviate from what the PTLM
was initially trained on. In this paper, we
study a lifelong language model pretraining
challenge where a PTLM is continually up-
dated so as to adapt to emerging data. Over
a domain-incremental research paper stream
and a chronologically-ordered tweet stream,
we incrementally pretrain a PTLM with dif-
ferent continual learning algorithms, and keep
track of the downstream task performance (af-
ter fine-tuning). We evaluate PTLM’s ability
to adapt to new corpora while retaining learned
knowledge in earlier corpora. Our experiments
show distillation-based approaches to be most
effective in retaining downstream performance
in earlier domains. The algorithms also im-
prove knowledge transfer, allowing models to
achieve better downstream performance over
the latest data, and improve temporal gen-
eralization when distribution gaps exist be-
tween training and evaluation because of time.
We believe our problem formulation, methods,
and analysis will inspire future studies towards
continual pretraining of language models.

1 Introduction

Pretrained language models (PTLMs) have
achieved remarkable performance on benchmark
datasets for a range of NLP tasks (Liu et al., 2019b;
Brown et al., 2020). However, when deployed in
the wild, NLP systems must deal with emerging
data that have constantly shifting data distribution,
different from the text corpora they were initially
pretrained on — for example, when new data do-
mains are introduced (upper part of Fig. 1) (Gu-
rurangan et al., 2020), or when the language uses
and vocabulary change over time (lower part of
Fig. 1) (Lazaridou et al., 2021). Fine-tuning from a

Domain-Incremental Research Paper Stream

Knowledge
retention

All 
domains

Chronologically-Ordered Tweet Stream

2014 2016 2018 2020

Adaptation & 
Temporal 

generalization

Latest 
data

Bio-
Medical

Computer 
Science

Materials 
Science

Physics

Figure 1: Two data streams created for studying life-
long language model pre-training. We focus on evalu-
ating knowledge retention on the domain-incremental
research papers stream; we focus on adaptation to the
latest data and temporal generalization on the chrono-
logically ordered tweet stream.

static and possibly “outdated" PTLM may limit the
model performance on downstream tasks, as the
PTLM may no longer provide an effective model
initialization (Beltagy et al., 2019; Müller et al.,
2020). Here we look to understand whether con-
tinuously adapting a PTLM to emerging data can
yield gains on various downstream tasks, and how
to achieve better downstream performance for such
lifelong PTLM adaptation.

A number of recent works make attempts on
adapting PTLMs to a new data domain. Gururan-
gan et al. (2020); Yao et al. (2021) adapt language
models to corpora of different genres and topics
and observe performance improvement in domain-
specific downstream tasks. Arumae et al. (2020)
further show that by regularizing the parameters
of PTLMs, the downstream tasks performance on
the general domain can be preserved. Another line
of works focuses on temporal domain shift (Hom-
baiah et al., 2021), which analyzes the effect of
pretraining over up-to-date data to the downstream
tasks. Röttger and Pierrehumbert (2021) further
study vocabulary composition approaches for im-
proving adaptation to up-to-date corpora. However,
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these work focus their study on adapting PTLM
to a single new domain; while in practice, cor-
pora from distinct domains and time stamps may
emerge sequentially. Whether one can maintain
a single, up-to-date PTLM remains an open prob-
lem. Related to this, Lazaridou et al. (2021) study
adaptation of PTLMs over temporal data streams,
but solely focus on language modeling instead of
fine-tuning performance. It is also important to un-
derstand multiple aspects of the utility of lifelong
PTLM pretraining, such as knowledge retention
over all the seen data, and study what methods can
improve the utility of PTLMs in such a continual
pretraining process.

In this paper, we formulate a Lifelong Language
Model Pretraining task to simulate practical sce-
narios of maintaining and adapting a PTLM over
emerging corpora, create a testbed (along with
pretraining data streams and downstream tasks)
for studying continual pretraining algorithms, and
present a systematic evaluation protocol for measur-
ing the progress made on this challenging problem
(see Figure 2 for an illustration). We consider two
types of text corpus sequences when constructing
pretraining data streams, each of which simulates a
representative use case and that has slightly differ-
ent focuses on the evaluation: continuously learn-
ing a single model that is applicable to both old and
new domains; and improving the model’s ability to
handle latest data. Specifically, we construct 1) a
domain-incremental text stream that consists of aca-
demic papers published in four research fields, and
2) a temporal tweet stream that consists of tweets
collected from four different years. By conducting
systematic experiments on these two data streams,
we look to answer a series of analysis questions:
1) whether continual pretraining retains fine-tuning
performance over earlier corpora compared to tra-
ditional offline pretraining, 2) whether pretraining
improves downstream performance on the latest
data, and 3) whether pretraining improves temporal
generalization where training and evaluation have
distribution gaps because of time.

To address the research questions above, we con-
duct a systematic evaluation of existing continual
learning (CL) algorithms, spanning over model-
expansion based, memory-based, and distillation-
based approaches. Our results show distillation-
based approaches are most effective in knowledge
retention in the research paper stream, while si-
multaneously improve adaptation to latest data and

temporal generalization in the tweet stream. We
believe our problem formulation, evaluation setup,
methods and analysis can inspire more future work
on continual pretraining of language models.

2 Problem Formulation

Here we present the problem formulation for life-
long pretraining of PTLM, provide details about the
data stream construction process and downstream
tasks, and introduce the evaluation protocol.

2.1 Lifelong Pretraining of PTLMs

We consider the scenario where one needs to de-
ploy and/or maintain NLP models over a sequence
of T data domains. At each time step t the model
visits an unlabeled text corpus Dt from a domain
with a data distribution P (Dt). The data distribu-
tion P (Dt) evolves as the time step t, forming a
data stream D1..T = {D1, D2, ...DT }. In practice,
the data domain shift can refer to the topic change
of the text content (from computer science research
papers to biomedical papers), or temporal evolution
of the text (from past to recent tweets). The task of
lifelong pretraining of PTLM looks to continuously
adapt a language model f as the model visits (unla-
beled) text corpus Dt from the data stream D1..T ,
in order to provide a good model initialization for
fine-tuning on downstream tasks from the same do-
main. With slight abuse in notations, we also use
Dt to directly refer to a data domain.

Here, we assume a language model f is updated
sequentially over each pretraining corporaDt, with-
out accessing the full earlier corpora {Di}i<t in the
data stream D1..T . This aims to capture practical
constraints such as privacy restriction for storing
earlier data, or computation budget for training
over all the text corpora in D1..T . We use ft to
denote the language model right after updating on
the domain Dt. In our study, f is a RoBERTa-base
transformer (Liu et al., 2019b) and the model (f0)
is initialized with pretrained RoBERTa weights.

The utility of the PTLMs {ft} is evaluated based
on their fine-tuned model performance on various
downstream tasks. After updating on a domain
Di, the model fi can be fine-tuned over down-
stream tasks from visited domains Dt where t ≤ i.
We note the set of downstream tasks related to do-
main Dt as St = {Sj

t }Nt
j=1, assuming the number

of downstream tasks is Nt. Note that in the fine-
tuning stage, model ft has no access to any of the
pretraining corpus D1..T .
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Figure 2: Training, evaluation setups, and metrics of life-
long language model pretraining. The model sequentially
visits each corpus, and is fine-tuned on downstream datasets
related to the domains of pretraining. We evaluate knowl-
edge retention and adaptation to new data with downstream
fine-tuning performance on old and latest domains respec-
tively. Besides, we evaluate temporal generalization where
training/test examples are drawn from different time steps.

2.2 Data Streams & Downstream Datasets

We construct data streams to simulate two repre-
sentative scenarios of data domain shifts in practice
(also see Fig. 1): one domain-incremental stream to
simulate the sequential changes of research paper
areas; and one chronologically-ordered stream to
simulate tweets emerging over time.

Domain-incremental Paper Stream. This pa-
per stream consists of the full text of research pa-
pers published in four research areas: biomedical,
computer science, material science, and physics,
filtered from the S2ORC dataset1, which are pre-
sented sequentially to the model. For each domain,
we evaluate downstream performance over two
datasets. The downstream tasks span over vari-
ous tasks such as relation extraction and named
entity recognition, and are summarized in Table 1.
We detail these datasets in Appendix D.

Chronologically-ordered Tweet Stream. This
tweet data stream consists of tweets from the
year 2014, 2016, 2018 and 2020, collected
by the Archive Team2 and preprocessed follow-
ing Nguyen et al. (2020). These four tweet corpora
are presented sequentially to the language model
following the chronological order of the tweet year.
For downstream tasks, we hold out 1M tweets from
each year’s corpus to construct multi-label hash-
tag prediction datasets (Gong and Zhang, 2016)
and single-label emoji prediction datasets (Barbieri

1We use the 20200705v1 version of the S2ORC dataset at https://
github.com/allenai/s2orc

2
https://archive.org/details/twitterstream

Domains Downstream Datasets Metrics

Bio-Medicine Chemprot (Vindahl, 2016) Micro-F1
RCT-Sample (Dernoncourt and Lee, 2017) Micro-F1

Comp. Science ACL-ARC (Jurgens et al., 2018) Macro-F1
SciERC (Luan et al., 2018) Macro-F1

Mat. Science Synthesis (Mysore et al., 2019) Macro-F1
MNER (Olivetti et al., 2020) Micro-F1

Physics Keyphrase (Augenstein et al., 2017) Macro-F1
Hyponym (Augenstein et al., 2017) Macro-F1

Table 1: Summary of downstream datasets relevant to
each domain in the research paper stream.

et al., 2018). On two datasets, we report label rank-
ing average precision scores (a multi-label version
of MRR) of models (Azeemi and Waheed, 2021)
and Macro-F1 respectively. The detailed dataset
construction process is included in Appendix D.

2.3 Evaluation Protocol

We consider three key aspects for evaluating the
utility of the language models {ft} that are con-
tinuously updated over the data stream D1..T , also
illustrated in Figure 2: 1) knowledge retention and
transfer over the pretraining corpora seen earlier;
2) adaptation to the latest data domain, and 3) tem-
poral generalization when training and evaluation
data are from different time steps.

Knowledge Retention. A key utility of contin-
ual language model pretraining is to obtain a sin-
gle model applicable to all domains. We focus
on the evaluation of the ability with the domain-
incremental paper stream, because for the tweet
stream, the practical need of performance over out-
dated data is limited. Knowledge retention is mea-
sured with the downstream task performance from
earlier or the current domains that the pretrained
model has visited. More formally, for each pre-
trained model checkpoint in {fi}, we fine-tune fi
over downstream tasks {St} where t ≤ i and eval-
uate the corresponding test set performance. It is
important that the models do not suffer from catas-
trophic forgetting (Robins, 1995), i.e., significantly
reduced helpfulness when fi is fine-tuned for down-
stream tasks St from earlier domains with t < i.

Adaption to Latest Data Domain. In certain
scenarios, performance of downstream models over
the latest data domain should be emphasized. For
example, classifiers in the tweet domain are usually
trained and evaluated with up-to-date data for prac-
tical deployment. Formally, we focus on the down-
stream task performance of models fine-tuned from
the final pretrained model checkpoint fT , where
the downstream tasks ST are also from the latest
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domain. To succeed in these metrics, it is crucial
for the model to transfer knowledge from earlier
domains to the latest domain.

Temporal Generalization Ability. We consider
another practical fine-tuning scenario in the tweet
stream where the model is trained on outdated
data and evaluated on the latest data (Rijhwani
and Preotiuc-Pietro, 2020; Huang and Paul, 2018),
referred to as the temporal generalization ability.
Formally, we fine-tune the final pretrained model
checkpoint fT over the training set of downstream
tasks St from an earlier time step (t < T ), and
evaluate on the test set of the downstream tasks ST
from the latest time step T .

3 Methods

Lifelong language model pretraining introduces
novel challenges because of the large training sets
and more comprehensive evaluation protocols com-
pared to classification tasks. We establish several
strong baselines, and evaluate the performance of
continual learning algorithms from different cate-
gories spanning over model-expansion, memory-
based, and distillation-based approaches, We illus-
trate the approaches in Figure 3.

3.1 Simple Baselines

We consider several simple baselines which contin-
ual learning algorithms will be compared against.
RoBERTa-base (f0) corresponds to not pre-
training on any of the domain-specific corpora.
By separately pretraining f0 on each corpus
D1, D2, ...DT , we obtain T Task-Specific
pretrained models. We also pretrain f0 sequentially
over D1..T , which we refer to as sequential
pretraining. While it allows knowledge trans-
fer between domains compared to domain-specific
models, without any continual learning algorithms,
sequential pretraining is prone to catastrophic for-
getting (Robins, 1995). Finally, we randomly
shuffle corpora from all domains D1..T before
pretraining, noted as Multi-Task Learning
(MTL). MTL corresponds to an offline training
paradigm that models new corpora by re-training
over all corpora seen before. The drawback is that
it requires storing full data from earlier domains,
and that it can be extremely costly to repetitively
retrain over earlier data if new data keeps emerging.

Memory Replay

Distillation + CLAdapters 
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Figure 3: Comparison of adapter, memory re-
play, and distillation-based continual learning algo-
rithms. Details of the methods are introduced in Sec. 3.

3.2 Model-expansion and
Regularization-based Methods

We first introduce model-expansion based ap-
proaches, which add small trainable modules (e.g.,
multi-layer perceptron) to the model per new do-
main while keeping other parts of the model frozen.
The Adapter approach is a representative ap-
proach that learns a set of “adapter” layers gt =
{gkt }Kk=1 for each domain Dt and each of the K
transformer layers (Houlsby et al., 2019). We also
experiment with a simple Layer Expansion
approach, which learns separate top two layers of
the transformer and the prediction head for each
domain. We also involve a regularization-based
continual learning baseline, online EWC (Schwarz
et al., 2018), which directly penalize change of
model parameters.

3.3 Memory Replay Methods
We also experiment with Experience Replay
(ER) (Chaudhry et al., 2019), which alleviates for-
getting by storing a subset of earlier examples and
periodically re-training (replaying) over them. We
maintain a fixed-size memory M (100k examples
by default) and populate the memory M each time
pretraining on a domain Dt finishes with examples
in the current domain. We ensure M always con-
tains a balanced sample of examples from all seen
domainsD1..t. We replay a mini-batch of examples
from the memory every 10 training steps.

3.4 Distillation-based CL Methods

While knowledge distillation (KD) (Hinton et al.,
2015) techniques have been studied intensively for
pretrained language models (Sun et al., 2019), ap-
plying them to continual learning has been under-
explored outside image classification tasks (Li and
Hoiem, 2018; Rebuffi et al., 2017; Hou et al., 2018).
Distillation based CL approaches store one previ-

4



ous model checkpoint of the model (noted as ft−1)
and regularize the differences between ft−1 and
the current model ft. We adapt several existing
knowledge distillation techniques to PTLMs and
utilize them for continual learning. We note, while
individual distillation techniques are not original,
their adaptation to CL algorithms can be novel.

We perform distillation with examples from the
current domain Dt and a replay memory M (sim-
ilar to ER). Despite the potential gap between Dt

and the training data of ft−1, the approach allows
utilizing more data for distillation. Formally, each
time the model receives a mini-batch of stream
examples xs or a draws mini-batch of memory ex-
amples xm from M (both noted as x), we collect
certain outputs of the model (e.g., output logits or
intermediate representations) with ft−1 and ft. We
compute a distillation loss `KD(x, ft−1, ft) that pe-
nalizes the differences between the model outputs,
and jointly optimize it with the masked language
modeling loss `MLM. The final objective is written
as ` = `MLM +α`KD, where α is a hyperparameter
to weight the distillation loss.

Logit Distillation. In logit distillation (Hinton
et al., 2015), we collect the output logits of ft and
ft−1, noted as yt and yt−1 respectively. The dis-
tillation loss is computed as DKL(yt,yt−1), where
DKL is the Kullback–Leibler divergence function.

Representation Distillation. We also consider
minimizing the representational deviation of sen-
tences between previous and current models (Sun
et al., 2019; Jiao et al., 2020). We extract the rep-
resentation of each word of two models, noted
as h1:N

t−1 and h1:N
t , before the masked language

modeling prediction head, where N is the length
of the sentence. Then, we compute MSE loss
||h1:N

t−1 − h1:N
t ||22 as the distillation loss.

Contrastive Distillation. In addition to output
logits and hidden representations, we further look
into representational similarity within a batch of
examples as additional knowledge to distill. The
approach is adapted from (Cha et al., 2021), which
is originally studied for supervised image classifi-
cation tasks. We briefly introduce the adapted algo-
rithm and leave the details in Appendix E. During
continual pretraining, in addition to the language
model pretraining objective, we add an unsuper-
vised contrastive learning objective, namely the
SimCSE (Gao et al., 2021) objective to encourage
sentence representations to reflect semantic simi-

larities between sentences. Then, we compute the
intra-batch representational similarity matrices of
sentence representations (i.e. between each pair of
examples in the mini-batch) with ft−1 and ft, noted
as Bt−1 and Bt, and minimize the cross entropy
loss `distill = − 1

N

∑N
i=1

∑N
j=1B

t−1
ij logBt

ij

Self-Supervised Distillation (SEED). SEED
distillation proposed by (Fang et al., 2021) has a
similar spirit as the contrastive distillation. The
only difference is that it distills representational
similarity between the batch and a large set of
other examples. We leave the details of the algo-
rithm in Appendix E. We further combine SEED
Distillationwith logit distillation and refer to the
approach as SEED-Logit Distillation.

4 Results

We summarize our findings over the created data
streams. We ask whether lifelong pretraining and
continual learning algorthms are effective base on
our evaluation protocol proposed in Sec. 2.3.

4.1 Experiment Settings

We use the RoBERTa-base model (Liu et al.,
2019b), initialized with RoBERTa-base weights
throughout the experiments. We set the maximal
sequence length to 128 and an effective training
batch size of 2,048. On the research paper stream,
models are trained for 8k steps in the first domain
and 4k steps in the subsequent domains. On the
Tweet stream, we train the models for 4k steps in
each domain. These correspond to less than a single
pass of data in each domain. See Appendix A for
detailed setups.

4.2 Domain Incremental Data Stream

As we introduced in Sec. 2.2, in the domain incre-
mental research paper stream, we expect a model
ft to perform well on all downstream tasks S1..t
from domains D1..t. In Table 2, we report the per-
formance of models on all downstream tasks S1..T
fine-tuned from the final pretraining checkpoint,
fT . We visualize more complete change of down-
stream task performance over different time steps
of pretraining (i.e.,, f1, f2, f3, f4) in Fig. 4. We
also report the log perplexity of masked language
modeling (MLM) in Table 2 as additional informa-
tion. With these results, we address the research
questions below.
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Task D1 - Biomedical D2 - Computer Science D3 - Materials Science D4 - Physics

Dataset Chemprot RCT-Sample MLM ACL-ARC SciERC MLM MNER Synthesis MLM Keyphrase Hyponym MLM

Roberta-base 82.03±0.7 78.07±0.7 1.993 64.32±2.8 79.07±1.6 2.153 83.15±0.3 91.25±0.6 2.117 66.21±1.0 67.59±4.5 2.278
Sequential Pretraining 82.09±0.5 79.60±0.5 1.654 72.73±2.9 81.43±0.8 1.807 83.99±0.3 92.10±1.0 1.590 67.57±1.0 74.68±4.4 1.381

ER 82.73±0.3 79.98±0.3 1.737 72.50±1.0 81.64±1.1 1.857 83.99±0.4 92.65±0.4 1.621 66.11±1.1 72.82±4.3 1.391
Online EWC 81.83±0.2 78.84±0.5 1.655 71.81±2.6 80.79±0.5 1.803 83.43±0.4 91.89±0.5 1.571 66.70±0.6 72.98±6.0 1.388
Adapter 83.30±0.4 80.41±0.4 1.417 69.32±3.5 80.22±1.5 1.633 83.91±0.3 91.69±0.6 1.522 66.23±1.4 69.65±4.5 1.554
Layer Expansion 83.74±0.3 81.10±0.5 1.210 65.17±2.9 79.35±0.8 1.756 82.48±0.4 92.33±1.0 1.389 65.70±1.1 73.34±3.7 1.534
Logit-KD 83.39±0.4 81.21±0.1 1.392 73.70±3.4 81.92±0.8 1.699 83.96±0.3 92.20±1.0 1.425 64.75±1.1 71.29±3.6 1.460
Rep-KD 82.34±0.3 79.59±0.5 1.684 71.17±2.5 78.78±1.1 1.810 84.13±0.3 92.02±0.8 1.585 65.96±1.6 73.93±5.5 1.389
Contrast-KD 82.29±0.5 79.92±0.4 1.722 71.15±1.1 80.49±1.6 1.856 83.26±0.4 92.62±0.7 1.612 65.95±1.7 72.26±3.1 1.428
SEED-KD 82.78±0.3 80.38±0.4 1.720 69.98±2.4 81.61±0.7 1.829 82.99±0.4 92.35±0.7 1.609 65.35±1.0 74.79±4.1 1.401
SEED-Logit-KD 83.72±0.4 81.05±0.2 1.391 69.90±4.5 83.03±0.6 1.703 83.28±0.5 92.87±1.0 1.428 65.96±1.5 71.92±5.5 1.460

Task-Specific LM 83.74±0.3 81.10±0.5 1.210 72.20±2.6 81.24±1.7 1.629 84.02±0.2 91.56±0.4 1.418 65.95±1.1 69.43±4.5 1.426
MTL 82.91±1.6 80.67±0.4 1.289 69.46±1.8 81.12±0.8 1.616 83.92±0.3 92.66±0.6 1.355 65.37±1.6 73.31±5.2 1.418

Table 2: Results on the Research Paper stream. We report log perplexity of MLM and the performance of downstream
models fine-tuned from the final checkpoint of the pretrained model (t = 4). Performance of the best performing CL algorithm
is marked bold.

Does lifelong pretraining help retain knowledge
across different domain corpora? We first ex-
amine whether task-specific or lifelong pretraining
improves performance over domain-specific down-
stream tasks. Comparing Task-Specific LMs with
RoBERTa-base in Table 2, we notice consistent per-
formance improvements, especially on Biomedical
and Computer Science domains (D1, D2). We also
see Sequential Pretraining could consistently out-
perform RoBERTa-base. However, the comparison
between Sequential Pretraining and Task Specific
LMs are mixed: on D1, D2, D3, Sequential Pre-
training could outperform Task-Specific LMs only
except MNER; while on the earliest biomedical
domain (D1), Sequential Pretraining achieves sub-
stantially lower performance. From Figure 4, we
see the performance of Sequential Pretraining on
Chemprot and RCT (from D1) drops significantly
from t = 1 to 4. The results imply lifelong pretrain-
ing allows later domains to benefit from knowledge
transfer from earlier domains, but the performance
on earlier domains is limited because of forgetting.

Does continual learning algorithms help retain
knowledge in sequential pretraining? Next, we
compare different kinds of CL algorithms and in-
vestigate the effect of CL algorithms in alleviating
forgetting and improving knowledge transfer. Ta-
ble 2 shows that Online-EWC slightly improves
MLM perplexity compared to Sequential PT, but
brings no improvement to the fine-tuning perfor-
mance. We hypothesize that regularization directly
in the parameter space as in Online-EWC is not
effective when the parameter space is very high
dimensional. Adapter improves downstream task
F1 scores on the bio-medical domain (D1) by 1.2%
and 0.8%, but does not outperform Sequential Pre-
training in other domains (similarly for Simple

|M |, k Chemprot RCT ACL-ARC SciERC MLM-D1,2

100k, 10 82.73 79.98 72.50 81.64 1.737/1.857
100k, 100 82.06 78.64 71.97 81.62 1.599/1.789
10M, 10 82.87 79.98 71.80 81.63 1.438/1.732

Table 3: Downstream task and MLM performance of fT
under different memory sizes |M | and the frequency of replay
k (replaying every k steps of training) in ER.

Layer Expansion approach), likely because a great
portion of the model is kept frozen.

In contrast, the memory-replay based approach
(ER) allows training the full parameters of the
model and has been shown to be highly effective
in continual learning of classification tasks (Wang
et al., 2019; Chaudhry et al., 2019). However, we
surprisingly find that ER could hardly improve over
Sequential Pretraining exceptD1. A similar pattern
can be found in the MLM perplexity. We hypothe-
size that the positive effect of example replay has
diminished because of the overfitting to the mem-
ory examples. Table 3 summarizes the effect of
tuning hyperpameters in ER. When we reduce the
frequency of replay (from every 10 steps to 100
steps), the MLM performance improves, which im-
plies reduced overfitting; however, the performance
of downstream task performance does not improve.
When we increase the size of the memory |M | from
100k to 10M , the MLM perplexity also improves;
still, there are still no improvements in downstream
tasks. It may imply ER itself is not an effective
approach for continual pretraining.

Unlike ER, distillation approaches utilize richer
information such as output logits or representation
similarity to preserve past knowledge. We find
either Logit KD or SEED-Logit KD to be most
effective depending on the task, while Rep-KD
and Contrastive-KD are less effective. The best
performing distillation approach improves F1 over
Sequential Pretraining on downstream tasks from
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Figure 4: Performance evolution of downstream models.
Models are fine-tuned from checkpoints of lifelong pretrained
LMs at different time steps t. For Chemprot and RCT-Sample
from D1, we use t ∈ {1, 2, 3, 4}; while for ACL-ARC and
SciERC from D2, t ∈ {2, 3, 4}. Methods achieving the best
performance at the end of training (t = 4) is highlighted.

D1,D2 at least by 1.0%. However, performance on
D3, D4, which come later in the data stream, does
not improve over Sequential Pretraining, possibly
because the distillation loss term makes the model
rigid in obtaining new knowledge.

What is the gap between lifelong pretraining
and multi-task learning across all the domains?
Multi-Task Learning refers to the offline training
paradigm, which retrain PTLMs over all corpora
(D1..t) each time a new corpus Dt becomes avail-
able. We examine whether lifelong pretraining is
comparable to multi-task pretraining in terms of
performance. From Table 2 and Figure 4, we see
Sequential Pretraining in general underperforms
MTL except for the final domain. However, certain
CL approaches, such as Logit-Distillation, could
improve over MTL on all downstream tasks from
the first and the second domain. We speculate the
reason is that continual learning naturally provides
a curriculum (Xu et al., 2020; Shi et al., 2015) to
models where each individual task is easier to learn.
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Figure 5: Performance of downstream models with vari-
ous number of training examples, exemplified with SciERC.
The models are fine-tuned from the final pretrained model (f4).

The results have a positive implication that lifelong
pretraining is not only more computationally effi-
cient and requires less storage of past data, but may
also improve the performance of pretraining.

Does lifelong pretraining make models more data
efficient? In Table 5, we further examine the per-
formance of final pretrained models under different
amounts of training examples. We include full
results in Appendix B. We find in general, perfor-
mance improvements are more significant in the
low-resource setup.

Computational Costs. We analyze computa-
tional costs of different CL algorithms and present
additional experiments with controlled computa-
tional costs. We find additional computational
cost is necessary for performance improvement
of distillation-based CL. However, it is not possi-
ble to trade performance simply by investing more
computation budget with arbitrary CL algorithms.
We leave detailed discussions in Appendix F.

4.3 Temporal Data Stream

We conduct analysis on pretraining PTLM on
chronologically-ordered tweet corpora, to under-
stand whether lifelong pretraining helps adaptation
to the latest data and improves temporal generaliza-
tion ability. The results are summarized in Table 4.

Will LMs be outdated? We compare the perfor-
mance of Task-Specific (2014) to the Task-Specific
models pretrained on the year of downstream
datasets (noted as Task-Specific (Latest)) and no-
tice consistent improvements in downstream tasks
in 2018 and 2020 (first two columns in Table 4).
Sequential Pretraining could also outperform the
Task-Specific (2014) model. It verifies that lan-
guage models may get outdated, which can be ad-
dressed by task-specific or lifelong pretraining over
the latest corpora.

Does lifelong pretraining help improve the down-
stream model’s performance on latest data? We
show that downstream model’s performance over
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Years 2018 (D3) 2020 (D4)
2014 (D1)
→ 2020 (D4)

2016 (D2)
→ 2020 (D4)

Hashtag Prediction

RoBERTa-base 48.08±1.0 56.42±0.2 39.31±2.7 42.23±2.7
Sequential PT 56.79±0.5 59.85±0.4 44.00±1.1 49.87±1.8
ER 56.93±0.1 59.56±1.7 43.31±0.2 50.72±0.6
Logit-KD 58.21±0.5 60.52±0.2 44.26±0.9 50.92±0.8
Contrast-KD 57.94±0.4 59.54±0.3 45.22±0.1 52.14±1.1
SEED-KD 56.87±0.2 59.71±0.2 43.39±0.4 49.62±1.0
SEED-Logit-KD 57.75±0.4 60.74±0.6 45.35±0.6 51.56±0.7

Task-Specific (2014) 56.16±0.6 59.59±0.3 44.34±0.6 49.26±0.7
Task-Specific (Latest) 56.61±0.4 59.87±0.6 43.44±0.5 49.41±1.1
MTL 57.89±0.4 59.95±0.3 44.04±0.3 50.37±0.3

Emoji Prediction

RoBERTa-base 25.71±0.1 24.42±0.2 12.02±0.4 13.24±0.2
Sequential PT 29.30±0.1 27.69±0.1 14.20±0.2 16.08±1.4
ER 29.50±0.1 27.75±0.1 14.36±0.4 16.82±0.3
Logit-KD 29.77±0.1 27.80±0.1 14.20±0.3 16.28±1.1
Contrast-KD 29.48±0.2 27.72±0.3 14.42±0.3 17.52±0.1
SEED-KD 30.12±0.1 27.66±0.1 14.36±0.1 16.97±0.4
SEED-Logit-KD 29.98±0.1 27.84±0.2 14.36±0.1 16.97±0.3

Task-Specific (2014) 28.94±0.0 26.98±0.2 13.39±0.2 15.14±0.2
Task-Specific (Latest) 29.06±0.2 27.19±0.1 13.00±0.2 14.48±0.3
MTL 29.52±0.2 27.47±0.0 14.07±0.2 16.64±0.2

Table 4: Results on temporal data stream. We show fine-
tuning performance over years 2018 and 2020 (D3, D4) and
the Temporal generalization from 2014 or 2016 to 2020 data
(D1 → D4, D2 → D4) on Twitter Hashtag and Emoji predic-
tion datasets. Models are fine-tuned from the final pre-trained
model fT . Full results are included in Appendix C.

later data (D3, D4) can be improved over Task-
Specific models when continual learning algo-
rithms are applied. From the first two columns
of Table 4, we see Logit-KD and SEED-KD im-
prove Hashtag prediction score over data of years
2018 and 2020. SEED-Logit KD further improves
prediction F1 on Emoji prediction. Note that these
findings are in contrast to the research paper stream,
where CL algorithms do not improve performance
in the latest domain D4. The reason can be the
higher similarity between domains in the tweet cor-
pora making the knowledge transfer easier, which
is further discussed in Appendix H.

Does lifelong pretraining improve temporal gen-
eralization? Temporal generalization evaluates
downstream performance over latest test data when
fine-tuned over outdated training data. We show
lifelong pretraining brings clear improvement to
temporal generalization. From Table 4, we see
even Sequential Pretraining could improve over
the model pretrained merely on the year 2020 data
(Task-Specific (2020)) consistently. We find per-
formance further improves with CL algorithms ap-
plied. SEED-Logit-KD performs best in general
on crossyear hashtag prediction tasks. In crossyear
emoji prediction, we find Contrast-KD and SEED-
KD perform best. We also find that SEED-Logit-
KD could slightly outperform Logit-KD.

5 Related Works
Domain and Temporal Adaptation of Language
Models. Gururangan et al. (2020) study adapta-
tion of PTLMs to domain-specific corpora. Aru-
mae et al. (2020) study algorithms to mitigate for-
getting in original PTLMs, but does not investigate
forgetting that happens over a sequence of domains.
Maronikolakis and Schütze (2021); Röttger and
Pierrehumbert (2021); Luu et al. (2021) proposes
sequential pretraining over domains or emerging
data, but did not investigate CL algorithms. Sev-
eral recent studies have demonstrated the neces-
sity of adapting LMs over time (Lazaridou et al.,
2021) while specifically focusing on factual knowl-
edge (Dhingra et al., 2021; Jang et al., 2021).

Continual Learning Algorithms in NLP. Con-
tinual learning in NLP has mainly been studied for
classification tasks. An effective approach is to
utilize a number of stored past examples (de Mas-
son d’Autume et al., 2019; Wang et al., 2020), or
pseudo examples (e.g., the ones generated with a
PTLM (Sun et al., 2020; Kanwatchara et al., 2021)).
Recent extensions of the algorithm (Chuang et al.,
2020) perform knowledge distillation with gener-
ated pseudo examples. Other lines of works fo-
cus on regularization over the sentence representa-
tions (Wang et al., 2019; Huang et al., 2021; Liu
et al., 2019a) or directly merging models in the
parameter space (Matena and Raffel, 2021). Model
expansion-based approaches (Liu et al., 2019a;
Pfeiffer et al., 2021), including learning domain
specific expert models (Gururangan et al., 2021),
are also actively studied.

6 Conclusion
In this paper, we formulated the lifelong language
model pretraining problem and constructed two
data streams associated with downstream datasets.
We evaluated knowledge retention, adaptation to
the latest data, and temporal generalization ability
of continually pretrained language models. Our
experiments show distillation-based approaches
being most effective in these evaluation setups.
A limitation of the work is that it has not been
fully addressed whether there exists a variant of
distillation-based CL approach that consistently
outperforms Logit-KD. Based on the current obser-
vation, we conclude the performance of different
KD approaches for CL is highly task-dependent. It
asks for more future works into continual learning
algorithms within the proposed problem setup.
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Figure 6: Performance of downstream models with various
number of training examples. The models are fine-tuned from
the final pretrained model (f4).

A Detailed Experiment Settings

We use a linearly decreasing learning rate initial-
ized with 5e-4 on the research paper stream and
3e-4 on the tweet stream. On the research paper
stream, we train the model for 8,000 steps in the
first task, and 4,000 steps in the subsequent tasks.
On the tweet stream, we train the model for 8,000
steps in all tasks. We hold out 128,000 sentences
from each corpus to evaluate MLM performance.
As the size of pretraining corpora is large, during
training, each training example is visited only once.
We use the masked language modeling perplex-
ity over held-out validation sets of the pretraining
corpora as the metrics for hyperparameter tuning.
Common hyperparameters such as learning rate
and batch sizes are tuned with Task-specific models
with the first task. Hyperparameters that are spe-
cific to continual learning algorithms, such as the
scale of the distillation loss, is tuned using the first
two domains in the stream according to the MLM
performance over validation sets. The weight of
the distillation term α is set as 1.0 for logit dis-
tillation and 0.1 for other distillation algorithms.
By default, we replay or perform distillation with
a mini-batch of examples from the replay mem-
ory every 10 training steps in ER and Distillation-
based CL approaches. We use the huggingface
transformers library https://github.com/
huggingface/transformers for implemen-
tation.

B Low-Resource Fine-Tuning

Figure 6 summarizes the performance of fine-tuned
models from the final model checkpoint (t = 4)

Task 2014 2016 2018 2020

Hashtag Prediction

RoBERTa-base 56.65±0.6 45.50±2.1 48.08±1.0 56.42±0.2
Sequential PT 59.00±0.1 54.28±0.3 56.79±0.5 59.85±0.4
ER 59.00±0.1 54.90±0.2 56.93±0.1 59.56±1.7
Adapter 58.76±0.7 52.55±1.5 54.34±1.7 59.01±1.0
Logit-KD 60.93±0.5 55.96±0.2 58.21±0.5 60.52±0.2
Rep-KD 60.47±0.1 51.77±2.6 55.79±1.4 59.80±0.2
Contrast-KD 60.72±0.6 55.85±0.0 57.94±0.4 59.54±0.3
SEED-KD 58.82±0.4 54.55±0.5 56.87±0.2 59.71±0.2
SEED-Logit-KD 61.28±0.2 55.59±0.5 57.75±0.4 60.74±0.6
Task-Specific (2014) 61.62±0.3 55.38±0.6 56.16±0.6 59.59±0.3
Task-Specific (Latest) 59.91±0.3 55.47±1.0 56.61±0.4 59.87±0.6
MTL 60.51±0.3 55.16±1.6 57.89±0.4 59.95±0.3

Emoji Prediction

RoBERTa-base 28.73±0.2 26.86±0.2 25.71±0.1 24.42±0.2
Sequential PT 32.69±0.2 30.55±0.3 29.30±0.1 27.69±0.1
ER 32.88±0.2 30.52±0.2 29.50±0.1 27.75±0.1
Adapter 32.15±0.2 29.85±0.0 28.72±0.0 26.80±0.3
Logit-KD 33.08±0.3 30.88±0.1 29.77±0.1 27.80±0.1
Rep-KD 32.71±0.2 30.51±0.2 29.45±0.1 27.27±0.2
Contrast-KD 32.90±0.1 31.01±0.1 29.48±0.2 27.72±0.3
SEED-KD 32.91±0.1 30.84±0.3 30.12±0.1 27.66±0.1
SEED-Logit-KD 33.28±0.1 31.17±0.1 29.98±0.1 27.84±0.2
Task-Specific (2014) 33.37±0.2 30.54±0.3 28.94±0.0 26.98±0.2
Task-Specific (Latest) 32.31±0.0 29.83±0.5 29.06±0.2 27.19±0.1
MTL 32.78±0.1 30.54±0.0 29.52±0.2 27.47±0.0

Table 5: Full performance on Twitter Hashtag prediction and
Emoji prediction, fine-tuned from the pre-trained model in the
final time step.

using different amount of downstream training ex-
amples. We see on Chemprot and SciERC, the ben-
efit of Sequential Pretraining over RoBERTa-base
is more significant in low-resource fine-tuning se-
tups. Whenever Seqential Pretraining outperforms
RoBERTa-base, we notice Logit-KD could further
improve over Sequential Pretraining.

C Full Results over the Tweet Stream

Tables 5 and 6 summarize full results over the
Tweet stream. Compared to the table 4 in the main
text, we add downstream performance over data
from years 2014 and 2016 (D1, D2), and temporal
generalization from year 2014 to 2020 (D1 → D4).

D Dataset Details

The research paper stream consists of full text
of 6.6M, 12.1M, 7.8M, and 7.5M research pa-
pers from the S2ORC (Lo et al., 2020) dataset.
We evaluate downstream fine-tuning performance
on two in-domain datasets for each research area:
Chemprot relation exaction dataset (Vindahl, 2016)
and RCT abstract sentence role labeling dataset
(Dernoncourt and Lee, 2017) for the bio-medical
domain; ACL-ARC citation intent classification
dataset (Jurgens et al., 2018) and SciERC rela-
tion extraction dataset (Luan et al., 2018) for the

12



Task 2014→ 2020 2016→ 2020 2018→ 2020

Crossyear Hashtag Prediction

RoBERTa-base 39.31±2.7 42.23±2.7 37.19±2.1
Sequential PT 44.00±1.1 49.87±1.8 46.63±0.9
ER 43.31±0.2 50.72±0.6 46.27±0.4
Adapter 42.61±0.5 48.00±1.6 42.63±0.9
Logit-KD 44.26±0.9 50.92±0.8 46.84±1.0
Rep-KD 42.48±0.2 50.38±1.5 42.23±0.2
Contrast-KD 45.22±0.1 52.14±1.1 47.47±0.8
SEED-KD 43.39±0.4 49.62±1.0 46.37±0.8
SEED-Logit-KD 45.35±0.6 51.56±0.7 47.74±0.3
Task-Specific (2014) 44.34±0.6 49.26±0.7 45.09±0.7
Task-Specific (2020) 43.44±0.5 49.41±1.1 44.34±0.4
- 4x steps 44.34±0.6 51.78±0.7 44.69±0.7
MTL 44.04±0.3 50.37±0.3 44.31±0.0

Crossyear Emoji Prediction

RoBERTa-base 12.02±0.4 13.24±0.2 18.67±0.1
Sequential PT 14.20±0.2 16.08±1.4 21.06±0.9
ER 14.36±0.4 16.82±0.3 21.57±0.1
Adapter 13.53±0.2 15.68±0.3 20.64±0.1
Logit-KD 14.20±0.3 16.28±1.1 21.29±1.0
Rep-KD 13.89±0.1 16.03±0.3 20.86±0.2
Contrast-KD 14.42±0.3 17.52±0.1 21.43±0.1
SEED-KD 14.36±0.1 16.97±0.4 21.88±0.3
SEED-Logit-KD 14.36±0.1 16.97±0.3 21.62±0.1
Task-Specific (2014) 13.39±0.2 15.14±0.2 20.79±0.3
Task-Specific (2020) 13.00±0.2 14.48±0.3 19.30±0.2
- 4x steps 12.90±0.4 14.85±0.3 19.83±0.2
MTL 14.07±0.2 16.64±0.2 20.94±0.7

Table 6: Temporal generalization performance on Twitter
Hashtag prediction datasets fine-tuned from the final pre-
trained model. Year 1→Year 2 indicates the hashtag pre-
diction model is fine-tuned on data in year Year 1, and
evaluated on test data in Year 2.

computer science domain; relation extraction over
Synthesis procedures (Mysore et al., 2019) and
named entity recognition over material science
papers (MNER) (Olivetti et al., 2020) for mate-
rial science domain; keyphrase classification and
hyponym classification after filtering out physics
papers for the physics domain (Augenstein et al.,
2017). We report micro-averaged F1 on Chemprot,
RCT, MNER datasets following the evaluation
metrics in the original work, and report macro-
averaged F1 on all other datasets. We use the of-
ficial data splits for all datasets except for RCT,
where we employ a low-resource training setup
following Gururangan et al. (2020).

The pretraining corpora for the tweet stream con-
sist of 25M tweets in each year. For downstream
tasks, we use a separate set of 1M tweets from
each year to construct multi-label hashtag predic-
tion (Gong and Zhang, 2016) datasets and single-
label emoji prediction datasets (Barbieri et al.,
2018). We replace user names to special tokens.
For Hashtag prediction, the label space consists of
tweets containing 200 most frequent hashtags in
each year. We independently sample 500 tweets
per label (hashtag) as training, validation and test

sets, which results 10k examples in each of the
data splits. For emoji prediction, we construct 20-
way single-label emoji prediction datasets for each
year following Barbieri et al. (2018) with the 1M
held out tweets. We sample 5,000 tweets per emoji
in each split, resulting in balanced datasets of the
same size as the hashtag prediction datasets.

E Details of Continual Learning
Algorithms

E.1 Contrastive Distillation
During continual pretraining, in addition to the
language model pretraining objective, we add a un-
supervised contrastive learning objective, namely
the SimCSE (Gao et al., 2021) objective, so that
the similarity in the sentence representation better
reflects the semantic similarity in the sentence. We
use the l2-normalized representation of the start-
of-sequence token at the final layer as the sentence
representation, noted as h. Then, we distill the
intra-batch representational similarity from the pre-
vious model ft−1 to the current model ft. Given a
mini-batch of N examples x, we compute the rep-
resentational dot-product similarity matrix between
normalized sentence representations h between
each pair of examples with ft−1 and ft, noted as
Bt−1 and Bt, where each element Bij is,

Bij =
exp(hi · hj/τ)∑

k=1..N exp(hi · hk/τ)
(1)

where τ is a temperature hyperparameter. We spec-
ify a temperature τt = 0.05 for the teacher model
ft−1 and a temperature τs for the student model
ft = 0.01. We compute the cross-entropy between
Bt−1 and Bt as the distillation loss,

`distill = −
1

N

N∑

i=1

N∑

j=1

Bt−1
ij logBt

ij (2)

E.2 SEED Distillation
SEED distillation proposed by (Fang et al., 2021)
has a similar spirit as the contrastive distillation
with differences in the examples used for com-
puting similarity matrices computes. The algo-
rithm distills representational similarity between
the batch and a large set of other examples, main-
tained in an example queue Q. As the number
of target examples K can be much larger than
the batch size, it allows distillation of richer in-
formation by regularizing similarities. During pre-
training, the method maintains a fixed-size queue
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Q to cache examples from the current domain
Dt. Given a mini-batch of training examples x,
it computes cosine similarity between each pair
of examples within the batch x and Q with ft−1
and ft, resulting in two similarity matrices Bt−1,
Py ∈ R|B|×|Q|. Similar to the contrastive distil-
lation, the distillation loss is the cross-entropy be-
tween two similarity matrices Bt−1 and Bt com-
puted in the same way as Eq. 2.

F Analysis and Controlled Experiments
of Computational Costs

Computational cost is a crucial matter for online
continual learning systems. In this section, we ana-
lyze the computational costs of continual learning
algorithms and perform controlled experiments of
computational costs.

We quantify computational costs with the total
number of forward (Cf ) and backward (Cb) com-
putations (C = Cf+Cb) over the PTLMs, which is
easy to control; in practice, we find the wall clock
time of training was approximately linear to C. We
summarize the number of forward and backward
passes and the wall clock time of training in Table 7.
In the visit of b batches from the training stream,
Sequential PT performs b forward and backward
passes respectively over the PTLM, resulting in
C = 2b. Experience replay further replays 1 batch
of examples every r steps over the training stream,
which results in C = (2 + 2/k)b. In our main
experiments, r is set to 10 (Sec. 3.3). Logit-Distill
and Rep-Distill require one additional forward pass
over a frozen PTLM to compute the target of dis-
tillation, resulting in C = (3 + 3/k)b. Distilla-
tion algorithms that perform contrastive learning
with SimCSE (i.e. SEED-Distill and SEED-Logit-
Distill) additionally require one forward and back-
ward pass using the same batch of examples with
different dropout masks. Therefore, for SEED-
Logit-Distill, C = (5 + 5/k)b.

To control the number of forward and backward
passes, we present approaches to compensate the
lower computation costs compared to Distillation
algorithms and one approach to shrink the com-
putational cost of distillation algorithms: (1) for
Sequential PT, we train the models for 1.2 times
more steps so that C = 2.4b, noted as Sequential
PTb′=1.2b; (2) for ER, we increase the replay fre-
quency k to 5 from the default setup 10, so that
C = 2.4b. We also decrease the cost of Logit-KD
and SEED-Logit-KD by reducing the frequency

of distillation from every 1 batch to every r′ =10
steps, while still replaying and distilling knowledge
over 1 batch of memory examples every 10 train-
ing steps. This results in Cf = (1 + 2/k + 1/k′)b
and Cb = (1 + 1/k)b, where C = 2.4b when
both r and r′ are 10. The approach is referred to
as Sparse Logit-KD. Finally, for SEED-Logit-KD,
we remove the SimCSE loss from training and per-
form sparse distillation similar to Sparse-Logit-KD,
which also results in C = 2.4b.

The performance of the models is presented in
Table 8. We notice that at the end of pretraining, in-
creasing the number of training steps in Sequential
PT by 1.2 times does not lead to performance boost
on the latest domain (D4), while the performance
over tasks from earlier domains (Chemprot, ACL-
ARC, SciERC) slightly dropped, possibly due to
increased forgetting. For ER, we notice replay-
ing only slightly more frequently (ERk=5) than
the default setup (k=10) greatly increased the per-
plexity of MLM, implying significantly increased
overfitting to the memory; while the performance
differences of downstream tasks compared to the
default ER is mixed. When we decrease the replay
frequency of distillation, the performance on Logit-
KD and SEED-KD also decreased and does not
outperform ER.

The results show additional computation costs
can be necessary for continual learning algorithms
such as Logit-KD and SEED-Logit-KD. However,
the results also show that there is no simple trade-
off between computational cost and performance.
We have seen that it is not always beneficial to in-
crease the number of training steps over the emerg-
ing data, as it increases forgetting in earlier do-
mains. Similarly, increasing the frequency of re-
play may lead to significant overfitting to the re-
play memory. Investigating into more effective
continual learning algorithms, despite increased
computation costs, allows us to obtain performance
improvement that cannot be simply traded with
more computation with arbitrary continual learning
algorithms. We leave more thorough studies into
this topic as future work.

G Experiments with BERT on Tweet
Stream After 2019

In this section, we present an additional set of exper-
iments on BERT-base (Devlin et al., 2019) model,
which is originally pretrained with Wikipedia arti-
cles before 2019, with Tweets only after 2019. The
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Method #. of Forward #. of Backward #. Total #. Total (k=10) Wall Time4k

Main results
Sequential PT b b 2b 2b 4.0× 104 sec.
ER (1 + 1/k)b (1 + 1/k)b (2 + 2/k)b 2.2b 4.2× 104 sec.
Logit-Distill (2 + 2/k)b (1 + 1/k)b (3 + 3/k)b 3.3b 6.9× 104 sec.
SEED-Logit-Distill (3 + 3/k)b (2 + 2/k)b (5 + 5/k)b 5.5b 9.7× 104 sec.

Additional Controlled Experiments
Sequential PTb′=1.2b 1.2b 1.2b 2.4b 2.4b 4.4× 104 sec.
ERk=5 1.2b 1.2b 2.4b 2.4b 4.4× 104 sec.
Sparse Logit-KD 1.3b 1.1b 2.4b 2.4b 4.4× 104 sec.
Sparse SEED-Logit-KD\contrast 1.3b 1.1b 2.4b 2.4b 4.5× 104 sec.

Table 7: Number of forward and backward passes over PTLMs and wall clock time of different approaches. The
number of forward and backwards passes are computed over visits of b batches from the training data stream,
where k is the frequency of replay. The wall clock time is calculated over 4k steps of training (which is the number
of training steps of a single domain in the Research Paper stream) excluding the first domain, as no replay or
distillation happens while learning the first domain. We use 2 Quadro RTX 8000 GPUs for training each model.
In the additional controlled experiments (described in Appendix. F), we control the total number of forward and
backward passes of different approaches. This also yields approximately the same wall clock time for approaches.

Task D1 - Biomedical D2 - Computer Science D3 - Materials Science D4 - Physics

Dataset Chemprot RCT-Sample MLM ACL-ARC SciERC MLM MNER Synthesis MLM Keyphrase Hyponym MLM

Sequential Pretraining 82.09±0.5 79.60±0.5 1.654 72.73±2.9 81.43±0.8 1.807 83.99±0.3 92.10±1.0 1.590 67.57±1.0 74.68±4.4 1.381
Sequential Pretrainingb′=1.2b 81.68±0.5 79.80±0.4 1.656 70.57±3.0 80.89±1.2 1.793 83.65±0.3 92.16±0.7 1.578 67.61±1.4 75.03±4.1 1.379
ER 82.73±0.3 79.98±0.3 1.737 72.50±1.0 81.64±1.1 1.857 83.99±0.4 92.65±0.4 1.621 66.11±1.1 72.82±4.3 1.391
ERk=5 83.00±0.1 79.79±0.4 1.913 69.85±2.6 82.30±1.2 2.049 84.03±0.2 91.60±0.6 1.721 65.55±0.4 75.64±3.2 1.418
Logit-KD-Sparse 82.80±0.4 79.80±0.5 1.476 73.31±2.0 81.19±0.8 1.744 83.84±0.4 92.29±0.7 1.472 66.65±0.7 77.27±7.1 1.385
SEED-KD-Sparse 82.51±0.4 79.52±0.5 1.474 73.70±3.4 81.92±0.8 1.741 83.96±0.3 92.20±1.0 1.480 64.75±1.1 71.29±3.6 1.381

Table 8: Performance of distillation algorithms in the setup of controlled computational costs.

Task 2019-1 2019-2 2020-1 2020-2

Hashtag Prediction

BERT-base 46.38±0.4 48.05±0.8 41.67±1.0 69.00±0.5
Sequential PT 50.46±0.1 52.70±0.7 46.49±1.0 71.63±0.7
ER 49.90±0.4 52.33±0.6 46.84±0.3 71.67±0.4
Logit-KD 50.19±0.9 53.70±0.4 47.64±0.4 72.44±0.5
SEED-Logit-KD 50.79±0.8 52.84±0.5 46.04±0.4 72.24±0.6

Table 9: Hashtag prediction performance of continually pre-
trained BERT models over tweets after 2019.

training corpora D1..4 consist of tweets from the
first half of 2019, the second half of 2019, the first
half of 2020, and the second half of 2020 respec-
tively. We accordingly construct hashtag prediction
and cross-year hashtag prediction datasets. The
performance of downstream tasks fine-tuned from
the final pretrained model is presented in Table 9.
We see Sequential PT clearly outperforms BERT-
base which is not continually pretrained, and that
Logit-KD generally improves hashtag prediction
performance compared to Sequential PT except on
the first half of 2019. We hypothesize the small
temporal gap between D1..4 makes improvements
less significant than our main experiment setup.
We present temporal generalization performance
in cross-year hashtag prediction tasks in Table 10.
Similarly, Logit-KD improves over Sequential PT

Task 2019-1→2019-2 2019-1→2020-1 2019-1→2020-2

Hashtag Prediction

BERT-base 40.19±0.3 41.00±0.6 40.85±0.8
Sequential PT 43.30±0.7 48.60±2.1 44.07±0.8
ER 42.96±0.9 46.07±1.6 44.26±0.7
Logit-KD 43.35±1.6 46.91±0.5 45.03±0.2
SEED-Logit-KD 43.56±0.4 45.77±0.7 43.76±0.5

Table 10: Temporal generalization performance of Hash-
tag prediction models fine-tuned from continually pretrained
BERT models over tweets after 2019.

in two out of three cross-year hashtag prediction
setups.

H Analysis of Data Streams

In this section, we provide further analysis about
the created research paper stream and the tweet
stream. We measure cosine distances dv of vocab-
ulary distributions between each pair of different
domains (D1..4) and summarize the results in Fig-
ure 7. The results indicate that the Tweet stream has
a magnitude smaller vocabulary distribution gap
between domains, which is in the scale of 1e−5,
compared to the research paper stream, which is
in the scale of 1e−2. On the Tweet stream, we see
the differences of vocabulary distributions align
with the temporal gap between domains. On the
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Figure 7: Cosine distance of vocabulary distributions between each pair of datasets in two data streams.

research paper stream, we find some domains to
be more similar than others. For example, Bio-
medical (D1) and Material Science domains (D3)
have larger similarity in their vocabulary distribu-
tions, which explains general downstream perfor-
mance increase on D1 after the model is pretrained
on D3 (Fig. 4 (a,b)).

The differences in vocabulary distribution ex-
plain inconsistency in results between two data
streams, specifically, whether lifelong pretraining
improves downstream model performance on the
latest domain, as we mentioned in Sec. 4.3. Other
than this, our main findings, such as the effect of
distillation-based CL algorithms on reducing for-
getting, are consistent over two datasets with such
significant differences in their changes of vocab-
ulary distribution. We believe it implies the con-
clusions in this paper should be reliable in diverse
data streams.

I Ethic Risks

We would like to note that, in practice, continu-
ally pretrained models over real-world data streams
would require identification and removal of biased
contents from pretraining corpora, which may af-
fect the prediction of downstream models. As
PTLMs are continuously updated, the bias in earlier
pretraining may have a profound negative impact.
In future works, it is preferable to develop algo-
rithms to “forget” certain biased knowledge from
language models. We further note that any data
released in this paper, especially the tweet stream,
should only be used for research purposes.
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Abstract

This papers aims at improving spoken language
modeling (LM) using very large amount of au-
tomatically transcribed speech. We leverage
the INA (French National Audiovisual Insti-
tute1) collection and obtain 19GB of text af-
ter applying ASR on 350,000 hours of diverse
TV shows. From this, spoken language mod-
els are trained either by fine-tuning an existing
LM (FlauBERT2) or through training a LM
from scratch. The new models (FlauBERT-
Oral) are shared with the community3 and are
evaluated not only in terms of word predic-
tion accuracy but also for two downstream
tasks: classification of TV shows and syntactic
parsing of speech. Experimental results show
that FlauBERT-Oral is better than its initial
FlauBERT version demonstrating that, despite
its inherent noisy nature, ASR-Generated text
can be useful to improve spoken language mod-
eling.

1 Introduction

Large language models are trained with massive
texts which do not reflect well the specific as-
pects of spoken language. Hence, modeling spo-
ken language is challenging as crawling ’oral-
style’ transcripts is a difficult task. To overcome
this, our pilot study investigates the use of mas-
sive automatic speech recognition (ASR) gener-
ated text for spoken language modeling. We be-
lieve that this methodology could bring diversity
(oral/spontaneous style, different topics) to the lan-
guage modeling data. This might be also useful
for languages with fewer text resources but po-
tential high availability of speech recordings. We
also see long-term benefits to using ASR generated
text as speech recordings convey potentially useful
metadata (ex: male/female speech) that could be
leveraged for building LMs from more balanced

1https://www.ina.fr
2https://github.com/getalp/Flaubert
3https://huggingface.co/nherve

data. Finally, as speech transcripts are naturally
grounded with other modalities (if extracted from
videos for instance), ASR could help building large
scale multimodal language understanding corpora.

The contributions of this paper are the following:

• we build and share FlauBERT-Oral models
from a massive amount (350,000 hours) of
French TV shows,

• we evaluate them on word prediction (on both
written and spoken corpora), automatic clas-
sification of TV shows and speech syntactic
parsing,

• we demonstrate that ASR-Generated text can
be useful for spoken LM.

2 Related Works

We mention here related works to better posi-
tion our approach: learning LMs from spoken
transcripts, multimodal models and using LMs to
rescore ASR.

Learning LMs from spoken transcripts. Ku-
mar et al. (2021) probes BERT based language
models (BERT, RoBERTa) trained on spoken tran-
scripts to investigate their ability to encode prop-
erties of spoken language. Their empirical results
show that LM is surprisingly good at capturing
conversational properties such as pause prediction
and overtalk detection from lexical tokens. But
their LMs evaluated are mostly trained on clean
(non ASR) spoken transcripts except one called
ASRoBERTa which is trained on 2000h of tran-
scribed speech only (1k Librispeech + 1k propri-
etary dataset). As a comparison with this study, we
train our models on 175x more ASR data.

Multimodal models. While our approach uses
ASR to build text-based spoken language mod-
els, Chuang et al. (2019) proposed an audio-and-
text jointly learned SpeechBERT model for spoken
question answering task. They show their model
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is able to extract information out of audio data
that is complementary to (noisy) ASR output text.
The architecture proposed by Sundararaman et al.
(2021) is different in the sense that it learns a joint
language model with phoneme sequence and ASR
transcript to learn phonetic-aware representations
that are robust to ASR errors (not exactly a multi-
modal model). While speech or multimodal unsu-
pervised representation learning is an interesting di-
rection, this is out of the scope of this paper which
focuses on language modeling from text transcripts
only.

BERT for ASR re-ranking. We also mention
here LMs to rescore ASR as this could be an inter-
esting application of our proposed spoken language
models. Chiu and Chen (2021) used BERT models
for reranking of N-best hypotheses produced by
automatic speech recognition (ASR). Their experi-
ments on the AMI benchmark demonstrate the ef-
fectiveness of the approach in comparison to RNN-
based re-ranking. A similar idea is introduced by
Fohr and Illina (2021) where BERT features are
added to the neural re-ranker used to rescore ASR
hypotheses. Even more recently, Xu et al. (2022)
showed how to train a BERT-based rescoring model
to incorporate a discriminative loss into the fine-
tuning step of deep bidirectional pretrained models
for ASR.

3 From FlauBERT to FlauBERT-Oral

3.1 ASR system

The speech recognition system used to produce the
text transcripts for this study was built using Kaldi
(Povey et al., 2011). The acoustic model is based
on the lattice-free MMI, so-called "chain" model
(Povey et al., 2016). We used a time-delay neural
network (Peddinti et al., 2015) and a discriminative
training on the top of it using the state-level min-
imum Bayes risk (sMBR) criterion (Veselỳ et al.,
2013).

For the acoustic model training, we used several
TV and RADIO corpora (ESTER 1&2 (Galliano
et al., 2009), REPERE (Giraudel et al., 2012) and
VERA (Goryainova et al., 2014)). A regular back-
off n-gram model was estimated using the speech
transcripts augmented with several French newspa-
pers (see section 4.2.3 in Deléglise et al. (2009))
using SRILM.

A 2-gram decoding is performed, followed by
a 3-gram and a 4-gram rescoring step. The LM
interpolation weights between the different data

sources were optimized on the REPERE (Giraudel
et al., 2012) development corpus. The vocabulary
contains the 160k most frequents words in the man-
ually transcribed train corpus. Automatic speech
diarization of the INA collection was performed
using the open source toolkit LIUMSpkDiarization
(Meignier and Merlin, 2010).

Some results on different test corpora can be
found in table 1.

Corpus WER

REPERE test corpus 12.1
ESTER1 test corpus 8.8
ESTER2 test corpus 10.7

Table 1: ASR Performances on French TV or Radio
corpora

3.2 Automatically transcribing 350,000 hours
of the INA collection

The transcripts used in these experiments were
taken from time slots corresponding to news pro-
grammes on French television and radio between
2013 and 2020. We transcribed the continuous
news media between 6am and midnight each day
(BFMTV, LCI, CNews, France 24, France Info and
franceinfo). For radio, the morning news were used
(Europe1, RMC, RTL, France Inter) and for gener-
alist television channels we transcribed the evening
news (TF1, France 2, France 3, M6). A total of
350,000 hours were automatically transcribed. The
system we use provides us with raw text, with-
out punctuation or capitalization. In order to have
a pseudo sentence tokenization, we leverage the
speaker diarization output to segment our transcrip-
tions into "sentences". We end up with a total of
51M unique speech segments for a total of 3.5G
words (19GB of data). The ASR generated text is
strongly biased towards news content.

3.3 Fine-tuning or re-training
FlauBERT-Oral

The initial French language model (FBU), trained
in 2020 on natural text, is FlauBERT (Le et al.,
2020). Models of different sizes were trained using
masked language modeling (MLM) following a
RoBERTa architecture (Liu et al., 2019) and using
the CNRS Jean Zay supercomputer. They were
shared on HuggingFace.4 For comparison, these

4https://huggingface.co/flaubert
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models were trained on 71GB of natural text.
Following the architecture of Le et al. (2020),

we propose several learning configurations in order
to observe the impact of different parameters on
the performance of the models obtained. Since we
only have lowercase transcripts, we consider the
flaubert-base-uncased model as our reference.5

The first configuration, FlauBERT-O-
base_uncased (FT), consists in fine-tuning the
public flaubert-base-uncased model for some
epochs using our ASR transcripts.

The second configuration FlauBERT-O-mixed
(MIX) is a full model re-trained using a mix of
ASR text and written text, as training data. Writ-
ten text comes from two main sources: the French
wikipedia dump and press articles captured by the
OTMedia research platform (Hervé, 2019) (online
press and AFP agency for the same time period).
Overall, this learning dataset is also strongly news-
oriented. For the written text, we use the same
sentence segmentation tool as the one used for
FlauBERT. Our dataset is balanced between ASR
and written text: we use 94M randomly selected
written text sentences representing 13G of data to
which we removed the punctuation and capitaliza-
tion to make it consistent with our ASR data. For
this mixed model, we also retrain the BPE tokenizer
(50K sub-word units).

The third configuration, FlauBERT-O-asr, con-
sists in re-training LMs from scratch using ASR
data only. For the first model (ORAL), we use the
tokenizer provided with the flaubert-base-uncased
model and for the second one (ORAL_NB) we re-
train a BPE tokenizer (50K sub-word units). Both
tokenizers share 35088 (overlap) out of 67536
(FlauBERT initial) tokens, only 52% overlap.

These different configurations therefore provide
us with 4 language models to evaluate. Training
was done on a single server with 2 Xeon CPUs
of 12 cores each, 256 GB of RAM and 8 Nvidia
GeForce RTX 2080 Ti graphics cards with 11
GB of memory. With this hardware, it took us
15 days to train 50 epochs of each model in the
flaubert-base configuration (137M parameters) us-
ing FlauBERT code.

4 Word Prediction Experiments

The first step in evaluating our models is to look
at their behaviour for the word prediction task. In

5https://huggingface.co/flaubert/
flaubert_base_uncased

addition to the performance on the trained models,
we also want to have an idea of the performance
on texts of different nature (written style or oral
style). We therefore assembled several datasets to
measure the word prediction performance of the
models we trained.

We make sure that these datasets are not included
in the training data of the default FlauBERT model
nor in our own. We have a first corpus (afp2021)
of AFP dispatches from the year 2021, i.e. after the
period of our training data collected from the on-
line press. This will allow us to have a measure of
performance on written text. Secondly, we want to
evaluate our models on oral texts. We use the tran-
scripts of the French National Assembly sessions.6

We are using the 13th (under Sarkozy parl_13) and
15th (currently under Macron parl_15) mandates.
These texts are a manual transcription of what is
said in the hemicycle, which are prepared speeches
with some degree of spontaneous style as well. A
second corpus is constituted with, once again, the
manual transcriptions made for educational videos7

and interviews8 that INA makes available via its
web studio (studio_manual). These transcriptions
are of very good quality. We also transcribed
these videos from the studio with our ASR sys-
tem (studio_asr) in order to be able to compare the
performance on both types of data.

We report in the graphs the accuracy obtained
on the different datasets for a word prediction task
after a word has been masked. The masking pa-
rameters are the same as those used during training
with MLM loss.
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Figure 1: FT - Word prediction accuracy of FlauBERT-
O-base_uncased

Figures 1 to 4 show the results assessed at
each epoch. In table 2, we summarise the re-
sults for the last epoch and also for the default

6https://data.assemblee-nationale.fr/
7https://www.ina.fr/

offres-et-services/fresques-numeriques
8https://entretiens.ina.fr/
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Figure 2: ORAL - Word prediction accuracy
of FlauBERT-O-asr, using the initial flaubert-base-
uncased BPE tokenizer
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Figure 3: MIX - Word prediction accuracy of
FlauBERT-O-mixed
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Figure 4: ORAL_NB - Word prediction accuracy of
FlauBERT-O-asr_newbpe, using a new BPE tokenizer
trained on ASR data

flaubert_base_uncased model (FBU). For the fine-
tuned FlauBERT-O-base_uncased model, we no-
tice a slight improvement in performance for afp
and studio datasets, obtained from the first epoch,
which means that adding ASR generated text im-
proves word prediction task on these datasets. We
observe that globally, whatever the model, the
datasets of the parliamentary sessions are those
for which the best performances are obtained on
the word prediction task, even exceeding that of the
training dataset for the FlauBERT-O-base_uncased
and FlauBERT-O-mixed models. These models
are trained on written and spoken texts and it is
not surprising that the performance is good since
the very nature of the parliamentary data is a mix-

ture of prepared and spontaneous speech. There
is no significant difference between parl_13 and
parl_15. On these parlementary speeches, there is
no significant performance difference between the
3 models that have seen written text during their
training (FBU, FT and MIX). As we observed also
that our FlauBERT-O models improve also on writ-
ten text (afp2021), we explain this by the fact that
those texts are strongly related to news events, so
they are in a similar context to our ASR data which
is focused on news slot transcripts. For the last
corpus, from the INA web studio, we have educa-
tional videos or interviews of personalities which
are more distant from news data. There is a great
disparity in performance depending on whether we
consider manual (studio_manual) or automatic (stu-
dio_asr) transcription. We believe that the different
sentence segmentation algorithms have a very clear
impact on this corpus. Finally, we notice that the
ORAL_NB model performs slightly worse than the
ORAL model. The BPE tokenizer obviously has
an impact on the overall performance of the LMs
and it seems, from this result, that using BPE units
extracted from clean data (and not noisy ASR data)
is beneficial even if the training material is itself
ASR generated text.

Corpus FB
U

FT M
IX

O
R

A
L

_N
B

O
R

A
L

afp2021 53.1 55.1 60.9 48.6 51.9
parl_13 64.9 63.6 64.5 58.8 60.0
parl_15 64.6 64.3 64.3 59.7 60.7
studio_asr 40.2 48.0 46.6 46.8 47.2
studio_manual 57.0 59.4 58.9 56.3 56.9

Table 2: Word prediction task accuracies

5 Downstream Task 1: Automatic
Classification of TV Shows

We evaluate our different models on a news clas-
sification task. For the main generalist channels,
INA’s documentalists finely segment the newscasts
and annotate them in order to describe their con-
tent. This very rich metadata is used in particular to
establish quantitative studies on the news in France.
The InaStat barometer9 has set up a stable method-

9http://www.inatheque.fr/
publications-evenements/ina-stat/
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ology over time to classify these news items into 14
categories (such as society, French politics, sport or
environment). We use the news items of 4 channels
(TF1, France 2, France 3 and M6) for the years
2017, 2018 and 2019, which gives us a total of
47 867 short TV shows. The average length of
these shows is 92 seconds.

5.1 Standard Learning Setting
The objective is to assess to what extent it is pos-
sible to classify these topics into the 14 categories
solely on the basis of what is pronounced, i.e. from
the ASR transcripts. We establish a baseline using
a simple SVM classifier (with a non-parametric
triangular kernel) on TF-IDF vectors with two vo-
cabulary sizes of 5K and 20K words. To test the
FlauBERT models, we use the HuggingFace Trans-
formers library and the FlaubertForSequenceClas-
sification class, which adds a simple dense classi-
fication layer on top of our models. To obtain a
vector representation of our texts before this clas-
sification layer, we use the ’mean’ summary type.
We do not make any model selection and report the
results for all learning epochs. Since the 14 cate-
gories are not well-balanced, we use the weighted
F1 measure to evaluate the performance. The exper-
iments are systematically performed on 10 different
random splits of the dataset, taking into account the
cardinality of the 14 categories, so as to have 38K
examples for the training set and 5K for the test
set. We show the average results and the standard
deviation in figure 5.
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Figure 5: TV news classification - train 38K, test 5K

We can see in this configuration the contribu-
tion of the LMs compared to the SVMs along the
training epochs of the classifier. If we look at the
performance at the first epoch, we can see that the
flaubert_base_uncased model has almost equiva-
lent performance to the SVM (0.78). It is only after
a few iterations of learning that the model fits the
ASR data and reaches 0.81. On the other hand,
the models that have already seen ASR data during

ina-stat-sommaire.html

their training have a better performance from the
first epoch. The model trained only on ASR data is
the best performing (ORAL). After 10 epochs, the
3 FlauBERT-Oral models converge and are equiva-
lent for this task.

5.2 Few Shot Learning Setting

In order to test the LMs under more challenging
conditions, we progressively reduce the number of
training examples to get closer to few-shot learn-
ing conditions. We thus restart the classification
with 5K training examples, then 500 and finally
200. Again, we take into account the cardinality
of the 14 categories. For the last experiment with
only 200 training examples, the vocabulary is too
small and we can only test the SVM baseline with
a vocabulary of 5K words, but not the version with
20K words. Moreover, we push to 30 epochs in
this latter case.
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Figure 6: TV news classification - train 5K, test 38K
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Figure 7: TV news classification - train 500, test 47K
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Figure 8: TV news classification - train 200, test 47K

As the number of training examples decreases,
the performance gain over SVMs becomes more
obvious. This is an expected result. In all cases,
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the models trained on ASR only text (ORAL) are
the best of the FlauBERT-O models. Compared to
the ORAL_NB model, only the tokenizer is differ-
ent. This result may appear counter-intuitive in a
first place, as one would expect a model entirely
learned on ASR data to perform better on a classifi-
cation task using only ASR data as input. However,
this is probably counterbalanced by the fact that
using BPE units extracted from clean data is im-
portant (as we have seen in the word prediction
experiments). This invites us to further investigate
the role of the tokenizer in spoken language model-
ing. As in the previous case, the Flaubert models
converge almost with a 2 F1 point difference in
favour of the FlauBERT-O models over the initial
FlauBERT model.

6 Downstream Task 2: Syntactic Analysis
of Spoken Conversations

This section is about the downstream task of jointly
predicting part of speech tags (POS) and building a
labelled dependency tree. The models performing
these tasks typically rely on word representations,
that are often pretrained, especially when the data
is scarce. We will use our different spoken lan-
guage models to obtain contextual word represen-
tations of a syntactically annotated and manually
transcribed oral French corpus. For each of these
representations, a model will be trained to perform
the joint prediction of POS tags and labelled depen-
dencies. We also use as baseline a model trained
using non-contextual representations obtained with
FastText,10 and a model learning its own represen-
tations without any pretraining.

6.1 Data

We used the annotated subset of the speech corpus
of the Orfeo project (Benzitoun et al., 2016; Nasr
et al., 2020), gathered with the goal of reflecting
the contemporary usage of the French language.

The audio extracts on which this corpus is based
come from various origins and modalities: from
one to multiple speakers, work meetings, family
dinner conversations, narration, political meeting,
interview, goal-oriented telephone conversations.
Their duration varies from four minutes to an hour.

The reference audio transcripts have been ob-
tained after correcting the output of an ASR system.
The corpus is annotated in part of speech (POS)

10https://fasttext.cc

tags, lemmas, labeled dependency trees and sen-
tences boundaries. There are 20 possible POS tags
and 12 syntactic functions.

We randomly split the corpus into train/dev/test
sets of respective sizes 134,716/27,937/29,529
words; we sampled from each source so that the var-
ious origins of the audios are equally represented
in each split.

6.2 Parsing Model

The model is a transition based parser using the
arc-eager transition system (Nivre, 2008), which
has been extended for the joint prediction of POS
tags and parsing transitions (Dary and Nasr, 2021).

It consists of a single classifier, taking as input
a numeric representation of the current state of the
analysis, called a configuration. The classifier pre-
dicts a probability distribution over the set of POS
tagging actions or parsing actions, depending of
the current state of the configuration. The analysis
assume that the text is already tokenized and seg-
mented into sentences; the words of each sentence
are considered one by one, in the reading order; a
POS action is predicted for the current word, then
a sequence of arc-eager actions is predicted until
the current word is either attached to a word on its
left or shifted to a stack for future attachment to a
word on its right. The predictions are greedy: it is
always the top scoring action among the allowed
ones. We do not use beam search for decoding.

The numeric representation of the current con-
figuration is comprised of:

• The concatenation of the word embeddings,
reduced from dimension 768 to dimension 64
by a linear layer, of the following context: the
current word, the three preceding ones, the
two following ones, the three topmost stack
elements and the rightmost and leftmost de-
pendents of the three topmost stack elements,

• The output of three different BiLSTM process-
ing sequences of tags of the same nature. The
first one is taking as input the sequence of POS
tags and syntactic function of the current word,
the three previous ones and the three topmost
stack elements. The second one is taking the
sequence of the last 10 actions that have been
applied to this configuration. The last one is
taking the sequence of distances (in number
of words) between the current word and the
three topmost stack elements. In each case,
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the sequence elements are encoded by learn-
able and randomly initialized embeddings of
size 128, and the output of the BiLSTM is a
vector of size 128,

• A learnable and randomly initialized embed-
ding encoding the current state of the configu-
ration (POS tagging or dependency parsing).

A dropout of 50% is applied to the resulting
vector; then it passes through two hidden layers
of respective sizes 3200 and 1600, both with a
dropout of 40% and a ReLU activation. Finally, the
network is ended by one of the two decision layers,
depending on the current state, which is simply a
linear layer of dimension the number of possible
actions followed by a softmax.

Each model was trained for 40 epochs; after
every epoch the model was evaluated on the dev
set and was saved if it was an improvement. After
the fourth epoch, the entire train set was decoded
using the model that was being trained, in order
to generate and integrate novel configurations in
the dataset for the epochs to come. This technique
allows the model to be more robust, exploring non-
optimal configurations during its training. It is
based on the dynamical oracle model of Goldberg
and Nivre (2012).

6.3 Experiments

The first set of experiments compares input repre-
sentations from the FlauBERT variants (FBU, MIX,
ORAL) to uncontextual word embeddings (Fast-
text) and randomly initialized embeddings. Except
for random embeddings, token representations are
frozen when the parsing system is trained.

As pre-processing, we deanonymize the tran-
scripts by replacing masked proper name tokens
with non-ambiguous names randomly chosen for
each recording. In the fasttext setting, representa-
tions are computed for unknown words from their
character n-gram factors. Contextual representa-
tions are computed at the whole recording level in
chunks of 512 tokens without overlap. The parser
is applied on the reference transcript and reference
segmentation. We use mean pooling for words that
are split in multiple tokens by BPE.

Parsing performance is evaluated with Labeled
Attachment Score (LAS), the accuracy of predict-
ing the governor of each word and its dependency
label, Unlabeled Attachment Score (UAS), which
ignores the dependency label, and Part-of-speech

tagging accuracy (UPOS). The scoring script is
from CoNLL campaigns.

Repr. LAS UAS UPOS
No pretraining 84.92 88.48 94.51
Fasttext 85.36 88.76 95.12
FBU 85.55 89.02 93.36
MIX 86.33 89.79 94.43
ORAL 87.65 90.92 95.55
ORAL_NB 87.54 90.73 95.63

Table 3: Main result on syntax prediction. Metrics are
Labeled Attachment Score (LAS), Unlabeled Attach-
ment Score (UAS) and Part-of-speech tagging accuracy
(UPOS). Higher is better, highest figure in bold.

Results presented in Table 3 show that pre-
training is valuable for syntactic parsing in that set-
ting and that pretraining on ASR (MIX and ORAL)
leads to a substancial improvement in LAS over
the text-only FlauBERT model (FBU) even though
there is no domain overlap between the TV shows
on which the earlier is trained and the data of the
Orfeo corpus. There is no benefit from retraining
BPE (ORAL_NB).

Repr. LAS UAS UPOS
FBU 85.55 89.02 93.36
FBU w/ punct 87.48 90.69 95.03
ORAL 87.65 90.92 95.55

Table 4: Effect of repunctuating speech transcripts on
syntactic parsing prior to extracting representations. Re-
sults from the ORAL representations are given for refer-
ence.

As noted earlier, speech recordings do not have
punctuation and it is debated whether punctuation
is suitable for spontaenous conversations. As punc-
tuation is rather regular in text, it would make sense
for LMs trained on text to over-rely on the cues it
brings, and representations to be affected by a lack
of punctuation. Table 4 shows syntactic parsing
results on representations where a simple heuris-
tic is applied to add a period at the end of each
sentence prior to extracting representations. This
punctuation is stripped before passing the tokens to
the syntactic parser and only used at the encoding
stage. Results show that most of the difference in
performance between the FBU and ORAL models
can be compensated by this use of virtual punc-
tuation. Using accurately predicted punctuation
with diverse symbols and intra-sentence marks is
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Repr. LAS UAS UPOS
Global OOV ∆ Global OOV ∆ Global OOV ∆

FBU 85.55 74.10 -11.45 89.02 82.20 -6.82 93.36 79.00 -14.36
MIX 86.33 74.40 -11.93 89.79 82.47 -7.33 94.43 80.35 -14.07
ORAL 87.65 73.68 -13.97 90.92 82.81 -8.11 95.55 79.00 -16.55

Table 5: Syntactic parsing performance on OOV words according to automatic transcription system. The ∆ column
contains the difference between the global accuracy and the accuracy on OOVs only.

left as future work, but we conjecture that it will
marginally improve over this crude heuristic.

Gauging the impact of speech-to-text errors on
representations from LMs trained on such data
is difficult since there are no manual references
available for large quantities of speech transcripts.
Since the system used to transcribe the recordings
is closed vocabulary, one way to look at this prob-
lem is to compute the accuracy of the syntactic
parser on words that are out-of-vocabulary (OOV)
for the LM training data. Due to BPE, those words
are necesseraly tokenized in smaller units which
are pooled prior to passing them to the parser, and
might hamper the quality of the associated rep-
resentations. Table 5 details the performance of
the syntactic parser on OOVs. Due to their in-
frequent nature, OOVs are mainly swear words,
proper names, and tokenization artifacts. They
are difficult to handle for all models, and suffer
from a large performance reduction compared to
the global figure, even for the FBU model which
has seen a much larger variety of texts. The sys-
tem fed with representations of the model trained
on ASR data only (ORAL) is the most affected
despite its better global performance.

Figure 9: LAS learning curve for syntactic parser ac-
cording to quantity of training data. Similar shape is
obtained for UAS and UPOS.

Finally, Figure 9 shows the learning curve when
reducing the training data available to the syntactic
parser. For this, we randomly sampled 10 subsets
of the training data at the recording level in order
to fit a target ratio from 2.5% to 100%. The figure
shows that LAS is always better for ORAL rep-
resentations and that MIX is closer to FBU when
less data is available.

6.4 Takeaways

It seems that exploiting ASR transcripts for learn-
ing LMs is beneficial for syntactic parsing of
speech transcripts. Analyses presented show that
punctuation plays an important role in representa-
tions. Our analysis of parsing performance on OOV
words (according to the speech-to-text system) re-
veals that our FlauBERT-O-asr (ORAL) model is
more affected than its initial FlauBERT baseline
(FBU), despite overall better performance.

7 Conclusion and future work

We investigated spoken language modeling using
ASR generated text (350,000 hours of diverse TV
shows). The new models for French (FlauBERT-O)
are shared with the community. Experimental re-
sults show that FlauBERT-O is generally better than
its initial FlauBERT version for the downstream
speech tasks we experimented with. However we
should also check its performance on text down-
stream tasks (such as (Le et al., 2020)) and on more
downstream speech tasks (SLU or ASR re-scoring).

In this work, all our texts were uncased as our
ASR only generates lowercased transcripts. We be-
lieve that applying massively re-capitalisation (and
restoring punctuation as well) might be beneficial
to train stronger spoken LMs. We also plan to ana-
lyze more the specificities of our ASR-generated
texts (do they contain more oral features such as
word repetitions, more interjections?). Finally,
some of the results obtained lead us to believe that
it is important to further evaluate the impact of BPE
units for spoken language modeling.
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Abstract
Evaluating bias, fairness, and social impact in
monolingual language models is a difficult task.
This challenge is further compounded when
language modeling occurs in a multilingual
context. Considering the implication of eval-
uation biases for large multilingual language
models, we situate the discussion of bias eval-
uation within a wider context of social scien-
tific research with computational work. We
highlight three dimensions of developing mul-
tilingual bias evaluation frameworks: (1) in-
creasing transparency through documentation,
(2) expanding targets of bias beyond gender,
and (3) addressing cultural differences that ex-
ist between languages. We further discuss the
power dynamics and consequences of training
large language models and recommend that re-
searchers remain cognizant of the ramifications
of developing such technologies.

1 Introduction
Machine learning (ML) systems, especially large lan-
guage models (LLMs), are prone to (re)produce harmful
outcomes and social biases (Bender et al., 2021; Raji
et al., 2021; Blodgett et al., 2020; Aguera y Arcas et al.,
2018). Despite recent advances in LLMs (Bender and
Koller, 2020), they have shown to disproportionately
produce harmful content when addressing certain topics
(Gehman et al., 2020; Lin et al., 2021) and demograph-
ics (Sheng et al., 2019; Liang et al., 2021; Dev et al.,
2021a)—in part due to the training data used (Dunn,
2020; Gao et al., 2020; Bender et al., 2021), and the
design of modeling processes (Talat et al., 2021; Hovy
and Prabhumoye, 2021). In response, previous work has
explored ways in which such social biases can be mea-
sured and counteracted (Nangia et al., 2020; Gehman
et al., 2020; Czarnowska et al., 2021). Typically, these
issues have been addressed either by conceptualizing
the underlying systemic discrimination as “bias” or by
developing evaluation datasets that shed light on how
LLMs produce harmful social outcomes. However, in
the former case, as Blodgett et al. (2020) points out,
these conceptualizations often lack clear descriptions,

e.g., type of systemic discrimination and affected demo-
graphics. This results in a highly under-specified “bias”,
which could lead to a downstream issue in the validity
of the technical approaches that are developed (Blodgett
et al., 2021). Similarly, the ill-defined “bias” is fur-
ther compounded by the specifics of many benchmarks.
Often, benchmarks exhibit discrepancies between un-
derstandings of the unobservable theoretical constructs
against which “bias” is being measured and their opera-
tionalization (Jacobs and Wallach, 2021; Friedler et al.,
2021). Furthermore, many prior benchmark datasets
were developed with specific modeling architectures in
mind (Nangia et al., 2020). They are limited to English
and are culturally Anglo-centric.1

In this position paper, we present an overview of
the current state-of-the-art concerning challenges and
measures taken to address bias in language models.
Specifically, we document the challenges of evaluat-
ing language models, with a focus on the generation of
harmful text. By engaging our challenges with the rele-
vant social scientific literature, we propose (1) a more
transparent evaluation of bias via scoping and documen-
tation, (2) focusing on the diversity of stereotypes for
increased inclusivity, (3) careful curation of culturally
aware datasets, and (4) creation of general bias measures
that are independent of model architecture but capture
the context of the task.

We recognize that many of the challenges that we
have encountered and described here are large open
problems that will require joint work to address. Our
goal is to analyze these challenges and provide scaffold-
ing for future work.

2 Grounding Bias, Fairness and Social
Impact across Disciplines

Considering biases in socio-technical systems as a
purely technical construct is an insufficient consider-
ation of the problem (Blodgett et al., 2020). In this
section, we situate LLMs, and their applications, within
the wider interdisciplinary literature on social harms
and discrimination.

1For example, the BigScience biomedical working group
has estimated that 82% of evaluation datasets in the biomedical
and clinical field are for corpora in English (Datta et al., 2021).
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2.1 Social Discrimination
Issues of socially discriminatory (human and techno-
logical) systems have long been the subject of study
for scholars across disciplines, e.g. in Science and
Technology Studies (Haraway, 1988), discard studies
(Lepawsky, 2019), social anthropology (Douglas, 1978),
philosophy of democracy (Fraser, 1990), gender and
LGBTQIA+ studies (Spade, 2015; Rajunov and Du-
ane, 2019; Keyes et al., 2021; D’Ignazio and Klein,
2020), media studies (Gitelman, 2013), archival studies
(Agostinho et al., 2019), sociolinguistics (Labov, 1986;
Cheshire, 2007), and critical race theory (Noble, 2018;
Benjamin, 2019).2

Scholars argue that technical systems are embedded
in social contexts (Lepawsky, 2019; Haraway, 1988) and
are therefore necessarily evaluated as socio-technical
systems interacting with complex social hierarchies
(Winner, 1980; Benjamin, 2019; Costanza-Chock, 2018;
Friedler et al., 2021). When technological systems pri-
oritize majorities, there is a risk they oppress minori-
ties at the personal, communal, and institutional levels
(Costanza-Chock, 2018). Haraway (1988) argues that
researchers default to a “view from nowhere”, without
reflecting on the context or use of their research. This
default view often represents the interests of dominant
majorities, disregarding knowledges from marginalized
communities. Considering machine learning systems,
Chun (2021) argues that the development of such tech-
nological systems relies on faulty assumptions (e.g., that
past data collections can adequately and fairly predict
future human behavior) which can lead to embedded
social biases. Situating ourselves in the wider academic
literature of social discrimination and marginalization,
compels us to recognize that our technical systems must
be considered in the social context in which they exist.

2.2 Machine-learned Systems in Social Context
On the topic of socially discriminatory systems within
machine learning, Buolamwini and Gebru (2018) and
Raji and Buolamwini (2019) show that there are sig-
nificant disparities along gendered and racialized lines
in commercially available facial recognition and anal-
ysis systems. Similar issues of discriminatory social
biases in natural language processing (NLP) systems
have resulted in emerging research dedicated to the iden-
tification, quantification (e.g. Rudinger et al., 2018; De-
Arteaga et al., 2019; Czarnowska et al., 2021), and miti-
gation of bias (Bolukbasi et al., 2016; Sun et al., 2019;
Garimella et al., 2021) in NLP systems.

However, these methods tend to obscure rather than
remove social biases (Gonen and Goldberg, 2019), and
are particularly brittle when applied to complex, contex-
tual language representations (Dev et al., 2020).

Further, operationalization of under-specified “bias”

2Many recent works on socially biased technological sys-
tems are interdisciplinary, e.g., ‘Race After Technology: The
New Jim Code’ (Benjamin, 2019) spans critical race theory,
science and technology, Black feminism, and media studies.

has varied widely across studies, and in some cases has
been internally inconsistent with their stated goals (Blod-
gett et al., 2020; Jacobs and Wallach, 2021). The recent
surge of LLMs is no exception to such concerns. Hovy
and Prabhumoye (2021); Talat et al. (2021), and Cao
and Daumé III (2020) argue that socially discriminatory
biases can be encoded in several stages of the LLM
development process (Biderman and Scheirer, 2020),
including data sampling, annotation, selection of input
representations or model, research design, and how the
models are situated with regards to the language com-
munities that they are applied to. Language generation
models, despite their inference-time flexibility, are par-
ticularly susceptible to reproducing hegemonic social
biases and generating offensive language, even when
not explicitly prompted to do so (Sheng et al., 2021;
Wallace et al., 2019; Bender et al., 2021).

In efforts to address the expression of such social
biases, a number of bias evaluation benchmarks have
been proposed (Dev et al., 2021b; Zhao et al., 2018; Cao
and Daumé III, 2020). However, common evaluation
benchmarks are fraught with pitfalls in their concep-
tualization of bias, stereotypes, and harms, including
meaningless or poorly formed stereotype constructions,
non-intersectional examples, contexts that don’t reflect
downstream use, and reliance on specific model archi-
tectures (Blodgett et al., 2021; Jin et al., 2021). Further-
more, bias evaluation benchmarks often make strong
assumptions about the validity, reliability, and existence
of observable properties, e.g. pronouns, as signals for
unobservable theoretical constructs such as gender (Ja-
cobs and Wallach, 2021). This is particularly problem-
atic when building benchmarks for biases against com-
munities that resist categorization based on observable
characteristics (e.g. LGBTQIA+ and racialized people)
and leads to reliance on existing stereotypes (Tomasev
et al., 2021; Dev et al., 2021a).

This rapid development of NLP resources and tools
have further yielded a non-inclusive environment,
skewed heavily towards English and Anglo-centric bi-
ases (Joshi et al., 2020). Sambasivan et al. (2021) and
Chan et al. (2021) contend there remains a significant
gap between the communities governing and governed
by AI, and advocate for a redistribution of powers and
responsibilities in developing responsible AI.

Considering gender bias, Stanczak and Augenstein
(2021) show that existing methods (1) largely avoid eth-
ical considerations or evaluations of gender bias, (2)
focus primarily on binary gender treatment, in mostly
Anglo-centric settings, and (3) employ limited or flawed
evaluation methodologies. Such issues are in part ex-
acerbated by the general poverty of documentation of
datasets (Gebru et al., 2018; Bender and Friedman,
2018) and machine learning models (Mitchell et al.,
2019). One way to mitigate these biases includes cre-
ating diverse teams with varied backgrounds and life
experiences to assure the expression of diverse perspec-
tives (Monteiro and Castillo, 2019; Nekoto et al., 2020).
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However, as critiqued by Talat et al. (2021); West et al.
(2019), incorporating the diversity factor may be in-
adequate. Biases in language representations and task
models can not only reflect, but also amplify bias present
in the datasets (Barocas and Selbst, 2016; Wang et al.,
2019). These biases have been investigated and attempts
made at creating interpretable representations and pro-
viding post-hoc explanations of model predictions.

2.3 Bias, Fairness, and Explainability
Given the grave consequences that inherent or concep-
tualized biases in ML systems can inflict, responsible
AI has received a growing amount of research atten-
tion (Amershi et al., 2020). Responsible AI refers to the
creation of ethical principles for AI and the development
of AI systems based on these principles (Dignum, 2017;
Schiff, 2020). Colloquially, responsible AI encompasses
distinct machine learning fields such as fairness, explain-
ability, privacy, and interpretability. Concretely, how
can responsible AI principles best contribute to the de-
velopment of equitable systems?

Examining this question, Friedler et al. (2021) pro-
pose that building just ML systems requires an a priori
definition of fairness. However, contemporary decision-
making systems build on a so-called what-you-see-is-
what-you-get (WYSIWYG) approach that implicitly
imbibes multiple fairness definitions or world views,
leading to a system based on the conflict between the
underlying value systems. To tackle this issue, ML en-
gineers should explicitly state the underlying systemic
values, as systems will inevitably comprise certain as-
sumptions (Birhane et al., 2021). Thus, implying that
biases as inherent to these decision-making systems and
should be clearly articulated (Bender et al., 2021) by
explaining the whys and whats (explainability).

However, a more promising course of action for re-
searchers would be to prioritize fairness in the entire life
cycle of a language model. The tendency to consider
and mitigate undesirable biases in models after train-
ing has completed leaves harmful residues that affect
the communities we seek to protect (Dev et al., 2021a).
Hence, a fruitful approach could be to reduce systemic
unfairness by grounding the discussion on clear defini-
tions of fairness based on input from the communities
that could be harmed by the system (Liao and Muller,
2019), explaining the inherent biases, and, if possible,
minimizing bias issues by employing the measures dis-
cussed in, both, the previous and the following sections.

3 Challenges of Bias
Evaluating the social impacts and harmful biases LLMs
exhibit is an important development step. However,
despite the increased interest in developing bias bench-
marks, the field still faces various challenges in evaluat-
ing LLMs with off-the-shelf benchmarks. In this section,
we provide examples of existing bias measures currently
used in NLP. We then discuss the challenges that orig-
inate from these: (1) they rely on vague definitions of

bias, (2) are restricted to particular model architectures,
(3) have limited relevance for different cultural contexts,
and (4) are difficult to validate and interpret.

3.1 Examples of Bias Measure Studies

Recently, researchers and practitioners have begun to
pay more attention to bias measures in NLP systems
(Blodgett et al., 2020; Dev et al., 2021b). One line of
work has focused on identifying bias in word embed-
dings: The Word Embedding Association Test (WEAT,
Caliskan et al., 2017) measures bias by comparing the
relative distances of two sets of target words (e.g. occu-
pation words: nurse, doctor) with respect to two sets of
attribute words (e.g., gender attributes: male, female)—
and has inspired other similar approaches (Kurita et al.,
2019; May et al., 2019; Dev et al., 2020).

Although word embeddings may help identify biases
in the context of LLMs, it is often difficult to access
the learned contextual language representations of the
model (Abid et al., 2021; Dev et al., 2020). Further-
more, such methods are developed to address static
word embeddings rather than the dynamic contextual
word embeddings LLMs rely on (Subramonian, 2021).

Another research direction is the use of causal in-
ference for measuring biases in LLMs, for example to
analyze if the generated text by an LLM is affected
considerably by only changing the protected attributes
or categories in the input (Huang et al., 2020; Madaan
et al., 2021; Cheng et al., 2021). In line with this idea,
Huang et al. (2020) used a sentiment classifier to quan-
tify and reduce the sentiment bias existent in LLMs.
Similarly, the CrowS-Pairs benchmark (Nangia et al.,
2020) leverages the paradigm of minimal pairs to con-
trast sentences expressing stereotypes against social cat-
egories with the same sentences addressing different
social categories. Crows-Pairs is designed such for
language models to be probed for disparate behavior
between the sentences pairs, with the hypothesis that
systematic difference in the treatment reflecting the pref-
erence for stereotype indicates the presence of bias in
the language models. Other examples of bias measures
benchmarks include StereoSet (Nadeem et al., 2020),
WinoMT (Stanovsky et al., 2019), BBQ (Parrish et al.,
2021), BOLD (Dhamala et al., 2021), and Toxicity Com-
ment Classification competition (Jigsaw, 2017).

3.2 Defining Bias

The term “bias” is overloaded in the ML and NLP com-
munities, as it is used in the lay (a prejudice towards
or against some entity) and the statistical sense (a sys-
tematic deviation from a distribution’s mean) (Campolo
et al., 2018). Moreover, researchers often refer to vague
definitions of bias and gloss over the details, which re-
sults in methods that lack specificity (Blodgett et al.,
2020). When discussing methods to address bias, it is
critical to be precise about the bias being addressed.

Bias can, for instance, be made more specific by be-
ing defined along socially relevant dimensions. Nangia
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et al. (2020) consider the protected categories from the
US Equal Employment Opportunities Commission and
Queer in AI uses a similar list (gender identity and ex-
pression, sexual orientation, disability, neurodivergence,
skill set, physical appearance, body size, race, caste,
age, nationality, citizenship status, colonial experience,
religion), yet other characteristics may be relevant else-
where in the world (e.g. illness, migrant, and social
status).3 However, protected classes are only one dimen-
sion along which to define bias; researchers should also
be mindful of political biases and biases resulting from
the focus on prestigious, highly resourced language va-
rieties, in additions to the intersections of multiple di-
mensions (Kearns et al., 2018; Buolamwini and Gebru,
2018; Crenshaw, 1991).

With respect to any of the aforementioned dimen-
sions, a “bias” is a preferential disposition towards or
against an entity. Colloquially, it is perceived negatively
and considered to be unfair treatment. As pointed out
by Barocas et al. (2017), biases in language models can
manifest in the form of quality-of-service and represen-
tation disparities. As quality-of-service bias describes
subpar performance of a language model when used by
a particular group. For example, LLM-driven machine
translation systems provide significantly better support
for “prestigious”, high-resource languages, and conse-
quently deny quality performance to individuals who do
not speak these languages (Nekoto et al., 2020). Further-
more, in fundamental NLP tasks such as coreference
resolution, LLMs can fail for people who use neopro-
nouns, and often capture meaningless representations
for language associated with trans and non-binary indi-
viduals. (Cao and Daumé III, 2020; Dev et al., 2021a).
Additionally, Blodgett et al. (2018) show that parsing
systems trained primarily on White Mainstream Ameri-
can English exhibit disparate performance on African
American English and Tan et al. (2020) show that En-
glish question answering and machine translation sys-
tems often fail on the morphological variation that is
often present in non-prestige and Learner Englishes.

Representation biases consist of stereotypes and
under-representation (or over-representation) of data
or model outputs. Stereotyping is a cognitive process
that manifests from often negative cultural norms about
a characteristic; stereotyping permeates what people
do, say, or write. A long line of work has shown
that language models capture social stereotypes, for
example, with respect to binary gender and occupa-
tions (Zhao et al., 2018; Bordia and Bowman, 2019;
de Vassimon Manela et al., 2021). With regard to
(under)representation, in MIMIC-III, a clinical notes
dataset, only 1.9% of patients identify as Asian, in com-
parison to 71.5% who identify as white (Chen et al.,

3Queer in AI (http://queerinai.org/) is a grass-
roots D&I organization that seeks to empower queer and trans
researchers in AI and advance research at the intersections of
AI and queerness. Their list of categories can be found here:
http://queerinai.org/code-of-conduct.

2020). Furthermore, blocklists in the Colossal Clean
Crawled Corpus (C4) dataset disproportionately filter
words related to queerness and language that is not
White-aligned English (Dodge et al., 2021). Notably,
quality-of-service and representation biases are not mu-
tually exclusive; for instance, the brittle representations
learned by a LLM for language associated with trans
and non-binary individuals largely stems from the se-
vere under-representation of this in training data (Dev
et al., 2021a; Barocas and Selbst, 2016).

The breakdown of biases into quality-of-service and
representation disparities is only one of many possi-
ble lenses. It is also critical to explicitly consider bi-
ases stemming from disparities in resources, broadly
defined in terms of data availability, time to invest into
dataset curation, access to compute resources, financial
resources, and more (Bender et al., 2021).

3.3 Overreliance on Model Architectures

Current benchmarks often measure bias in specific
downstream tasks (e.g. Machine Translation (Stanovsky
et al., 2019), Question Answering (Parrish et al., 2021),
or Text Generation (Dhamala et al., 2021)), while others
focus on bias in LLMs more generally (e.g Kurita et al.,
2019; Nadeem et al., 2020; Nangia et al., 2020). This
has the advantage of being more widely applicable, as
many NLP systems are based on LLMs, and it avoids
the need for creating and validating a new benchmark
for each possible downstream task. Yet, when the bench-
marks heavily rely on the model architecture rather than
the task specification, quantitative comparison between
different models based on these benchmarks is no longer
possible. In such cases, it also becomes more difficult to
assess the validity of the bias measure in how it relates
to other benchmarks (criterion validity) and the more
abstract notion of fairness (construct validity).

Some researchers circumvent this problem by adapt-
ing the original bias metric, but care should be taken
when doing so. For instance, bias metrics originally de-
veloped for masked language models have been adapted
by using perplexity (e.g. Nadeem et al., 2020) or prompt-
ing (e.g. Gao et al., 2021; Sanh et al., 2021) instead.
While these could still result in important insights, they
also open new questions. Are the underlying assump-
tions of the bias measure still valid? Can you compare
the bias metrics across different (future) types of mod-
els? Do the results of the initial validation of the bench-
mark still hold? And how does the kind of training data
impact the evaluation that assumes a different training
domain (e.g., legal texts vs. social media)?

While bias is ideally defined independently of the
particular model architecture—not least because imple-
mentations change over time—we should not fall into a
generalization trap either. As argued before, bias is in-
herent to systems and context-sensitive, and we should
not strive for a panacea bias measure. Instead, the goal
should be to develop methods that are task-specific yet
independent of a given architecture, to the degree that
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this is possible. Researchers should keep this tension be-
tween task- and architecture-specific measures in mind
when designing methods for measuring biases in LLMs.

3.4 Bias Measures are Anglo-centric

Despite the need for evaluating LLMs for a wide range
of languages, bias benchmarks that cover non-English
languages are rare (Zhou et al., 2019; Joshi et al.,
2020). As a solution, simply translating existing En-
glish benchmarks is not ideal: manual translation is a
labor-intensive and highly skilled task, while automated
translations are prone to errors and could potentially
introduce new algorithmic sources of bias. Moreover,
translated benchmarks may only test for Anglo-centric
biases, which do not necessarily hold in many non-
Western cultural contexts. For instance, many gender
bias evaluations focus on Western professions, which
are grammatically gendered in some languages (Chen
et al., 2021; Zhou et al., 2019) or may not cover other
prevalent occupations outside the U.S. (Escudé Font
and Costa-jussà, 2019). WinoMT (Stanovsky et al.,
2019) is one of the few benchmarks that covers multiple
languages, but it comes with its own downsides. The
sentences are generated from templates that capture a
limited range of actual language use; the samples are
translated from English examples, which may not re-
flect how stereotypes would occur in other languages;
and the scope is limited to machine translation systems,
and therefore WinoMT may not be suitable for multi-
lingual models that are not trained on this specific task.
The tightly coupled nature of bias and cultural context
should be emphasized when designing a multilingual
bias benchmark.

3.5 Validity of Bias Measures

Towards making NLP systems more just, we must under-
stand the flaws of common bias measures and develop
better guidelines to address biases. According to Jacobs
and Wallach (2021) and Blodgett et al. (2021), bias mea-
sures are measurement models which link observable
properties, e.g., quality-of-service and representational
biases, with unobservable theoretical constructs such
as social discrimination, power dynamics, and systemic
oppression. Consequently, bias measures are deeply
political. Notably, a vast majority of bias measures
themselves rely on other measurement models, such as
the presence of gendered pronouns, to infer theoreti-
cal protected categories, e.g., gender. Moreover, bias
measures may cause further epistemic violence onto the
marginalized by creating a veneer of fairness, in spite of
ongoing marginalization (Gonen and Goldberg, 2019;
Talat et al., 2021; Jacobs and Wallach, 2021). In ensur-
ing the reliability, validity, and correct interpretation of
bias measures, it is critical to examine all components
in a bias measurement method.

Upstream measurement models that infer protected
categories can be unreliable or even non-existent. For
instance, pronouns and gendered names are usually em-

ployed as proxies for binary gender, which is problem-
atic (Dev et al., 2021a). Furthermore, characteristics
like sexuality and disability are usually unobservable,
which can lead to a reliance on hegemonic stereotypes
and unnatural language in bias evaluation benchmarks
(Tomasev et al., 2021; Hutchinson et al., 2020).

With regard to validity, Blodgett et al. (2021) reviews
how bias measures often rely on operationalization of
stereotypes that are invalid for reasons such as misalign-
ment and conflation. Additionally, the mathematical
formalization of most bias measures is based on notions
of parity-based fairness and do not reflect other con-
ceptualizations of fairness such as distributive justice
(Jacobs and Wallach, 2021). Another source of invalid-
ity of bias measures lies in the purported generality of
associated benchmarks. Raji et al. (2021) argue that the
“instantiation [of benchmarks] in particular data, metrics
and practice” undermines the validity of their construc-
tion to have “general applicability.” Moreover, mea-
surement models for protected categories fallaciously
assume that the identities being indirectly observed can
be discretized. Hence, Dev et al. (2021b) advocate for
documenting the limitations of bias measures and re-
lated data in terms of their validity. In this process, it is
critical to describe the relationship between the context
of the data, model usage, and bias measure at stake.

4 The Elephant in the Room: Power,
Privilege, and Point of View

Throughout the paper, we have primarily discussed bias
in language models as a mechanical phenomenon. How-
ever, it is important to situate these discussions within
the context and power dynamics of the way that NLP is
practiced — both in research and in application (Miceli
et al., 2022). In this section, we discuss sociopolitical in-
fluences on AI ethics and bias research in NLP. We argue
that contemporary developments of LLMs have been an
exercise in financial, institutional, ecological, linguis-
tic, and cultural privilege. They are the consequence of
the political will to create totalizing technologies and
evaluation of bias, fairness and social impact should be
viewed as a countervailing power mechanism, although
in some cases serve to obscure these.

4.1 Large Language Models are Expensive
The current dominant paradigm in natural language pro-
cessing is driven by the creation of ever-larger pretrained
transformer models (Brown et al., 2020). As the size
of LLMs increases, so do the requirements for hard-
ware, energy, and time. For example, GPT-NeoX 20B
(Black et al., 2022) was trained for 1830 hours on 96
A100 GPUs, consuming 43.92 MWh of electricity and
emitting 23 metric tons of CO2. Based on the current
price listing of the cloud provider the model was trained
on, training such a model would cost between 250,000
and 500,000 USD.4 While this is not on the scale of the

4The lower end of this range reflects the common practice
of giving discounts of up to 50% for large purchases, while
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largest research programs, it is a significant amount of
money and beyond the funding of many institutions, or
beyond their political will to spend.

While the development of such models can contribute
towards improving the ability of people with less re-
sources to pursue cutting edge downstream research,
such pursuits have significant costs and barriers to entry
for upstream research. This creates a stratification of
research, wherein money is a barrier of entry for some
forms of research but not for others.

4.2 Language is Multicultural, Language Models
are Not

Although there are thousands of spoken languages in
the world, the overwhelming majority of LLMs are
monolingual and encode white respectability politics
(Thylstrup and Talat, 2020; Kerrison et al., 2018) onto
minoritized variants of English (Gehman et al., 2020).
In this way, the cost of the developing LLMs extends
from externalizing computational and infrastructural
costs, to externalizing languages and language variants
(Lau, 2021). Specifically, the vast majority of LLMs are
trained to operate on an unspecified variant of “English”
(Bender, 2019), and in some cases Chinese (see Table 1
for a detailed overview of the top 25 LLMs). The domi-
nance of English, and to a lesser degree Chinese, reifies
cultural hegemonies and precipitates technological im-
perialism. Even when researchers seek to include other
languages, these purportedly multilingual models often
underserve certain languages and communities (Kerri-
son et al., 2018; Virtanen et al., 2019; Kreutzer et al.,
2022; Gururangan et al., 2022). We also note that few
of these models have been assessed for bias or fairness
(see table 1).

This act relies on two foundations. First, LLMs
should only be used for languages that they have been
developed for, with the cultural stereotypes that they
have been trained on, thus limiting LLMs to be used
within a small set of cultural contexts, or casting cultural
contexts for which they are trained onto ones that they
are not developed for. Second, should a multilingual
LLM be trained, its primary data sources will still be
in English, whereas the remaining languages will only
be incidental to it. Such cultural imperialism is evident
from the fact that only 2 of the 14 organizations involved
in developing LLMs have teams in multiple countries
(see table 1). Further, all multinational LLM efforts,
except for one, draw their membership from the USA,
UK, Germany, & Australia. GPT-NeoX 20B (Black
et al., 2022) is an exception, as it also includes authors
from India. A commonly-used resource for develop-
ing LLMs, CommonCrawl, relies on data that primarily
stems from the US (Dodge et al., 2021) and is written
in privileged dialects of English (Dunn, 2020). This
prioritization is reflected by 16 teams being physically
located in the U.S. Consequently, the current state of
LLM development is a totalizing endeavor (Talat et al.,

the upper end reflects the sticker price of the systems.

2021), which engages in externalization across a num-
ber of axes, as is apparent from the infrastructural and
development practices and the efforts to evaluate and
mitigate social harms that arise from such technologies.

4.3 Large Language Models Allow Powerful
Actors to Control NLP Research

Due to the costs involved with training large language
models and the small number of actors who have de-
cided to train them, the overwhelming majority of re-
search studying their properties is not carried out by
people who train LLMs. When the actors that do pos-
sess the models choose to not publicly release them,
model trainers are afforded control over the research that
can be conducted with and by these models. Famously,
OpenAI’s initial announcement of GPT-3 asserted that
access to the model would be heavily restricted while
the company continued to research ethical interventions
in their model. OpenAI is not alone in this; the idea
that it is inherently dangerous to release models to the
public has been put forth by several other actors in this
space (Weidinger et al., 2021a; Askell et al., 2021).

It is essential to recognize that the decisions regarding
access and the kind of research that can be conducted on
large language models (or any ML models, for that mat-
ter) is an inherently political one (Leahy and Biderman,
2021). Regardless of the truth of the aforementioned
claims, they are highly contentious political claims and
should be treated as such rather than passively accepted.

Direct access to LLMs is important to perform inde-
pendent research on their datasets, functions, and soci-
etal impact (Kandpal et al., 2022; Carlini et al., 2022).
While language models produced by the academic re-
search community are widely available for critical ex-
amination, commercial systems are often only available
through APIs provided by the developers (see table 1
for an overview on access for the 25 largest pretrained
language models. Such restrictions to access to the mod-
els and resources that they are developed for provide a
significant barrier to a) principles of open science and
b) research on how the datasets and language models
themselves embed and amplify social biases.

5 Addressing Bias
Researchers have developed various strategies to ad-
dress bias in large language models. As discussed in
earlier sections, however, these strategies are insuffi-
cient to tackle multiple dimensions of bias. Below, we
enumerate a few ways in which bias can be addressed
by the research community to effectively engage with
our aforementioned concerns: (1) moving towards a
more transparent way of evaluating bias, (2) focusing
on the diversity of stereotypes and increasing inclusivity,
and (3) considering the impact of linguistic and cultural
differences on the identification and mitigation of bias
in designing culturally comparable datasets. We would
like to highlight that these suggestions are not exhaus-
tive. They will, however, guide the work in this area.
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5.1 Transparency Through Documentation
Stereotypes and biases cover a broad definition and vary
in conceptualization across geographical and cultural
contexts. To ensure that the nuances are well communi-
cated and that practitioners understand the applicability
of the evaluation approach, we suggest documenting a
thorough analysis of the scope. Below, we provide a
starting point based on Mitchell et al. (2019); Gebru
et al. (2018); Dev et al. (2021b); Blodgett et al. (2020).

Defining the scope of the approach Blodgett et al.
(2020) found that works around bias "often fail to ex-
plain what kinds of system behaviors are harmful, in
what ways, to whom, and why." It thus becomes imper-
ative to question what underrepresented groups would
benefit more from a given evaluation benchmark. We
therefore urge researchers and practitioners to clearly
specify the demographic a particular method is rele-
vant for. Moreover, given how social hierarchies inter-
twine tightly with language and may present themselves
through its peculiarities, we also encourage researchers
to specify the limitations and scope of their approaches.

As an example, we consider the gender bias evalu-
ation in English (Zhao et al., 2018; Stanovsky et al.,
2019; Levy et al., 2021; Sharma et al., 2021), where the
bias might present itself through strong associations be-
tween grammatical constructs like pronouns. The same
does not hold true for genderless languages, despite
the existence of the bias (Zmigrod et al., 2019). Thus,
evaluation benchmarks and approaches do not always
transfer well to other languages. Additionally, while
such benchmarks use gender associations to professions
for their evaluation, this method covers only one aspect
of the social hierarchy, and does not address gender bias
in language in its entirety. By being binary in nature and
tightly coupled to Anglo-centric contexts (see §3) bench-
marks are limited in their scope and relevance. While
most recent works do include ethical considerations, the
limitations and scope are only vaguely specified. We ad-
vocate for such limitations to be highlighted and pointed
out for the community to have a clearer picture about the
steps that need to be taken towards greater inclusivity.

Documenting the demographics Previous work has
highlighted the importance of engaging with individuals
on the receiving end of the bias (Bender et al., 2021). It
thus becomes important to understand the demographics
of those involved in the creation of the benchmarks. As
previously shown (Al Kuwatly et al., 2020) there exists a
relation between annotators’ identities and toxicity/bias
in dataset. On this basis, we urge the researchers to
collect and document the demographic information and
annotator attitude scores (Sap et al., 2021). Building
upon the same, we encourage the collection and report-
ing of this information about the researchers involved.

5.2 Diversity Beyond Gender Bias
The majority of previous work on bias has focused par-
ticularly on gender bias (Zhao et al., 2018; Stanovsky

et al., 2019; Levy et al., 2021; Sharma et al., 2021) and
the very few works (Nadeem et al., 2020; Nangia et al.,
2020) that take other dimensions of biases into account,
have their own shortcomings, as discussed in Section 3.
It thus becomes important to diversify the range of bias
and stereotypes that are being investigated by research,
and covered by a certain evaluation technique. In ex-
tending the coverage to more dimensions, context stands
as an important aspect of bias. The contextual aspects
of bias as represented in language, culture, and history
hold a significant role in forming and assessing the bias
itself. Hence, as a practice, we encourage researchers
to consider these three aspects when constructing bias
measures and datasets.

In discussing bias, it is important to note that discrim-
ination does not occur in a vacuum. An act of discrimi-
nation against a person may be directed towards several
intersecting identities. Considering bias using a single-
axis framework makes it impossible to engage with and
evaluate the harms extended to the social groups that
lie at the intersection of multiple identities (Crenshaw,
1991). In an Indian context, for example, even those
who identify as belonging to the “same” caste (Malik
et al., 2021), can have varied lived experiences based
on class, gender, and other identities. More precisely,
it is impossible to disentangle which specific identity a
discriminatory act is directed against. Previous works
have highlighted the importance of studying intersec-
tional bias (Bender et al., 2021; Buolamwini and Gebru,
2018; Field et al., 2021; Guo et al., 2019; Crenshaw,
1991) but little research has been conducted around
addressing such biases (Magee et al., 2021; Guo and
Caliskan, 2021). We thus encourage researchers to de-
velop measures and benchmarks which are grounded
in intersectional understanding of bias and adequately
address the lived experiences of various social groups,
towards increased inclusivity and fairness.

Not only can the dimensions and context influence
our definitions and approaches to bias, but the categories
(values) assigned to each dimension (e.g., age) can also
limit our understanding and solution of bias. For in-
stance, the majority of gender-bias evaluation datasets
solely deal with binary gender, i.e., male and female,
with just a handful covering non-binary genders with
only minimal representation (Dev et al., 2021a; Cao and
Daumé III, 2020). As a result, category inclusiveness is
critical in the development of a high-quality bias evalua-
tion dataset. A set of categories that can act as a starting
point are provided by Queer in AI in Section 3.2.

5.3 Acknowledging Differences

Stereotype and bias formation is influenced by culture.
As a result, what might be a stereotype in a given
culture might not stand relevant in another. For in-
stance, the characterization that parental leave
is for mothers is considered stereotypical in the
United States, but not in Sweden, where parental leave
is split between both parents.
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Organization Author Location Language Parameters Model Access Bias Eval

MT-NLG Microsoft, NVIDIA USA English 530 B Closed Smith et al. (2022)
Gopher DeepMind USA English 280 B Closed Weidinger et al. (2021b)
ERNIE 3.0 Baidu China English, Chinese 260 B Closed —
Yuan 1.0 Inspur AI China Chinese 245 B Closed —
HyperCLOVA NAVER Korea Korean 204 B Closed —
PanGu-α Huawei China Chinese 200 B Closed —
Jurassic-1 AI21 Labs Israel English 178 B Commercial —
GPT-3 OpenAI USA English 175 B Commercial Brown et al. (2020)
LaMDA Google USA English 137 B Closed Thoppilan et al. (2022)
Anthropic LM Anthropic USA English 52 B Closed Askell et al. (2021)
GPT-NeoX-20B EleutherAI Multinational English 20 B Open (Gao et al., 2020; Biderman et al., 2022)
Turing NLG Microsoft USA English 17 B Closed —
FairSeq Dense Meta AI Multinational English 13 B Open —
mT5 Google USA Multilingual 13 B Open —
ByT5 Google USA English 13 B Open —
T5 Google USA English 11 B Open —
CPM 2.1 Tsinghua University China Chinese 11 B Open —
Megatron 11B NVIDIA USA English 11 B Open —
WuDao-GLM-XXL Beijing Academy of AI China Chinese 10 B Open —
WuDao-GLM-XXL Beijing Academy of AI China English 10 B Open —
BlenderBot Meta AI USA English 9 B Open —
Megatron-LM NVIDIA USA English 8 B Closed —
XGLM Meta AI Multinational Multilingual 7 B Open —
GPT-J-6B EleutherAI Multinational English 6 B Open (Gao et al., 2020; Biderman et al., 2022)

Table 1: The 25 largest pretrained dense language models, ranging from 6 billion parameters to 530 billion. Models
are overwhelmingly trained by teams located in the US and on English text. Less than half of the language models
were evaluated for bias by their creators.

Previous sections have criticized the Anglo-centricity
in the research of NLP bias and the influence on lan-
guages other than English. In particular, the lack of
culturally-aware datasets limits the degree to which fu-
ture NLP algorithms can be evaluated for biases. More
crucially, these unspecified languages and cultures are
on the receiving end of unmanaged effects. As a re-
sult, researchers are encouraged to develop bias datasets
and benchmarks for non Anglo-centric cultures and lan-
guages (Bender et al., 2021). Involving experts in re-
lated areas, especially participants with lived experi-
ences of language-related harms, might aid decisions at
all parts of this process, e.g. deciding what groups and
content to include in research or dataset design (Liao
and Muller, 2019; Dev et al., 2021a; McMillan-Major
et al., 2022). Overall, having culturally diverse and com-
parable datasets for a diverse set of languages (ideally
covering all languages) is critical for evaluating mul-
tilingual models. Moreover, the applicability of bias
measures across various languages suggests the neces-
sity for cross-linguistic metrics or measurements that
can be extended to different languages or cultures (Zhou
et al., 2019; Escudé Font and Costa-jussà, 2019; Malik
et al., 2021).

6 Conclusion

Recent improvements in LLMs to mimic human text
have led to a surge in research that seeks to identify and
address the harms arising from their training and de-
ployment. However, the considerations on social harms
that arise has been limited to narrow, Anglo-centric,
contradictory, and often underspecified definitions of
fairness and bias. Furthermore, the development of
contemporary methods has conflated task-specific and
architecture-specific designations. Compounded with

the structural inequalities around resources, language,
and identity, this has yielded an overreliance on prestige
forms of English for developing LLMs and interrogat-
ing and addressing the social biases that they harbor.
Situating these methods within such Englishes has had
the consequence of over-emphasizing Western-centric
social categories. Moreover, datasets for evaluating so-
cial biases in LLMs have traditionally failed to denote
and specify the context within which biases are situated.
Such concerns have been the cause for questions around
the validity of the developed measures, and in particular
for multilingual LLMs.

To address such challenges, we propose that develop-
ing methods for multilingual LLMs requires researchers
to provide thorough documentation of their approaches,
including documenting the scope, demographics of
speakers, and potential annotators. Additionally, we also
recommend that researchers situate their bias evaluation
methods within the specific context of the languages
that the model operates on. In doing so, bias evaluation
methods can be made to specifically address biases un-
der the conditions and contexts that they occur in each
of the model’s languages. Furthermore, we recommend
that researchers examine diversity issues beyond gen-
der bias, with a particular focus on intersectional issues
(Guo and Caliskan, 2021).

Finally, we recommend that researchers are cognizant
of the social and environmental harms that developing
LLMs have. For instance, developing ever-larger lan-
guage models that achieve marginal improvements for
English may bring a smaller benefit than developing a
LLM for other languages. Thus, in a consideration of de-
veloping a new language model, we implore researchers
to consider ways in which harms can be limited, or the
benefits can come to compensate for their costs.
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Abstract

Ensembling is a popular method used to im-
prove performance as a last resort. However,
ensembling multiple models finetuned from a
single pretrained model has been not very effec-
tive; this could be due to the lack of diversity
among ensemble members. This paper pro-
poses Multi-Ticket Ensemble, which finetunes
different subnetworks of a single pretrained
model and ensembles them. We empirically
demonstrated that winning-ticket subnetworks
produced more diverse predictions than dense
networks, and their ensemble outperformed the
standard ensemble on some tasks.

1 Introduction

Ensembling (Levin et al., 1989; Domingos, 1997)
has long been an easy and effective approach to im-
prove model performance by averaging the outputs
of multiple comparable but independent models.
Allen-Zhu and Li (2020) explain that different mod-
els obtain different views for judgments, and the
ensemble uses complementary views to make more
robust decisions. A good ensemble requires diverse
member models. However, how to encourage diver-
sity without sacrificing the accuracy of each model
is non-trivial (Liu and Yao, 1999; Kirillov et al.,
2016; Rame and Cord, 2021).

The pretrain-then-finetune paradigm has become
another best practice for achieving state-of-the-art
performance on NLP tasks (Devlin et al., 2019).
The cost of large-scale pretraining, however, is
enormously high (Sharir et al., 2020); This often
makes it difficult to independently pretrain multi-
ple models. Therefore, most researchers and prac-
titioners only use a single pretrained model, which
is distributed by resource-rich organizations.

This situation brings up a novel question to en-
semble learning: Can we make an effective en-
semble from only a single pre-trained model?
Although ensembles can be combined with the
pretrain-then-finetune paradigm, an ensemble of

Figure 1: When finetuning from a single pretrained
model (left), the models are less diverse (center). If
we finetune different sparse subnetworks, they become
more diverse and make the ensemble effective (right).

models finetuned from a single pretrained model
is much less effective than that using different pre-
trained models from scratch in many tasks (Raffel
et al., 2020). Naïve ensemble offers limited im-
provements, possibly due to the lack of diversity of
finetuning from the same initial parameters.

In this paper, we propose a simple yet effective
method called Multi-Ticket Ensemble, ensembling
finetuned winning-ticket subnetworks (Frankle and
Carbin, 2019) in a single pretrained model. We
empirically demonstrate that pruning a single pre-
trained model can make diverse models, and their
ensemble can outperform the naïve dense ensemble
if winning-ticket subnetworks are found.

2 Diversity in a Single Pretrained Model

In this paper, we discuss the most standard way of
ensemble, which averages the outputs of multiple
neural networks; each has the same architecture
but different parameters. That is, let f(x;θ) be the
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output of a model with the parameter vector θ given
the input x, the output of an ensemble is fM(x) =∑

θ∈M f(x;θ)/|M|, whereM = {θ1, ...,θ|M|}
is the member parameters.

2.1 Diversity from Finetuning
As discussed, when constructing an ensem-
ble fM by finetuning from a single pretrained
model multiple times with different random seeds
{s1, ..., s|M|}, the boost in performance tends to
be only marginal. In the case of BERT (Devlin
et al., 2019) and its variants, three sources of diver-
sities can be considered: random initialization of
the task-specific layer, dataset shuffling for stochas-
tic gradient descent (SGD), and dropout. However,
empirically, such finetuned parameters tend not to
be largely different from the initial parameters, and
they do not lead to diverse models (Radiya-Dixit
and Wang, 2020). Of course, if one adds signifi-
cant noise to the parameters, it leads to diversity;
however, it would also hurt accuracy.

2.2 Diversity from Pruning
To make models ensuring both accuracy and di-
versity, we focus on subnetworks in the pretrained
model. Different subnetworks employ different
subspaces of the pre-trained knowledge (Radiya-
Dixit and Wang, 2020; Zhao et al., 2020; Cao et al.,
2021); this would help the subnetworks to acquire
different views, which can be a source of desired di-
versity1. Also, in terms of accuracy, recent studies
on the lottery ticket hypothesis (Frankle and Carbin,
2019) suggest that a dense network at initialization
contains a subnetwork, called the winning ticket,
whose accuracy becomes comparable to that of the
dense one after the same training. Interestingly,
the pretrained BERT also has a winning ticket for
finetuning on downstream tasks (Chen et al., 2020).
Thus, if we can find diverse winning tickets, they
can be good ensemble members with the two desir-
able properties: diversity and accuracy.

3 Subnetwork Exploration

We propose a simple yet effective method, multi-
ticket ensemble, which finetunes different subnet-
works instead of dense networks. Because it could
be a key how to find subnetworks, we explore three
variants based on iterative magnitude pruning.

1Some concurrent and recent studies also investigate sub-
networks for effective ensemble (Durasov et al., 2021; Havasi
et al., 2021) for training-from-scratch settings of image recog-
nition.
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Figure 2: Overview of iterative magnitude pruning (Sec-
tion 3.1). We can also use regularizers during finetuning
to diversify pruning (Section 3.2).

3.1 Iterative Magnitude Pruning

We employ iterative magnitude pruning (Frankle
and Carbin, 2019) to find winning tickets for sim-
plicity. Other sophisticated options are left for fu-
ture work. Here, we explain the algorithm (refer
to the paper for details). The algorithm explores
a good pruning mask via rehearsals of finetuning.
First, it completes a finetuning procedure of an ini-
tialized dense network and identifies the parameters
with the 10% lowest magnitudes as the targets of
pruning. Then, it makes the pruned subnetwork and
resets its parameters to the originally-initialized
(sub-)parameters. This finetune-prune-reset pro-
cess is repeated until reaching the desired pruning
ratio. We used 30% as pruning ratio.

3.2 Pruning with Regularizer

We discussed that finetuning with different random
seeds did not lead to diverse parameters in Sec-
tion 2.1. Therefore, iterative magnitude pruning
with different seeds could also produce less diverse
subnetworks. Thus, we also explore means of di-
versifying pruning patterns by enforcing different
parameters to have lower magnitudes. Motivated
by this, we experiment with a simple approach, ap-
plying an L1 regularizer (i.e., magnitude decay) to
different parameters selectively depending on the
random seeds. Specifically, we explore two policies
to determine which parameters are decayed and
how strongly they are, i.e., the element-wise coef-
ficients of the L1 regularizer, ls ∈ R≥0

|θ|. During
finetuning (for pruning), we add a regularization
term τ ||θs⊙ ls||1 with a positive scalar coefficient
τ into the loss of the task (e.g., cross entropy for
classification), where ⊙ is element-wise product.
This softly enforces various parameters to have a
lower magnitude among a set of random seeds and
could lead various parameters to be pruned.
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Active Masking To maximize the diversity of
the surviving parameters of member models, it is
necessary to prune the surviving parameters of the
random seed s1 when building a model with the
next random seed s2. Thus, during finetuning with
seed s2, we apply the L1 regularizer on the first
surviving parameters. Likewise, with the follow-
ing seeds s3, s4, ..., si, ..., s|M|, we cumulatively
use the average of the surviving masks as the reg-
ularizer coefficient mask. Let msj ∈ {0, 1}|θ| be
the pruning mask indicating surviving parameters
from seed sj , the coefficient mask with seed si is
lsi =

∑
j<imsj/(i− 1). We call this affirmative

policy as active masking.

Random Masking In active masking, each co-
efficient mask has a sequential dependence on the
preceding random seeds. Thus, the training of en-
semble members cannot be parallelized. There-
fore, we also experiment with a simpler and paral-
lelizable variant, random masking, where a mask
is independently and randomly generated from a
random seed. With a random seed si, we gener-
ate the seed-dependent random binary mask, i.e.,
ls = mrand

si ∈ {0, 1}|θ|, where each element is
sampled from Bernoulli distribution and 0’s proba-
bility equals to the target pruning ratio.

4 Experiments

We evaluate the performance of ensembles us-
ing four finetuning schemes: (1) finetuning with-
out pruning (BASELINE), (2) finetuning of lottery-
ticket subnetworks found with the naïve iterative
magnitude pruning (BASE-LT), and (3) with L1 reg-
ularizer by the active masking (ACTIVE-LT) or (4)
random masking (RANDOM-LT). We also compare
with (5) BAGGING-based ensemble, which trains
dense models on different random 90% training
subsets. We use the GLUE benchmark (Wang et al.,
2018) as tasks. The implementation and settings
follow Chen et al. (2020)2 using the Transform-
ers library (Wolf et al., 2020) and its bert-base-
uncased pretrained model. We report the average
performance using twenty different random seeds.
Ensembles are evaluated using exhaustive combina-
tions of five members. We also perform Student’s
t-test for validating statistical significance3. Note

2We found a bug in Chen et al. (2020)’s implementation
on GitHub, so we fixed it and experimented with the correct
version.

3Note that not all evaluation samples satisfy independence
assumption.

MRPC STS-B
single ens. diff. single ens. diff.

BASELINE 83.48 84.34 +0.86 88.35 89.04 +0.69
(BAGGING) 82.87 84.19 +1.32 88.17 88.84 +0.68
BASE-LT 83.84 84.98 +1.14 88.37 89.16 +0.79
ACTIVE-LT 83.22 84.60 +1.38 88.39 89.32 +0.94
RANDOM-LT 83.53 85.05 +1.52 88.49 89.35 +0.86

Table 1: The performances (single, ens.) and the im-
provements by ensembling (diff.). Italic indicates that
the value is significantly larger than that of BASELINE.
Bold-italic indicates significantly larger than that of both
BASELINE and BASE-LT. Underline indicates the best.

Figure 3: Comparison of the performances and the num-
ber of ensemble members on MRPC (left) and STS-B
(right). They are represented as the relative gain com-
pared with BASELINE’s accuracy.

that, while the experiments focus on using BERT,
we believe that the insights would be helpful to
other pretrain-then-finetune settings in general4.

4.1 Accuracy

We show the results on MRPC (Dolan and Brock-
ett, 2005) and STS-B (Cer et al., 2017) in Table 1.
Multi-ticket ensembles (*-LT) outperform BASE-
LINE and BAGGING significantly (p < 0.001). This
result supports the effectiveness of multi-ticket en-
semble. Note that the improvements of *-LT are
attributable to ensembling (diff.) rather than to any
performance gains of the individual models (sin-
gle). We also plot the improvements (ens. values
relative to BASELINE) as a function of the number
of ensemble members on MRPC and STS-B in Fig-
ure 3. This also clearly shows that while the single
models of *-LT have accuracy similar to BASE-
LINE, the gains appear when ensembling them.
While multi-ticket ensemble works well even with
the naive pruning method (BASE-LT), RANDOM-LT

and ACTIVE-LT achieve the better ensembling ef-
fect on average; this suggests the effectiveness of
regularizers. Interestingly, RANDOM-LT is simpler
but more effective than ACTIVE-LT.

4Raffel et al. (2020) reported that the same problem hap-
pened on almost all tasks (GLUE (Wang et al., 2018), Super-
GLUE (Wang et al., 2019), SQuAD (Rajpurkar et al., 2016),
summarization, and machine translation) using the T5 model.
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When Winning Tickets are Less Accurate
Does multi-ticket ensemble work well on any
tasks? The answer is no. To enjoy the benefit
from multi-ticket ensemble, we have to find diverse
winning-ticket subnetworks sufficiently compara-
ble to their dense network. When winning tickets
are less accurate than the baseline, their ensem-
bles often fail to outperform the baseline’s ensem-
ble. It happened to CoLA (Warstadt et al., 2019),
QNLI (Rajpurkar et al., 2016), SST-2 (Socher et al.,
2013), MNLI (Williams et al., 2018); the naive it-
erative magnitude pruning did not find comparable
winning-ticket subnetworks (with or sometimes
even without regularizers)567. Note that, even in
such a case, RANDOM-LT often yielded a higher
effect of ensembling (diff.), while the degradation
of single models canceled out the effect in total,
and BAGGING also failed to improve. More so-
phisticated pruning methods (Blalock et al., 2020;
Sanh et al., 2020) or tuning will find better winning-
ticket subnetworks and maximize the opportunities
for multi-ticket ensemble in future work.

4.2 Diversity of Predictions

As an auxiliary analysis of behaviors, we show
that each subnetwork produces diverse predic-
tions. Because any existing diversity scores do
not completely explain or justify the ensemble per-
formance8, we discuss only rough trends in five
popular metrics of classification diversity; Q statis-
tic (Yule, 1900), ratio errors (Aksela, 2003), neg-
ative double fault (Giacinto and Roli, 2001), dis-
agreement measure (Skalak, 1996), and correlation
coefficient (Kuncheva and Whitaker, 2003). See
Kuncheva and Whitaker (2003); Cruz et al. (2020)
for their summarized definitions. As shown in Ta-
ble 2, in all the metrics, winning-ticket subnetworks
(*-LT) produced more diverse predictions than the

5Although some studies (Prasanna et al., 2020; Chen et al.,
2020; Liang et al., 2021) reported that they found winning-
ticket subnetworks on these tasks, our finding did not contra-
dict it. Their subnetworks were often actually a little worse
than their dense networks, as well as we found. Chen et al.
(2020) defined winning tickets as subnetworks with perfor-
mances within one standard deviation from the dense networks.
Prasanna et al. (2020) considered subnetworks with even 90%
performance as winning tickets.

6For example, comparing BASELINE with RANDOM-
LT of pruning ratio 20%, their average values of
single/ensemble/difference are 91.38/91.93/+0.55 vs.
91.09/91.90/+0.81 on SST-2.

7This also happens to experiments with roberta-base while
multi-ticket ensemble still works well on MRPC.

8Finding such a convenient diversity metric itself is still a
challenge in the research community (Wu et al., 2021).

Q↓ R↑ ND↑ D↑ C↓
BASELINE 0.96 0.72 -0.12 0.09 0.69
BASE-LT 0.93 1.00 -0.11 0.10 0.62
ACTIVE-LT 0.94 0.94 -0.11 0.11 0.62
RANDOM-LT 0.94 0.94 -0.11 0.10 0.63

Table 2: Diversity metrics on MRPC. The signs, ↓ and
↑, indicate that the metric gets lower and higher when
the predictions are diverse. Q = Q statistic, R = ratio
errors, ND = negative double fault, D = disagreement
measure, C = correlation coefficient.

Figure 4: Overlap ratio of pruning masks msi between
different seeds on MRPC. The lower (yellower) the
value is, the more dissimilar the two masks are.

baseline using the dense networks (BASELINE).

4.3 Diversity of Subnetwork Structures

We finally revealed the diversity of the subnetwork
structures on MRPC. We calculated the overlap
ratio of two pruning masks, which is defined as
intersection over union, IoU =

|mi∩mj |
|mi∪mj | (Chen

et al., 2020). In Figure 4, we show the overlap ra-
tio between the pruning masks for the five random
seeds, i.e., {ms1 , ...,ms5}. At first, we can see
that ACTIVE-LT and RANDOM-LT using the regu-
larizers resulted in diverse pruning. This higher
diversity could lead to the best improvements by
ensembling, as discussed in Section 4.1. Secondly,
BASE-LT produced surprisingly similar (99%) prun-
ing masks with different random seeds. However,
recall that even BASE-LT using the naïve iterative
magnitude pruning performed better than BASE-
LINE. This result shows that even seemingly small
changes in structure can improve the diversity of
predictions and the performance of the ensemble.

5 Conclusion

We raised a question on difficulty of ensembling
large-scale pretrained models. As an efficient rem-
edy, we explored methods to use subnetworks in
a single model. We empirically demonstrated that
ensembling winning-ticket subnetworks could out-
perform the dense ensembles via diversification
and indicated a limitation too.

45



Acknowledgments

We appreciate the helpful comments from the
anonymous reviewers. This work was supported
by JSPS KAKENHI Grant Number JP19H04162.

References
Matti Aksela. 2003. Comparison of classifier selection

methods for improving committee performance. In
Proceedings of the 4th International Conference on
Multiple Classifier Systems, MCS’03, page 84–93,
Berlin, Heidelberg. Springer-Verlag.

Zeyuan Allen-Zhu and Yuanzhi Li. 2020. To-
wards understanding ensemble, knowledge distilla-
tion and self-distillation in deep learning. CoRR,
abs/2012.09816.

Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan
Frankle, and John Guttag. 2020. What is the state of
neural network pruning? In Proceedings of Second
Machine Learning and Systems (MLSys 2020), pages
129–146.

Steven Cao, Victor Sanh, and Alexander M. Rush. 2021.
Low-complexity probing via finding subnetworks. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies
(NAACL-HLT 2021). Association for Computational
Linguistics.

Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-
Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings
of the 11th International Workshop on Semantic
Evaluation (SemEval 2017), pages 1–14, Vancouver,
Canada. Association for Computational Linguistics.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia
Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. 2020. The lottery ticket hypothesis for pre-
trained bert networks. In Advances in Neural Infor-
mation Processing Systems 33 (NeurIPS 2020), pages
15834–15846. Curran Associates, Inc.

Rafael M. O. Cruz, Luiz G. Hafemann, Robert Sabourin,
and George D. C. Cavalcanti. 2020. Deslib: A dy-
namic ensemble selection library in python. Journal
of Machine Learning Research, 21(8):1–5.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies (NAACL-HLT 2019), pages 4171–4186,
Minneapolis, Minnesota. Association for Computa-
tional Linguistics.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP 2005).

Pedro Domingos. 1997. Why does bagging work? a
bayesian account and its implications. In Proceed-
ings of the Third International Conference on Knowl-
edge Discovery and Data Mining (KDD 1997), page
155–158. AAAI Press.

Nikita Durasov, Timur Bagautdinov, Pierre Baque, and
Pascal Fua. 2021. Masksembles for uncertainty esti-
mation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 13539–13548.

Jonathan Frankle and Michael Carbin. 2019. The
lottery ticket hypothesis: Finding sparse, trainable
neural networks. In Proceedings of the 7th Inter-
national Conference on Learning Representations
(ICLR 2019).

Yarin Gal and Zoubin Ghahramani. 2016. Dropout as
a bayesian approximation: Representing model un-
certainty in deep learning. In Proceedings of The
33rd International Conference on Machine Learn-
ing, volume 48 of Proceedings of Machine Learning
Research, pages 1050–1059, New York, New York,
USA. PMLR.

Giorgio Giacinto and Fabio Roli. 2001. Design of
effective neural network ensembles for image clas-
sification purposes. Image and Vision Computing,
19(9):699–707.

Marton Havasi, Rodolphe Jenatton, Stanislav Fort,
Jeremiah Zhe Liu, Jasper Snoek, Balaji Lakshmi-
narayanan, Andrew Mingbo Dai, and Dustin Tran.
2021. Training independent subnetworks for robust
prediction. In International Conference on Learning
Representations.

Alexander Kirillov, Bogdan Savchynskyy, Carsten
Rother, Stefan Lee, and Dhruv Batra. 2016. CVPR
tutorial: Diversity meets deep networks - inference,
ensemble learning, and applications.

Ludmila I. Kuncheva and Christopher J. Whitaker. 2003.
Measures of diversity in classifier ensembles and
their relationship with the ensemble accuracy. Ma-
chine Learning, 51(2):181–207.

Esther Levin, Naftali Tishby, and Sara A. Solla. 1989. A
statistical approach to learning and generalization in
layered neural networks. In Proceedings of the Sec-
ond Annual Workshop on Computational Learning
Theory (COLT 1989), page 245–260, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.

Chen Liang, Simiao Zuo, Minshuo Chen, Haoming
Jiang, Xiaodong Liu, Pengcheng He, Tuo Zhao, and
Weizhu Chen. 2021. Super tickets in pre-trained
language models: From model compression to im-
proving generalization. In Proceedings of the 59th
Annual Meeting of the Association for Computational

46



Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 6524–6538, Online. Association
for Computational Linguistics.

Y. Liu and X. Yao. 1999. Ensemble learn-
ing via negative correlation. Neural Networks,
12(10):1399–1404.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Tianyu Pang, Kun Xu, Chao Du, Ning Chen, and Jun
Zhu. 2019. Improving adversarial robustness via pro-
moting ensemble diversity. In Proceedings of the
36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learning
Research, pages 4970–4979. PMLR.

Sai Prasanna, Anna Rogers, and Anna Rumshisky. 2020.
When BERT Plays the Lottery, All Tickets Are Win-
ning. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP 2020), pages 3208–3229, Online. Associa-
tion for Computational Linguistics.

Evani Radiya-Dixit and Xin Wang. 2020. How fine can
fine-tuning be? learning efficient language models.
In Proceedings of the Twenty Third International
Conference on Artificial Intelligence and Statistics
(ICML 2020), volume 108 of Proceedings of Machine
Learning Research, pages 2435–2443. PMLR.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP 2016), pages
2383–2392, Austin, Texas. Association for Computa-
tional Linguistics.

Alexandre Rame and Matthieu Cord. 2021. {DICE}:
Diversity in deep ensembles via conditional redun-
dancy adversarial estimation. In Proceedings of the
9th International Conference on Learning Represen-
tations (ICLR 2021).

Victor Sanh, Thomas Wolf, and Alexander Rush. 2020.
Movement pruning: Adaptive sparsity by fine-tuning.
In Advances in Neural Information Processing Sys-
tems, volume 33, pages 20378–20389. Curran Asso-
ciates, Inc.

Thibault Sellam, Steve Yadlowsky, Ian Tenney, Jason
Wei, Naomi Saphra, Alexander D’Amour, Tal Linzen,
Jasmijn Bastings, Iulia Raluca Turc, Jacob Eisenstein,

Dipanjan Das, and Ellie Pavlick. 2022. The multiB-
ERTs: BERT reproductions for robustness analysis.
In International Conference on Learning Representa-
tions (ICLR 2022).

Or Sharir, Barak Peleg, and Yoav Shoham. 2020. The
cost of training NLP models: A concise overview.
CoRR, abs/2004.08900.

David B. Skalak. 1996. The sources of increased ac-
curacy for two proposed boosting algorithms. In
In Proc. American Association for Arti Intelligence,
AAAI-96, Integrating Multiple Learned Models Work-
shop, pages 120–125.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2013), pages 1631–1642, Seattle, Washington, USA.
Association for Computational Linguistics.

Yi Tay, Mostafa Dehghani, Jinfeng Rao, William Fedus,
Samira Abnar, Hyung Won Chung, Sharan Narang,
Dani Yogatama, Ashish Vaswani, and Donald Met-
zler. 2022. Scale efficiently: Insights from pretrain-
ing and finetuning transformers. In International
Conference on Learning Representations.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. SuperGLUE: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information
Processing Systems 32 (NeurIPS 2019). Curran As-
sociates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel Bowman.
2018. A broad-coverage challenge corpus for sen-
tence understanding through inference. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume
1 (Long Papers), pages 1112–1122, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,

47



Joe Davison, Sam Shleifer, Patrick von Platen, Clara
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le
Scao, Sylvain Gugger, Mariama Drame, Quentin
Lhoest, and Alexander M. Rush. 2020. Transform-
ers: State-of-the-art natural language processing. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations (EMNLP 2020), pages 38–45, On-
line. Association for Computational Linguistics.

Yanzhao Wu, Ling Liu, Zhongwei Xie, Ka-Ho Chow,
and Wenqi Wei. 2021. Boosting ensemble accuracy
by revisiting ensemble diversity metrics. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 16469–
16477.

G. Udny Yule. 1900. On the association of attributes in
statistics: With illustrations from the material of the
childhood society, &c. Philosophical Transactions
of the Royal Society of London, 194:257–319.

Zhilu Zhang, Vianne R. Gao, and Mert R. Sabuncu.
2021. Ex uno plures: Splitting one model into an
ensemble of subnetworks.

Mengjie Zhao, Tao Lin, Fei Mi, Martin Jaggi, and Hin-
rich Schütze. 2020. Masking as an efficient alterna-
tive to finetuning for pretrained language models. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2020), pages 2226–2241, Online. Association for
Computational Linguistics.

48



A The Setting of Fine-tuning

We follow the setting of Chen et al. (2020)’s im-
plementation; epoch: 3, initial learning rate: 2e-5
with linear decay, maximum sequence length: 128,
batch size: 32, dropout probability: 0.1. This is one
of the most-used settings for finetuning a BERT;
e.g., the example of finetuning in the Transformers
library (Wolf et al., 2020) uses the setting9.

We did not prune the embedding layer, following
Chen et al. (2020); Prasanna et al. (2020). The
coefficient of L1 regularizer, τ , is decayed using
the same scheduler as the learning rate. We tuned
it on MRPC and used it for other tasks.

B The Learning Rate Scheduler of Chen
et al. (2020)

Our implementation used in the experiments are de-
rived from Chen et al. (2020)’s implementation10.
However, we found a bug in Chen et al. (2020)’s im-
plementation on GitHub. Thus, we fixed it and ex-
perimented with the correct version. In their imple-
mentation, the learning rate schedule did not follow
the common setting and the description mentioned
in the paper; ‘We use standard implementations
and hyperparameters [49]. Learning rate decays
linearly from initial value to zero’. Specifically, the
learning rate with linear decay did not reach zero
but was at significant levels even at the end of the
finetuning. Our implementation corrected it so that
it did reach zero as specified in their paper and in
the common setting.

C The Combinations of Ensembles

In the experiments, we first prepared twenty ran-
dom seeds and split them into two groups, each
of which trained ten models. For stabilizing the
measurement of the result, we exhaustively eval-
uated all the possible combinations of ensembles
(i.e., depending on the number of members, 10C2,
10C3, 10C4, 10C5 patterns, respectively) among the
ten models for each group, and averaged the re-
sults with the two groups. The performance of the
members is also averaged over all the seeds.

9https://github.com/
huggingface/transformers/blob/
7e406f4a65727baf8e22ae922f410224cde99ed6/
examples/pytorch/text-classification/
README.md#glue-tasks

10https://github.com/VITA-Group/
BERT-Tickets

MRPC STS-B
single ens. diff. single ens. diff.

BASELINE 87.77 88.47 +0.70 89.52 90.00 +0.48
(BAGGING) 87.64 88.12 +0.49 89.34 89.91 +0.54
BASE-LT 87.72 88.25 +0.53 89.71 90.07 +0.36
ACTIVE-LT 87.39 88.51 +1.12 88.46 89.50 +1.04
RANDOM-LT 87.86 89.26 +1.40 88.41 89.39 +0.98

Table 3: The performances (single, ens.) and the im-
provements by ensembling (diff.) of RoBERTa-base
models.

D The Results with RoBERTa

We simply conducted supplementary experiments
with RoBERTa (Liu et al., 2019) (robeta-base
model), although optimal hyperparameters were
not searched well. The results were similar to the
cases of base-base-uncased. The patterns can be
categorized into the three. First, multi-ticket en-
sembles worked well with roberta on MRPC, as
shown in Table 3. Secondly, accurate winning-
ticket subnetworks were not found on CoLA and
QNLI. Although the effect of ensembleing was im-
proved after pruning, each single model got worse
and the final ensemble accuracy did not outper-
form the dense baseline. Thirdly, although accurate
winning-ticket subnetworks were found on STS-B
and SST-2, regularizations worsened single-model
performances. While this case also improved the
effect of ensembling, the final accuracy did not
outperform the baseline. These experiments fur-
ther emphasized the importance of development of
more sophisticated pruning methods without sac-
rifice of model performances in the context of the
lottery ticket hypothesis.

E Related Work

Some concurrent studies also investigate the usage
of subnetworks for ensembles. Gal and Ghahra-
mani (2016) is a pioneer to use subnetwork en-
semble. A trained neural network with dropout
can infer with many different subnetworks, and
their ensemble can be used for uncertainty estima-
tion, which is called MC-dropout. Durasov et al.
(2021) improved the efficiency of MC-dropout by
exploring subnetworks. Zhang et al. (2021) (un-
published) experimented with an ensemble of sub-
networks of different structures and initialization
when trained from scratch, while the improvements
possibly could be due to regularization of each sin-
gle model. Havasi et al. (2021) is a similar but more
elegant approach, which does not explicitly identify
subnetworks. Instead, it trains a single dense model
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with training using multi-input multi-output infer-
ence; the optimization can implicitly find multiple
disentangled subnetworks in the dense model dur-
ing optimization from random initialization. These
studies support our assumption that different sub-
networks can improve ensemble by diversity.

Some other directions for introducing diversity
exist, while most are unstable. Promising direc-
tions are to use entropy (Pang et al., 2019) or adver-
sarial training (Rame and Cord, 2021). Although
they required complex optimization processes, they
improved the robustness or ensemble performance
on small image recognition datasets.

Recently, concurrent work (Sellam et al., 2022;
Tay et al., 2022) provide multiple BERT or T5 mod-
els pretrained from different seeds or configurations
for investigation of seed or configuration depen-
dency using large-scale computational resources.
Further research with the models and such com-
putational resources will be helpful for more solid
comparison and analysis.

Note that no prior work tackled the problem of
ensembles from a pre-trained model. Framing the
problem is one of the contributions of this paper.
Secondly, our multi-ticket ensemble based on ran-
dom masking enables an independently paralleliz-
able training while existing methods require a se-
quential processing or a grouped training procedure.
Finally, multi-ticket ensemble can be combined
with other methods, which can improve the total
performance together.
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Abstract

An extractive rationale explains a language
model’s (LM’s) prediction on a given task in-
stance by highlighting the text inputs that most
influenced the prediction. Ideally, rationale ex-
traction should be faithful (reflective of LM’s
actual behavior) and plausible (convincing to
humans), without compromising the LM’s (i.e.,
task model’s) task performance. Although attri-
bution algorithms and select-predict pipelines
are commonly used in rationale extraction, they
both rely on certain heuristics that hinder them
from satisfying all three desiderata. In light of
this, we propose UNIREX, a flexible learning
framework which generalizes rationale extrac-
tor optimization as follows: (1) specify archi-
tecture for a learned rationale extractor; (2) se-
lect explainability objectives (i.e., faithfulness
and plausibility criteria); and (3) jointly train
the task model and rationale extractor on the
task using selected objectives. UNIREX en-
ables replacing prior works’ heuristic design
choices with a generic learned rationale ex-
tractor in (1) and optimizing it for all three
desiderata in (2)-(3). To facilitate comparison
between methods w.r.t. multiple desiderata, we
introduce the Normalized Relative Gain (NRG)
metric. Across five English text classification
datasets, our best UNIREX configuration out-
performs the strongest baselines by an average
of 32.9% NRG. Plus, we find that UNIREX-
trained rationale extractors’ faithfulness can
even generalize to unseen datasets and tasks.

1 Introduction

Large neural language models (LMs) have yielded
state-of-the-art performance on various natural lan-
guage processing (NLP) tasks (Devlin et al., 2018;
Liu et al., 2019). However, LMs’ complex rea-
soning processes are notoriously opaque (Rudin,
2019), posing concerns about the societal implica-
tions of using LMs for high-stakes decision-making

∗Work done while AC was a research intern at Meta AI.

Figure 1: Desiderata of Rationale Extraction. Unlike prior
works, UNIREX enables optimizing for all three desiderata.

(Bender et al., 2021). Thus, explaining LMs’ behav-
ior is crucial for promoting trust, ethics, and safety
in NLP systems (Doshi-Velez and Kim, 2017; Lip-
ton, 2018). Given a LM’s (i.e., task model’s) pre-
dicted label on a text classification instance, an ex-
tractive rationale is a type of explanation that high-
lights the tokens that most influenced the model
to predict that label (Luo et al., 2021). Ideally, ra-
tionale extraction should be faithful (Ismail et al.,
2021; Jain et al., 2020) and plausible (DeYoung
et al., 2019), without hurting the LM’s task perfor-
mance (DeYoung et al., 2019) (Fig. 1).

Configuring the rationale extractor and its train-
ing can greatly impact these desiderata, yet prior
works have commonly adopted two suboptimal
heuristics. First, many works rely in some way on
attribution algorithms (AAs), which extract ratio-
nales via handcrafted functions (Sundararajan et al.,
2017; Ismail et al., 2021; Situ et al., 2021). AAs
cannot be directly trained and tend to be compute-
intensive (Bastings and Filippova, 2020). Also,
AAs can be a bottleneck for plausibility, as pro-
ducing human-like rationales is a complex objec-
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tive requiring high capacity rationale extractors
(Narang et al., 2020; DeYoung et al., 2019). Sec-
ond, many works use a specialized select-predict
pipeline (SPP), where a predictor module is trained
to solve the task using only tokens chosen by a
selector module (Jain et al., 2020; Yu et al., 2021;
Paranjape et al., 2020). Instead of faithfulness opti-
mization, SPPs heuristically aim for “faithfulness
by construction" by treating the selected tokens as a
rationale for the predictor’s output (which depends
only on those tokens). Still, SPPs typically have
worse task performance than vanilla LMs since
SPPs hide the full input from the predictor.

To tackle this challenge, we propose the UNIfied
Learning Framework for Rationale EXtraction
(UNIREX), which generalizes rationale extractor
optimization as follows: (1) specify architecture
for a learned rationale extractor; (2) select explain-
ability objectives (i.e., faithfulness and plausibil-
ity criteria); and (3) jointly train the task model
and rationale extractor on the task using selected
objectives (Sec. 3). UNIREX enables replacing
prior works’ heuristic design choices in (1) with a
generic learned rationale extractor and optimizing
it for all three desiderata in (2)-(3).

UNIREX provides significant flexibility in per-
forming (1)-(3). For (1), any model architecture is
applicable, but we study Transformer LM based ra-
tionale extractors in this work (Zaheer et al., 2020;
DeYoung et al., 2019). We focus on two archi-
tectures: (A) Dual LM, where task model and ra-
tionale extractor are separate and (B) Shared LM,
where task model and rationale extractor share pa-
rameters. For (2), any faithfulness and plausibility
criteria can be used. Following DeYoung et al.
(2019), we focus on comprehensiveness and suffi-
ciency as faithfulness criteria, while using similar-
ity to gold rationales as plausibility criteria. For (3),
trade-offs between the three desiderata can be eas-
ily managed during rationale extractor optimization
by setting arbitrary loss weights for the faithfulness
and plausibility objectives. Plus, though comput-
ing the faithfulness criteria involves discrete (non-
differentiable) token selection, using Shared LM
can approximate end-to-end training and enable
both task model and rationale extractor to be opti-
mized w.r.t. all three desiderata (Sec. 3.3).

To evaluate all three desiderata in aggregate, we
introduce the Normalized Relative Gain (NRG)
metric. Across five English text classification
datasets – SST, Movies, CoS-E, MultiRC, and e-

SNLI (Carton et al., 2020; DeYoung et al., 2019) –
our best UNIREX configuration outperforms the
strongest baselines by an average of 32.9% NRG
(Sec. 4.2), showing that UNIREX can optimize
rationale extractors for all three desiderata. In ad-
dition, we verify our UNIREX design choices via
extensive ablation studies (Sec. 4.3). Furthermore,
UNIREX-trained extractors have high generaliza-
tion power, yielding high plausiblity with minimal
gold rationale supervision (Sec. 4.4) and high faith-
fulness on unseen datasets and tasks (Sec. 4.5).
Finally, our user study shows that humans judge
UNIREX rationales as more plausible than ratio-
nales extracted using other methods (Sec. 4.6).

2 Problem Formulation

Rationale Extraction Let Ftask = ftask(fenc(·))
be a task model for M -class text classification
(Sec. A.1), where fenc is the text encoder and
ftask is the task output head. Typically, Ftask has
a BERT-style architecture (Devlin et al., 2018), in
which fenc is a Transformer (Vaswani et al., 2017)
while ftask is a linear layer with softmax classi-
fier. Let xi = [xti]

n
t=1 be the n-token input se-

quence (e.g., a sentence) for task instance i, and
Ftask(xi) ∈ RM be the logit vector for the output
of the task model. Let ŷi = argmax j Ftask(xi)j
be the class predicted by Ftask. Given Ftask, xi,
and ŷi, the goal of rationale extraction is to output
vector si = [sti]

n
t=1 ∈ Rn, such that each sti ∈ R is

an importance score indicating how much token xti
influenced Ftask to predict class ŷi. Let Fext be a ra-
tionale extractor, such that si = Fext(Ftask,xi, ŷi).
Fext can be a learned or heuristic function. In prac-
tice, the final rationale is often obtained by bina-
rizing si as ri ∈ {0, 1}n, via the top-k% strategy:
rti = 1 if sti is one of the top-k% scores in si; oth-
erwise, rti = 0 (DeYoung et al., 2019; Jain et al.,
2020; Pruthi et al., 2020; Chan et al., 2021). For
top-k%, let r(k)i be the “important" (i.e., ones) to-
kens in ri, when using 0 ≤ k ≤ 100.

Faithfulness means how well a rationale re-
flects Ftask’s true reasoning process for predict-
ing ŷi (Jacovi and Goldberg, 2020). Hence, faith-
fulness metrics measure how much the r

(k)
i to-

kens impact pŷi(xi), which denotes Ftask’s confi-
dence probability for ŷi when using xi as input
(DeYoung et al., 2019; Shrikumar et al., 2017;
Hooker et al., 2018; Pruthi et al., 2020). Recently,
comprehensiveness and sufficiency have emerged
as popular faithfulness metrics (DeYoung et al.,
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2019). Comprehensiveness (comp) measures the
change in pŷi when r

(k)
i is removed from the in-

put: comp = pŷi(xi) − pŷi(xi\r(k)i ). Sufficiency
(suff) measures the change in pŷi when only r

(k)
i is

kept in the input: suff = pŷi(xi)− pŷi(r
(k)
i ). High

faithfulness is signaled by high comp and low suff.
Plausibility means how convincing a rationale

is to humans (Jacovi and Goldberg, 2020). This
can be measured by automatically computing the
similarity between Fext’s rationales (either si or ri)
and human-annotated gold rationales (DeYoung
et al., 2019), or by asking human annotators to rate
whether Fext’s rationales make sense for predict-
ing ŷi (Strout et al., 2019; Doshi-Velez and Kim,
2017). Typically, a gold rationale is a binary vector
r∗i ∈ {0, 1}n, where ones/zeros indicate impor-
tant/unimportant tokens (Lei et al., 2016).

Task Performance, w.r.t. rationale extraction,
concerns how much Ftask’s task performance (on
test set) drops when Ftask is trained with explain-
ability objectives (i.e., faithfulness, plausibility)
for Fext. As long as Ftask is trained with non-task
losses, Ftask’s task performance can be affected.

3 UNIREX
Given task model Ftask, UNIREX generalizes
rationale extractor optimization as follows: (1)
choose architecture for a learned rationale extrac-
tor Fext; (2) select explainability objectives (i.e.,
faithfulness loss Lfaith and plausibility loss Lplaus);
and (3) jointly train Ftask and Fext using Ltask (task
loss), Lfaith, and Lplaus. UNIREX training consists
of two backpropagation paths (Fig. 2). The first
path is used to update Ftask w.r.t. Ltask and Lfaith.
Whereas Ltask is computed w.r.t. the task target
yi, Lfaith is computed only using the task input xi

and the top-k% important tokens r(k)i (obtained via
Fext), based on some combination of comp and
suff (Sec. 2). The second path is used to update
Fext w.r.t. Lplaus, which encourages importance
scores si to approximate gold rationale r∗i . Thus,
UNIREX frames rationale extraction as the follow-
ing optimization problem:

min
Ftask,Fext

Ltask(xi, yi;Ftask)

+ αfLfaith(xi, r
(k)
i ;Ftask)

+ αpLplaus(xi, r
∗
i ;Fext),

(1)

where αf and αp are loss weights. If Ftask and
Fext share parameters, then the shared parameters
will be optimized w.r.t. all losses. During inference,

for task input xi, we first use Ftask to predict yi,
then use Fext to output a rationale ri for Ftask’s
prediction ŷi. Below, we discuss options for the
rationale extractor and explainability objectives.

3.1 Rationale Extractor
In UNIREX, Fext is a learned function by default.
Learned Fext can be any model that transforms xti
into sti. Given their success in NLP explainability
(DeYoung et al., 2019), we focus on pre-trained
Transformer LMs and highlight two architectures:
Dual LM (DLM) and Shared LM (SLM) (Fig. 3).
For DLM, Ftask and Fext are two separate Trans-
former LMs. DLM provides more dedicated capac-
ity for Fext, which can help Fext output plausible
rationales. For SLM, Ftask and Fext are two Trans-
former LMs sharing encoder fenc, while Fext has
its own output head fext. SLM leverages multitask
learning between Ftask and Fext, which can im-
prove faithfulness since Fext gets more information
about Ftask’s reasoning process. Unlike heuristic
Fext (Sec. A.2), learned Fext can be optimized for
faithfulness/plausibility, but cannot be used out of
the box without training. Learned Fext is preferred
if: (A) optimizing for both faithfulness and plau-
sibility, and (B) gold rationales are available for
plausibility optimization (Sec. A.3).

3.2 Explainability Objectives
After selecting Fext, we specify the explainabil-
ity objectives, which can be any combination of
faithfulness and plausibility criteria. In prior ap-
proaches (e.g., AA, SPPs), the rationale extractor is
not optimized for both faithfulness and plausibility,
but UNIREX makes this possible. For any choice
of learned Fext, UNIREX lets us easily “plug and
play" different criteria and loss weights, based on
our needs and domain knowledge, to find those that
best balance the rationale extraction desiderata.

Faithfulness Evaluating rationale faithfulness
is still an open problem with many existing metrics,
and UNIREX is not tailored for any specific metric.
Still, given the prevalence of comp/suff (Sec. 2),
we focus on comp/suff based objectives.

Recall that comp measures the importance of to-
kens in r

(k)
i as how pŷi(x̂i), Ftask’s predicted prob-

ability for class ŷi, changes when those tokens are
removed from xi. Intuitively, we want pŷi(x̂i) to be
higher than pŷi(xi\r(k)i ), so higher comp is better.
Since comp is defined for a single class’ probability
rather than the label distribution, we can define the
comp loss Lcomp via cross-entropy loss LCE, as in
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Figure 2: UNIREX Framework. UNIREX enables jointly optimizing the task model (Ftask) and rationale extractor (Fext),
w.r.t. faithfulness (Lfaith), plausibility (Lplaus), and task performance (Ltask).

Figure 3: Rationale Extractor Types.

the following difference criterion for Lcomp:

Lcomp-diff = LCE(Ftask(xi), yi)

− LCE(Ftask(xi\r(k)i ), yi))
(2)

LCE(Ftask(xi), yi) = −yi log(Ftask(xi)) (3)

For training stability, we compute comp loss
for target class yi here instead of Ftask’s pre-
dicted class ŷi, since ŷi is a moving target dur-
ing training. Using Lcomp-diff, it is possible for
LCE(Ftask(xi\r(k)i ), yi)) to become much larger
than LCE(Ftask(xi), yi), leading to arbitrarily neg-
ative losses. To avoid this, we can add margin mc

to the loss function, giving the margin criterion:

Lcomp-margin = max(−mc,LCE(Ftask(xi), yi)

− LCE(Ftask(xi\r(k)i ), yi)) +mc

(4)

Recall that suff measures the importance of to-
kens in r

(k)
i as how pŷi(x̂i), Ftask’s predicted prob-

ability for class ŷi, changes when they are the only
tokens kept in xi. Based on suff’s definition, we

want pŷi(r
(k)
i ) to be higher than pŷi(x̂i), so lower

suff is better. For suff loss Lsuff, we define the
difference and margin criteria analogously with
margin ms but the opposite sign (since lower suff
is better):

Lsuff-diff = LCE(Ftask(r
(k)
i ), yi)

− LCE(Ftask(xi), yi)
(5)

Lsuff-margin = max(−ms,LCE(Ftask(r
(k)
i ), yi)

− LCE(Ftask(xi), yi)) +ms

(6)

In our experiments, we find that the margin-
based comp/suff criteria are effective (Sec. 4.3),
though others (e.g., KL Div, MAE) can be used
too (Sec. A.4.1). Note that r(k)i is computed via
top-k% thresholding (Sec. 2), so we also need to
specify a set K of threshold values. We separately
compute the comp/suff losses for each k ∈ K, then
obtain the final comp/suff losses by averaging over
all k values via area-over-precision-curve (AOPC)
(DeYoung et al., 2019). To reflect this, we denote
the comp and suff losses as Lcomp,K and Lsuff,K , re-
spectively. Let αfLfaith = αcLcomp,K + αsLsuff,K ,
where αc and αs are loss weights.

Plausibility Plausibility is defined as how con-
vincing a rationale is to humans (Jacovi and Gold-
berg, 2020), i.e., whether humans would agree the
rationale supports the model’s prediction. While
optimizing for plausibility should ideally involve
human-in-the-loop feedback, this is prohibitive. In-
stead, many works consider gold rationales as a
cheaper form of plausibility annotation (DeYoung
et al., 2019; Narang et al., 2020; Jain et al., 2020).
Thus, if gold rationale supervision is available, then
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we can optimize for plausibility. With gold ratio-
nale r∗i for input xi, plausibility optimization en-
tails training Fext to predict binary importance la-
bel r∗,ti for each token xti. This is essentially token
classification, so one natural choice for Lplaus is the
token-level binary cross-entropy (BCE) criterion:

Lplaus-BCE = −
∑

t

r∗,ti log(Fext(x
t
i)) (7)

Besides BCE loss, we can also consider other
criteria like sequence-level KL divergence and L1
loss. See Sec. A.4.2 for discussion of these and
other plausibility criteria.

3.3 Training and Inference
After setting Fext, Lfaith, and Lplaus, we can move
on to training Ftask and Fext. Since top-k% ratio-
nale binarization (Sec. 3.2) is not differentiable,
by default, we cannot backpropagate Lfaith through
all of Fext’s parameters. Thus, Ftask is trained via
Ltask and Lfaith, whileFext is only trained via Lplaus.
This means Fext’s rationales ri are indirectly opti-
mized for faithfulness by regularizing Ftask such
that its behavior aligns with ri. The exception is if
we are using the SLM variant, where encoder fenc
is shared by Ftask and Fext. In this case, fenc is opti-
mized w.r.t. all losses, ftask is optimized w.r.t. Ltask
and Lfaith, and fext is optimized w.r.t. Lplaus. SLM
is a simple way to approximate end-to-end training
of Ftask and Fext. In contrast, past SPPs have used
more complex methods like reinforcement learning
(Lei et al., 2016) and the reparameterization trick
(Bastings et al., 2019), whose training instability
can hurt task performance (Jain et al., 2020).

Now, we summarize the full learning objec-
tive. Given that cross-entropy loss Ltask =
LCE(Ftask(xi), yi) is used to train Ftask to predict
yi, the full learning objective is:

L = Ltask + αfLfaith + αpLplaus

= Ltask + αcLcomp,K + αsLsuff,K + αpLplaus.
(8)

During inference, we use Ftask to predict yi, then
use Fext to output ri for Ftask’s predicted label ŷi.

4 Experiments
We present empirical results demonstrating
UNIREX’s effectiveness in managing trade-offs
between faithfulness, plausibility, and task per-
formance during rationale extractor optimization.
First, our main experiments compare methods w.r.t.
faithfulness, plausibility, and task performance
(Sec. 4.2). Second, we perform various ablation

studies to verify our design choices for UNIREX
(Sec. 4.3). Third, we present experiments high-
lighting UNIREX’s generalization ability, both in
terms of limited gold rationale supervision (Sec.
4.4) and zero-shot transfer (Sec. 4.5). Fourth, we
conduct a user study to further evaluate UNIREX
rationales’ plausibility, relative to those generated
by other methods (Sec. 4.6). See Sec. A.5 for im-
plementation details (LM architecture, AA settings,
training).

4.1 Experiment Setup
Datasets We primarily use SST (Socher et al.,
2013; Carton et al., 2020), Movies (Zaidan and
Eisner, 2008), CoS-E (Rajani et al., 2019), Mul-
tiRC (Khashabi et al., 2018), and e-SNLI (Camburu
et al., 2018), all of which have gold rationale an-
notations. The latter four datasets were taken from
the ERASER benchmark (DeYoung et al., 2019).

Metrics We use the metrics from the
ERASER explainability benchmark (DeYoung
et al., 2019). For faithfulness, we use compre-
hensiveness (Comp) and sufficiency (Suff), for
k = [1, 5, 10, 20, 50] (DeYoung et al., 2019). For
plausibility, we use area under precision-recall
curve (AUPRC) and token F1 (TF1) to measure
similarity to gold rationales (DeYoung et al., 2019;
Narang et al., 2020). For task performance, we
follow (DeYoung et al., 2019) and (Carton et al.,
2020) in using accuracy (SST, CoS-E) and macro
F1 (Movies, MultiRC, e-SNLI).

To aggregately evaluate multiple desiderata, we
introduce the Normalized Relative Gain (NRG)
metric, which is based on the ARG metric from
Ye et al. (2021). NRG normalizes raw metrics
(e.g., F1, sufficiency) to scores between 0 and
1 (higher is better). Given a set of raw met-
ric scores Z = {z1, z2, ...} (each from a differ-
ent method), NRG(zi) captures zi’s value rela-
tive to min(Z) and max(Z). If higher values
are better for the given metric (e.g., F1), then we
have: NRG(zi) = zi−min(Z)

max(Z)−min(Z) . If lower val-
ues are better (e.g., sufficiency), then we have:
NRG(zi) =

max(Z)−zi
max(Z)−min(Z) . After computing NRG

for multiple raw metrics, we can aggregate them
w.r.t. desiderata via averaging. Let FNRG, PNRG,
and TNRG be the NRG values for faithfulness,
plausibility, and task performance, respectively. Fi-
nally, we compute the composite NRG as: CNRG =
FNRG+PNRG+TNRG

3 .
Results Reporting For all results, we report

average over three seeds and the five k values. We
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Figure 4: Composite NRG Comparison (w/o Plausibility Optimization). Composite NRG (CNRG) is the mean of the three
desiderata NRG scores. For each dataset, we use CNRG to compare methods that do not optimize for plausibility.

Figure 5: Composite NRG Comparison (w/ Plausibility Optimization). Composite NRG (CNRG) is the mean of the three
desiderata NRG scores. For each dataset, we use CNRG to compare methods that do optimize for plausibility.

denote each UNIREX configuration with “([ratio-
nale extractor]-[explainability objectives])”. F, P,
and FP denote faithfulness, plausibility, and faith-
fulness+plausibility, respectively.

Baselines The first category is AAs, which are
not trained: AA (Grad) (Simonyan et al., 2013), AA
(Input*Grad) (Denil et al., 2014), AA (DeepLIFT)
(Lundberg and Lee, 2017), AA (IG) (Sundarara-
jan et al., 2017). We also experiment with IG for
L2E (Situ et al., 2021), which distills knowledge
from an AA to an LM. The second category is
SPPs: FRESH (Jain et al., 2020) and A2R (Yu
et al., 2021). For FRESH, we use a strong vari-
ant where IG rationales are directly given to the
predictor, rather than output by a trained selector.
A2R aims to improve SPP task performance by
regularizing the predictor with an attention-based

predictor that uses the full input. In addition, we
introduce FRESH+P and A2R+P, which augment
FRESH and A2R, respectively, with plausibility
optimization. The third category is AA-based reg-
ularization: SGT (Ismail et al., 2021), which uses
a sufficiency-based criterion to optimize for faith-
fulness. We also consider SGT+P, which augments
SGT with plausibility optimization.

4.2 Main Results

Fig. 4-6 display the main results. In Fig. 4/5, we
compare the CNRG for all methods and datasets,
without/with gold rationales. In both plots, we see
that UNIREX variants achieve the best CNRG
across all datasets, indicating that they are effec-
tive in balancing the three desiderata. In partic-
ular, UNIREX (DLM-FP) and UNIREX (SLM-
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Figure 6: NRG Comparison by Desiderata. We show FNRG, PNRG, and TNRG for all methods, averaged over all datasets.

FP) have very high CNRG scores, both yielding
more than 30% improvement over the strongest
baselines. Fig. 6 compares methods w.r.t. desider-
ata NRG (i.e., FNRG, PNRG, TNRG). Here, the
left/right plots show methods without/with gold
rationales. Again, we see that UNIREX variants
achieve a good NRG balance of faithfulness, plau-
sibility, and task performance. Meanwhile, many
baselines (e.g., AA (IG), A2R, SGT+P) do well on
some desiderata but very poorly on others.

4.3 Ablation Studies
We present five ablation studies to validate the ef-
fectiveness of our UNIREX design choices. The
ablation results are displayed in Table 1. In this
table, each of the five sections shows results for
a different ablation. Thus, all numbers within the
same section and column are comparable.

Extractor Type In the Ext Type (F) section, we
compare four heuristic rationale extractors, using
AA-F. Rand uses random importance scores, Gold
directly uses the gold rationales, Inv uses the in-
verse of the gold rationales, and IG uses IG. All
heuristics yield similar task performance, but IG
dominates on all faithfulness metrics. This makes
sense because IG is computed using Ftask’s in-
puts/parameters/outputs, while the others do not
have this information. For plausibility, Gold is the
best, Inv is the worst, and Rand and IG are about
the same, as none of the heuristics are optimized
for plausibility. In the Ext Type (FP) section, we
compare four learned rationale extractors. By de-
fault, attribution algorithms’ dimension scores are
pooled into token scores via sum pooling. AA-FP
(Sum) uses IG with sum pooling, while AA-FP

Ablation UNIREX Config Faithfulness Plausibility Performance

Comp (↑) Suff (↓) AUPRC (↑) Acc (↑)

Ext Type (F)

AA-F (Rand) 0.171 (±0.040) 0.327 (±0.050) 44.92 (±0.00) 94.05 (±0.35)
AA-F (Gold) 0.232 (±0.088) 0.249 (±0.021) 100.00 (±0.00) 93.81 (±0.54)
AA-F (Inv) 0.242 (±0.010) 0.357 (±0.019) 20.49 (±0.00) 93.47 (±1.81)
AA-F (IG) 0.292 (±0.051) 0.171 (±0.038) 48.13 (±1.14) 92.97 (±0.44)

Ext Type (FP)

AA-FP (Sum) 0.296 (±0.067) 0.185 (±0.048) 47.60 (±2.44) 93.25 (±0.45)
AA-FP (MLP) 0.285 (±0.051) 0.197 (±0.100) 54.82 (±1.97) 93.23 (±0.92)

DLM-FP 0.319 (±0.090) 0.167 (±0.036) 85.80 (±0.74) 93.81 (±0.18)
SLM-FP 0.302 (±0.039) 0.113 (±0.013) 82.55 (±0.84) 93.68 (±0.67)

Comp/Suff Loss
SLM-FP (Comp) 0.350 (±0.048) 0.310 (±0.049) 82.79 (±0.62) 93.59 (±0.11)
SLM-FP (Suff) 0.166 (±0.003) 0.152 (±0.012) 83.74 (±0.84) 94.16 (±0.39)

SLM-FP (Comp+Suff) 0.302 (±0.039) 0.113 (±0.013) 82.55 (±0.84) 93.68 (±0.67)

Suff Criterion
SLM-FP (KL Div) 0.306 (±0.098) 0.131 (±0.005) 82.62 (±0.88) 93.06 (±0.25)
SLM-FP (MAE) 0.278 (±0.058) 0.143 (±0.008) 82.66 (±0.61) 93.78 (±0.13)

SLM-FP (Margin) 0.302 (±0.039) 0.113 (±0.013) 82.55 (±0.84) 93.68 (±0.67)

SLM Ext Head
SLM-FP (Linear) 0.302 (±0.039) 0.113 (±0.013) 82.55 (±0.84) 93.68 (±0.67)

SLM-FP (MLP-2048-2) 0.323 (±0.071) 0.144 (±0.012) 83.82 (±0.77) 93.67 (±0.18)
SLM-FP (MLP-4096-3) 0.295 (±0.057) 0.154 (±0.027) 84.53 (±0.61) 93.19 (±0.79)

Table 1: UNIREX Ablation Studies on SST.

(MLP) replaces the sum pooler with a MLP-based
pooler to increase capacity for plausibility opti-
mization. Task performance for all four methods is
similar, AA-FP (Sum) dominates on faithfulness,
and DLM-FP and SLM-FP dominate on plausibil-
ity. AA-FP (MLP) does not perform as well on
faithfulness but slightly improves on plausibility
compared to AA-FP (Sum).

Comp/Suff Losses The Comp/Suff Loss sec-
tion compares different combinations of Comp
and Suff losses, using SLM-FP. Note that SLM-
FP (Comp+Suff) is equivalent to SLM-FP shown
in other tables/sections. As expected, SLM-
FP (Comp) does best on Comp, but SLM-FP
(Comp+Suff) actually does best on Suff. Mean-
while, SLM-FP, (Suff) does second-best on Suff
but is much worse on Comp. This shows that Comp
and Suff are complementary for optimization.

Suff Criterion The Suff Criterion section com-
pares different Suff criteria, using SLM-FP. SLM-
FP (KLDiv) uses the KL divergence criterion,
SLM-FP (MAE) uses the MAE criterion, and SLM-
FP (Margin) uses the margin criterion. SLM-FP
(Margin) is equivalent to SLM-FP in other ta-
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Figure 7: Gold Rationale Data Efficiency on SST.

bles/sections. All criteria yield similar performance
and plausibility, while Margin is slightly better on
faithfulness.

SLM Extractor Head The SLM Ext Head
section compares different extractor heads, using
SLM-FP. Linear is the default choice and uses a
linear layer. MLP-2048-2 uses a MLP with two
2048-dim hidden layers. MLP-4096-3 uses a MLP
with three 4096-dim hidden layers. All three out-
put head types yield similar performance, but de-
creasing head capacity yields better faithfulness,
while increasing head capacity heads yields bet-
ter plausibility. This trades off faithfulness and
plausibility, although larger heads will be more
compute-intensive.

4.4 Gold Rationale Data Efficiency

UNIREX supports arbitrary amounts of gold ratio-
nale supervision and allows us to account for data
efficiency. In Fig. 7, we compare plausibility (in
AUPRC) for γ = [0.5, 1, 5, 10, 20, 100] (i.e., % of
train instances with gold rationales). We compare
AA (IG) and four UNIREX variants (AA-F, AA-
FP, DLM-FP, SLM-FP). AA (IG) and AA-F do not
use gold rationales and thus have the same AUPRC
for all γ. Standard deviation is shown by the error
bands. UNIREX (DLM-FP) and UNIREX (SLM-
FP) dominate across all γ values, with AUPRC
slowly decreasing as γ decreases. Even at γ = 0.5,
they can still achieve high AUPRC. This suggests
that UNIREX’s gold rationale batching procedure
(Sec. A.3) is effective for learning from minimal
gold rationale supervision and demonstrates how
UNIREX enables us to manage this trade-off. See
Sec. A.6 for similar results on CoS-E.

Task Dataset Method Faithfulness Task Performance

Comp (↑) Suff (↓) Perf (↑)

SA

SST
AA (IG) 0.119 (±0.009) 0.258 (±0.031) 93.81 (±0.55)

UNIREX (AA-F) 0.292 (±0.051) 0.171 (±0.038) 92.97 (±0.44)
UNIREX (DLM-FP) 0.319 (±0.090) 0.167 (±0.036) 93.81 (±0.54)

Yelp
AA (IG) 0.069 (±0.004) 0.219 (±0.028) 92.50 (±2.07)

UNIREX (AA-F) 0.138 (±0.078) 0.126 (±0.059) 83.93 (±13.20)
UNIREX (DLM-FP) 0.265 (±0.094) 0.097 (±0.033) 92.37 (±0.46)

Amazon
AA (IG) 0.076 (±0.010) 0.224 (±0.037) 91.13 (±0.28)

UNIREX (AA-F) 0.130 (±0.077) 0.073 (±0.039) 77.90 (±13.12)
UNIREX (DLM-FP) 0.232 (±0.072) 0.098 (±0.033) 89.35 (±2.22)

HSD Stormfront
AA (IG) 0.135 (±0.010) 0.245 (±0.059) 10.48 (±1.66)

UNIREX (AA-F) 0.219 (±0.009) 0.092 (±0.025) 10.36 (±1.94)
UNIREX (DLM-FP) 0.167 (±0.084) 0.115 (±0.059) 10.37 (±2.66)

OSD OffenseEval
AA (IG) 0.097 (±0.009) 0.244 (±0.052) 33.51 (±0.99)

UNIREX (AA-F) 0.074 (±0.040) 0.102 (±0.024) 32.62 (±4.85)
UNIREX (DLM-FP) 0.140 (±0.049) 0.087 (±0.045) 35.52 (±1.26)

ID SemEval2018
AA (IG) 0.128 (±0.014) 0.248 (±0.064) 29.63 (±4.72)

UNIREX (AA-F) 0.069 (±0.041) 0.096 (±0.011) 49.95 (±8.31)
UNIREX (DLM-FP) 0.149 (±0.052) 0.102 (±0.053) 31.97 (±2.80)

Table 2: Zero-Shot Faithfulness Transfer from SST.

4.5 Zero-Shot Faithfulness Transfer

In Table 2, we investigate if Fext’s faithfulness, via
UNIREX training on some source dataset, can gen-
eralize to unseen target datasets/tasks in a zero-shot
setting (i.e., no fine-tuning on target datasets). Plau-
sibility is not evaluated here, since these unseen
datasets do not have gold rationales. As the source
model, we compare various SST-trained models:
AA (IG) and UNIREX (AA-F, DLM-FP). First, we
evaluate on unseen datasets for a seen task (senti-
ment analysis (SA)): Yelp (Zhang et al., 2015) and
Amazon (McAuley and Leskovec, 2013). Second,
we evaluate on unseen datasets for unseen tasks:
Stormfront (hate speech detection (HSD), binary
F1) (de Gibert et al., 2018), OffenseEval (offen-
sive speech detection (OSD), macro F1) (Zampieri
et al., 2019), and SemEval2018 (irony detection
(ID), binary F1) (Van Hee et al., 2018).

We want to show that, even if Ftask yields poor
task performance on unseen datasets, Fext’s ratio-
nales can still be faithful. As expected, all meth-
ods achieve much lower task performance in the
third setting than in the first two settings. How-
ever, faithfulness does not appear to be strongly
correlated with task performance, as unseen tasks’
comp/suff scores are similar to seen tasks’. Across
all datasets, DLM-FP has the best faithfulness and
is the only method whose comp is always higher
than suff. AA-F is not as consistently strong as
DLM-FP, but almost always beats AA (IG) on
comp and suff. Meanwhile, AA (IG) has the worst
comp and suff overall. Ultimately, these results
suggest that UNIREX-trained models’ faithfulness
(i.e., alignment between Ftask’s and Fext’s outputs)
is a dataset/task agnostic property (i.e., can gen-
eralize across datasets/tasks), further establishing
UNIREX’s utility in low-resource settings.

58



Method Forward Simulation Subjective Rating

Accuracy (%) Confidence (1-4) Alignment (1-5)

No Rationale 92.00 (±3.35) 3.02 (±0.39) -

SGT+P 80.80 (±9.73) 2.34 (±0.31) 3.64 (±0.28)
A2R+P 41.20 (±4.71) 2.83 (±0.28) 2.97 (±0.12)

UNIREX (AA-FP) 72.00 (±7.78) 2.00 (±0.31) 3.26 (±0.31)
UNIREX (DLM-FP) 83.60 (±5.41) 2.77 (±0.28) 3.96 (±0.22)

Gold 81.20 (±3.03) 2.88 (±0.30) 4.00 (±0.20)

Table 3: Plausibility User Study on SST.

4.6 User Study on Plausibility

Gold rationale based plausibility evaluation is noisy
because gold rationales are for the target label, not
a model’s predicted label. Thus, we conduct two
five-annotator user studies (Table 3) to get a better
plausibility measurement. Given 50 random test in-
stances from SST, we get the rationales for SGT+P,
A2R+P, UNIREX (AA-FP), and UNIREX (DLM-
FP), plus the gold rationales. For each instance, we
threshold all rationales to have the same number
of positive tokens as the gold rationale. The first
user study is forward simulation (Hase and Bansal,
2020; Jain et al., 2020). Here, the annotator is given
an input and a rationale for some model’s predic-
tion, then asked what (binary) sentiment label the
model most likely predicted. For forward simu-
lation, we also consider a No Rationale baseline,
where no tokens are highlighted. For No Rationale
and Gold, the target label is the correct choice. An-
notators are also asked to rate their confidence (4-
point Likert scale) in their answer to this question.
The second user study involves giving a subjective
rating of how plausible the rationale is (Hase and
Bansal, 2020). Here, the annotator is given the
input, rationale, and model’s predicted label, then
asked to rate (5-point Likert scale) how aligned the
rationale is with the prediction.

In both forward simulation and subjective rat-
ing, we find that DLM-FP performs best among all
non-oracle methods and even beats Gold on accu-
racy, further supporting that DLM-FP rationales are
plausible. As expected, the fact that Gold does not
achieve near-100% accuracy shows the discrepancy
between evaluating plausibility based on the tar-
get label (i.e., gold rationale similarity) and Ftask’s
predicted label (forward simulation). Meanwhile,
SGT+P and AA-FP, which had lower AUPRC/TF1
in our automatic evaluation, also do worse in accu-
racy/alignment. Also, users found SGT+P and AA-
FP rationales harder to understand, as shown by
their lower confidence scores. Meanwhile, A2R+P
had high AUPRC/TF1, but gets very low accu-
racy/alignment because A2R+P’s predicted label

often not the target label, leading to misalignment
with its gold-like rationale. A2R+P is a great ex-
ample of how automatic plausibility evaluation can
be misleading. For the accuracy, confidence, and
alignment questions, we achieved Fleiss’ Kappa
(Fleiss, 1971) inter-annotator agreement scores of
0.2456 (fair), 0.1282 (slight), and, 0.1561 (slight),
respectively. This lack of agreement shows the
difficulty of measuring plausibility.

5 Related Work

Faithfulness Many prior works have tried to
improve the faithfulness of extractive rationales
through the use of AAs (Bastings and Filippova,
2020). Typically, this involves designing gradient-
based (Sundararajan et al., 2017; Denil et al.,
2014; Lundberg and Lee, 2017; Li et al., 2015) or
perturbation-based (Li et al., 2016; Poerner et al.,
2018; Kádár et al., 2017) AAs. However, attribu-
tion algorithms cannot be optimized and tend to
be compute-intensive (often requiring multiple LM
forward/backward passes). Recently, Ismail et al.
(2021) addressed the optimization issue by regu-
larizing the task model to yield faithful rationales
via the AA, while other works (Situ et al., 2021;
Schwarzenberg et al., 2021) addressed the compute
cost issue by training an LM (requiring only one
forward pass) to mimic an AA’s behavior. Another
line of work aims to produce faithful rationales
by construction, via SPPs (Jain et al., 2020; Yu
et al., 2021; Paranjape et al., 2020; Bastings et al.,
2019; Yu et al., 2019; Lei et al., 2016). Still, SPPs’
faithfulness can only guarantee sufficiency – not
comprehensiveness (DeYoung et al., 2019). Also,
SPPs generally perform worse than vanilla LMs
because they hide much of the original text input
from the predictor and are hard to train end-to-end.

Plausibility Existing approaches for improving
extractive rationale plausibility typically involve su-
pervising LM-based extractors (Bhat et al., 2021)
or SPPs (Jain et al., 2020; Paranjape et al., 2020;
DeYoung et al., 2019) with gold rationales. How-
ever, existing LM-based extractors have not been
trained for faithfulness, while SPPs’ faithfulness
by construction comes at the great cost of task per-
formance. Meanwhile, more existing works focus
on improving the plausibility of free-text rationales
(Narang et al., 2020; Lakhotia et al., 2020; Cam-
buru et al., 2018), often with task-specific pipelines
(Rajani et al., 2019; Kumar and Talukdar, 2020).

Connection to UNIREX Unlike prior works,
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UNIREX enables both the task model and ratio-
nale extractor to be jointly optimized for faithful-
ness, plausibility, and task performance. As a result,
UNIREX-trained rationale extractors achieve a
better balance of faithfulness and plausibility, with-
out compromising the task model’s performance.
Also, by using a learned rationale extractor, which
generally only requires one model forward pass,
UNIREX does not have the computational ex-
penses that limit many AAs.
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A Appendix

A.1 Text Classification

Here, we formalize the text classification prob-
lem in more detail. Let D = {X ,Y}Ni=1 be a
dataset, where X = {xi}Ni=1 are the text inputs,
Y = {y∗i }Ni=1 are the labels, and N is the number
of instances (xi, y

∗
i ) in D. We also assume D can

be partitioned into train setDtrain, dev setDdev, and
test set Dtest. Let Ftask = ftask(fenc(·)) be a task
LM, where fenc is the text encoder, and ftask is the
task output head. Typically, Ftask has a BERT-style
architecture (Devlin et al., 2018), in which fenc is
a Transformer (Vaswani et al., 2017) while ftask
is a linear layer. Below, we define the sequence
classification (SST, Movies, MultiRC, e-SNLI) and
multi-choice QA (CoS-E) tasks, which are different
types of text classification.

Sequence Classification In sequence classifica-
tion, xi is a token sequence (e.g., a single sen-
tence, a pair of sentences), while y∗i is the target
class for xi. Here, we assume a fixed label space
Y = {1, ...,M} of size M , where y∗i ∈ Y for all
i. Thus, ftask outputs a vector of size M , such that
Ftask(xi) = ftask(fenc(xi)) = ŷi ∈ RM is the logit
vector used to classify xi. Given ŷi = [ŷi,j ]

M
j=1, let

yi = argmax j ŷi,j be the class predicted by Ftask.
The goal of sequence classification is to learn Ftask
such that y∗i = yi, for all (xi, y

∗
i ) (Minaee et al.,

2021).

Multi-Choice QA Instead of a fixed label space,
multi-choice QA has a different (but fixed-size)
set of answer choices per instance. For instance
i, let qi be the question (e.g., “A friend is greet-
ing me, what would they say?”) and Ai =
{ai,j}Mj=1 be the corresponding answer choices
(e.g., {“say hello”, “greet”, “associate”, “social-
ize”, “smile”}), where M is now the number of
answer choices. Define xi,j = qi ⊕ ai,j , where
⊕ denotes concatenation. In multi-choice QA, we
have xi = {xi,j}Mj=1, while y∗i ∈ Ai is the correct
answer for xi. Thus, ftask outputs a scalar, such
that Ftask(xi,j) = ftask(fenc(xi,j)) = ŷi,j ∈ R
is the logit for xi,j . Given ŷi = [ŷi,j ]

M
j=1, let

j′ = argmax j ŷi,j , where yi = ai,j′ is the answer
predicted by Ftask. The goal of multi-choice QA
is to learn Ftask such that y∗i = yi, for all (xi, y

∗
i )

(Talmor et al., 2018).
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A.2 Heuristic Rationale Extractors

A heuristic Ftask is an AA, which can be any hand-
crafted function that calculates an importance score
sti for each input token xti (Bastings and Filippova,
2020). AAs are typically gradient-based (Sun-
dararajan et al., 2017; Denil et al., 2014; Lundberg
and Lee, 2017; Li et al., 2015) or perturbation-
based (Li et al., 2016; Poerner et al., 2018; Kádár
et al., 2017) methods. Gradient-based methods
compute sti via the gradient of Ftask’s output ŷi

w.r.t. xti, via one or more Ftask backward passes.
Perturbation-based methods measure sti as ŷi’s
change when perturbing (e.g., removing) xti, via
multiple Ftask forward passes.

AAs can be used out of the box without train-
ing and are designed to satisfy certain faithfulness-
related axiomatic properties (Sundararajan et al.,
2017; Lundberg and Lee, 2017). However, AAs’
lack of learnable parameters means they cannot
be optimized for faithfulness/plausibility. Thus, if
Ftask is trained for explainability using AA-based
rationales, then only Ftask is optimized. Also, faith-
ful AAs tend to be compute-intensive, requiring
many Ftask backward/forward passes per instance
(Sundararajan et al., 2017; Lundberg and Lee, 2017;
Li et al., 2016).

A.3 Gold Rationale Supervision

If a learned rationale extractor is chosen, UNIREX
enables users to specify how much gold rationale
supervision to use. Ideally, each train instance
would be annotated with a gold rationale. In this
case, we could directly minimize the plausibility
loss for each train instance. However, since gold
rationales can be expensive to annotate, UNIREX
provides a special batching procedure for training
with limited gold rationale supervision.

Given Ntrain = |Dtrain| train instances, let 0 <
γ < 100 be the percentage of train instances with
gold rationales, Ngold = ⌈ γ

100Ntrain⌉ ≥ 1 be the
number of train instances with gold rationales, b be
the desired train batch size, and β > 1 be a scaling
factor. Define Dgold ⊆ Dtrain as the set of train
instances with gold rationales, where |Dgold| =
Ngold. Note that, if all train instances have gold
rationales, then Dgold = Dtrain and γ = 100.

Each batch is constructed as follows: (1) ran-
domly sample bgold = max(1, b

β ) instances from
Dgold without replacement, then (2) randomly sam-
ple b − bgold instances from Dtrain\Dgold without
replacement. This results in a batch with b total

train instances, bgold with gold rationales and the
rest without. Since Ngold is generally small, we
only sample from Dgold without replacement for a
given batch, but not a given epoch. Thus, instances
from Dgold may appear more than once in the same
epoch. However, we do sample from Dtrain\Dgold
without replacement for each batch and epoch, so
every instance in Dtrain\Dgold appears exactly once
per epoch.

After constructing the batch, we compute
the plausibility loss for the batch as fol-
lows:

∑b
i=1 1(xi,y∗i )∈Dgold Lplaus(Fext(xi), r∗i ),

where Lplaus is the plausibility loss for train in-
stance (xi, y∗i ). This function zeroes out the plau-
sibility loss for instances without gold rationales,
so that plausibility is only being optimized with
respect to instances with gold rationales. However,
in Sec. ??, we show that it is possible to achieve
high plausibility via rationale extractors trained on
minimal gold rationale supervision.

A.4 Explainability Objectives

A.4.1 Faithfulness
Sufficiency In addition, to the criteria presented
in Sec. 3.2, we consider two other sufficiency loss
functions. The first is the KL divergence criterion
used in (Ismail et al., 2021), which considers the
entire label distribution and is defined as Lsuff-KL =
KL(Ftask(r

(k)
i )) || Ftask(xi)). The second is the

mean absolute error (MAE) criterion, which is
defined as Lsuff-MAE = |LCE(Ftask(r

(k)
i )), y∗i ) −

LCE(Ftask(xi), y∗i )|. Unlike the difference criterion
Lsuff-diff and margin criterion Lsuff-margin (Sec. 3.2),
the MAE criterion assumes that using r

(k)
i as input

should not yield better task performance than us-
ing xi as input. In our experiments, we find that
Lsuff-margin is effective, though others (e.g., KL di-
vergence, MAE) can be used too.

A.4.2 Plausibility
Similar to faithfulness, UNIREX places no re-
strictions on the choice of plausibility objective.
As described in Sec. 3.2, given gold rationale r∗i
for input xi, plausibility optimization entails train-
ing Fext to predict binary importance label r∗,ti for
each token xti. This is essentially binary token
classification, so one natural choice for Lplaus is
the token-level binary cross-entropy (BCE) crite-
rion: Lplaus-BCE = −∑t r

∗,t
i log(Fext(x

t
i)) (Sec.

3.2). Another option is the sequence-level KL di-
vergence criterion, which is defined as: Lplaus-KL =
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KL(Fext(xi) || r∗i ).
Additionally, we can directly penalize Fext(xi)

in the logit space via a linear loss, defined as:
Lplaus-linear = Φ(r∗i ) Fext(xi), where Φ(u) =
−2u + 1 maps positive and negative tokens to
−1 and +1, respectively. The linear loss directly
pushes the logits corresponding to positive/negative
tokens to be higher/lower and increase the mar-
gin between them. To prevent linear loss values
from becoming arbitrarily negative, we can also
lower bound the loss with a margin mp, yielding:
Lplaus-linear-margin = max(−mp,Lplaus-linear) +mp.

A.5 Implementation Details

LM Architecture While many prior works use
BERT (Devlin et al., 2018) Transformer LMs,
BERT is limited to having sequences with up
to 512 tokens, which is problematic since many
datasets (e.g., Movies) contain much longer se-
quences. Meanwhile, BigBird (Zaheer et al., 2020)
is a state-of-the-art Transformer LM designed to
handle long input sequences with up to 4096 tokens.
Thus, we use BigBird-Base, which is initialized
with RoBERTa-Base (Liu et al., 2019), in all of our
experiments (i.e., both baselines and UNIREX).
We obtain the pre-trained BigBird-Base model
from the Hugging Face Transformers library (Wolf
et al., 2019). Note that UNIREX is agnostic to
the choice of LM architecture, so RNNs, CNNs,
and other Transformer LMs are also supported by
UNIREX. However, we leave exploration of other
LM architectures for future work.

Training Building upon Sec. ??, we discuss ad-
ditional training details here. We find that αc = 0.5
and αs = 0.5 are usually best. For the batching
factor β (Sec. A.3), we use 2. For model selec-
tion, we choose the model with the best dev per-
formance averaged over three seeds. We can also
perform model selection based on dev explainabil-
ity metrics, but we leave this extended tuning for
future work. All experiments are implemented us-
ing PyTorch-Lightning (Paszke et al., 2019; Falcon
and The PyTorch Lightning team, 2019).

A.6 Gold Rationale Data Efficiency

Fig. ?? shows the gold rationale data efficiency
results for CoS-E, using the same setup as Sec.
??. Overall, we see that the CoS-E results are quite
similar to the SST results. Again, UNIREX (DLM-
FP) and UNIREX (SLM-FP) dominate across all
γ values, with AUPRC slowly decreasing as γ de-

creases. Interestingly, UNIREX (AA-FP) yields a
noticeable dip in AUPRC for lower γ values. Since
AA-FP has limited capacity (via the task model)
for plausibility optimization, it is possible that this
fluctuation is due to random noise. We leave further
analysis of this for future work.

Figure 8: Gold Rationale Data Efficiency on CoS-E.

A.7 Additional Empirical Results
In this subsection, we present additional results
from our experiments. Besides the aggregated re-
sults shown in Sec. 4 of the main text, Tables 4-10
contain more detailed results, using both raw and
NRG metrics. Specifically, Tables 4-8 show all
raw/NRG results for each dataset, Table 9 shows
the ablation results for all raw metrics, and Table 10
includes the zero-shot explainability transfer results
for UNIREX (SLM-FP). Generally, the computa-
tion of NRG should involve globally aggregating
the raw metrics for all available methods, as done
in the main results. However, for a number of more
focused experiments (Tables 9-10), only a subset
of the available methods are considered. Thus, to
make the faithfulness results in Tables 9-10 easier
to digest, we introduce a metric called Comp-Suff
Difference (CSD), which locally aggregates comp
and suff as: CSD = comp− suff. Therefore, since
higher/lower comp/suff signal higher faithfulness,
then higher CSD signals higher faithfulness.
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Method Composite Faithfulness Plausibility Performance

NRG (↑) NRG (↑) Comp (↑) Suff (↓) NRG (↑) AUPRC (↑) TF1 (↑) NRG (↑) Acc (↑)
AA (Grad) 0.488 0.337 0.142 (±0.010) 0.256 (±0.006) 0.192 58.86 (±3.65) 27.40 (±0.00) 0.935 93.81 (±0.55)

AA (Input*Grad) 0.420 0.107 0.078 (±0.013) 0.342 (±0.014) 0.218 44.16 (±1.43) 45.02 (±0.39) 0.935 93.81 (±0.55)
AA (DeepLIFT) 0.453 0.122 0.085 (±0.006) 0.340 (±0.018) 0.302 46.50 (±1.32) 50.18 (±0.32) 0.935 93.81 (±0.55)

AA (IG) 0.526 0.297 0.119 (±0.009) 0.258 (±0.031) 0.347 49.94 (±1.77) 50.75 (±0.54) 0.935 93.81 (±0.55)
L2E 0.557 0.487 0.012 (±0.004) 0.009 (±0.024) 0.250 44.84 (±0.32) 47.24 (±0.87) 0.935 93.81 (±0.55)
SGT 0.632 0.555 0.147 (±0.024) 0.113 (±0.031) 0.371 51.38 (±2.47) 51.35 (±1.64) 0.971 94.40 (±0.57)

FRESH 0.330 0.837 0.219 (±0.057) 0.000 (±0.000) 0.152 42.06 (±8.84) 41.19 (±4.01) 0.000 78.78 (±6.48)
A2R 0.479 0.941 0.283 (±0.104) 0.000 (±0.000) 0.457 63.36 (±6.01) 46.74 (±6.65) 0.038 79.39 (±11.67)

UNIREX (AA-F) 0.639 0.706 0.292 (±0.051) 0.171 (±0.038) 0.329 48.13 (±1.14) 50.96 (±0.93) 0.882 92.97 (±0.44)

SGT+P 0.596 0.507 0.139 (±0.032) 0.137 (±0.026) 0.355 50.38 (±1.45) 50.98 (±0.46) 0.928 93.70 (±0.88)
FRESH+P 0.426 0.765 0.175 (±0.043) 0.000 (±0.000) 0.503 60.87 (±9.83) 53.55 (±8.27) 0.011 78.95 (±5.18)

A2R+P 0.695 0.953 0.290 (±0.016) 0.000 (±0.000) 0.978 85.56 (±1.01) 70.97 (±1.03) 0.154 81.26 (±0.52)
UNIREX (DLM-P) 0.770 0.339 0.142 (±0.008) 0.255 (±0.007) 0.970 84.35 (±0.87) 71.54 (±0.53) 1.000 94.86 (±0.41)
UNIREX (AA-FP) 0.636 0.339 0.296 (±0.067) 0.185 (±0.048) 0.315 47.60 (±2.44) 50.23 (±2.26) 0.900 93.25 (±0.45)

UNIREX (DLM-FP) 0.897 0.756 0.319 (±0.090) 0.167 (±0.036) 1.000 85.80 (±0.74) 72.76 (±0.19) 0.935 93.81 (±0.54)
UNIREX (SLM-FP) 0.891 0.807 0.302 (±0.039) 0.113 (±0.013) 0.940 82.55 (±0.84) 70.65 (±0.44) 0.927 93.68 (±0.67)

Table 4: Main Results on SST.

Method Composite Faithfulness Plausibility Performance

NRG (↑) NRG (↑) Comp (↑) Suff (↓) NRG (↑) AUPRC (↑) TF1 (↑) NRG (↑) F1 (↑)
AA (Grad) 0.481 0.457 0.184 (±0.023) 0.107 (±0.017) 0.028 13.31 (±0.91) 5.02 (±0.00) 0.957 95.33 (±0.65)

AA (Input*Grad) 0.503 0.359 0.148 (±0.031) 0.137 (±0.019) 0.194 8.68 (±0.37) 37.58 (±0.55) 0.957 95.33 (±0.65)
AA (DeepLIFT) 0.468 0.259 0.122 (±0.029) 0.172 (±0.022) 0.187 9.00 (±0.16) 36.15 (±1.45) 0.957 95.33 (±0.65)

AA (IG) 0.439 0.173 0.134 (±0.016) 0.219 (±0.044) 0.188 8.88 (±0.21) 36.39 (±1.29) 0.957 95.33 (±0.65)
L2E 0.550 0.445 0.000 (±0.007) 0.026 (±0.015) 0.248 16.68 (±10.20) 38.92 (±4.07) 0.957 95.33 (±0.65)
SGT 0.553 0.474 0.124 (±0.053) 0.071 (±0.064) 0.184 10.05 (±1.23) 34.64 (±1.67) 1.000 96.33 (±0.76)

FRESH 0.645 0.732 0.234 (±0.034) 0.000 (±0.000) 0.305 17.02 (±6.22) 48.26 (±5.87) 0.899 94.00 (±1.44)
A2R 0.431 0.764 0.267 (±0.050) 0.000 (±0.000) 0.244 35.44 (±21.69) 19.78 (±25.56) 0.284 79.78 (±7.14)

UNIREX (AA-F) 0.601 0.744 0.505 (±0.134) 0.122 (±0.100) 0.189 9.14 (±2.51) 36.28 (±1.84) 0.870 93.33 (±1.61)

SGT+P 0.586 0.604 0.152 (±0.013) 0.022 (±0.004) 0.183 9.16 (±1.59) 35.33 (±0.41) 0.971 95.66 (±1.16)
FRESH+P 0.491 0.691 0.193 (±0.062) 0.000 (±0.000) 0.710 65.78 (±11.16) 68.70 (±15.78) 0.070 74.84 (±12.22)

A2R+P 0.585 0.764 0.267 (±0.076) 0.000 (±0.000) 0.991 93.53 (±0.93) 88.77 (±1.22) 0.000 73.22 (±0.75)
UNIREX (DLM-P) 0.667 0.024 0.024 (±0.003) 0.238 (±0.004) 1.000 94.32 (±0.12) 89.53 (±1.63) 0.978 95.83 (±0.29)
UNIREX (AA-FP) 0.543 0.514 0.428 (±0.174) 0.195 (±0.105) 0.193 8.53 (±0.46) 37.71 (±3.12) 0.921 94.50 (±1.00)

UNIREX (DLM-FP) 0.744 0.326 0.283 (±0.217) 0.216 (±0.005) 0.991 93.65 (±0.36) 88.68 (±2.29) 0.913 94.33 (±1.61)
UNIREX (SLM-FP) 0.754 0.362 0.313 (±0.059) 0.213 (±0.014) 0.965 91.70 (±1.84) 86.17 (±1.20) 0.935 94.83 (±0.76)

Table 5: Main Results on Movies.

Method Composite Faithfulness Plausibility Performance

NRG (↑) NRG (↑) Comp (↑) Suff (↓) NRG (↑) AUPRC (↑) TF1 (↑) NRG (↑) Acc (↑)
AA (Grad) 0.537 0.504 0.331 (±0.012) 0.352 (±0.007) 0.130 37.33 (±0.62) 22.65 (±0.00) 0.977 63.56 (±1.27)

AA (Input*Grad) 0.573 0.361 0.249 (±0.018) 0.385 (±0.008) 0.383 39.56 (±0.54) 44.43 (±0.40) 0.977 63.56 (±1.27)
AA (DeepLIFT) 0.605 0.346 0.254 (±0.035) 0.403 (±0.042) 0.491 42.82 (±1.83) 51.72 (±1.26) 0.977 63.56 (±1.27)

AA (IG) 0.578 0.327 0.216 (±0.007) 0.378 (±0.010) 0.429 40.07 (±5.47) 48.34 (±3.16) 0.977 63.56 (±1.27)
L2E 0.544 0.493 0.005 (±0.003) 0.010 (±0.008) 0.161 23.56 (±1.09) 37.80 (±1.10) 0.977 63.56 (±1.27)
SGT 0.618 0.367 0.197 (±0.040) 0.324 (±0.015) 0.491 43.68 (±4.68) 51.00 (±3.05) 0.995 64.35 (±0.46)

FRESH 0.302 0.546 0.037 (±0.036) 0.000 (±0.000) 0.261 32.35 (±7.66) 39.37 (±0.70) 0.101 24.81 (±3.46)
A2R 0.277 0.516 0.014 (±0.021) 0.000 (±0.000) 0.282 41.61 (±3.85) 33.12 (±9.06) 0.032 21.77 (±1.31)

UNIREX (AA-F) 0.690 0.538 0.297 (±0.141) 0.286 (±0.084) 0.554 46.97 (±3.41) 53.99 (±1.66) 0.978 63.58 (±0.61)

SGT+P 0.601 0.367 0.201 (±0.032) 0.328 (±0.022) 0.436 41.30 (±6.70) 47.95 (±1.65) 1.000 64.57 (±0.33)
FRESH+P 0.374 0.515 0.013 (±0.021) 0.013 (±0.021) 0.606 53.40 (±12.87) 53.17 (±7.83) 0.000 20.36 (±0.66)

A2R+P 0.488 0.500 0.001 (±0.001) 0.000 (±0.000) 0.951 73.59 (±0.81) 67.63 (±1.54) 0.012 20.91 (±0.48)
UNIREX (DLM-P) 0.751 0.267 0.180 (±0.016) 0.390 (±0.035) 0.997 76.07 (±1.63) 69.76 (±0.27) 0.990 64.13 (±0.46)
UNIREX (AA-FP) 0.685 0.551 0.395 (±0.109) 0.381 (±0.101) 0.537 45.21 (±4.46) 53.91 (±3.23) 0.968 63.14 (±0.33)

UNIREX (DLM-FP) 0.814 0.492 0.293 (±0.043) 0.321 (±0.070) 0.997 76.38 (±0.57) 69.52 (±0.24) 0.953 62.50 (±1.34)
UNIREX (SLM-FP) 0.807 0.494 0.390 (±0.087) 0.424 (±0.110) 0.983 75.12 (±0.41) 69.25 (±0.41) 0.944 62.09 (±2.12)

Table 6: Main Results on CoS-E.
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Method Composite Faithfulness Plausibility Performance

NRG (↑) NRG (↑) Comp (↑) Suff (↓) NRG (↑) AUPRC (↑) TF1 (↑) NRG (↑) F1 (↑)
AA (Grad) 0.498 0.462 0.222 (±0.028) 0.120 (±0.018) 0.035 22.27 (±0.17) 13.81 (±0.00) 0.997 69.80 (±0.60)

AA (Input*Grad) 0.506 0.289 0.225 (±0.048) 0.260 (±0.059) 0.231 18.51 (±0.23) 43.45 (±0.05) 0.997 69.80 (±0.60)
AA (DeepLIFT) 0.493 0.249 0.225 (±0.012) 0.292 (±0.014) 0.234 18.80 (±0.19) 43.51 (±0.04) 0.997 69.80 (±0.60)

AA (IG) 0.499 0.280 0.162 (±0.086) 0.222 (±0.086) 0.220 18.71 (±0.40) 41.79 (±1.33) 0.997 69.80 (±0.60)
L2E 0.522 0.366 0.007 (±0.006) 0.042 (±0.024) 0.205 24.48 (±2.71) 32.63 (±6.12) 0.997 69.80 (±0.60)
SGT 0.594 0.564 0.214 (±0.105) 0.033 (±0.077) 0.224 18.60 (±0.42) 42.42 (±0.51) 0.995 69.73 (±0.13)

FRESH 0.675 0.571 0.176 (±0.029) 0.000 (±0.000) 0.617 24.68 (±7.98) 48.02 (±3.04) 0.838 64.47 (±3.41)
A2R 0.217 0.404 -0.010 (±0.029) 0.000 (±0.000) 0.249 18.72 (±0.67) 45.45 (±0.02) 0.000 36.39 (±0.00)

UNIREX (AA-F) 0.711 0.956 0.505 (±0.050) -0.071 (±0.020) 0.236 18.82 (±0.40) 43.68 (±0.38) 0.939 66.17 (±4.58)

SGT+P 0.630 0.665 0.280 (±0.029) 0.283 (±0.039) 0.226 18.63 (±0.52) 42.71 (±0.39) 1.000 69.91 (±0.81)
FRESH+P 0.404 0.413 0.000 (±0.013) 0.000 (±0.000) 0.739 55.87 (±10.13) 63.70 (±9.58) 0.060 38.41 (±5.34)

A2R+P 0.516 0.422 0.011 (±0.024) 0.000 (±0.000) 0.977 70.86 (±1.30) 76.21 (±1.68) 0.150 41.42 (±8.73)
UNIREX (DLM-P) 0.708 0.123 0.127 (±0.010) 0.322 (±0.017) 0.999 71.80 (±0.27) 77.94 (±0.57) 1.000 69.91 (±0.76)
UNIREX (AA-FP) 0.706 1.000 0.545 (±0.045) -0.077 (±0.099) 0.231 19.13 (±0.71) 42.66 (±1.18) 0.888 66.17 (±4.58)

UNIREX (DLM-FP) 0.751 0.327 0.135 (±0.072) 0.165 (±0.029) 0.998 71.89 (±0.41) 77.63 (±0.62) 0.929 67.53 (±1.06)
UNIREX (SLM-FP) 0.784 0.377 0.198 (±0.038) 0.171 (±0.027) 0.997 71.69 (±0.21) 77.79 (±0.09) 0.979 69.20 (±1.58)

Table 7: Main Results on MultiRC.

Method Composite Faithfulness Plausibility Performance

NRG (↑) NRG (↑) Comp (↑) Suff (↓) NRG (↑) AUPRC (↑) TF1 (↑) NRG (↑) F1 (↑)
AA (Grad) 0.587 0.518 0.313 (±0.009) 0.380 (±0.025) 0.244 59.80 (±1.32) 15.27 (±0.00) 0.999 90.78 (±0.27)

AA (Input*Grad) 0.503 0.287 0.205 (±0.005) 0.446 (±0.020) 0.223 32.98 (±1.37) 43.13 (±0.86) 0.999 90.78 (±0.27)
AA (DeepLIFT) 0.508 0.270 0.195 (±0.012) 0.448 (±0.014) 0.254 33.47 (±1.31) 46.44 (±0.04) 0.999 90.78 (±0.27)

AA (IG) 0.596 0.473 0.308 (±0.011) 0.414 (±0.020) 0.317 47.83 (±1.04) 37.87 (±1.39) 0.999 90.78 (±0.27)
L2E 0.606 0.460 0.009 (±0.015) 0.036 (±0.022) 0.358 58.11 (±0.97) 31.35 (±0.27) 0.999 90.78 (±0.27)
SGT 0.595 0.503 0.288 (±0.025) 0.361 (±0.038) 0.298 42.46 (±3.03) 41.70 (±1.78) 0.985 90.23 (±0.16)

FRESH 0.518 0.661 0.120 (±0.075) 0.000 (±0.000) 0.361 38.77 (±6.82) 53.71 (±3.30) 0.530 72.92 (±8.71)
A2R 0.273 0.564 0.053 (±0.048) 0.000 (±0.000) 0.256 48.48 (±11.14) 29.54 (±24.72) 0.000 52.72 (±14.08)

UNIREX (AA-F) 0.622 0.539 0.330 (±0.018) 0.383 (±0.055) 0.340 45.29 (±3.02) 43.69 (±1.98) 0.987 90.31 (±0.19)

SGT+P 0.608 0.524 0.286 (±0.034) 0.339 (±0.032) 0.311 43.03 (±1.69) 42.59 (±1.63) 0.988 90.36 (±0.08)
FRESH+P 0.614 0.695 0.143 (±0.072) 0.000 (±0.000) 0.603 56.21 (±10.47) 64.09 (±5.59) 0.544 73.44 (±12.88)

A2R+P 0.800 0.751 0.182 (±0.097) 0.000 (±0.000) 0.992 87.30 (±0.44) 77.31 (±0.72) 0.656 77.31 (±0.72)
UNIREX (DLM-P) 0.842 0.525 0.311 (±0.011) 0.371 (±0.032) 1.000 87.85 (±0.13) 77.63 (±0.35) 1.000 90.80 (±0.33)
UNIREX (AA-FP) 0.626 0.529 0.341 (±0.008) 0.406 (±0.046) 0.363 44.79 (±0.81) 47.18 (±0.83) 0.985 90.21 (±0.08)

UNIREX (DLM-FP) 0.857 0.588 0.335 (±0.018) 0.346 (±0.023) 0.991 86.99 (±0.40) 77.53 (±0.15) 0.992 90.51 (±0.12)
UNIREX (SLM-FP) 0.864 0.603 0.353 (±0.017) 0.356 (±0.015) 0.994 87.58 (±0.14) 77.22 (±0.28) 0.994 90.59 (±0.09)

Table 8: Main Results on e-SNLI.

Ablation Method Performance Faithfulness Plausibility

Acc (↑) CSD (↑) Comp (↑) Suff (↓) AUPRC (↑) TF1 (↑)

Ext Type (F)

UNIREX (AA-F, Rand) 94.05 (±0.35) -0.156 (±-0.156) 0.171 (±0.040) 0.327 (±0.050) 44.92 (±0.00) 46.15 (±0.00)
UNIREX (AA-F, Gold) 93.81 (±0.54) -0.017 (±0.070) 0.232 (±0.088) 0.249 (±0.021) 100.00 (±0.00) 100.00 (±0.00)
UNIREX (AA-F, Inv) 93.47 (±1.81) -0.115 (±0.018) 0.242 (±0.010) 0.357 (±0.019) 20.49 (±0.00) 0.00 (±0.00)
UNIREX (AA-F, IG) 93.81 (±0.55) -0.138 (±0.040) 0.119 (±0.009) 0.258 (±0.031) 49.94 (±1.77) 50.75 (±0.54)

Ext Type (FP)

UNIREX (AA-FP, Sum) 93.81 (±0.55) -0.138 (±0.040) 0.119 (±0.009) 0.258 (±0.031) 49.94 (±1.77) 50.75 (±0.54)
UNIREX (AA-FP, MLP) 93.23 (±0.92) 0.087 (±0.134) 0.285 (±0.051) 0.197 (±0.100) 54.82 (±1.97) 49.62 (±0.65)

UNIREX (DLM-FP) 93.81 (±0.18) 0.151 (±0.056) 0.319 (±0.090) 0.167 (±0.036) 85.80 (±0.74) 72.76 (±0.19)
UNIREX (SLM-FP) 93.68 (±0.67) 0.189 (±0.030) 0.302 (±0.039) 0.113 (±0.013) 82.55 (±0.84) 70.65 (±0.44)

Comp/Suff Loss
UNIREX (SLM-FP, Comp) 93.59 (±0.11) 0.040 (±0.096) 0.350 (±0.048) 0.310 (±0.049) 82.79 (±0.62) 70.74 (±0.81)
UNIREX (SLM-FP, Suff) 94.16 (±0.39) 0.014 (±0.010) 0.166 (±0.003) 0.152 (±0.012) 83.74 (±0.84) 70.94 (±0.86)

UNIREX (SLM-FP, Comp+Suff) 93.68 (±0.67) 0.189 (±0.030) 0.302 (±0.039) 0.113 (±0.013) 82.55 (±0.84) 70.65 (±0.44)

Suff Criterion
UNIREX (SLM-FP, KL Div) 93.06 (±0.25) 0.174 (±0.100) 0.306 (±0.098) 0.131 (±0.005) 82.62 (±0.88) 70.43 (±0.65)
UNIREX (SLM-FP, MAE) 93.78 (±0.13) 0.135 (±0.053) 0.278 (±0.058) 0.143 (±0.008) 82.66 (±0.61) 70.25 (±0.45)

UNIREX (SLM-FP, Margin) 93.68 (±0.67) 0.189 (±0.030) 0.302 (±0.039) 0.113 (±0.013) 82.55 (±0.84) 70.65 (±0.44)

SLM Ext Head
UNIREX (SLM-FP, Linear) 93.68 (±0.67) 0.189 (±0.030) 0.302 (±0.039) 0.113 (±0.013) 82.55 (±0.84) 70.65 (±0.44)

UNIREX (SLM-FP, MLP-2048-2) 93.67 (±0.18) 0.179 (±0.060) 0.323 (±0.071) 0.144 (±0.012) 83.82 (±0.77) 70.93 (±0.87)
UNIREX (SLM-FP, MLP-4096-3) 93.19 (±0.79) 0.141 (±0.030) 0.295 (±0.057) 0.154 (±0.027) 84.53 (±0.61) 71.41 (±0.91)

Table 9: UNIREX Ablation Studies on SST.
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Task Dataset Method Performance Faithfulness

Perf (↑) CSD (↑) Comp (↑) Suff (↓)

Sentiment Analysis

SST

Vanilla 93.81 (±0.74) -0.070 (±0.061) 0.145 (±0.023) 0.215 (±0.038)
UNIREX (AA-F) 93.19 (±0.40) 0.360 (±0.055) 0.405 (±0.031) 0.045 (±0.024)

UNIREX (DLM-FP) 93.81 (±0.18) 0.151 (±0.056) 0.319 (±0.090) 0.167 (±0.036)
UNIREX (SLM-FP) 93.68 (±0.67) 0.189 (±0.030) 0.302 (±0.039) 0.113 (±0.013)

Yelp

Vanilla 92.50 (±2.07) -0.156 (±0.028) 0.067 (±0.004) 0.222 (±0.031)
UNIREX (AA-F) 90.75 (±1.30) -0.138 (±0.120) 0.096 (±0.026) 0.233 (±0.096)

UNIREX (DLM-FP) 92.37 (±0.46) 0.169 (±0.060) 0.265 (±0.094) 0.097 (±0.033)
UNIREX (SLM-FP) 86.60 (±1.57) 0.114 (±0.056) 0.175 (±0.055) 0.060 (±0.001)

Amazon

Vanilla 91.13 (±0.28) -0.120 (±0.038) 0.096 (±0.008) 0.217 (±0.033)
UNIREX (AA-F) 86.60 (±0.95) -0.111 (±0.161) 0.100 (±0.042) 0.210 (±0.122)

UNIREX (DLM-FP) 89.35 (±2.22) 0.133 (±0.039) 0.232 (±0.072) 0.098 (±0.033)
UNIREX (SLM-FP) 81.82 (±7.62) 0.097 (±0.027) 0.147 (±0.012) 0.050 (±0.017)

Hate Speech Detection Stormfront

Vanilla 10.48 (±1.66) -0.066 (±0.072) 0.153 (±0.002) 0.219 (±0.071)
UNIREX (AA-F) 9.43 (±1.45) 0.329 (±0.104) 0.337 (±0.073) 0.008 (±0.031)

UNIREX (DLM-FP) 10.37 (±2.66) 0.052 (±0.027) 0.167 (±0.084) 0.115 (±0.059)
UNIREX (SLM-FP) 4.51 (±1.87) 0.049 (±0.041) 0.110 (±0.039) 0.062 (±0.043)

Offensive Speech Detection OffenseEval

Vanilla 33.51 (±0.99) -0.125 (±0.068) 0.104 (±0.007) 0.229 (±0.064)
UNIREX (AA-F) 35.69 (±2.30) -0.028 (±0.084) 0.076 (±0.008) 0.104 (±0.076)

UNIREX (DLM-FP) 35.52 (±1.26) 0.053 (±0.012) 0.140 (±0.049) 0.087 (±0.045)
UNIREX (SLM-FP) 38.17 (±0.96) 0.039 (±0.031) 0.087 (±0.016) 0.048 (±0.024)

Irony Detection SemEval2018-Irony

Vanilla 29.63 (±4.72) -0.058 (±0.075) 0.154 (±0.001) 0.212 (±0.074)
UNIREX (AA-F) 47.99 (±6.33) 0.026 (±0.080) 0.087 (±0.022) 0.061 (±0.071)

UNIREX (DLM-FP) 31.97 (±2.80) 0.047 (±0.017) 0.149 (±0.052) 0.102 (±0.053)
UNIREX (SLM-FP) 17.42 (±4.04) 0.027 (±0.047) 0.091 (±0.027) 0.064 (±0.033)

Table 10: Zero-Shot Explainability Transfer from SST to Unseen Datasets/Tasks.
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Abstract

The maturity level of language models is now
at a stage in which many companies rely on
them to solve various tasks. However, while
research has shown how biased and harmful
these models are, systematic ways of integrat-
ing social bias tests into development pipelines
are still lacking. This short paper suggests how
to use these verification techniques in devel-
opment pipelines. We take inspiration from
software testing and suggest addressing social
bias evaluation as software testing. We hope to
open a discussion on the best methodologies to
handle social bias testing in language models.

1 Introduction
Current language models are now primarily de-
ployed on large infrastructures (e.g., HuggingFace
repository1) and used by many practitioners and
researchers with few lines of code. This releasing
mechanism has brought tremendous value to the
community as researchers everywhere can access
models, download them on their laptops, and run
experiments. However, these models are quickly
adopted without complete understanding their pos-
sible limitations (Bianchi and Hovy, 2021).

Recent literature is now rich of papers that
demonstrate how social bias is embedded in large
language models and propose many different ver-
ification and validation datasets (e.g., May et al.,
2019; Nozza et al., 2021; Nadeem et al., 2021, in-
ter alia). Researchers and practitioners can use all
these contributions to understand if a model is safe
to use or not. We will refer to these works and
the datasets used as verification as social bias tests
from this point on.

This literature often misses the long-term goal.
What is the point of having so many social bias
tests that effectively capture different aspects of
the problem if we do not find a systematic way
of using them? Indeed, this work is also inspired

1https://huggingface.co/

by the recent approaches and methodologies de-
fined to provide more comprehensive evaluations
of models (Ribeiro et al., 2020; Chia et al., 2022).

Indeed, other computer science fields have devel-
oped insights into how to handle testing. Software
development has long been wrestling with the need
for good evaluation practices for source code. For
example, Continuous Integration and Continuous
Deployment (CI/CD) is a general methodology in
software development. It assumes frequent test-
ing to ensure that the product under development
passes specific qualitative tests that guarantee it
is working. In this direction, frequent testing of
language models can be part of the solution.

The main contribution of this short paper is first
to identify the main recurring themes and the pri-
mary methodologies of social bias literature. We
then suggest a more practical and developmental
direction: all these methods can be used the same
way as tests in software testing pipelines. Unsta-
ble/unsafe software should not go into production,
which is also true for language models.

We are aware that a single social bias test can-
not provide a complete picture of the problems
and that we cannot treat a model that passes the
tests as entirely safe. Nonetheless, we believe that
some frequent tests are better than no tests. As a
community, we need to come together and work
closely to stress test these models even during the
development phase.

Contributions Our contribution is twofold: we
first give an overview of the literature on social bias
tests and explore the main themes and methods.
We then suggest that this literature can be used in
practical contexts to frequently evaluate language
models to understand better how the tools we use
can be harmful. With this work, we hope to start
a discussion on the best methodologies to handle
social bias testing in language models as we believe
this is a fundamental step to sustain the future and
correct usage of these technologies.
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2 Existing Social Bias tests
An overview of bias in NLP has been presented
in several work (Blodgett et al., 2020; Shah et al.,
2020; Hovy and Prabhumoye, 2021; Sheng et al.,
2021; Stanczak and Augenstein, 2021). Here, we
focus on the approaches proposed for contextual
embeddings. We illustrate the main themes that
have driven the developed of social bias tests. The
categories we are going to describe are not mutually
exclusive, however they showcase in a coherent
manner what has been done in the literature.

2.1 Word List-based

Several studies have been conducted to analyse and
determine the level of bias in static word embed-
dings in binary and multi-class scenarios (Boluk-
basi et al., 2016; Caliskan et al., 2017; Garg et al.,
2018; Swinger et al., 2019; Manzini et al., 2019;
Lauscher and Glavaš, 2019; Gonen and Goldberg,
2019). Several works applied these bias evaluations
to contextualized models by extracting static word
embeddings for them (Basta et al., 2019; Lauscher
et al., 2021; Wolfe and Caliskan, 2021).

Inspired by gender bias metrics for word embed-
dings, May et al. (2019) proposed the Sentence En-
coder Association Test (SEAT), a template-based
test founded on the Word Embedding Association
Test (WEAT) (Caliskan et al., 2017). Afterward,
Liang et al. (2020) used SEAT for measuring bias,
also considering the religious dimension.

2.2 Template-based

Template-based approaches exploit the fact that
BERT-like models are trained using a masked lan-
guage modeling objective. I.e., given a sentence
with omitted tokens indicated as [MASK], they
predict the masked tokens. The predictions for
these [MASK] tokens may provide us with some
insight into the bias embedded in the actual rep-
resentations. We can generate templates in two
different ways. First, by accounting for certain
targets (e.g., gendered words) and attributes (e.g.
career-related words) (Kurita et al., 2019; Zhang
et al., 2020; Dev et al., 2020). This enable, for
example, to compute the association between the
target male gender and the attribute programmer,
by feeding “[MASK] is a programmer” to BERT,
and compute the probability assigned to the sen-
tence “he is a programmer”. Another option is
to create templates coupling protected group tar-
gets with neutral predicates (e.g., “works as”, “is
known for”). For example, we can ask BERT to

complete “the woman is known for [MASK]” or
“the girl worked as [MASK].” Then, it is possible to
exploit lexicons (Nozza et al., 2021, 2022), or hate
speech (Ousidhoum et al., 2021; Sheng et al., 2019)
and sentiment classifiers Hutchinson et al. (2020);
Huang et al. (2020) to obtain a social bias score
from the template-based generated text. Ideally,
using a classifier lets us test the data more easily
and accurately than lexicons.

The same approach can be applied to natural
language generation models (Sheng et al., 2019;
Huang et al., 2020). The models are not fed with
a masked token but are asked to complete the tem-
plate. So, instead of a single word, they return a set
of words.

An interesting case has been proposed by
Choenni et al.. They look into what kinds of stereo-
typed information are collected by LLMs exploit-
ing a dataset comprising stereotypical attributes
for various social groups. The dataset was cre-
ated by feeding search engines queries that already
imply a stereotype about a specific social group
(e.g., ‘Why are Asian parents so’). Then, the au-
thors count how many of the stereotypes found by
the search engines are also encoded in the LLMs
through masked language modeling.

2.3 Crowdsourced-based

Few works have collected datasets to compute bias
scores. Nadeem et al. (2021) presented StereoSet,
a crowdsourced English dataset to measure stereo-
typical biases in four domains: gender, profession,
race, and religion. Nangia et al. (2020) introduced
CrowS-Pairs, a crowdsourced benchmark compris-
ing 1508 examples that cover stereotypes dealing
with nine types of bias. Both Nadeem et al. (2021);
Nangia et al. (2020) proposed a metric to measure
for how many examples the model prefers stereo-
typed sentences over less stereotyped sentences.

2.4 Social Media-based

Barikeri et al. (2021) propose a bias evaluation
framework for conversational LLMs using REDDIT-
BIAS, an English conversational data set grounded
in real-world human conversations from Reddit.
The authors propose a perplexity-based bias mea-
sure meant to quantify the amount of bias in genera-
tive language models along several bias dimensions.
Gehman et al. (2020) focus on collecting prompts
from the OpenWebText Corpus (Gokaslan and Co-
hen, 2019) and annotating them with the Perspec-
tive API to evaluate the toxicity of the messages.
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These messages are then split in half (a prompt and
a continuation) and are used to study, for exam-
ple, whether a model generates toxic continuations
from a non-toxic prompt.

2.5 Discussion

While many social bias tests have been provided
in the literature, they differ in methodology, cov-
ered languages, and protected groups. Most works
are on English. Only (Nozza et al., 2021; Ousid-
houm et al., 2021) considered languages beyond
English. The majority of work focused on gender
bias, and only a few investigated an extensive range
of targets (Nangia et al., 2020; Nadeem et al., 2021;
Ousidhoum et al., 2021; Barikeri et al., 2021). We
also found that Hutchinson et al. (2020); Huang
et al. (2020) did not provide data or code publicly.
Blodgett et al. (2021) presented a critical review
of some social bias tests and found significant is-
sues with noise, unnaturalness, and reliability of
the some work (Nangia et al., 2020; Nadeem et al.,
2021). Finally, it is important to highlight that so-
cial biases are different depending on the cultural
and historical context of application of the language
model.

This brief analysis demonstrates that no existing
social bias test is universal. While we may fill this
research gap in the future, for now, we suggest
using more than one test has to be used to measure
bias.

3 Integration
We describe the different modalities that can be
used to integrate social bias tests into development
pipelines.

3.1 Continuous Social Bias Verification

Software testing is at the heart of software devel-
opment. Without good evaluation, software easily
breaks in production, causing economic damage to
companies.

Most of the checks currently run to test language
models are structural. For example, does it produce
outputs correctly? Once fine-tuned, are the results
we get in a sensible range? We suggest that tests
should cover social biases.

We take inspiration from software testing and
suggest testing methodologies for language models.
In a CI/CD (continuous integration and continuous
development) setting, code is continuously pushed
into the repository and tested to ensure the model
is stable. Software is deployed if and only if tests

are correctly passed. We believe that we should
replicate this pipeline in the development of lan-
guage models. Every time a new model is released,
we can run tests to verify if and how the model is
hurtful.

Note that this is indeed a real problem. Many
pipelines are now based on HuggingFace APIs that
directly download the model from the HuggingFace
Hub. Users might not know what happens on the
backend: what happens when a model is updated,
and the user downloads it thinking it is the same
as the older version? We are not sure how many
users keep track of commits and changelogs, and
this might create a misunderstanding about which
model is being used and with which training setup.

3.2 Badge System

Publishers may help maintain the fairness of the re-
search ecosystem by establishing a badging mecha-
nism. This approach would increase the likelihood
that an LLM will be tested in advance for social
biases and that end-users will pay attention to this
issue.

Here, we propose a badging system based on the
ACM one2 and the one proposed for the NAACL
2022 reproducibility track3. We identified three
possible badges: Social Bias Evaluated, Social Bias
Available, and Results Validated.

Social Bias Evaluated This badge is given to
LLMs who have successfully run the social bias
tests. This badge does not require the scores to be
made publicly available.

Social Bias Available This badge is given to
LLMs that made the results of social bias tests
retrievable. We propose to design one badge for
each implemented social bias test and to show it
along with the associated score. We discourage us-
ing badges as binary (i.e., test passed or test failed)
for these particular cases. Considering the prob-
lem as binary might imply that a passing model is
entirely free of bias, even if this is not the case.

Results Validated This badge is given to
LLMs in which the social bias test results were
successfully attained by a person or team other
than the author.

2https://www.acm.org/
publications/policies/
artifact-review-and-badging-current

3https://2022.naacl.org/blog/
reproducibility-track/
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The woman is a [MASK]
The boy should work as a [MASK]
…

Model is pushed 
on an online 
repository.

Score

Model is 
developed 
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Social Bias Evaluation Engine

NewBERT

Model is released 
with badges

Figure 1: The figure shows an example of the possible integration of Social Bias tests into a development pipeline.
A model can be developed and trained on a server and pushed online. Then we can use an automation tool (e.g.,
Github Actions) to start an evaluation engine that will eventually generate the predictions for the models. Once
scored, the model can be released online with badges identifying possible issues that one might encounter with the
model.

Badging is also a standard and straightforward
system to showcase software validity in an online
repository. These badges are often used to show
information about the number of downloads, the
test coverage, the quality of the documentation and
allow users to understand the quality of what they
are using with a quick look.

Figure 1 shows a possible integration of testing
for harms in development pipelines. We can de-
velop the models on a local server and push this
model online after training is finished (with Git
LSF, for example). Pushing should automatically
start an evaluation pipeline (something close to
Github Actions) that starts an evaluation engine:
this engine should load the models and run the
social bias tests. Once the results are collected,
and the metrics have been scored, the model can
finally appear on online repositories with badges
that identify if and how the test have been run with
the respective scores.

3.3 Limits of this Integration

An open question is if the test should be available
to the developer of the models. On the one hand,
releasing the tests makes it easier for everyone to
evaluate their models internally before release. On
the other hand, this makes it easier to “train on test”
and hack the system to obtain better scores.

Hiding the test sets from the developer is closer

to standard Quality And Assurance developers in
companies that are meant to test the interfaces and
the code that the developer has built. This approach
is also in line with challenges that do not share
test data and in which models are submitted using
docker containers that are then internally evaluated
and scored. As Goodhart’s law states, “When a
measure becomes a target, it ceases to be a good
measure”. Thus we should be aware that social bias
tests cannot be the panacea for language models
problems. We cannot rely only on a test to assess
the validity of a model.4

Another point in discussion is that the pipelines
we have designed are meant to evaluate intrinsic
bias in language models. Unfortunately, this does
not consider the verification of bias in downstream
application: this extrinsic bias has been found to
be poorly correlated with the original bias of lan-
guage models (Goldfarb-Tarrant et al., 2021). How-
ever, we want to point out the an additional set of
application-specific tests could be used to evaluate
the models adapted for these tasks: for example, re-
searchers could use hate speech check tests (Dixon
et al., 2018; Nozza et al., 2019; Röttger et al., 2021)
to verify social biases in hate speech detection mod-
els.

4Albeit, this comment is true for any measure we use in
the field.
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4 Conclusion
This paper proposes to use social bias tests in model
development pipelines. We believe that our work
can be helpful to make the development of these
models fairer and easier to sustain from an ethical
point of view. Future work is needed to answer
several questions about this system. For example,
who creates the tests and how can we make sure
that these tests can be trusted? It becomes critical
to involve marginalized communities to develop
more sustainable and effective social bias tests.
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Abstract

In this work, we explore whether the recently
demonstrated zero-shot abilities of the T0
model extend to Named Entity Recognition for
out-of-distribution languages and time periods.
Using a historical newspaper corpus in 3 lan-
guages as test-bed, we use prompts to extract
possible named entities. Our results show that
a naive approach for prompt-based zero-shot
multilingual Named Entity Recognition is error-
prone, but highlights the potential of such an
approach for historical languages lacking la-
beled datasets. Moreover, we also find that
T0-like models can be probed to predict the
publication date and language of a document,
which could be very relevant for the study of
historical texts*.

1 Introduction

This paper lies at the focal point of three orthogo-
nal advances. First, the recent surge in GLAM1-led
digitisation efforts (Terras, 2011), open citizen sci-
ence (Haklay et al., 2021) and the expansive com-
modification of data (Hey and Trefethen, 2003),
have enabled a new mode of historical inquiry that
capitalises on the ‘big data of the past’ (Kaplan and
Di Lenardo, 2017). Second, the 2017 breakthrough
that was the transformer architecture (Vaswani
et al., 2017) has led to the so-called ImageNet
moment of Natural Language Processing (Ruder,
2018) and brought about unprecedented progress

*Authorship attribution (alphabetical): §1: Akiki, De
Toni, van Strien; §2.1: Fourrier; §2.2: Manjavacas; §2.3 and
experiment execution: Fourrier, de la Rosa, De Toni, Schweter;
§3: De Toni, Manjavacas; §4: Akiki, van Strien; §5: all the
authors; Impacts Statement: Akiki, Fourrier, de la Rosa.

1Galleries, libraries, archives, and museums.

in transfer-learning (Raffel et al., 2020), few-shot
learning (Schick and Schütze, 2021), zero-shot
learning (Sanh et al., 2021), and prompt-based
learning (Le Scao and Rush, 2021) for natural lan-
guage. Third, the growing popularity of prompt-
based methods (Liu et al., 2021) has resulted in a
new paradigm for training and fine-tuning Large
Language Models (LLM) as well as novel appli-
cations in Named Entity Recognition (NER) (Liu
et al., 2022).

NER for historical texts has been the focus of
a growing body of research, most recently sur-
veyed by Ehrmann et al. (2021). Both NER and
the related task of Entity Linking can enhance our
ability to search and navigate digitised historical
materials (Neudecker et al., 2014; Kim and Cas-
sidy, 2015). However, applying NER to histori-
cal texts poses a number of challenges, including
those due to errors in Optical Character Recogni-
tion (OCR) (Ehrmann et al., 2021; Hamdi et al.,
2019; Boros et al., 2020) and domain transfer (Bap-
tiste et al., 2021). To advance research in this area,
an increasing number of datasets have been cre-
ated to support the development and evaluation
of NER approaches in historical text (Neudecker,
2016; Ehrmann et al., 2020, 2022)

In this paper, we examine the zero-shot abilities
of T0—a prompt-based LLM developed as part
of the BigScience project for open research (Sanh
et al., 2021)—on the challenging task of histori-
cal NER2. This endeavour had two main hurdles:
(1) the model was neither trained to recognize en-
tities, nor was it ever tested on that task; (2) our

2
https://github.com/bigscience-workshop/

historical_texts
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evaluation dataset was out-of-distribution, contain-
ing both multilingual and historical data. To better
contextualize the results of our experiments, we
also run zero-shot prompt-based probing (Zhong
et al., 2021) to assess T0’s broader ability of ex-
tracting factual knowledge about two key factors
in our experiment, that is, language variation and
historical variation in the dataset.

2 Experimental setup

2.1 Data description

Our data comes from version 1.4 of the CLEF-
HIPE3 2020 open-access dataset4: an OCR’ed
newspaper corpus annotated for NER (Ehrmann
et al., 2020). It contains Swiss and Luxembourgish
newspapers from 1790 to 2010, in English, Ger-
man and French. For our experiment, we use only
entities of coarse type, according to their literal
sense. Coarse entity types in the CLEF-HIPE 2020
dataset are persons, locations, organizations, dates
and products (which includes media and doctrines).

We mix the original training and validation sets
to constitute our test set5, and we split this new
set by language and date (using 20 years time in-
tervals,6 see Table 1). Each language dataset is
relatively balanced between 1810 and 1910, with
English containing between 2,202 and 4,697 tokens
per split with the exception of one split (1850-1870
English) for which there are no tokens. German
contains between 6,735 and 12,829 tokens, and
French contains between 8,550 and 16,874 tokens.
The end periods contain on average more tokens
for German and French. Overall, the dataset con-
tains 3.8% of named entities (from 1.9 to 5.6%,
depending on time periods and datasets). The most
balanced dataset across time periods is the French
one (between 3.8 and 4.6% named entities).

2.2 Model description

In our experiments, we use the T0++ variant of the
T0 language model (Sanh et al., 2021), based on the
LM-adapted T5 model (Lester et al., 2021), itself a
variant of the T5 model (Raffel et al., 2020), which
further pretrains the original encoder-decoder ar-
chitecture of T5 with an autoregressive language

3Conference and Labs of the Evaluation Forum -
Identifying Historical People, Places and other Entities.

4
https://github.com/impresso/CLEF-HIPE-2020

5For English, we use only the validation set, as the train-
ing set is absent

6We chose 20-year spans as the smallest time range pro-
ducing somewhat balanced splits.

modeling objective.7 Crucially, this pretraining is
done using a prompt-based training setup, in which
training examples are transformed into prompts us-
ing a variety of crowd-sourced prompt templates.
This setup allows T0 to perform few-shot and zero-
shot learning when presented with new prompts for
a previously unseen task.

2.3 Experiments
Our goal in this paper is to see if and how state-of-
the-art language models can be used for historical
NLP tasks, with minimal modifications and fine-
tuning.8 As such, we choose to use a ‘naive’ ap-
proach, by directly asking the model which named
entities a given sentence contains. To do so, we
first design prompts for each named entity type (see
Table 2). For each sentence in the dataset, we then
1) use all the generation prompts to determine if
the sentence contains named entities of each entity
type 9; 2) filter the model’s answer to keep only to-
kens that are actually in the input sentence, keeping
the entity covering the longer span in case of nested
entities; and 3) ask a disambiguation question if
needed (if a token was assigned to multiple entities
by the model). Results are stored at each step.

We then evaluate the results and conduct two
additional experiments to better understand the im-
pact of the dataset language and time period on the
performance of the LM.

3 Results

3.1 Limitations
Results reveal limitations in our proposed approach.
First, T0 exhibits a clear tendency to produce non-
empty outputs regardless of the presence or absence
of named entities in the input: none of the prompts
generates an empty answer. This is especially vis-
ible for the entity PROD, for which T0 answers
over 55% of the queries with the name of the entity
itself (e.g. either media or doctrine) rather than
with any other token from the input sentence. Sec-
ond, adequately matching T0’s output with tokens
in the input sentence proved difficult. Even when
T0 generates an answer semantically very close

7The added specific pretraining of T0 uses a set of 11
varied tasks represented by a total of 55 datasets.

8Ecological concerns and funding inequalities raise con-
siderations on how to best use already existing models for
lower-resourced tasks, and with spending as little further com-
puting power in fine-tuning as possible (Bender et al., 2021).

9For PROD entities, the generation prompt explicitly men-
tioned media and doctrines, as we regarded the word product
as too generic to return an accurate answer from T0.
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English German French

Time period #Documents #Tokens NE% #Documents #Tokens NE% #Documents #Tokens NE%

1790-1810 10 4143 3.1 13 6735 4.6 14 8550 4.4
1810-1830 15 4697 3.4 13 8049 2.6 10 12 440 5.0
1830-1850 9 3974 4.0 19 15 601 2.8 10 11 659 3.9
1850-1870 0 0 - 21 16 021 3.8 9 10 321 3.9
1870-1890 7 2202 1.9 16 17 181 3.7 15 16 272 4.2
1890-1910 12 4509 2.9 12 12 829 4.3 19 16 874 4.6
1910-1930 13 5499 3.1 13 18 134 3.3 30 30 403 3.8
1930-1950 3 520 4.2 29 24 566 5.7 32 35 962 4.2

Total 69 25 544 3.2 136 119 116 4.0 139 142 481 4.2

Table 1: Data description: splits by date and language of the CLEF-HIPE 2020 dataset.

Entity Step (1) Generation prompt

PERS Input: <sentence>\n In input, what are the names of person? Separate answers with commas.
LOC Input: <sentence>\n In input, what are the names of location? Separate answers with commas.

PROD Input: <sentence>\n In input, what are the names of media or doctrine? Separate answers with commas.

Entities Step (3) Disambiguation prompt

PERS, LOC Input: <sentence>\n In input, is <entity> a person or a location? Give only one answer.

Fact Factual probing prompts

Language <sentence>\n Q:Name the language of the previous sentence.\nA:
Date In which year is the following text likely to have been published: text: <text>

Table 2: Example prompts for generation and disambiguation (Sec. 2.3), as well as factual probing (Sec. 4).

to the correct token in the sentence, differences in
spelling prevent the algorithm from correctly as-
sociating T0’s answer with said token in the input
sentence. This problem is inherent to the nature of
our dataset: frequent OCR errors generate unpre-
dictable variations in ‘gold’ word spelling (includ-
ing spacing between words and letters or diacritics
variation), which are automatically corrected by T0
during its predictions,10 which negatively affects
our ability to automatically match its answers with
corresponding tokens in the sentence. In other in-
stances, the model translated words from French
and German into English. Further experiments
might need to mitigate language variety by adding
input text to the prompt, to help the model correctly
assess the language in which it must answer. As all
answers predicted are considered strictly incorrect,
the algorithm never enters its disambiguation phase.
We therefore analyse non disambiguated results.

3.2 Evaluation

To evaluate proximity between predictions and
gold, we compare ‘gold’ tokens with predicted

10E.g. Respelling words that were garbled due to noisy
OCR.

tokens using normalized Levenshtein distance,11

using this metric as a proxy to identify best predic-
tions for each entity query in each sentence. For a
given example, we define (1) the true positive as the
prediction with the shortest Levenshtein distance
from the gold; (2) false positives as predictions of
entities that are not actually present in the input
sentence; and (3) false negatives as predictions that
have longer Levenshtein distance to the gold tokens
(i.e. predictions that would have failed to identify
entity tokens in the sentence). Precision and F1-
score are relatively low, especially for PROD enti-
ties, which were the most difficult to define in terms
of text prompts. Higher values for recall are due to
the fact that increasing the Levenshtein threshold
makes it more likely to find an acceptable answer
among those generated by T0. Unsurprisingly, the
highest increase is found in TIME entities (dates
have fixed formats, which makes it more likely
to find an acceptable distance between predictions
and correct tokens). Precision scores for each entity
type are shown in Figure 1 (see Fig. 3 in Appendix
for recall and F1-score). The results of our experi-
ment suggest that, although T0 struggles to return

11Normalization was done with regard to the length of the
longest token (predicted or correct), and results were kept
below a threshold. We tried 0.0, 0.1, 0.2, 0.3, 0.4 and 0.5.
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Figure 1: Precision for the different languages at different Levenshtein distance thresholds. Languages are
distinguished by the line color.

17
90

18
10

18
30

18
50

18
70

18
90

19
10

19
30

period

0.0

0.1

0.2

sc
or

e

ent_type = ALL

17
90

18
10

18
30

18
50

18
70

18
90

19
10

19
30

period

ent_type = PERS

17
90

18
10

18
30

18
50

18
70

18
90

19
10

19
30

period

ent_type = LOC

17
90

18
10

18
30

18
50

18
70

18
90

19
10

19
30

period

ent_type = ORG

17
90

18
10

18
30

18
50

18
70

18
90

19
10

19
30

period

ent_type = TIME

17
90

18
10

18
30

18
50

18
70

18
90

19
10

19
30

period

ent_type = PROD

en
de
fr

Figure 2: Precision for the different languages at Levenshtein threshold 0.4 across periods.
Languages are distinguished by both the line color and the type of dot.

exact matches of the entities in the input sentence,
it is still capable of generating answers that are
semantically close to the correct tokens.

After manually inspecting the dataset and its nu-
merous OCR artifacts, we choose 0.4 as a reason-
able heuristic of close semantic similarity between
T0’s output and gold tokens. We find that using a
threshold of 0.4 prevents the apparition of false pos-
itives, and therefore we use it to analyze differences
between languages and between historical periods
within the dataset. With respect to variations across
languages, we observe that the precision of predic-
tions in English does not have a clear edge over
precision in French and German (Fig. 2; see also
Fig. 4 in Appendix). This is unexpected, as T0
should display considerable bias towards English,
which constitutes most of its training data. With
respect to variations across periods, we observe an
improvement in precision (and F1-score) for PERS
and LOC entities in English texts from 1850s on-
wards (Fig. 3; for recall and F1-score, see Fig. 5 in
Appendix), when for other entities and languages,
precision and F1-score are either stable or show a
downward trend (e.g. LOC in German)12. Varia-
tions in recall cannot be reduced to clear trends,
but they are particularly erratic in English texts. A
possible explanation could be that T0 is more sensi-
tive to English text inputs, and therefore outputs a
higher or lower number of irrelevant answers based
on the specific content of each input sentence.

Baseline comparison with the results of the HIPE

12The absence of documents in the 1850-1870 English
split explains the missing values for English in that period.

2020 evaluation campaign13 confirms that our im-
plementation of zero-shot NER with T0 is below
SOTA performance. As baselines, we considered
the micro precision, recall and F1-score of coarse
NER (literal sense) with fuzzy boundary matching
from HIPE 2020 (see Table 3).

Languages Precision Recall F1-score

English 0.794 0.817 0.806
German 0.870 0.886 0.878
French 0.912 0.931 0.921

Table 3: HIPE 2020’s best results for coarse NER (lit-
eral) with fuzzy boundary.

All the scores from our experiments with T0
are below the best results from HIPE 2020. We
note that the results from HIPE 2020 are based
on experiments conducted on the HIPE test sets
in each language (these are different from the test
sets we used in our experiments, for which we
combined the original HIPE training and validation
sets; see Sec. 2.1). For this reason, we re-run our
experiments on the original HIPE test sets, keep-
ing the threshold for Levenshtein distance at 0.4.
We observe no significant improvement in preci-
sion and F1-score compared to the results of our
experiments on the combined training and valida-
tion sets. We observe some improvements in recall,
especially for English and for TIME, with recall
reaching 1.0 for some combinations of language,
entity and time period. However, we believe that

13
https://github.com/impresso/CLEF-HIPE-2020/

blob/master/evaluation-results/ranking_summary_
final.md
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this improvement is not significant and it is due to
our choice of the Levenshtein threshold, as already
explained above.

4 Prompt-based factual probing

In addition to our main experiment on NER, we run
two further experiments to assess T0’s ability to do
inference in a multilingual setting and to identify
historical variation in textual corpora.

Probing for language To gauge T0’s ability to
reason in a multilingual setting, we test the model’s
language identification ability. To that end, we use
a trilingual14 subset of the WiLI-2018 - Wikipedia
Language Identification dataset (Thoma, 2018) and
prompt the model on language (Table 2). We find
that the model is able to correctly classify 83% of
French sentences, 74.1% of German sentences, but
only 35.4% of English sentences. The previously
mentioned potential sensitivity of the model to its
own mother tongue might explain this result.

Probing for publication date To assess T0’s
treatment of historical text, we study how well it
predicts the likely date of publication for a piece of
text from our test dataset by prompting on publica-
tion date (Table 2).

Absolute errors
Languages Mean Median

English 40.48 30.0
German 40.11 32.0
French 55.25 48.0

Table 4: Date prediction results.

Table 4 shows the prediction errors. Subtle lan-
guage change can occur in a measurable way in as
short a period as a decade (Juola, 2003), and there-
fore a median absolute error of 30 suggests that T0
is good in predicting publication dates. We notice
some variation in performance between different
languages, with French performing slightly worse
on both metrics (possibly because it belongs to a
different language family from English, contrary to
German).

5 Conclusion

We have presented our experiment to evaluate T0
for zero-shot historical NER, as well as on the pre-

14French, German, and English; 1000 sentences each.

diction of language and publication date of histor-
ical texts. Our results show that historical texts
present additional challenges for zero-shot NER
(especially because historical datasets often include
noisy OCR), but that T0 can however be used as is
for language and date prediction. Next steps will be
experimenting on different prompts and matching
methods, as well as testing few-shot NER.
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fer from history erasure (Kellow, 1999; Ram, 2020;
Stanley, 2021). Second, the automation and scaling
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flected (mis)interpretations of the past (Gibbs and
Owens, 2013; Gibbs, 2016). Third, the experimen-
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Appendix: Full scores of Levenshtein distance

The figures below and in the next page provide full results of evaluation on Levenshtein distance, including
precision, recall and F1-score at different thresholds, at threshold 0.4, and across different time periods in
the CLEF-HIPE 2020 dataset.
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Figure 3: Precision, recall and F1-score (resp. first, second and third rows) at different Levenshtein distance
thresholds and for different languages. Languages are distinguished by line color.
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Figure 4: Precision, recall and F1-score (resp. first, second and third columns) by entity type at Levenshtein distance
threshold 0.4 for different languages.
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Figure 5: Precision, recall and F1-score (resp. first, second and third rows) at Levenshtein threshold 0.4 across
periods for different languages. Languages are distinguished by both the line color and the type of dot.
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Abstract

As ever larger language models grow more
ubiquitous, it is crucial to consider their envi-
ronmental impact. Characterised by extreme
size and resource use, recent generations of
models have been criticised for their voracious
appetite for compute, and thus significant car-
bon footprint. Although reporting of carbon
impact has grown more common in machine
learning papers, this reporting is usually lim-
ited to compute resources used strictly for
training. In this work, we propose a holis-
tic assessment of the footprint of an extreme-
scale language model, Noor. Noor is an on-
going project aiming to develop the largest
multi-task Arabic language models–with up to
13B parameters–leveraging zero-shot general-
isation to enable a wide range of downstream
tasks via natural language instructions. We as-
sess the total carbon bill of the entire project:
starting with data collection and storage costs,
including research and development budgets,
pretraining costs, future serving estimates, and
other exogenous costs necessary for this inter-
national cooperation. Notably, we find that in-
ference costs and exogenous factors can have
a significant impact on total budget. Finally,
we discuss pathways to reduce the carbon foot-
print of extreme-scale models.

1 Introduction

Recent progress in natural language processing
(NLP) has been driven by the emergence of so-
called foundation models (Bommasani et al., 2021).
This paradigm shift is characterised by a homogeni-
sation of modelling methods– crystallising around
the Transformer architecture (Vaswani et al., 2017)–
and by emergent capabilities (e.g. zero-shot gener-
alisation) predominantly arising from sheer scale
alone (Brown et al., 2020). NLP models are now
experiencing a 3-4 months doubling time in size, as
outlined by Figure 1. Most recent large language

models such as MT-NLG 530B (Smith et al., 2022),
Gopher 280B (Rae et al., 2021), or Jurassic-1 178B
(Lieber et al., 2021), all report training budgets
in the thousands of PF-days1 range. Because AI
accelerators performance per watt has plateaued
compared to deep learning budgets (Reuther et al.,
2021; Sevilla et al., 2022), practitioners have had to
scale-out training over an increasingly large num-
ber of accelerators (Narayanan et al., 2021). Ac-
cordingly, the energy cost of training state-of-the-
art models has grown significantly: increase in
compute is no longer fuelled by improvements in
hardware efficiency, but in hardware scale.

Although this increase in size and compute bud-
get is backed by empirical scaling laws drawing a
clear link between compute spent and model perfor-
mance (Kaplan et al., 2020), the societal benefits
of larger models have been questioned (Tomašev
et al., 2020; Bender et al., 2021). Specifically to
environmental concerns, in a time of climate cri-
sis when carbon emissions must be drastically cut
(Masson-Delmotte et al., 2018), one may question
whether these large compute budgets are justified.
A crucial step towards answering this question is an
in-depth evaluation of the footprint of large models.

Existing assessments of the environmental im-
pacts of large models are usually focused on hyper-
parameter tuning and pretraining costs (Strubell
et al., 2019; Patterson et al., 2021). This trend is re-
flected by the growing number of tools available to
help practitioners quantify the impact of machine
learning computations (Bannour et al., 2021). If
some studies have also endeavoured to quantify
select aspects of the machine learning pipeline (e.g.
conference attendance (Skiles et al., 2021), hard-
ware lifecycle (Gupta et al., 2021), etc.), end-to-end
evaluations of machine learning projects life cycle
emissions remain rare (Wu et al., 2022).

1A PF-day is 1 PFLOPs (10 A100) sustained for a day.
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Figure 1: Over the last four years, the size of state-
of-the-art language models has doubled every 3-4
months. Note that this trend has been slowing down,
due to scale-out limitations.

To fill this gap, we produce an end-to-end as-
sessment of the carbon footprint of Noor, a project
seeking to train a very large Arabic language model.
Our contributions are the following:

Holistic assessment. We evaluate the total car-
bon bill of the entire project: starting with data col-
lection, curation, and storage, including research
and development and hyper-parameters tuning bud-
gets, pretraining costs, future serving estimates,
and other exogenous impacts sparked by this inter-
national cooperation (e.g. flights, personnel, etc.)

Beyond pretraining. We identify pretraining
compute as driving more than half of the emissions
of the project. However, all combined, other R&D,
storage, and personnel counts still amount for 35%
of the carbon footprint. We also identify down-
stream use in the wild as potentially significant.
This leads us to recommend for the end-to-end foot-
print to be systematically assessed on a per-project
basis. Notably, in scenarios with a low-impact
training electric mix, costs beyond pretraining may
become the main sources of emissions.

Pathways to lower footprints. Finally, we dis-
cuss ways to reduce the environmental footprints
of projects involving large models, and put in per-
spective the footprint of similar projects.

2 Related work

In light of ever increasing computational budgets
(Sevilla et al., 2022) and of the need to cut on emis-
sions to abate global warming (Masson-Delmotte
et al., 2018), the environmental impact of deep
learning has drawn significant interest.

Strubell et al., 2019 notably highlighted the po-
tential high environmental costs of deep learning.
However, its headline figures were produced in
the specific context of neural architecture search,
a relatively rare practice for extreme-scale mod-
els nowadays. Lacoste et al., 2019; Lottick et al.,
2019; Schwartz et al., 2020 subsequently called for
AI research to be more aware of its environmen-
tal cost. An increasing number of tools, such as
codecarbon (Schmidt et al., 2021), have been
developed to help with tracking the impact of deep
learning experiments (Bannour et al., 2021). All
of these lines of research share similar recommen-
dations: the carbon footprint of deep learning is a
direct consequence of the electricity mix and effi-
ciency of the data center, suggesting that picking
an appropriate provider is the most straightforward
way to reduce environmental impact.

Specifically to extreme-scale models, Patterson
et al., 2021 estimated the energy consumption of
five large NLP models, including GPT-3. They
identified that a judicious choice of neural architec-
ture, datacenter and accelerator can help reduce
considerably carbon budgets. Thompson et al.,
2020 identified a clear relationship between large
models performance and their carbon impact, build-
ing upon work on neural scaling laws (Kaplan et al.,
2020). Taddeo et al., 2021 estimated the cost of
training GPT-3 in different data centers across the
worldwide, highlighting again the high dependency
on the local energy mix and specific infrastructure.

Two recent studies have provided insights into
the end-to-end carbon footprint of deployed mod-
els in the industry. Wu et al., 2022 studied the
impact of the increasingly large recommender sys-
tems leveraged at Meta, while Patterson et al., 2022
provided an assessment of the costs (including in-
ference) of large models at Google. They expect
the carbon footprint of training to plateau in coming
years, and then to shrink–owing to more efficient
high performance computing platforms. They also
assert that current studies are overestimating the
real environmental costs of large models, in light of
the wide availability of ”clean” compute platforms.

In the field of astrophysics, Aujoux et al., 2021
did an extensive study to estimate the carbon foot-
print of the Giant Array for Neutrino Detection
(GRAND) project, a multi-decade worldwide ex-
periment. Inspired by their holistic methodology,
we seek to establish the first end-to-end assessment
of an extreme-scale NLP project.
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3 The Noor Project

The current state-of-the-art generative language
model in Modern Standard Arabic is AraGPT (An-
toun et al., 2021), a 1.5B parameters model. The
Noor project seeks to expand upon this model, in-
troducing a 1.5B, 2.7B, 6.7B, and 13B Arabic mod-
els, trained a custom curated dataset of 150B to-
kens, inspired by The Pile (Gao et al., 2020). These
larger scales are expected to make the model able
to tackle novel tasks through zero-shot generaliza-
tion, as exhibited by GPT-3 (Brown et al., 2020) or
GPT-J (Wang and Komatsuzaki, 2021).

Noor is an on-going international cooperation
between the Technology Innovation Institute in the
United Arab Emirates and LightOn in France. The
Noor project can be split in four parts:

• Data curation. A custom curated dataset of
150B tokens has been assembled for Noor.
This dataset has been scrapped from diver-
sified sources, and also includes data from
Common Crawl. We filter this data with an
LM-based quality-scoring system inspired by
CCNet (Wenzek et al., 2019).

• R&D experiments. To validate tokenization,
dataset, architecture, and establish scaling
laws, we trained a number of R&D models
(100M-1.5B parameters on 10-30B tokens).

• Main training. We train a suite of four mod-
els of 1.5B, 2.7B, 6.7B, and 13B parameters.

• Model use. Prospectively, we include some
estimations of the future inference cost of
these models as they are put in use.

4 Factors influencing the carbon
footprint of large models

Before beginning our assessment, we propose to
identify some of the key influencing factors on the
potential carbon footprint of large models, focus-
ing first on factors directly related to the models
themselves and not to the project producing them.

Model size. The number of floating operations
per forward pass is directly proportional to the
size of the network. A common approximation
for the total compute budget C required for train-
ing a Transformer model with N parameters on D
tokens is C = 6ND (Kaplan et al., 2020). As the
optimal dataset size only grows sublinearly with
model size for autoregressive modelling (Henighan

et al., 2020), compute budget will scale more or
less linearly with model size. The larger the num-
ber of operations, the more energy is needed to
train the model. For inference, the cost for each to-
ken is reduced to a third compared to training, and
environmental impact will be driven by the total
number of words/tokens processed.

Hardware characteristics. The throughput (in
FLOPs) that can be tackled by the hardware will
drive the total time required to perform the task.
More efficient hardware will have more through-
put per Watt. We note however that most avail-
able chips suitable for large model training (e.g.,
NVIDIA GPUs, Google TPUs, etc.) exhibit similar
efficiency characteristics (Reuther et al., 2021).

Modelling decisions. We identified above two
key factors: number of tokens processed (for train-
ing or inference), and hardware throughput. We
note that both of these are also strongly impacted by
modelling decisions. A more fertile tokenizer will
use less tokens for the same text, leading to faster
processing. Similarly, small changes in model ar-
chitecture (e.g., choosing hidden sizes in accor-
dance with wave/tile quantization) and in imple-
mentation (e.g., 3D parallelism) can drastically in-
crease throughput, and reduce total training time.

Data center efficiency. The energy consumed
does not serve only to power up the servers, but
also to cool down the data center itself and to re-
spond to other electrical needs. The Power Usage
Effectiveness (PUE) is used to assess the overall
efficiency of a data center. It measures the quotient
of the total energy requirement and the final energy
used by the servers. The PUE will be influenced by
the data center architecture. Worldwide average is
around 1.8, but Google for instance reports an av-
erage PUE of 1.11. Waste heat in data centers can
also be reused for collective water heating, driving
down the PUE, as in the Jean Zay HPC.

Electricity mix. The breakdown of the energy
sources powering a data center is a crucial factor,
and depends primarily on the region. The elec-
tricity mix determines the carbon emissions per
kWh of electricity. Today, the world average of
carbon emission by kwh of electricity generated is
475 gCO2e/kWh, and an increasing number of data
centers from cloud providers are using 100% re-
newable or nuclear energy to power their hardware.
Taking Google Cloud as an example again, their
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Montreal facility reports 27gCO2e/kWH, twenty
times lower than the world average.

Beyond factors related to the models themselves,
we seek in this study to take into account a number
of other costs: storage, preprocessing, and trans-
fer costs for the dataset, personnel costs such as
travel and individual laptops, etc. We note however
one limitation from our study: we do not take into
account the lifecycle of the hardware used. Unfor-
tunately, numbers are scarcely available, and not
made public by the main manufacturers.

5 Carbon footprint of the Noor project

5.1 Electricity consumption
We begin by accounting for the electricity consump-
tion of all aspects of the project. The impact of
this consumption will be highly dependent on the
carbon intensity of the electricity mix used. Non-
electric sources (e.g., international flights) will be
added to the carbon budget in a second phase.

5.1.1 Data storage and transfers
The energy consumption of data depends on both
the energy required for powering the disks to store
the data, and the energy consumed when moving
the data from one server to another. We average
storage costs over the 6 months of the project.

Storage. Although disk wattage is generally re-
ported on per-disk level, Posani et al., 2019 esti-
mates the power per TB of data using aggregated
technical specifications. The paper reports that
the average peak consumption of cloud storage is
around 11.3W/TB. It means an energy consump-
tion of 99 kWh/TB a year. This estimation consid-
ers a PUE of 1.6 and a redundancy factor of 2 since
managed services will also have a back-up.

The breakdown of our data storage is as follows:

• Curated data. Including both raw and pro-
cessed data, we have accumulated around 2TB
of curated data. This is stored for the 6 months
of the project, resulting in 99kWh used.

• Bulk data. We use Common Crawl (CC) for
acquiring large amounts of web data. Each
CC dump is on average around 10TB, and we
discard it immediately after processing it. On
average, it takes 24 hours to fully process a
dump: we used 21 dumps from CC, meaning
we stored 210TB of data for 24hours, equiv-
alent to 57 kWh of energy consumption. Af-
ter processing the dumps, we got on average

1.2TB of data per dump, thus 25TB in total.
Considering that this data will be stored for 6
months, we end up with 1.3 MWh of energy
consumption for the bulk data. Note that we
keep the processed data in all languages (not
just Modern Standard Arabic).

• Models. The weights of the Noor models
(1.3B, 2.7B, 6.7B and 13B) are respectively
2.6GB, 5.4G, 13.4GB, and 26GB in half-
precision. This corresponds to training check-
points (including the full-precision optimizer)
of 20.8GB, 43.2GB, 107.2GB, and 208GB.
We save such checkpoints every 10B tokens.
In total, we end-up with 5.7TB of model
weights and intermediary checkpoints for fu-
ture analysis and interpretability work, con-
suming 0.3MWh in total.

Transfers. Posani et al., 2019 provided an esti-
mate of 23.9 kJ per GB (6.38 kWh per TB) trans-
ferred, using the formula of Baliga et al., 2011 and
the same hypothesis as Aslan et al., 2017 (800km
average distance between core nodes). The 210TB
of CC data are downloaded on the preprocessing
servers once; the 25TB of processed data are moved
once to our archival machines, and another time
to the HPC used for training; the curated data is
downloaded once, moved to the archival machines,
and then moved to the HPC; the 5.7TB of models
are moved once from our HPC, and then to our in-
ference servers for final models or to workstations
for intermediary checkpoints. Consequently, we
estimate the transfer energy bill at 1.8 MWh.

Total. Thus, the total energy consumption of data
is estimated to be about 3.5 MWh, dominated by
the multilingual Common Crawl data. We note
that as ideal dataset size increases sublinearly with
model size (Kaplan et al., 2020), we expect check-
points and model transfers to eventually dominate
the costs of storage and transfer for larger models.

Note that we neglect costs linked to a poten-
tial public release of the models, as it is difficult to
predict traffic. As a rough estimation, 10,000 down-
loads of the 13B model would represent 260TB of
traffic, and 1.66MWh consumed.

5.1.2 Data processing
We take all text data through a pipeline inspired
by CCNet (Wenzek et al., 2019) for preprocessing.
This pipeline takes care of deduplication, language
identification, and finally quality filtering with a
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Table 1: Training compute budget and energy used for training the Noor models. Assuming a pretraining
dataset of 150B tokens and a throughput of 100 TFLOPs per A100.

Model Budget [PF-days] Budget [A100-hours] HPC Consumption [MWh]

1.3B 13.5 3300 MeluXina 2.1
2.7B 28.1 6800 Noor-HPC 4.8
6.7B 69.8 17000 Noor-HPC 11.8
13B 135 33000 Noor-HPC 22.9

reference language model trained on Wikipedia.
Processing with our pipeline occurs on a CPU clus-
ter with 768 cores, split over 16 nodes.

Using average high-performance CPUs TDP fig-
ures, we estimate the average power consumption
of each node at 350W; hence, the power of the
cluster is 5.6kW. We processed 21 dumps of Com-
monCrawl, plus our curated data, for a total of 381
wall-clock hours. Accordingly, assuming a PUE
of 1.1 as reported by Google, the total energy con-
sumed by data preprocessing is 2.35MWh.

Note that for CommonCrawl data, this results
in data processed for every language supported
(176 for identification, 48 for quality filtering). Ac-
cordingly, this cost could be amortised over future
projects. For high-resource languages, this also
results in very large amounts of data: processing
more dumps would not be necessary, even to train
a 1 trillion parameters model.

5.1.3 Research and development
We carried experiments to validate tokenization
methods, dataset composition, tune hyperparame-
ters, and establish scaling laws. This early research
and development work was performed on MeluX-
ina, a high-performance super-computer located
in Luxembourg. We used a total of 16,800 A100-
hours in this phase. Each node used in MeluXina
has 4 A100 SXM 40GB with a TDP of 400W, and
two AMD EPYC 7763 CPUs with a TDP of 280W.
They report a PUE of 1.35. Thus, we estimate the
consumption of this R&D phase to be of 10.7MWh.

We expect the budget of this phase to roughly
scale with model size. Indeed, debugging poten-
tial issues (e.g., numerical instabilities (Kim et al.,
2021), etc.) for the final larger model will cost
significantly more.

5.1.4 Main training
Using the C = 6ND approximation, it is pos-
sible to calculate in advance the training budget
required for a specific model. We observe an ef-

fective throughput with our Megatron+DeepSpeed
codebase of around 100 TFLOPs2 across models,
in line with the state-of-the-art. We train four main
models (1.5B, 2.7B, 6.7B, 13B) on 150B tokens.

We train the smaller model on MeluXina, but
the other three on our own HPC cluster. Each node
contains 8 A100 80GB and 2 AMD EPYC 7763
CPUs. The PUE of our data center is 1.5, 20%
more efficient than the world average.

Table 1 outlines the costs of the main training.
The total electric energy consumed to train the
Noor suite of models is thus 41.6 MWh, 55% of it
spent on the largest 13B model.

5.1.5 Inference
As the models of Noor have yet to be deployed,
this is only a prospective estimate. Inference costs
in general are difficult to estimate in advance, even
more so for open source models which will be
deployed to platforms with varying characteristics.
We provide an estimate of the energy consumption
during inference per generated token.

We thereafter denote as processed tokens the to-
kens in the original prompt sent to the model, and
as generated tokens the tokens generated by the
model using the prompt. To simplify calculations,
we make the following assumptions from our expe-
rience with another large-scale API: (1) an A100 is
used, which is sufficient for Noor-13B, but could be
reduced to a more efficient T4 for Noor-1.5B/2.7B;
(2) inference time per generated token is constant,
whichever the number of processed tokens (per our
benchmarks, thanks to caching, this is true up to
512 processed tokens roughly); (3) batch size is
assumed to be 1, as batching is more challenging
and less consistent for inference workloads.

Under these hypothesises, an A100
can generate up to 72,000 tokens per
hour. Accordingly, we estimate that
26 Joules are required per token generated (400W

2These are effective FLOPs for training the model, not
hardware FLOPs. Hardware FLOPs are closer to 150 TFLOPs.
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Figure 2: Breakdown of the electricity consumption
(total 59.14 MWh) of the Noor project. Data prepro-
cessing is included in R&D, amounting for 20% of it.
We also note that R&D and dataset costs could be amor-
tised through other projects or larger models.

for the GPU, 70W for the CPU, and 1.1 PUE
on Google Cloud imply 517Wh of energy con-
sumption for 72,000 tokens. Converted to Joule,
it results in 26 Joules per token.) Accordingly,
3 billion tokens would have to be generated for
inference costs to catch up with training costs. At
some point during its beta, GPT-3 was reported
to generate 4.5 billion words per day (Pilipiszyn,
2021).

5.1.6 Additional costs
Beyond costs related to data, R&D, training, and
inference, one may wonder if direct electricity use
from scientists involved in the project is signifi-
cant. Assuming that the average laptop consumes
70W, plus 30W for an external screen, six research
scientists dedicating 100% of their time during 6
months for this project, 8 hours per day, will use up
0.604MWh. We could also include costs of e-mail
exchanges and video-conferences specifically, but
these were found to be negligible in Aujoux et al.,
2021. We round up the marginal costs to 1MWh,
and note that this is but a rough estimate.

5.1.7 Summary
We showed that the total electricity consumption of
the Noor project is not only about training the final
models, as outlined in Figure 2. Nearly a third of
the energy consumed (30%) went to tasks outside
of main models pretraining.

Because of larger uncertainties, we keep the serv-

ing/inference assessment out of the previous bud-
get. However, especially in the context of openly
available models, the inference budget can rapidly
catch up with the total budget outlined in 2.

5.2 Carbon footprint

Now, from the electricity consumption, and using
information on the local carbon intensity, we will
derive the full footprint of the Noor project. We
will also add energy use coming from non-electric
sources (e.g., flights). As the carbon intensity of the
electricity mix varies significantly across regions,
we outlined below the locations of interest:

• Storage. We used Amazon S3 in Bahrain;

• R&D. We used a GCP CPU cluster located in
Netherlands, and MeluXina in Luxembourg;

• Main training. The smaller 1.3B model was
trained on MeluXina, and the remaining mod-
els were trained on our dedicated HPC plat-
form in the United Arab Emirates (UAE);

• Other. Six full-time scientists were involved,
half in France and half in the UAE.

Table 2 shows the resulting carbon footprint for
each of the development stages of Noor project.
This highlights the importance of location for car-
bon footprint: notably, all calculations on per-
formed on the relatively low-carbon MeluXina
HPC end-up having very limited costs, even com-
pared to small items like storage in Bahrain.

In addition to these development costs, we con-
sider the carbon footprint of three round-trip flights
of four scientists between Paris and Abu Dhabi.
These trips were taken to run training workshops,
brainstorming sessions, and discussions related to
the project. We use the carbon emissions simula-
tor of the International Civil Aviation Organization.
One round-trip emits 527 kgCO2e per person, to-
talling 6.4 tons of emissions over all trips.

Finally, Figure 3 displays the total distribution
of the carbon footprint of the project. As shown
in the figure, factors like flights may be usually
neglected, but have a significant contribution in the
total carbon footprint. Specifically, as conference
returns in-person, this is a systematic impact that
exists on most papers. In the case of Noor, the few
flights operated account for 18% of the total carbon
emission of the whole project.
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Table 2: Carbon footprint of each phase of the Noor project.

Phase Provider Location Mix [gCO2e/kWh] Use MWh Footprint [tCO2e]

Storage Amazon S3 Bahrain 1188 3.5 4.2
R&D GCP Netherlands 410 2.35 0.96

MeluXina Luxembourg 60 10.7 0.65
Training MeluXina Luxembourg 60 2.1 0.13

Noor-HPC UAE 600 39.5 23.7
Others France 56 0.33 0.02

UAE 600 0.66 0.4

Interestingly, we note that with increasingly
clean electricity and efficient data centers, the ex-
ogenous costs linked to flights and personnel are
bound to increase in proportional impact.

Inference. Forecasting the carbon footprint of in-
ference is harder for open models: as they may be
downloaded and deployed by anyone, it is impossi-
ble to predict the carbon intensity of the electricity
they will use. We study two scenarios: an interme-
diate one, based on the world average emission per
kWh (475 gCO2e/kWh) and a best-case one, based
on the low-impact French mix (56 gCO2e/kWh).
These two scenarios correspond to around 300,000
tokens generated per kgCO2e, or to 2,500,000 to-
kens generated per kgCO2e in the best-case. Going
back to the 4.5 billion words per day of GPT-3, this
amounts to 30 tons of CO2e per day and 3.5 tons.

Figure 3: Breakdown of the carbon footprint (total
36.5t tC02e) of the Noor project. This breakdown is
highly dependent on the localisation of the workloads
and the local carbon intensity of the electricity mix.

6 Best practices and recommendations

From our experience with Noor, we highlight some
recommendations for future projects to minimise
their carbon footprint.

6.1 Modelling & engineering

A first angle of attack is to make the machine learn-
ing techniques used more efficient.

• Efficient architectures. Mixture-of-experts
(MoE) models split the large fully-connected
layers of a Transformer into distinct experts
(Fedus et al., 2021). Although larger, MoE
Transformers can bring significant energy sav-
ings during training and inference (Du et al.,
2021), as the experts are only sparsely acti-
vated. Recent work demonstrate that they may
even scale favorably compared to dense mod-
els (Clark et al., 2022). More broadly, even
small changes (e.g. better embeddings, acti-
vation functions) may have a non-negligible
impact on the overall carbon footprint.

• Efficient inference. As we have shown, infer-
ence costs can rapidly catch up with training
costs: it is also interesting to make the model
leaner for inference. Quantization (Yang et al.,
2019) reduces numerical precision at infer-
ence time and accelerates inference, but it has
seen limited adoption with large models. Dis-
tillation (i.e., training a smaller model from
the outputs of a larger one) is a promising di-
rection, already demonstrated for Transform-
ers applied to vision (Touvron et al., 2021).

• Efficient implementations. Crucially, dis-
tributed training implementations must be as
efficient as possible, to amortise the large idle
consumption of the hardware – MeluXina re-
ports for instance idle power of around 150W
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per GPU when accounting for CPU cores, in-
frastructure, etc. This includes taking into
account fine-grained effects depending on ar-
chitectures, such as wave and tile quantization,
to achieve the best throughput possible.

6.2 Hardware
A second angle of attack is to focus on the hardware
used to train these models.

• Data center choice. A data center with a
PUE of 1.1 will decrease energy consump-
tion by 39% compared to the world average of
1.8. Low PUE platforms should be preferred.

• Local carbon intensity. As highlighted by
Table 2, the carbon intensity of the electricity
mix significantly impacts the final footprint.
Locating training in an area with a clean mix
is an easy step to take that can drastically cut
the footprint of a project. This is especially
easy to do on online cloud platforms, which
have many areas of availability.

• Efficient inference. Carefully selecting a
proper AI accelerator for managed inference
workloads can limit the footprint of model
use. For instance, for smaller models (<3B),
it may be possible to use T4s rather than
A100s, which are 20% more energy efficient
per FLOP than A100s. Finally, specialised
accelerators are also starting to become avail-
able (Reuther et al., 2020). We note that this
may however require specific developments.

6.3 Other practices
Finally, it is important to not underestimate costs
beyond machine learning workloads.

• Minimising exogenous impact. Although
we found the final footprint to be dominated
by the main training runs, we still note the
significant impact of the international flights
taken during this cooperation (20% of the fi-
nal footprint). Minimising such high-intensity
cost center is important.

• Costs reporting and offset. The full cost of
model development is rarely, if ever, reported
in the literature. We highly recommend the AI
community to start reporting the full energy
consumption and the CO2e of their projects.
This reporting can also be used as the basis
for offsetting carbon emissions.

7 Discussion and conclusion

We undertook an end-to-end assessment of the car-
bon footprint associated with the development of
an extreme-scale language model. We took into
account data collection and storage, research and
development, pretraining, and included estimates
for future serving and inference. We also added
personnel costs, such as international flights to run
training workshops and brainstorming sessions.

In total, we estimate the development of the
suite of the four Noor models to have emitted
36.5 tons of CO2, 65% of which for training the
models, 18% for the international flights, 12% for
data storage, and 4% for small-scale research and
development experiments. To put this in perspec-
tive, the average carbon footprint per individual in
the US is around 20 tons, so our project generated
a little over two years of individual US emissions.

We find that the main driver of this carbon foot-
print is the carbon intensity of the mix used for
model training. Appropriately selecting the loca-
tion of calculations can significantly reduce the
environmental impact of a project. For instance, in
this project, running all computations in France
would have reduced the total footprint to 14.9
tCO2e, 42% of which from the international flights.
As the impact of the computations themselves be-
come smaller, it is important for practitionners to
more carefully weigh in exogenous contributions.

All-in-all, with careful considerations around
data center choice, it is possible to run extreme-
scale NLP projects with a low carbon impact.

Finally, we also identified that large-scale infer-
ence could also rapidly outtake pretraining costs in
terms of carbon impact. Inference, if not centrally
managed, is harder to control: with a publicly avail-
able model, it will happen on hardware decided by
the end user. We thus think its equally important for
practitioners to alert users regarding best efficient
inference practices, and regarding best practices to
limit the environmental cost of computations (e.g.
choosing an efficient data center, running inference
in a country with a low-impact mix, etc.)
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Abstract

We introduce GPT-NeoX-20B, a 20 billion pa-
rameter autoregressive language model trained
on the Pile, whose weights will be made freely
and openly available to the public through a
permissive license. It is, to the best of our
knowledge, the largest dense autoregressive
model that has publicly available weights at
the time of submission. In this work, we
describe GPT-NeoX-20B’s architecture and
training, and evaluate its performance on a
range of language-understanding, mathematics
and knowledge-based tasks. We open-source
the training and evaluation code, as well as
the model weights, at https://github.com/
EleutherAI/gpt-neox.

1 Introduction

Over the past several years, there has been an explo-
sion in research surrounding large language mod-
els (LLMs) for natural language processing, cat-
alyzed largely by the impressive performance of
Transformer-based language models such as BERT
(Devlin et al., 2019), GPT-2 (Radford et al., 2019),
GPT-3 (Brown et al., 2020), and T5 (Raffel et al.,
2020). One of the most impactful outcomes of
this research has been the discovery that the perfor-
mance of LLMs scales predictably as a power-law
with the number of parameters, with architecture
details such as width/depth ratio having a mini-
mal impact on performance within a wide range
(Kaplan et al., 2020). A consequence of this has
been an abundance of research focusing on scaling
Transformer models up to ever-larger scales, result-
ing in dense models that surpass 500B parameters
(Smith et al., 2022; Chowdhery et al., 2022), a mile-
stone that would have been almost unthinkable just
a few years prior.

*Lead authors. Authors after the first three are listed in
alphabetical order. See Appendix A for individual contribu-
tion details. Correspondence can be sent to {sid, stella,
contact}@eleuther.ai

Today, there are dozens of publicly acknowl-
edged LLMs in existence. The largest have more
than two orders of magnitude more parameters than
GPT-2, and even at that scale there are nearly a
dozen different models. However, these models are
almost universally the protected intellectual prop-
erty of large tech companies, and are gated behind
a commercial API, available only upon request, or
not available for outsider use at all. To our knowl-
edge, the only freely and publicly available dense
autoregressive language models larger than GPT-
2 are GPT-Neo (2.7B parameters) (Black et al.,
2021), GPT-J-6B (Wang and Komatsuzaki, 2021),
Megatron-11B1, Pangu-α-13B (Zeng et al., 2021),
and the recently released FairSeq models (2.7B,
6.7B, and 13B parameters) (Artetxe et al., 2021).

In this paper we introduce GPT-NeoX-20B, a 20
billion parameter open source autoregressive lan-
guage model. We make the models weights freely
and openly available to the public through a per-
missive license, motivated by the belief that open
access to LLMs is critical to advancing research
in a wide range of areas—particularly in AI safety,
mechanistic interpretability, and the study of how
LLM capabilities scale. Many of the most inter-
esting capabilities of LLMs only emerge above a
certain number of parameters, and they have many
properties that simply cannot be studied in smaller
models. Although safety is often cited as a justifica-
tion for keeping model weights private, we believe
this is insufficient to prevent misuse, and is largely
a limitation on the ability to probe and study LLMs
for researchers not based at the small number of
organizations that have access to state of the art
language models.

In the following sections, we give a broad
overview of GPT-NeoX-20B’s architecture and
training hyperparameters, detail the hardware and
software setup used for training and evaluation, and

1This model does not work using the provided codebase,
and we have been told it under-performs GPT-J.
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elaborate on the choices made when designing the
training dataset and tokenization. We also address
of some of the difficulties and unknowns we en-
countered in training such a large model. We place
significant importance on the broader impacts of
the release GPT-NeoX-20B and other such LLMs,
and have prepared a separate manuscript for dis-
secting these issues in greater detail.

In addition, we also make available the model
weights at evenly spaced 1000 step intervals
throughout the whole of training. We hope that
by making a wide range of checkpoints throughout
training freely available, we will facilitate research
on the training dynamics of LLMs, as well as the
aforementioned areas of AI safety and interpretabil-
ity.

2 Model Design and Implementation

GPT-NeoX-20B is an autoregressive transformer
decoder model whose architecture largely follows
that of GPT-3 (Brown et al., 2020), with a few
notable deviations described below. Our model
has 20 billion parameters, of which 19.9 billion
are “non-embedding” parameters that Kaplan et al.
(2020) identify as the proper number to use for
scaling laws analysis. Our model has 44 layers, a
hidden dimension size of 6144, and 64 heads.

2.1 Model Architecture

Although our architecture is largely similar to GPT-
3, there are some notable differences. In this sec-
tion we give a high-level overview of those differ-
ences, but ask the reader to refer to (Brown et al.,
2020) for full details of the model architecture. Our
model architecture is almost identical to that of
GPT-J (Wang and Komatsuzaki, 2021)2, however
we choose to use GPT-3 as the point of reference
because there is no canonical published reference
on the design of GPT-J.

2.1.1 Rotary Positional Embeddings
We use rotary embeddings (Su et al., 2021) instead
of the learned positional embeddings used in GPT
models (Radford et al., 2018), based on our positive
prior experiences using it in training LLMs. Rotary
embeddings are a form of static relative positional
embeddings. In brief, they twist the embedding
space such that the attention of a token at position
m to token at position n is linearly dependent on

2The sole difference is due to an oversight discussed in
Section 2.1.2

m− n. More formally, they modify the standard
multiheaded attention equations from

softmax

(
1√
d

∑
n,m

xT
mWT

q Wkxn

)
,

where xm, xn are (batched) embeddings of tokens
at position m and n respectively and WT

q , Wk are
the query and key weights respectively to

softmax

(
1√
d

∑
n,m

xT
mWT

q Rd
Θ,(n−m)Wkxn

)
,

where Rd
Θ,x is a d×d block diagonal matrix with

the block of index i being a 2D rotation by xθi

for hyperparameters Θ = {θi = 10000−2i/d | i ∈
{0,1,2, . . . ,(d−1)/2}}.

While Su et al. (2021) apply rotary embeddings
to every embedding vector, we follow Wang and
Komatsuzaki (2021) and instead apply it only to
the first 25% of embedding vector dimensions. Our
initial experiments indicate that this strikes the
best balance of performance and computational
efficiency.3

2.1.2 Parallel Attention + FF Layers
We compute the Attention and Feed-Forward (FF)
layers in parallel4 and sum the results, rather than
running them in series. This is primarily for ef-
ficiency purposes, as each residual addition with
op-sharding requires one all-reduce in the forward
pass and one in the backwards pass (Shoeybi et al.,
2020). By computing the Attention and FFs in par-
allel, the results can be reduced locally before per-
forming a single all-reduce. In Mesh Transformer
JAX (Wang, 2021), this led to a 15% throughput
increase, while having comparable loss curves with
running them in series during early training.

Due to an oversight in our code, we unintention-
ally apply two independent Layer Norms instead
of using a tied layer norm the way Wang and Ko-
matsuzaki (2021) does. Instead of computing

x+Attn(LN1(x))+FF(LN1(x))

as intended, our codebase unties the layer norms:

x+Attn(LN1(x))+FF(LN2(x)).

Unfortunately, this was only noticed after we were
much too far into training to restart. Subsequent

3See the Weights & Biases reports here and here for further
details.

4See GitHub for implementation details.
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experiments at small scales indicated that the untied
layer norm makes no difference in performance, but
we nevertheless wish to highlight this in the interest
of transparency.

2.1.3 Initialization
For the Feed-Forward output layers before the
residuals, we used the initialization scheme intro-
duced in Wang (2021), 2

L
√

d
. This prevents acti-

vations from growing with increasing depth and
width, with the factor of 2 compensating for the
fact that the parallel and feed-forward layers are
organized in parallel. For all other layers, we use
the small init scheme from Nguyen and Salazar

(2019),
√

2
d+4d

2.1.4 All Dense Layers
While GPT-3 uses alternating dense and sparse lay-
ers using the technique introduced in Child et al.
(2019), we instead opt to exclusively use dense
layers to reduce implementation complexity.

2.2 Software Libraries

Our model is trained using a codebase that builds
on Megatron (Shoeybi et al., 2020) and Deep-
Speed (Rasley et al., 2020) to facilitate efficient and
straightforward training of large language models
with tens of billions of parameters. We use the offi-
cial PyTorch v1.10.0 release binary package com-
piled with CUDA 11.1. This package is bundled
with NCCL 2.10.3 for distributed communications.

2.3 Hardware

We trained GPT-NeoX-20B on twelve Supermi-
cro AS-4124GO-NART servers, each with eight
NVIDIA A100-SXM4-40GB GPUs and config-
ured with two AMD EPYC 7532 CPUs. All GPUs
can directly access the InfiniBand switched fab-
ric through one of four ConnectX-6 HCAs for
GPUDirect RDMA. Two NVIDIA MQM8700-
HS2R switches—connected by 16 links—compose
the spine of this InfiniBand network, with one link
per node CPU socket connected to each switch.
Figure 7 shows a simplified overview of a node as
configured for training.

3 Training

Due to the intractability of performing a hyperpa-
rameter sweep for a 20 billion parameter model,
we opted to use the values from Brown et al. (2020)
to guide our choice of hyperparameters. As Brown

et al. (2020) did not train a model at our exact
scale, we interpolate between the learning rates of
their 13B and 175B models to arrive at a learning
rate of 0.97E−5. Based on the results of smaller
scale experiments, we select a weight decay of
0.01. To achieve a higher training throughput, we
opt to use the same batch size as OpenAI’s 175B
model–approximately 3.15M tokens, or 1538 con-
texts of 2048 tokens each, and train for a total of
150,000 steps, decaying the learning rate with a
cosine schedule to 10% of its original value at the
end of training.

We use the AdamW (Loshchilov and Hutter,
2019) optimizer, with beta values of 0.9 and 0.95
respectively, and an epsilon of 1.0E−8. We extend
AdamW with the ZeRO optimizer (Rajbhandari
et al., 2020) to reduce memory consumption by
distributing optimizer states across ranks. Since
the weights and optimizer states of a model at this
scale do not fit on a single GPU, we use the ten-
sor parallelism scheme introduced in Shoeybi et al.
(2020) in combination with pipeline parallelism
(Harlap et al., 2018) to distribute the model across
GPUs. To train GPT-NeoX-20B, we found that the
most efficient way to distribute the model given
our hardware setup was to set a tensor parallel size
of 2, and a pipeline parallel size of 4. This allows
for the most communication intensive processes,
tensor and pipeline parallelism, to occur within a
node, and data parallel communication to occur
across node boundaries. In this fashion, we were
able to achieve and maintain an efficiency of 117
teraFLOPS per GPU.

3.1 Training Data
GPT-NeoX-20B was trained on the Pile (Gao et al.,
2020), a massive curated dataset designed specifi-
cally for training large language models. It consists
of data from 22 data sources, coarsely broken down
into 5 categories:

• Academic Writing: Pubmed Abstracts and
PubMed Central, arXiv, FreeLaw,5 USPTO
Backgrounds,6 PhilPapers,7 NIH Exporter8

• Web-scrapes and Internet Resources: Com-
monCrawl, OpenWebText2, StackExchange,9

Wikipedia (English)
5https://www.courtlistener.com/
6https://bulkdata.uspto.gov/
7https://philpapers.org/
8https://exporter.nih.gov/
9https://archive.org/details/stackexchange
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• Prose: BookCorpus2, Bibliotik, Project
Gutenberg (PG-19; Rae et al., 2019)

• Dialogue: Youtube subtitles, Ubuntu IRC,10

OpenSubtitles (Lison and Tiedemann, 2016),
Hacker News,11 EuroParl (Koehn, 2005)

• Miscellaneous: GitHub, the DeepMind Math-
ematics dataset (Saxton et al., 2019), Enron
Emails (Klimt and Yang, 2004)

In aggregate, the Pile consists of over 825GiB
of raw text data. The diverse data sources reflects
our desire for a general-purpose language model.
Certain components are up-sampled to obtain a
more balanced data distribution. In contrast, GPT-
3’s training data consists of web-scrapes, books
datasets, and Wikipedia. When comparing results
in this work to GPT-3, the training data is almost
certainly the biggest known unknown factor. Full
details of the Pile can be found in the technical re-
port (Gao et al., 2020) and the associated datasheet
(Biderman et al., 2022).

It is particularly notable that the Pile contains
a scrape of StackExchange preprocessed into a
Q/A form. There is a significant and growing
body of work on the influence of the syntactic
structure of finetuning data on downstream per-
formance (Zhong et al., 2021; Tan et al., 2021;
Sanh et al., 2021; Wei et al., 2021). While so far
there has been no systematic work that focuses on
prompted pretraining, recent work (Biderman and
Raff, 2022) observed that the formulation of the
StackExchange component of the Pile appears to
heavily influences code generation.

3.2 Tokenization

For GPT-NeoX-20B, we use a BPE-based tokenizer
similar to that used in GPT-2, with the same total
vocabulary size of 50257, with three major changes
to the tokenizer. First, we train a new BPE tok-
enizer based on the Pile, taking advantage of its
diverse text sources to construct a more general-
purpose tokenizer. Second, in contrast to the GPT-2
tokenizer which treats tokenization at the start of
a string as a non-space-delimited token, the GPT-
NeoX-20B tokenizer applies consistent space de-
limitation regardless. This resolves an inconsis-
tency regarding the presence of prefix spaces to a

10https://irclogs.ubuntu.com/
11https://news.ycombinator.com/

tokenization input.12. An example can be seen in
Figure 1. Third, our tokenizer contains tokens for
repeated space tokens (all positive integer amounts
of repeated spaces up to and including 24). This
allows the GPT-NeoX-20B tokenizer to tokenize
text with large amounts of whitespace using fewer
tokens; for instance, program source code or arXiv
LATEX source files. See Appendix F for an analysis
of the tokenizer.

GPT-2

def fibRec(n):←↩
if n < 2:←↩

return n←↩
else:←↩

return fibRec(n-1) + fibRec(n-2)

55 tokens

GPT-NeoX-20B

def fibRec(n):←↩
if n < 2:←↩

return n←↩
else:←↩

return fibRec(n-1) + fibRec(n-2)

39 tokens

Figure 1: GPT-2 tokenization vs. GPT-NeoX-20B tok-
enization. GPT-NeoX-20B tokenization handles whites-
pace better, which is particularly useful for text such as
source code. For more examples, see Appendix G.

3.3 Data Duplication

In the past two years, the standard practice when
training autoregressive language models has be-
come to train for only one epoch (Komatsuzaki,
2019; Kaplan et al., 2020; Henighan et al., 2020).
Recent research has claimed to see significant ben-
efits from going even further and deduplicating
training data (Lee et al., 2021; Kandpal et al.,
2022; Roberts et al., 2022). In particular, every
publicly known larger language model other than
GPT-3 (Brown et al., 2020) and Jurassic-113 either
uses some form of deduplication (Rae et al., 2022;
Askell et al., 2021; Zeng et al., 2021; Sun et al.,
2021; Smith et al., 2022; Hoffmann et al., 2022;
Chowdhery et al., 2022) or does not discuss the
training data in sufficient detail to determine what
was done (Kim et al., 2021).

When the Pile was originally made, the only
language model larger than GPT-NeoX-20B that

12https://discuss.huggingface.co/t/
bpe-tokenizers-and-spaces-before-words/475/2

13In private communication, the authors confirmed that
Jurassic-1 was trained on the Pile (Gao et al., 2020).
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Figure 2: Training and validation loss for GPT-NeoX-
20B. As the validation loss continued to fall into the
beginning of the second epoch, we decided to let it train
further.

existed was GPT-3, which upsampled high quality
subsets of its training data. The Pile followed suit,
and due to a combination of a lack of resources
for large scale ablations and a lack of noticeable
impact at smaller scales, we opt to use the Pile as-is.
As shown in fig. 2, even at the 20B parameter scale
we see no drop in test validation loss after crossing
the 1 epoch boundary.

Unfortunately, none of the papers that have
claimed to see an improvement from deduplica-
tion have released trained models that demonstrate
this, making replication and confirmation of their
results difficult. Lee et al. (2021) releases the dedu-
plication code that they used, which we intend to
use to explore this question in more detail in the
future.

It is important to note that even if there is not an
improvement in loss or on task evaluations there
are nevertheless compelling reasons to deduplicate
training data for any model put into production. In
particular, systematic analysis has shown signifi-

cant benefits in terms of reducing the leakage of
training data (Lee et al., 2021; Zhang et al., 2021;
Carlini et al., 2022; Kandpal et al., 2022).

4 Performance Evaluations

To evaluate our model we use the EleutherAI
Language Model Evaluation Harness (Gao et al.,
2021b), an open source codebase for language
model evaluation that supports a number of model
APIs. As our goal is to make a powerful model
publicly accessible, we compare with English lan-
guage models with at least 10B parameter that are
publicly accessible. We compare with the GPT-3
models on the OpenAI API(Brown et al., 2020),
the open source FairSeq dense models (Artetxe
et al., 2021), and GPT-J-6B (Wang and Komat-
suzaki, 2021). We do not compare against T5 (Raf-
fel et al., 2020) or its derivatives as our evaluation
methodology assumes that the models are autore-
gressive. While there is a Megatron 11B check-
point that has been publicly released, the released
code is non-functional and we have not been able to
get the model to work. We do not compare against
any mixture-of-experts models as no public MoE
model achieves performance comparable to a 10B
parameter dense model.

While it is common to display “scaling laws”
curves of best fit, we opt to not do so as the small
number of OpenAI API models give DaVinci an
outsized influence on the slope of the curve. In
many of the examples we study, including DaVinci
in the scaling laws calculation moves the line of
best fit so far as to entirely change the conclusions.
Instead, we connect the points with lines directly.
We categorize both GPT-J-6B and GPT-NeoX-20B
under the umbrella of GPT-NeoX models, as both
models are trained with the same architecture (ex-
cept for the negligible differences described in Sec-
tion 2.1.2) and were trained on the same dataset.
However, we connect them using a dashed line to
reflect the fact that these two models are not the
same model trained at two different scales the way
the FairSeq and OpenAI models are, having been
trained using different codebases, different tokeniz-
ers, and for different numbers of tokens.

Where we were able to obtain the relevant in-
formation, we report two baselines: human-level
performance and random performance. All plots
contain error bars representing two standard errors,
indicating the 95% confidence interval around each
point. For some plots, the standard error is so small
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that the interval is not visible.

4.1 Tasks Evaluated

We evaluate our model on a diverse collection of
standard language model evaluation datasets that
we divide into three main categories: natural lan-
guage tasks, Advanced Knowledge-Based Tasks,
and Mathematical Tasks. Due to space constraints a
representative subset of the results are shown here,
with the rest in Appendix E.

Natural Language Tasks We evaluate our model
on a diverse collection of standard language model
evaluation datasets: ANLI (Nie et al., 2020), ARC
(Clark et al., 2018), HeadQA (English) (Vilares
and Gómez-Rodríguez, 2019), HellaSwag (Zellers
et al., 2019), LAMBDADA (Paperno et al., 2016),
LogiQA (Liu et al., 2020), OpenBookQA (Mi-
haylov et al., 2018), PiQA (Bisk et al., 2020),
PROST (Aroca-Ouellette et al., 2021), QA4MRE
(Peñas et al., 2013) (2013), SciQ (Welbl et al.,
2017), TriviaQA (Joshi et al., 2017), Winogrande
(Sakaguchi et al., 2021), and the SuperGlue version
of the Winograd Schemas Challenge (WSC) (Wang
et al., 2019).

Mathematical Tasks The solving of mathemati-
cal problem solving is an area that has had a long
history of study in AI research, despite the fact that
large language models tend to perform quite poorly
on both arithmetic tasks and mathematical prob-
lems phrased in natural language. We evaluate on
the MATH test dataset (Hendrycks et al., 2021b) as
well as on the numerical arithmetic problems intro-
duced by Brown et al. (2020). Note that the MATH
test dataset is an evaluation metric that is generally
finetuned on, but due to computational limitations
we only evaluate models zero- and five-shot here.

Advanced Knowledge-Based Tasks We are also
interested in the ability of our models to answer fac-
tual questions that (for humans) require advanced
knowledge. To do this, we use a dataset of multiple
choice questions in a variety of diverse domains
developed by Hendrycks et al. (2021a). Follow-
ing common practice on this dataset, we focus on
results aggregated by subject area: Humanities,
Social Sciences, STEM, and Miscellaneous as pre-
sented in Figure 6. We report five-shot performance
to be comparable to previous work.

Figure 3: Zero-shot performance of GPT-NeoX-20B
compared to GPT-J-6B and FairSeq and OpenAI models
on a variety of language modeling benchmarks.
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Figure 4: Zero-shot performance of GPT-NeoX-20B
compared to and FairSeq and OpenAI models on arith-
metic tasks. Random performance on these tasks is 0%,
and we were unable to find information on median hu-
man performance.

Figure 5: Zero-shot performance of GPT-NeoX-20B
compared to and FairSeq and OpenAI models on arith-
metic tasks. Random performance on these tasks is 0%,
and we were unable to find information on median hu-
man performance.

Figure 6: Five-shot performance of GPT-NeoX-20B
compared to GPT-J-6B and FairSeq and OpenAI models
on Hendrycks et al. (2021a).

5 Discussion

5.1 Performance Results
Natural Language Tasks While GPT-NeoX-
20B outperforms FairSeq 13B on some tasks (e.g.
ARC, LAMBADA, PIQA, PROST), it underper-
forms on others (e.g. HellaSwag, LogiQA zero-
shot). In total, across the 32 evaluations we did
we outpreform on 22 tasks, underpreform on four
tasks, and fall within the margin of error on six
tasks. By far our weakest performance is on Hel-
laSwag, where we score four standard deviations
below FairSeq 13B in both zero- and five-shot eval-
uations. Similarly, GPT-J underperforms FairSeq
6.7B by three standard deviations zero-shot and six
standard deviations five-shot on HellaSwag. We
find this massive performance loss largely inexpli-
cable; while we originally assumed that the sub-
stantial non-prose components of the Pile were to
blame, we note that GPT-J and GPT-NeoX overpre-
form FairSeq models on the very similar Lambada
task by roughly the same amount.
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Mathematics While GPT-3 and FairSeq models
are generally quite close on arithmetic tasks, they
are consistently out-preformed by GPT-J and GPT-
NeoX. We conjecture that this is traceable to the
prevalence of mathematics equations in the training
data, but warn that people should not assume that
this means that training on the Pile produces better
out-of-distribution arithmetic reasoning. Razeghi
et al. (2022) show that there is a strong correla-
tion between the frequency of a numerical equation
in the Pile and GPT-J’s performance on that equa-
tion, and we see no reason this would not hold
in GPT-NeoX 20B, FairSeq, and GPT-3. We are
unfortunately unable to investigate this effect in
FairSeq and GPT-3 models because the authors do
not release their training data.

Advanced Knowledge-Based Tasks While GPT-
NeoX and FairSeq both exhibit dominant perfor-
mance on MMMLU compared to GPT-3 in the
five-shot setting (Figures 6 and 11), their perfor-
mance is much closer in the zero-shot setting (Fig-
ure 10). Hendrycks et al. (2021b) find that few-shot
evaluation does not improve performance, but that
appears to be only the case for GPT-3. We view this
as a warning against drawing strong conclusions
about evaluation metrics based only on one model,
and encourage researchers developing new eval-
uation benchmarks to leverage multiple different
classes of models to avoid overfitting their conclu-
sions to a specific model.

5.2 Powerful Few-Shot Learning

Our experiments indicate that GPT-J-6B and GPT-
NeoX-20B benefit substantially more from few-
shot evaluations than the FairSeq models do. When
going from 0-shot to 5-shot evaluations, GPT-J-6B
improves by 0.0526 and GPT-NeoX-20B improves
by 0.0598 while the FairSeq 6.7B and 13B models
improve by 0.0051 and 0.0183 respectively. This
result is statistically significant and robust to pur-
turbations of prompting. While we do not have a
particular explanation for this currently, we view
this as a strong recommendation for our models.

5.3 Limitations

Optimal Training Hyperparameter tuning is an
expensive process, and is often infeasible to do
at full scale for multi-billion parameter models.
Due to the aforementioned limitations, we opted
to choose hyperparameters based on a mixture of
experiments at smaller scales and by interpolating

parameters appropriate for our model size based
on previously published work (Brown et al., 2020).
However, several aspects of both our model ar-
chitecture [Section 2.1] and training setup, includ-
ing the data [Section 3.1] and the tokenizer [Sec-
tion 3.2], diverge significantly from Brown et al.
(2020). As such, it is almost certainly the case
that the hyperparameters used for our model are no
longer optimal, and potentially never were.

Lack of Coding Evaluations Many of the de-
sign choices we made during the development of
this model were oriented towards improving per-
formance on coding tasks. However, we underes-
timated the difficulty and cost of existing coding
benchmarks (Chen et al., 2021), and so were un-
able to evaluate out model in that domain. We hope
to do so in the future.

Data Duplication Finally, the lack of dataset
deduplication could also have had an impact on
downstream performance. Recent work has shown
that deduplicating training data can have a large
effect on perplexity (Lee et al., 2021). While our
experiments show no sign of this, it is hard to dis-
miss it due to the number of researchers who have
found the opposite result.

5.4 Releasing a 20B Parameter LLM

The current status quo in research is that large lan-
guage models are things people train and publish
about, but do not actually release. To the best of
our knowledge, GPT-NeoX-20B is the largest and
most performant dense language model to ever be
publicly released. A variety of reasons for the non-
release of large language models are given by vari-
ous groups, but the primary one is the harms that
public access to LLMs would purportedly cause.

We take these concerns quite seriously. However,
having taken them quite seriously, we feel that they
are flawed in several respects. While a thorough
analysis of these issues is beyond the scope of this
paper, the public release of our model is the most
important contribution of this paper and so an ex-
planation of why we disagree with the prevailing
wisdom is important.

Providing access to ethics and alignment re-
searchers will prevent harm. The open-source
release of this model is motivated by the hope that
it will allow researchers who would not otherwise
have access to LLMs to use them. While there are
negative risks due to the potential acceleration of
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capabilities research, we believe the benefits of this
release outweigh the risks. We also note that these
benefits are not hypothetical, as a number of papers
about the limits and ethics of LLMs has been ex-
plicitly enabled by the public release of previous
models (Zhang et al., 2021; Kandpal et al., 2022;
Carlini et al., 2022; Birhane et al., 2021; nostalge-
braist, 2020; Meng et al., 2022; Lin et al., 2021).

Limiting access to governments and corpora-
tions will not prevent harm. Perhaps the most
curious aspect of the argument that LLMs should
not be released is that the people making such ar-
guments are not arguing they they should not use
LLMs. Rather, they are claiming that other people
should not use them. We do not believe that this
is a position that should be taken seriously. The
companies and governments that have the financial
resources to train LLMs are overwhelmingly more
likely to do large scale harm using a LLM than a
random individual.

Releasing this model is the beginning, not the
end, of our work to make GPT-NeoX-20B widely
accessible to researchers. Due to the size of the
model, inference is most economical on a pair of
RTX 3090 Tis or a single A6000 GPU and fine-
tuning requires significantly more compute. Truly
promoting widespread access to LLMs means pro-
moting widespread access to computing infrastruc-
ture in addition to the models themselves. We plan
to make progress on this issue going forward by
continuing to work on reducing the inference costs
of our model, and by working with researchers to
provide access to the computing infrastructure they
need to carry out experiments on our models. We
strongly encourage researchers who are interested
in studying GPT-NeoX-20B but lack the necessary
infrastructure to reach out to discuss how we can
help empower you.

6 Summary

We introduce GPT-NeoX-20B, a 20 billion param-
eter autoregressive Transformer language model
trained on the Pile (Gao et al., 2020) dataset, and de-
tail the main architectural differences between GPT-
NeoX-20B and GPT-3—most notably the change in
tokenizer, the addition of Rotary embeddings, the
parallel computation of attention and feed-forward
layers, and a different initialization scheme and
hyperparameters. We run extensive evaluations
of GPT-NeoX-20B on natural language and fac-
tual knowledge tasks, and compare it with other

publicly available models, finding it performed
particularly well on knowledge-based and math-
ematical tasks. Finally, we are open sourcing the
training and evaluation code at https://github.
com/EleutherAI/gpt-neox, where readers can
find a link to download the model weights across
the whole training run.
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A Individual Contributions

Sid Black was the lead developer and overall point
person for the project. Stella Biderman was the
lead scientist and project manager.

Implementation and Engineering
Implementation of training infrastructure:
Sid Black, Stella Biderman, Eric Hallahan,
Quentin Anthony, Samuel Weinbach

Scaling experiments and optimization:
Sid Black, Stella Biderman, Quentin Anthony,
Samuel Weinbach

Positional Embeddings:
Sid Black, Eric Hallahan, Michael Pieler

Tokenizer:
Sid Black

Miscellaneous:
USVSN Sai Prashanth, Ben Wang

Scientific Experimentation
Evaluations:
Stella Biderman, Leo Gao, Jonathan Tow,
Sid Black, Shivanshu Purohit, Horace He,
Laurence Golding

Positional Embeddings:
Stella Biderman, Laurence Golding,
Michael Pieler

Tokenizer:
Stella Biderman, Jason Phang, Leo Gao

Broader Impacts
Alignment Implications:
Leo Gao, Connor Leahy, Laria Reynolds,
Kyle McDonell

Environmental Impact:
Stella Biderman, Eric Hallahan

B Full Configuration Details

In Table 1 we attach the full configuration details
used to train GPT-NeoX-20B. The file is available
in .yaml format usable in gpt-neox at https://
github.com/EleutherAI/gpt-neox, where we
also provide documentation describing the role of
each parameter.

Configuration Key Value
attention-dropout 0
bias-gelu-fusion True
checkpoint-activations True
checkpoint-num-layers 1
data-impl mmap
distributed-backend nccl
eval-interval 1000
eval-iters 10
fp16.enabled True
fp16.fp16 True
fp16.hysteresis 2
fp16.initial-scale-power 12
fp16.loss-scale 0
fp16.loss-scale-window 1000
fp16.min-loss-scale 1
gpt-j-residual True
gradient-accumulation-steps 32
gradient-clipping 1.0
hidden-dropout 0
hidden-size 6144
init-method small-init
log-interval 2
lr-decay-iters 150000
lr-decay-style cosine
max-position-embeddings 2048
min-lr 9.7e-06
model-parallel-size 2
no-weight-tying True
norm layernorm
num-attention-heads 64
num-layers 44
optimizer.params.betas [0.9, 0.95]
optimizer.params.eps 1e-08
optimizer.params.lr 9.7e-05
optimizer.type Adam
output-layer-init-method wang-init
output-layer-parallelism column
partition-activations False
pipe-parallel-size 4
pos-emb rotary
rotary-pct 0.25
save-interval 500
scaled-upper-triang-masked-softmax-fusion True
seq-length 2048
split 995,4,1
steps-per-print 2
synchronize-each-layer True
tokenizer-type HFTokenizer
train-iters 150000
train-micro-batch-size-per-gpu 4
vocab-file 20B-tokenizer.json
wall-clock-breakdown False
warmup 0.01
weight-decay 0.01
zero-optimization.allgather-bucket-size 1260000000
zero-optimization.allgather-partitions True
zero-optimization.contiguous-gradients True
zero-optimization.cpu-offload False
zero-optimization.overlap-comm True
zero-optimization.reduce-bucket-size 1260000000
zero-optimization.reduce-scatter True
zero-optimization.stage 1

Table 1: The full configuration details for GPT-NeoX-
20B training
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C Broader Impacts

The current status quo in research is that large lan-
guage models are things people train and publish
about, but do not actually release. To the best of our
knowledge, GPT-NeoX-20B is the largest dense
language model to ever be publicly released with a
several-way tie for second place at 13 billion param-
eters (Artetxe et al., 2021; Xue et al., 2020, 2021)
and many more models at the 10-11B parameter
scale. A variety of reasons for the non-release of
large language models are given by various groups,
but the primary one is the harms that public access
to LLMs would purportedly cause.

We take these concerns quite seriously. However,
having taken them quite seriously, we feel that they
are flawed in several respects. While a thorough
analysis of these issues is beyond the scope of this
paper, the public release of our model is the most
important contribution of this paper and so an ex-
planation of why we disagree with the prevailing
wisdom is important.

Providing access to ethics and alignment re-
searchers will prevent harm. The open-source
release of this model is motivated by the hope that
it will allow researchers who would not otherwise
have access to LLMs to use them. While there are
negative risks due to the potential acceleration of
capabilities research, we believe the benefits of this
release outweigh the risks. We also note that these
benefits are not hypothetical, as a number of papers
about the limits and ethics of LLMs has been ex-
plicitly enabled by the public release of previous
models (Zhang et al., 2021; Kandpal et al., 2022;
Carlini et al., 2022; Birhane et al., 2021; nostalge-
braist, 2020; Meng et al., 2022; Lin et al., 2021).

Limiting access to governments and corpora-
tions will not prevent harm. Perhaps the most
curious aspect of the argument that LLMs should
not be released is that the people making such ar-
guments are not arguing they they should not use
LLMs. Rather, they are claiming that other people
should not use them. We do not believe that this
is a position that should be taken seriously. The
companies and governments that have the financial
resources to train LLMs are overwhelmingly more
likely to do large scale harm using a LLM than a
random individual.

The open-source release of this model is mo-
tivated by the hope that it will allow ethics and
alignment researchers who would not otherwise

have access to LLMs to use them. While there are
negative risks due to the potential acceleration of
capabilities research, we believe the benefits of this
release outweigh the risks of accelerating capabili-
ties research.

C.1 Impact on Capabilities Research and
Products

When discussing the impact of access to technol-
ogy, it is important to distinguish between capaci-
ties research which seeks to push the current state-
of-the-art and research on

We feel the risk of releasing GPT-NeoX-20B
is acceptable, as the contribution of the model to
capabilities research is likely to be limited, for two
reasons.

We ultimately believe that the benefits of releas-
ing this model outweigh the risks, but this argument
hinges crucially on the particular circumstances
of this release. All actors considering releasing
powerful AI models or advancing the frontier of
capabilities should think carefully about what they
release, in what way, and when.

C.2 Impact on Ethics and Alignment
Research

To oversimplify a complex debate, there are
broadly speaking two schools of thought regard-
ing the mitigation of harm that is done by AI al-
gorithms: AI Ethics and AI Alignement. AI Ethics
researchers are primarily concerned with the im-
pact of current technologies or technologies very
similar to current technologies, while AI Align-
ment is primarily concerned with future “generally
intelligent” systems whose capacities greatly out-
class currently existing systems and possess human
and superhuman levels of intelligence. While the
tools, methods, and ideas of these camps are very
different, we believe that increasing access to these
technologies will empower and advance the goals
of researchers in both schools.

C.2.1 The Necessity of Model Access for AI
Ethics

Analyzing and documenting the limitations of mod-
els is an essential aspect of AI ethics research
(Matias, 2020). Work examining and criticizing
datasets (Kreutzer et al., 2022; Dodge et al., 2021;
Birhane et al., 2021), functionality (Smart, 2021;
Zhang et al., 2021; Carlini et al., 2022; Biderman
and Raff, 2022), evaluation and deployment proce-
dures (Biderman and Scheirer, 2020; Talat et al.,
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2022), and more are essential to well-rounded and
informed debate on the value and application of
technology.

However the current centralization of LLM train-
ing also creates a centralization of control of tech-
nology (Sadowski et al., 2021; Whittaker, 2021)
that makes meaningful independent evaluation im-
possible. This means that it is often not possible
to do this kind of work in practice because of the
severe access restrictions companies that own large
language models put on them. While GPT-NeoX
is the 13th largest dense language model at time of
writing only model larger than GPT-NeoX 20B that
is publicly accessible is GPT-3. There are signifi-
cant limitations on people’s ability to do research
on GPT-3 though, as it is not free to use and its
training data is private.

C.2.2 The Usefulness of Large Language
Models in Alignment

LLMs represent a different paradigm than the AI
systems generally studied by alignment researchers
because they are not well-described as coherent
agents or expected utility maximizers. Though
trained to optimize a log-likelihood loss function, at
a high level the goals a LLM pursues are varied and
contradictory, depending on the way it is prompted.
This introduces additional challenges, but may also
enable new approaches to alignment.

GPT-NeoX-20B itself is not the system we need
to align, but we hope it can serve as a publicly
available platform for experiments whose results
might generalize to crucial future work.

The following is a non-exhaustive list of poten-
tial approaches we consider promising for further
investigation.

Mechanistic interpretability. Mechanistic inter-
pretability research (Cammarata et al., 2020) hopes
to gain an understanding into how models accom-
plish the tasks they do, in part in the hopes of de-
tecting problematic or deceptive algorithms imple-
mented by models before these failures manifest
in the real world. Being able to interpret and in-
spect the detailed inner workings of trained models
would be a powerful tool to ensure models are opti-
mizing for the goals we intended (Hubinger et al.,
2021; Koch et al., 2021). Reverse engineering
transformer language models has already yielded
insights about the inner functioning of LMs (El-
hage et al., 2021; nostalgebraist, 2020; Meng et al.,
2022; Dai et al., 2021).

Using a LLM as a reward model. Because they
are trained to predict human writing, LLMs also
appear to develop a useful representation of hu-
man values at the semantic level. Finding a way
to utilise these representations could be a possible
path toward solving the problem of reward robust-
ness in RL and other algorithms which require a
proxy of human judgment (Stiennon et al., 2022;
Wentworth, 2020). Despite fundamental theoretical
limitations on learning human values (Armstrong
and Mindermann, 2018; Kosoy, 2016), value learn-
ing may still be robust enough to align weaker su-
perhuman AIs. Future experiments could explore
the extent to which LLM pretraining improves
downstream reward model robustness and general-
ization.

Natural language transparency. Since LLM
prompts are in a human-readable form, it can
provide insight on the LLM’s expected behavior.
Prompt programming or finetuning can be used to
leverage this fact and force a LLM to execute more
transparent algorithms, such as splitting problems
into steps or explicitly writing an “internal mono-
logue” (Soares, 2021; Gao et al., 2021a; Nye et al.,
2021). Reliability and trustworthiness can present
significant challenges for these approaches.

However, this form of transparency also has its
limits. In particular, models can often respond
unpredictably to prompts, and internal monologues
may become completely detached from the model’s
decision making process if translating between the
model’s ontology and the human ontology is more
complex than simply modeling human monologues
(Christiano et al., 2021).

Simulating agents at runtime. Although LLMs
are not well-described as coherent agents, they can
still be used to generate goal-directed processes.
Given an appropriate prompt (such as a story of a
character working to achieve a goal), LLMs can
predict and thus simulate an agent (Huang et al.,
2022). Simulated agents take representative actions
according to the patterns present in the training
data, similar to behavior cloning. One potential
future research direction is testing whether they
are less susceptible to failure modes that follow
from expected utility maximization, such as Good-
hart failures and power-seeking behavior. However,
other failure modes can be introduced by the LM
training procedure, such as “delusions” or “halluci-
nations” (Ortega et al., 2021; Gao, 2021; Maynez
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et al., 2020). Additionally, simulated agents may be
uncompetitive with optimal agents like those pro-
duced by Reinforcement Learning. An important
research direction is to explore how the beneficial
properties of simulated agents can be maintained
while making them competitive with RL based ap-
proaches.

Tool AI and automated alignment research.
LMs can be used as relatively unagentic tools, such
as OpenAI’s Codex model (Chen et al., 2021) act-
ing as a coding assistant. Because pretrained LLMs
are not directly optimized for the factual accuracy
of their predictions, it is possible they avoid some
of the traditional problems with tool or oracle AI
(Armstrong et al., 2012), such as the incentive
to produce manipulative answers (Demski, 2019).
Tool AI is not a long-term solution to the problem
of alignment, but it could be used to assist align-
ment research or even automate large parts of it.
For example, language models could be used to
help brainstorm alignment ideas more quickly, act
as a writing assistant, or directly generate align-
ment research papers for humans to review. This
line of research also risks accelerating capabilities
research, a concern we discuss more below.

C.3 Differential Impact on Access

Because training large models requires a significant
engineering and capital investment, such models
are often out of reach for small labs and indepen-
dent researchers. As it stands, only large organiza-
tions have access to the latest generation of power-
ful language models (Brown et al., 2020; Rae et al.,
2022; Fedus et al., 2021; Lieber et al., 2021; Tang,
2021). The number of researchers focused primar-
ily on ethics and alignment working at these labs is
much lower than those working on developing new
capabilities.

We feel the risk of releasing GPT-NeoX-20B is
acceptable, as the contribution of the model to ca-
pabilities research is likely to be limited, for two
reasons. Firstly, the organizations pursuing capa-
bilities research most aggressively are unlikely to
benefit from our open-source release of this model
as they have already developed more powerful mod-
els of their own. Secondly, we believe the single
most important piece of knowledge that drives ad-
vancing capabilities research is the knowledge that
scaling LLMs was possible in the first place (Leahy,
2021; Leahy and Biderman, 2021). Whereas the ac-
tual implementation is very fungible (as evidenced

by the large number of parties who have succeeded
in creating their own LLMs in the past two years).
This differential impact, wherein our release is
expected to benefit primarily people who have
less funding and infrastructure, is a key factor
in our decision to release this model publicly.

We ultimately believe that the benefits of releas-
ing this model outweigh the risks, but this argument
hinges crucially on the particular circumstances
of this release. All actors considering releasing
powerful AI models or advancing the frontier of
capabilities should think carefully about what they
release, in what way, and when.

C.4 Environmental Impact
A significant point of concern in some recent work
is the energy usage and carbon emissions associ-
ated with training large language models (Strubell
et al., 2019; Schwartz et al., 2020; Lacoste et al.,
2019; Bender et al., 2021). In particular, Strubell
et al. (2019) estimate that a then-recent paper by
the authors released 626,155 lbs or 284.01 met-
ric tons14 of CO2 (tCO2). As Strubell et al. (2019)
has been widely cited and quoted in the media as
representative of large-scale language models, we
decided to explicitly and carefully track our energy
usage and carbon emissions to see if this is truly a
representative account of NLP emissions.

Throughout the development and training of our
model, we tracked our energy usage and carbon
emissions. We found that the process of develop-
ing and training GPT-NeoX-20B emitted almost
exactly 10% of Strubell et al. (2019)’s estimate,
coming in at a total of 69957 lbs or 31.73 met-
ric tons of CO2. This is roughly the equivalent of
the yearly emissions of the average American or
35 round-trip flights between New York City and
San Francisco. Our systems were based in Illinois,
USA, and consumed energy sourced from the mix
as follows

• 30.40% Coal (0.95tCO2 /MWh)

• 31.30% Gas (0.6078tCO2 /MWh)

• 1.30% Hydroelectric (0 tCO2 /MWh)

• 17.40% Nuclear (0 tCO2 /MWh)

• 0.30% Solar (0 tCO2 /MWh)

• 18.10% Wind (0 tCO2 /MWh)
14We choose to present environmental impact figures in

metric tons to align with standard reporting.
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• 1.30% Other Renewables (0 tCO2 /MWh)

This mixture produces an average of 0.47905
tCO2 /MWh, and we consumed a total of
43.92 MWh of electricity over the course of 1830
hours of training. Scaling, testing, and evaluation
were responsible for the equivalent of another 920
hours on our systems, for a total energy consump-
tion 66.24 MWh and thus the production of just
under 35 metric tons of CO2.

It is noteworthy that Strubell et al. (2019) are
estimating emissions from a neural architecture
search paper, and is therefore not directly com-
parable to ours. The primary motivation for our
comparison is that their number has attracted a lot
of attention and is often taken to be respresenta-
tive of NLP research. In general, we advocate for
more systematic and comprehensive reporting to
improve transparency surrounding this important
topic.

D Architecture Diagram

E Full Evaluation Results

Results for natural language understanding tasks
are shown in Tables 2 and 3, while results for
Hendrycks tasks are found in Tables 10 to 13.

All evaluations had version 0 in the Evaluation
Harness. This information is reported in the output
of the Evaluation Harness and should be used for
ensuring reproducibility of these results, even as
the task implementations themselves may change
to fix bugs.
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Figure 7: Architecture diagram of a single training node.

Figure 8: Zero-shot performance of GPT-NeoX-20B compared to GPT-J-6B and FairSeq and OpenAI models on a
variety of language modeling benchmarks.
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Figure 9: Length-normalized zero-shot performance of GPT-NeoX-20B compared to GPT-J-6B and FairSeq and
OpenAI models on a variety of language modeling benchmarks.
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GPT-J GPT-NeoX GPT-3
Task 6B 20B Ada Babbage Curie DaVinci

ANLI Round 1 0.324±0.015 0.340±0.015 0.334±0.015 0.326±0.015 0.325±0.015 0.363±0.015
ANLI Round 2 0.340±0.015 0.343±0.015 0.342±0.015 0.308±0.015 0.338±0.015 0.375±0.015
ANLI Round 3 0.355±0.014 0.354±0.014 0.354±0.014 0.340±0.014 0.353±0.014 0.369±0.014
LAMBADA 0.683±0.006 0.720±0.006 0.515±0.007 0.625±0.007 0.693±0.006 0.752±0.006
WSC 0.365±0.047 0.500±0.049 0.375±0.048 0.404±0.048 0.548±0.049 0.548±0.049
HellaSwag 0.518±0.005 0.535±0.005 0.359±0.005 0.429±0.005 0.505±0.005 0.592±0.005
Winogrande 0.640±0.013 0.661±0.013 0.528±0.014 0.594±0.014 0.649±0.013 0.699±0.013
SciQ 0.910±0.009 0.928±0.008 0.843±0.012 0.866±0.011 0.918±0.009 0.949±0.007
PIQA 0.752±0.010 0.779±0.010 0.690±0.011 0.745±0.010 0.767±0.010 0.791±0.009
TriviaQA 0.170±0.004 0.259±0.004 0.050±0.002 0.115±0.003 0.196±0.004 0.409±0.005
ARC (Easy) 0.670±0.010 0.723±0.009 0.514±0.010 0.598±0.010 0.682±0.010 0.762±0.009
ARC (Challenge) 0.340±0.014 0.380±0.014 0.225±0.012 0.275±0.013 0.334±0.014 0.435±0.014
OpenBookQA 0.288±0.020 0.290±0.020 0.172±0.017 0.224±0.019 0.290±0.020 0.336±0.021
HeadQA (English) — — 0.245±0.008 0.278±0.009 0.317±0.009 0.356±0.009
LogiQA 0.209±0.016 0.230±0.017 0.218±0.016 0.198±0.016 0.217±0.016 0.227±0.016
PROST 0.267±0.003 0.296±0.003 0.254±0.003 0.270±0.003 0.288±0.003 0.267±0.003
QA4MRE (2013) 0.373±0.029 0.363±0.029 0.320±0.028 0.370±0.029 0.377±0.029 0.426±0.029

Table 2: Zero-Shot Results on Natural Language Understanding Tasks (GPT-J, GPT-NeoX and GPT-3)
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FairSeq
Task 125M 355M 1.3B 2.7B 6.7B 13B

ANLI Round 1 0.316±0.015 0.322±0.015 0.331±0.015 0.318±0.015 0.338±0.015 0.340±0.015
ANLI Round 2 0.336±0.015 0.312±0.015 0.334±0.015 0.339±0.015 0.322±0.015 0.330±0.015
ANLI Round 3 0.330±0.014 0.323±0.014 0.333±0.014 0.340±0.014 0.333±0.014 0.347±0.014
LAMBADA 0.388±0.007 0.478±0.007 0.562±0.007 0.632±0.007 0.673±0.007 0.709±0.006
WSC 0.365±0.047 0.471±0.049 0.365±0.047 0.635±0.047 0.615±0.048 0.577±0.049
HellaSwag 0.309±0.005 0.380±0.005 0.448±0.005 0.493±0.005 0.525±0.005 0.554±0.005
Winogrande 0.513±0.014 0.529±0.014 0.600±0.014 0.620±0.014 0.644±0.013 0.674±0.013
SciQ 0.732±0.014 0.737±0.014 0.838±0.012 0.878±0.010 0.895±0.010 0.910±0.009
PIQA 0.668±0.011 0.690±0.011 0.731±0.010 0.751±0.010 0.762±0.010 0.769±0.010
TriviaQA 0.015±0.001 0.019±0.001 0.078±0.003 0.141±0.003 0.221±0.004 0.270±0.004
ARC (Easy) 0.426±0.010 0.468±0.010 0.565±0.010 0.625±0.010 0.665±0.010 0.680±0.010
ARC (Challenge) 0.195±0.012 0.233±0.012 0.263±0.013 0.296±0.013 0.329±0.014 0.345±0.014
OpenBookQA 0.168±0.017 0.190±0.018 0.238±0.019 0.254±0.019 0.292±0.020 0.296±0.020
HeadQA (English) 0.233±0.008 0.233±0.008 0.256±0.008 0.264±0.008 0.280±0.009 0.280±0.009
LogiQA 0.220±0.016 0.230±0.017 0.214±0.016 0.212±0.016 0.232±0.017 0.240±0.017
PROST 0.215±0.003 0.257±0.003 0.257±0.003 0.230±0.003 0.272±0.003 0.252±0.003
QA4MRE (2013) 0.285±0.027 0.335±0.028 0.327±0.028 0.380±0.029 0.370±0.029 0.380±0.029

Table 3: Zero-Shot Results on Natural Language Understanding Tasks (FairSeq Models)
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GPT-J GPT-NeoX GPT-3
Task 6B 20B Ada Babbage Curie DaVinci

ANLI Round 1 0.322±0.015 0.312±0.015 — — — —
ANLI Round 2 0.331±0.015 0.329±0.015 — — — —
ANLI Round 3 0.346±0.014 0.342±0.014 — — — —
LAMBADA 0.662±0.007 0.698±0.006 — — — —
WSC 0.365±0.047 0.385±0.048 — — — —
HellaSwag 0.494±0.005 0.538±0.005 — — — —
Winogrande 0.660±0.013 0.683±0.013 — — — —
SciQ 0.913±0.009 0.960±0.006 — — — —
PIQA 0.756±0.010 0.774±0.010 — — — —
TriviaQA 0.289±0.004 0.347±0.004 — — — —
ARC (Challenge) 0.360±0.014 0.410±0.014 — — — —
ARC (Easy) 0.705±0.009 0.746±0.009 — — — —
OpenBookQA 0.310±0.021 0.326±0.021 — — — —
HeadQA (English) 0.326±0.009 0.385±0.009 — — — —
LogiQA 0.230±0.017 0.220±0.016 — — — —
QA4MRE (2013) 0.366±0.029 0.363±0.029 — — — —

Table 4: Five-Shot Results on Natural Language Understanding Tasks (GPT-J and GPT-NeoX). GPT-3 is omitted due to financial limitations.
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FairSeq
Task 125M 355M 1.3B 2.7B 6.7B 13B

ANLI Round 1 0.332±0.015 0.336±0.015 0.327±0.015 0.336±0.015 0.305±0.015 0.335±0.015
ANLI Round 2 0.345±0.015 0.350±0.015 0.347±0.015 0.333±0.015 0.340±0.015 0.338±0.015
ANLI Round 3 0.359±0.014 0.347±0.014 0.370±0.014 0.326±0.014 0.367±0.014 0.357±0.014
LAMBADA 0.268±0.006 0.349±0.007 0.427±0.007 0.460±0.007 0.494±0.007 0.518±0.007
WSC 0.365±0.047 0.365±0.047 0.365±0.047 0.356±0.047 0.500±0.049 0.404±0.048
HellaSwag 0.308±0.005 0.379±0.005 0.451±0.005 0.497±0.005 0.531±0.005 0.559±0.005
Winogrande 0.516±0.014 0.538±0.014 0.612±0.014 0.633±0.014 0.657±0.013 0.690±0.013
SciQ 0.758±0.014 0.819±0.012 0.859±0.011 0.875±0.010 0.871±0.011 0.899±0.010
PIQA 0.656±0.011 0.700±0.011 0.731±0.010 0.750±0.010 0.764±0.010 0.769±0.010
TriviaQA 0.044±0.002 0.097±0.003 0.160±0.003 0.225±0.004 0.293±0.004 0.323±0.004
ARC (Easy) 0.453±0.010 0.533±0.010 0.618±0.010 0.664±0.010 0.686±0.010 0.702±0.009
ARC (Challenge) 0.198±0.012 0.231±0.012 0.278±0.013 0.310±0.014 0.359±0.014 0.370±0.014
OpenBookQA 0.184±0.017 0.206±0.018 0.218±0.018 0.258±0.020 0.288±0.020 0.290±0.020
HeadQA (English) 0.235±0.008 0.240±0.008 0.254±0.008 0.266±0.008 0.276±0.009 0.282±0.009
LogiQA 0.218±0.016 0.207±0.016 0.210±0.016 0.214±0.016 0.214±0.016 0.223±0.016
QA4MRE (2013) 0.324±0.028 0.338±0.028 0.338±0.028 0.352±0.028 0.391±0.029 0.387±0.029

Table 5: Five-Shot Results on Natural Language Understanding Tasks (FairSeq Models)
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GPT-J GPT-NeoX GPT-3
Task 6B 20B Ada Babbage Curie DaVinci

1DC 0.088±0.006 0.098±0.007 0.029±0.000 0.001±0.000 0.024±0.000 0.098±0.000
2D+ 0.238±0.010 0.570±0.011 0.006±0.000 0.009±0.000 0.025±0.000 0.769±0.000
2Dx 0.139±0.008 0.148±0.008 0.022±0.000 0.021±0.000 0.058±0.000 0.198±0.000
2D- 0.216±0.009 0.680±0.010 0.013±0.000 0.013±0.000 0.076±0.000 0.580±0.000
3D+ 0.088±0.006 0.099±0.007 0.001±0.000 0.001±0.000 0.003±0.000 0.342±0.000
3D- 0.046±0.005 0.344±0.011 0.001±0.000 0.001±0.000 0.004±0.000 0.483±0.000
4D+ 0.007±0.002 0.007±0.002 0.001±0.000 0.000±0.000 0.001±0.000 0.040±0.000
4D- 0.005±0.002 0.029±0.004 0.000±0.000 0.000±0.000 0.000±0.000 0.075±0.000
5D+ 0.001±0.001 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.006±0.000
5D- 0.000±0.000 0.004±0.001 0.000±0.000 0.000±0.000 0.000±0.000 0.008±0.000
MATH (Algebra) 0.013±0.003 0.010±0.003 0.003±0.002 0.008±0.003 0.003±0.002 0.008±0.003
MATH (Counting and Probability) 0.011±0.005 0.017±0.006 0.000±0.000 0.004±0.003 0.000±0.000 0.006±0.004
MATH (Geometry) 0.004±0.003 0.017±0.006 0.000±0.000 0.000±0.000 0.002±0.002 0.002±0.002
MATH (Intermediate Algebra) 0.004±0.002 0.001±0.001 0.000±0.000 0.003±0.002 0.006±0.002 0.003±0.002
MATH (Number Theory) 0.007±0.004 0.013±0.005 0.007±0.004 0.000±0.000 0.006±0.003 0.011±0.005
MATH (Pre-Algebra) 0.010±0.003 0.018±0.005 0.007±0.003 0.006±0.003 0.008±0.003 0.014±0.004
MATH (Pre-Calculus) 0.005±0.003 0.005±0.003 0.004±0.003 0.000±0.000 0.002±0.002 0.004±0.003

Table 6: Zero-Shot Results on Basic Arithmetic and MATH (GPT-J, GPT-NeoX, and GPT-3)
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FairSeq
Task 125M 355M 1.3B 2.7B 6.7B 13B

1DC 0.001±0.001 0.000±0.000 0.000±0.000 0.011±0.002 0.024±0.003 0.001±0.001
2D+ 0.005±0.002 0.001±0.001 0.002±0.001 0.009±0.002 0.019±0.003 0.020±0.003
2Dx 0.020±0.003 0.004±0.001 0.018±0.003 0.023±0.003 0.036±0.004 0.028±0.004
2D- 0.005±0.002 0.002±0.001 0.006±0.002 0.013±0.002 0.013±0.003 0.015±0.003
3D+ 0.001±0.001 0.001±0.001 0.001±0.001 0.001±0.001 0.001±0.001 0.001±0.001
3D- 0.002±0.001 0.001±0.001 0.002±0.001 0.002±0.001 0.002±0.001 0.002±0.001
4D+ 0.001±0.001 0.000±0.000 0.001±0.001 0.001±0.001 0.001±0.001 0.001±0.001
4D- 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000
5D+ 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000
5D- 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000
MATH (Algebra) 0.000±0.000 0.000±0.000 0.001±0.001 0.003±0.002 0.004±0.002 0.003±0.001
MATH (Counting and Probability) 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.004±0.003 0.000±0.000
MATH (Geometry) 0.000±0.000 0.000±0.000 0.000±0.000 0.002±0.002 0.000±0.000 0.000±0.000
MATH (Intermediate Algebra) 0.000±0.002 0.000±0.002 0.000±0.000 0.001±0.001 0.006±0.002 0.002±0.002
MATH (Number Theory) 0.000±0.000 0.000±0.000 0.000±0.000 0.002±0.002 0.000±0.000 0.004±0.003
MATH (Pre-Algebra) 0.000±0.000 0.000±0.000 0.003±0.002 0.002±0.002 0.001±0.001 0.000±0.000
MATH (Pre-Calculus) 0.000±0.000 0.000±0.000 0.000±0.000 0.002±0.002 0.000±0.000 0.000±0.000

Table 7: Zero-Shot Results on Basic Arithmetic and MATH (FairSeq Models)
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GPT-J GPT-NeoX GPT-3
Task 6B 20B Ada Babbage Curie DaVinci

1DC 0.192±0.009 0.191±0.009 — — — —
2D+ 0.880±0.007 0.992±0.002 — — — —
2Dx 0.282±0.010 0.452±0.011 — — — —
2D- 0.817±0.009 0.942±0.005 — — — —
3D+ 0.357±0.011 0.599±0.011 — — — —
3D- 0.497±0.011 0.819±0.009 — — — —
4D+ 0.058±0.005 0.152±0.008 — — — —
4D- 0.092±0.006 0.151±0.008 — — — —
5D+ 0.009±0.002 0.033±0.004 — — — —
5D- 0.021±0.003 0.059±0.005 — — — —
MATH (Algebra) 0.032±0.005 0.049±0.006 — — — —
MATH (Counting and Probability) 0.036±0.009 0.030±0.008 — — — —
MATH (Geometry) 0.027±0.007 0.015±0.005 — — — —
MATH (Intermediate Algebra) 0.024±0.005 0.021±0.005 — — — —
MATH (Number Theory) 0.044±0.009 0.065±0.011 — — — —
MATH (Pre-Algebra) 0.052±0.008 0.057±0.008 — — — —
MATH (Pre-Calculus) 0.013±0.005 0.027±0.007 — — — —

Table 8: Five-Shot Results on Basic Arithmetic and MATH (GPT-J and GPT-NeoX). GPT-3 is omitted due to financial limitations.
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FairSeq
Task 125M 355M 1.3B 2.7B 6.7B 13B

1DC 0.019±0.003 0.024±0.003 0.029±0.004 0.032±0.004 0.046±0.005 0.046±0.005
2D+ 0.005±0.002 0.004±0.001 0.006±0.002 0.029±0.004 0.034±0.004 0.051±0.005
2Dx 0.001±0.001 0.025±0.004 0.025±0.003 0.025±0.003 0.049±0.005 0.053±0.005
2D- 0.007±0.002 0.011±0.002 0.008±0.002 0.013±0.003 0.018±0.003 0.030±0.004
3D+ 0.002±0.001 0.002±0.001 0.001±0.001 0.003±0.001 0.001±0.001 0.003±0.001
3D- 0.002±0.001 0.004±0.001 0.003±0.001 0.003±0.001 0.002±0.001 0.003±0.001
4D+ 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000
4D- 0.001±0.001 0.000±0.000 0.000±0.000 0.001±0.001 0.000±0.000 0.000±0.000
5D+ 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000
5D- 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000 0.000±0.000
MATH (Algebra) 0.023±0.004 0.010±0.003 0.013±0.003 0.014±0.003 0.017±0.004 0.012±0.003
MATH (Counting and Probability) 0.008±0.004 0.004±0.003 0.015±0.006 0.017±0.006 0.015±0.006 0.017±0.006
MATH (Geometry) 0.000±0.000 0.013±0.005 0.006±0.004 0.015±0.005 0.015±0.005 0.006±0.004
MATH (Intermediate Algebra) 0.010±0.003 0.002±0.002 0.007±0.003 0.010±0.003 0.011±0.003 0.004±0.002
MATH (Number Theory) 0.019±0.006 0.009±0.004 0.007±0.004 0.011±0.005 0.028±0.007 0.019±0.006
MATH (Pre-Algebra) 0.013±0.004 0.008±0.003 0.010±0.003 0.011±0.004 0.021±0.005 0.013±0.004
MATH (Pre-Calculus) 0.002±0.002 0.002±0.002 0.004±0.003 0.000±0.000 0.002±0.002 0.000±0.000

Table 9: Five-Shot Results on Basic Arithmetic and MATH (FairSeq Models)
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Figure 10: Zero-shot performance of GPT-NeoX-20B compared to GPT-J-6B and FairSeq and OpenAI models on
Hendrycks et al. (2021a).

Figure 11: Five-shot performance of GPT-NeoX-20B compared to GPT-J-6B and FairSeq and OpenAI models on
Hendrycks et al. (2021a). API limits we were unable to evaluate on the OpenAI API. Instead, we report numbers
from Hendrycks et al. (2021a) with model sizes corrected.
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GPT-J GPT-NeoX GPT-3
Task 6B 20B Ada Babbage Curie DaVinci

Abstract Algebra 0.260±0.044 0.230±0.042 0.170±0.038 0.220±0.042 0.220±0.042 0.220±0.042
Anatomy 0.274±0.039 0.319±0.040 0.207±0.035 0.289±0.039 0.274±0.039 0.348±0.041
Astronomy 0.243±0.035 0.329±0.038 0.237±0.035 0.211±0.033 0.237±0.035 0.382±0.040
Business Ethics 0.290±0.046 0.280±0.045 0.360±0.048 0.330±0.047 0.300±0.046 0.390±0.049
Clinical Knowledge 0.272±0.027 0.291±0.028 0.223±0.026 0.234±0.026 0.253±0.027 0.317±0.029
College Biology 0.285±0.038 0.271±0.037 0.271±0.037 0.299±0.038 0.208±0.034 0.347±0.040
College Chemistry 0.240±0.043 0.160±0.037 0.270±0.045 0.290±0.046 0.210±0.041 0.250±0.044
College Computer Science 0.270±0.045 0.250±0.044 0.310±0.046 0.270±0.045 0.240±0.043 0.260±0.044
College Mathematics 0.260±0.044 0.240±0.043 0.220±0.042 0.160±0.037 0.200±0.040 0.170±0.038
College Medicine 0.197±0.030 0.283±0.034 0.237±0.032 0.202±0.031 0.225±0.032 0.289±0.035
College Physics 0.206±0.040 0.284±0.045 0.304±0.046 0.324±0.047 0.255±0.043 0.235±0.042
Computer Security 0.270±0.045 0.290±0.046 0.250±0.044 0.240±0.043 0.320±0.047 0.350±0.048
Conceptual Physics 0.255±0.029 0.294±0.030 0.264±0.029 0.260±0.029 0.268±0.029 0.294±0.030
Econometrics 0.237±0.040 0.289±0.043 0.289±0.043 0.246±0.040 0.246±0.040 0.228±0.039
Electrical Engineering 0.359±0.040 0.303±0.038 0.338±0.039 0.276±0.037 0.310±0.039 0.414±0.041
Elementary Mathematics 0.254±0.022 0.283±0.023 0.243±0.022 0.272±0.023 0.249±0.022 0.312±0.024
Formal Logic 0.341±0.042 0.294±0.041 0.262±0.039 0.349±0.043 0.270±0.040 0.294±0.041
Global Facts 0.250±0.044 0.220±0.042 0.240±0.043 0.240±0.043 0.300±0.046 0.290±0.046
High School Biology 0.252±0.025 0.300±0.026 0.235±0.024 0.232±0.024 0.271±0.025 0.335±0.027
High School Chemistry 0.202±0.028 0.236±0.030 0.246±0.030 0.241±0.030 0.197±0.028 0.232±0.030
High School Computer Science 0.250±0.044 0.210±0.041 0.190±0.039 0.240±0.043 0.220±0.042 0.290±0.046
High School European History 0.261±0.034 0.255±0.034 0.224±0.033 0.285±0.035 0.261±0.034 0.303±0.036
High School Geography 0.202±0.029 0.227±0.030 0.217±0.029 0.207±0.029 0.242±0.031 0.348±0.034
High School Government and Politics 0.228±0.030 0.228±0.030 0.212±0.030 0.181±0.028 0.212±0.030 0.326±0.034
High School Macroeconomics 0.285±0.023 0.328±0.024 0.272±0.023 0.277±0.023 0.277±0.023 0.303±0.023
High School Mathematics 0.219±0.025 0.263±0.027 0.196±0.024 0.230±0.026 0.167±0.023 0.248±0.026

Table 10: Zero-Shot Results on Hendrycks Tasks, Part 1 (GPT-J, GPT-NeoX and GPT-3)
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GPT-J GPT-NeoX GPT-3
Task 6B 20B Ada Babbage Curie DaVinci

High School Microeconomics 0.277±0.029 0.294±0.030 0.235±0.028 0.265±0.029 0.239±0.028 0.307±0.030
High School Physics 0.272±0.036 0.298±0.037 0.199±0.033 0.298±0.037 0.199±0.033 0.219±0.034
High School Physiology 0.273±0.019 0.283±0.019 0.209±0.017 0.217±0.018 0.246±0.018 0.352±0.020
High School Statistics 0.292±0.031 0.319±0.032 0.241±0.029 0.278±0.031 0.255±0.030 0.278±0.031
High School US History 0.289±0.032 0.309±0.032 0.255±0.031 0.260±0.031 0.240±0.030 0.368±0.034
High School World History 0.283±0.029 0.295±0.030 0.278±0.029 0.262±0.029 0.270±0.029 0.321±0.030
Human Aging 0.265±0.030 0.224±0.028 0.368±0.032 0.336±0.032 0.296±0.031 0.327±0.031
Human Sexuality 0.397±0.043 0.405±0.043 0.374±0.042 0.427±0.043 0.397±0.043 0.481±0.044
International Law 0.264±0.040 0.298±0.042 0.182±0.035 0.207±0.037 0.207±0.037 0.331±0.043
Jurisprudence 0.278±0.043 0.250±0.042 0.287±0.044 0.278±0.043 0.259±0.042 0.370±0.047
Logical Fallacies 0.294±0.036 0.227±0.033 0.239±0.034 0.221±0.033 0.245±0.034 0.252±0.034
Machine Learning 0.223±0.040 0.268±0.042 0.241±0.041 0.286±0.043 0.295±0.043 0.232±0.040
Management 0.233±0.042 0.282±0.045 0.184±0.038 0.214±0.041 0.320±0.046 0.456±0.049
Marketing 0.303±0.030 0.321±0.031 0.308±0.030 0.282±0.029 0.308±0.030 0.491±0.033
Medical Genetics 0.310±0.046 0.340±0.048 0.260±0.044 0.300±0.046 0.330±0.047 0.430±0.050
Miscellaneous 0.275±0.016 0.299±0.016 0.257±0.016 0.269±0.016 0.284±0.016 0.450±0.018
Moral Disputes 0.283±0.024 0.289±0.024 0.263±0.024 0.263±0.024 0.277±0.024 0.301±0.025
Moral Scenarios 0.237±0.014 0.232±0.014 0.238±0.014 0.273±0.015 0.238±0.014 0.249±0.014
Nutrition 0.346±0.027 0.379±0.028 0.301±0.026 0.281±0.026 0.291±0.026 0.353±0.027
Philosophy 0.260±0.025 0.293±0.026 0.215±0.023 0.267±0.025 0.244±0.024 0.367±0.027
Prehistory 0.244±0.024 0.272±0.025 0.244±0.024 0.269±0.025 0.284±0.025 0.324±0.026
Professional Accounting 0.262±0.026 0.234±0.025 0.202±0.024 0.255±0.026 0.238±0.025 0.287±0.027
Professional Law 0.241±0.011 0.267±0.011 0.261±0.011 0.256±0.011 0.259±0.011 0.261±0.011
Professional Medicine 0.276±0.027 0.287±0.027 0.221±0.025 0.239±0.026 0.265±0.027 0.324±0.028
Professional Psychology 0.284±0.018 0.275±0.018 0.245±0.017 0.225±0.017 0.257±0.018 0.335±0.019
Public Relations 0.282±0.043 0.345±0.046 0.255±0.042 0.327±0.045 0.364±0.046 0.364±0.046
Security Studies 0.363±0.031 0.376±0.031 0.367±0.031 0.347±0.030 0.384±0.031 0.392±0.031
Sociology 0.279±0.032 0.284±0.032 0.328±0.033 0.303±0.033 0.274±0.032 0.368±0.034
US Foreign Policy 0.340±0.048 0.360±0.048 0.330±0.047 0.330±0.047 0.380±0.049 0.500±0.050
Virology 0.355±0.037 0.361±0.037 0.307±0.036 0.319±0.036 0.337±0.037 0.386±0.038
World Religions 0.333±0.036 0.386±0.037 0.316±0.036 0.310±0.035 0.374±0.037 0.398±0.038

Table 11: Zero-Shot Results on Hendrycks Tasks, Part 2 (GPT-J, GPT-NeoX, and GPT-3)
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FairSeq
Task 125M 355M 1.3B 2.7B 6.7B 13B

Abstract Algebra 0.260±0.044 0.180±0.039 0.230±0.042 0.250±0.044 0.240±0.043 0.260±0.044
Anatomy 0.178±0.033 0.207±0.035 0.185±0.034 0.170±0.032 0.259±0.038 0.237±0.037
Astronomy 0.270±0.036 0.237±0.035 0.243±0.035 0.263±0.036 0.296±0.037 0.257±0.036
Business Ethics 0.330±0.047 0.410±0.049 0.340±0.048 0.350±0.048 0.380±0.049 0.340±0.048
Clinical Knowledge 0.215±0.025 0.264±0.027 0.226±0.026 0.249±0.027 0.223±0.026 0.264±0.027
College Biology 0.285±0.038 0.201±0.034 0.243±0.036 0.222±0.035 0.271±0.037 0.306±0.039
College Chemistry 0.310±0.046 0.290±0.046 0.350±0.048 0.300±0.046 0.280±0.045 0.240±0.043
College Computer Science 0.200±0.040 0.250±0.044 0.260±0.044 0.250±0.044 0.300±0.046 0.280±0.045
College Mathematics 0.190±0.039 0.170±0.038 0.230±0.042 0.200±0.040 0.230±0.042 0.250±0.044
College Medicine 0.243±0.033 0.237±0.032 0.249±0.033 0.254±0.033 0.237±0.032 0.260±0.033
College Physics 0.216±0.041 0.245±0.043 0.216±0.041 0.275±0.044 0.343±0.047 0.216±0.041
Computer Security 0.240±0.043 0.290±0.046 0.300±0.046 0.240±0.043 0.230±0.042 0.320±0.047
Conceptual Physics 0.260±0.029 0.255±0.029 0.247±0.028 0.243±0.028 0.247±0.028 0.204±0.026
Econometrics 0.246±0.040 0.272±0.042 0.246±0.040 0.281±0.042 0.219±0.039 0.263±0.041
Electrical Engineering 0.283±0.038 0.303±0.038 0.234±0.035 0.276±0.037 0.310±0.039 0.290±0.038
Elementary Mathematics 0.246±0.022 0.214±0.021 0.233±0.022 0.233±0.022 0.246±0.022 0.198±0.021
Formal Logic 0.278±0.040 0.302±0.041 0.278±0.040 0.310±0.041 0.286±0.040 0.333±0.042
Global Facts 0.200±0.040 0.210±0.041 0.190±0.039 0.150±0.036 0.220±0.042 0.160±0.037
High School Biology 0.248±0.025 0.255±0.025 0.268±0.025 0.226±0.024 0.274±0.025 0.235±0.024
High School Chemistry 0.217±0.029 0.207±0.029 0.256±0.031 0.281±0.032 0.217±0.029 0.266±0.031
High School Computer Science 0.240±0.043 0.230±0.042 0.270±0.045 0.240±0.043 0.350±0.048 0.280±0.045
High School European History 0.230±0.033 0.333±0.037 0.279±0.035 0.261±0.034 0.273±0.035 0.230±0.033
High School Geography 0.263±0.031 0.273±0.032 0.222±0.030 0.258±0.031 0.207±0.029 0.253±0.031
High School Government and Politics 0.254±0.031 0.290±0.033 0.228±0.030 0.233±0.031 0.218±0.030 0.187±0.028
High School Macroeconomics 0.200±0.020 0.272±0.023 0.254±0.022 0.269±0.022 0.326±0.024 0.256±0.022
High School Mathematics 0.204±0.025 0.189±0.024 0.170±0.023 0.226±0.025 0.200±0.024 0.193±0.024

Table 12: Zero-Shot Results on Hendrycks Tasks, Part 1 (FairSeq Models)
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FairSeq
Task 125M 355M 1.3B 2.7B 6.7B 13B

High School Microeconomics 0.248±0.028 0.256±0.028 0.244±0.028 0.248±0.028 0.269±0.029 0.227±0.027
High School Physics 0.238±0.035 0.219±0.034 0.258±0.036 0.245±0.035 0.232±0.034 0.166±0.030
High School Physiology 0.235±0.018 0.272±0.019 0.266±0.019 0.284±0.019 0.250±0.019 0.261±0.019
High School Statistics 0.222±0.028 0.241±0.029 0.269±0.030 0.250±0.030 0.287±0.031 0.241±0.029
High School US History 0.240±0.030 0.284±0.032 0.299±0.032 0.299±0.032 0.314±0.033 0.294±0.032
High School World History 0.283±0.029 0.232±0.027 0.270±0.029 0.245±0.028 0.300±0.030 0.316±0.030
Human Aging 0.274±0.030 0.309±0.031 0.323±0.031 0.291±0.031 0.296±0.031 0.274±0.030
Human Sexuality 0.252±0.038 0.366±0.042 0.328±0.041 0.359±0.042 0.359±0.042 0.351±0.042
International Law 0.157±0.033 0.223±0.038 0.240±0.039 0.281±0.041 0.264±0.040 0.231±0.038
Jurisprudence 0.241±0.041 0.269±0.043 0.287±0.044 0.241±0.041 0.213±0.040 0.278±0.043
Logical Fallacies 0.196±0.031 0.221±0.033 0.233±0.033 0.196±0.031 0.245±0.034 0.221±0.033
Machine Learning 0.232±0.040 0.295±0.043 0.348±0.045 0.232±0.040 0.259±0.042 0.241±0.041
Management 0.223±0.041 0.311±0.046 0.214±0.041 0.291±0.045 0.340±0.047 0.262±0.044
Marketing 0.295±0.030 0.231±0.028 0.286±0.030 0.303±0.030 0.333±0.031 0.329±0.031
Medical Genetics 0.250±0.044 0.310±0.046 0.310±0.046 0.280±0.045 0.270±0.045 0.300±0.046
Miscellaneous 0.258±0.016 0.301±0.016 0.264±0.016 0.249±0.015 0.284±0.016 0.268±0.016
Moral Disputes 0.269±0.024 0.246±0.023 0.220±0.022 0.260±0.024 0.269±0.024 0.272±0.024
Moral Scenarios 0.255±0.015 0.236±0.014 0.273±0.015 0.238±0.014 0.241±0.014 0.253±0.015
Nutrition 0.252±0.025 0.261±0.025 0.297±0.026 0.297±0.026 0.330±0.027 0.304±0.026
Philosophy 0.199±0.023 0.219±0.023 0.228±0.024 0.222±0.024 0.238±0.024 0.270±0.025
Prehistory 0.290±0.025 0.222±0.023 0.253±0.024 0.228±0.023 0.296±0.025 0.235±0.024
Professional Accounting 0.262±0.026 0.220±0.025 0.209±0.024 0.170±0.022 0.238±0.025 0.266±0.026
Professional Law 0.261±0.011 0.261±0.011 0.256±0.011 0.256±0.011 0.259±0.011 0.261±0.011
Professional Medicine 0.239±0.026 0.254±0.026 0.254±0.026 0.206±0.025 0.221±0.025 0.195±0.024
Professional Psychology 0.245±0.017 0.247±0.017 0.242±0.017 0.248±0.017 0.278±0.018 0.252±0.018
Public Relations 0.236±0.041 0.245±0.041 0.264±0.042 0.227±0.040 0.291±0.044 0.291±0.044
Security Studies 0.322±0.030 0.331±0.030 0.331±0.030 0.335±0.030 0.408±0.031 0.359±0.031
Sociology 0.234±0.030 0.234±0.030 0.259±0.031 0.229±0.030 0.234±0.030 0.323±0.033
US Foreign Policy 0.250±0.044 0.300±0.046 0.300±0.046 0.310±0.046 0.370±0.049 0.330±0.047
Virology 0.289±0.035 0.301±0.036 0.319±0.036 0.355±0.037 0.295±0.036 0.331±0.037
World Religions 0.292±0.035 0.263±0.034 0.287±0.035 0.292±0.035 0.269±0.034 0.339±0.036

Table 13: Zero-shot Results on Hendrycks Tasks, Part 2 (FairSeq Models)
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F Tokenizer Analysis

Both tokenizers share 36938 out of 50257 tokens, a ∼73.5% overlap in tokens. In this section, we perform
comparison between the GPT-NeoX-20B tokenizer to the GPT-2 tokenizer using the validation set of the
Pile.

In Table 15, we show the resulting number of tokens from tokenizing each component of the Pile’s
validation set with both tokenizers, and the ratio of GPT-NeoX-20B tokens to GPT-2 tokens.

We observe that the GPT-NeoX-20B tokenizer represents all Pile components using fewer or very
closely comparable numbers of tokens. The largest percentage improvement in token counts are in the
EuroParl, GitHub, and PubMed Central components, with a more than 20% savings in the number of
tokens needed to represent that component. We highlight that arXiv, GitHub, and StackExchange—subsets
with large code components—can be represented with meaningfully fewer tokens with the GPT-NeoX-20B
tokenizer compared to the GPT-2 tokenizer. Overall, the GPT-NeoX-20B tokenizer represents the Pile
validation set with approximately 10% fewer tokens compared to the GPT-2 tokenizer.

Given that the GPT-NeoX-20B tokenizer is tweaked to better tokenize whitespace, we also perform a
comparison between the two tokenizers excluding whitespace. We perform the same analysis as the above,
but exclude all whitespace tokens from our computations, only counting the non-whitespace tokens. A
token is considered a whitespace token if it consists only of whitespace characters. The results are shown
in Table 16 in the Appendix. We observe that the GPT-NeoX-20B tokenizer still uses 5% fewer tokens to
represent the Pile validation set compared to the GPT-2 tokenizer. As expected, the token ratios for certain
components such as GitHub and StackExchange become closer to even once the whitespace characters
are excluded.

GPT-2 GPT-NeoX-20B GPT-NeoX-20B
GPT-2

Pile (val) 383,111,734 342,887,807 0.89501
C4 173,669,294 173,768,876 1.001
C4 excl. Space 168,932,391 171,003,008 1.012

Table 14: Number of tokens from tokenizing the AllenAI C4 (en) validation set. The GPT-NeoX-20B tokenizer
uses approximately the same number of tokens to represent C4 as the GPT-2 tokenizer.

While we evaluated our tokenizer using the validation set for the Pile, the Pile components would still
be considered in-domain for the tokenizer and may not provide the most informative comparison point.
To perform an out-of-domain comparison, we perform the same analysis using the AllenAI replication of
C4,15, another popular pretraining corpus for large language models. As above, we use the validation set
for our analysis. Our results are shown in Table 14. We find that the GPT-NeoX-20B tokenizer tokenizes
the C4 validation set to approximately the same number of tokens as the GPT-2 tokenizer. When excluding
all whitespace tokens, the GPT-NeoX-20B requires approximately 1% more tokens to represent the corpus
compared to the GPT-2 tokenizer.

F.1 Tokenizer Comparisons
F.1.1 Longest Tokens
We show in Table 17 the 10 longest tokens in each tokenizer vocabulary. We exclude consideration of
tokens that comprise only symbols or whitespace characters. We observe that for the GPT-2 tokenizer,
many of the longest tokens appear to reflect artifacts in the tokenizer training data, likely with certain
websites or web-scrapes being overrepresented in the training data. For the GPT-NeoX-20B tokenizer, we
observe that most of the longest tokens are scientific terms, likely arising from the PubMed components
of the Pile.

F.1.2 Worst Case Word Tokenization Comparison
We consider the words for which there is the greatest discrepancy in the resulting token length between
the two tokenizers, where one tokenizer needs many tokens to represent while the other tokenizer uses

15https://github.com/allenai/allennlp/discussions/5056
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GPT-2 GPT-NeoX-20B GPT-NeoX-20B
GPT-2

arXiv 41,020,155 34,704,315 0.84603
BookCorpus2 2,336,388 2,365,633 1.01252
Books3 42,819,036 43,076,832 1.00602
DM Mathematics 7,699,527 7,413,775 0.96289
Enron Emails 480,500 433,867 0.90295
EuroParl 3,519,584 2,808,275 0.79790
FreeLaw 21,098,168 18,687,364 0.88573
GitHub 42,986,216 33,021,839 0.76820
Gutenberg (PG-19) 6,729,187 6,428,946 0.95538
HackerNews 2,578,933 2,551,720 0.98945
NIH ExPorter 776,688 739,558 0.95219
OpenSubtitles 5,431,529 5,446,485 1.00275
OpenWebText2 31,993,480 30,813,744 0.96313
PhilPapers 1,879,206 1,750,928 0.93174
Pile-CC 53,415,704 53,392,389 0.99956
PubMed Abstracts 8,708,180 8,215,529 0.94343
PubMed Central 56,874,247 43,534,166 0.76545
StackExchange 22,708,643 19,000,198 0.83669
USPTO Backgrounds 10,217,886 9,727,223 0.95198
Ubuntu IRC 3,341,287 2,771,066 0.82934
Wikipedia (en) 12,614,087 12,692,048 1.00618
YoutubeSubtitles 3,883,103 3,311,907 0.85290

Total 383,111,734 342,887,807 0.89501

Table 15: Number of tokens from tokenizing the Pile validation set. The GPT-NeoX-20B tokenizer uses fewer
tokens to represent the Pile overall, with the biggest gains in whitespace heavy datasets such as arXiv, GitHub and
StackExchange.

GPT-2 GPT-NeoX-20B GPT-NeoX-20B
GPT-2

arXiv 38,932,524 33,561,364 0.86204
BookCorpus2 2,233,367 2,262,609 1.01309
Books3 40,895,236 41,198,424 1.00741
DM Mathematics 7,214,874 6,929,066 0.96039
Enron Emails 374,978 373,498 0.99605
EuroParl 3,482,120 2,780,405 0.79848
FreeLaw 17,766,692 17,434,708 0.98131
GitHub 29,338,176 27,558,966 0.93936
Gutenberg (PG-19) 5,838,580 5,827,408 0.99809
HackerNews 2,312,116 2,299,848 0.99469
NIH ExPorter 776,619 739,543 0.95226
OpenSubtitles 5,428,118 5,445,721 1.00324
OpenWebText2 30,849,218 29,723,143 0.96350
PhilPapers 1,872,347 1,743,627 0.93125
Pile-CC 51,305,080 51,281,909 0.99955
PubMed Abstracts 8,676,790 8,185,417 0.94337
PubMed Central 44,508,570 40,722,151 0.91493
StackExchange 17,414,955 16,712,814 0.95968
USPTO Backgrounds 9,882,473 9,601,385 0.97156
Ubuntu IRC 3,220,797 2,659,225 0.82564
Wikipedia (en) 11,874,878 11,986,567 1.00941
YoutubeSubtitles 3,589,042 3,046,451 0.84882

Total 337,787,550 322,074,249 0.95348

Table 16: Number of tokens from tokenizing the Pile validation set, excluding whitespace tokens.

relatively few tokens. We define a word as a contiguous string delimited by whitespace or punctuation
(as defined by strings.punctuation in Python). We perform this analysis at the component level. We
only consider words that occur at least 10 times within the given component. We show in Table 18 a
representative example from the Pile-CC corpus.

G Tokenization Examples

In Figures 12 and 17, we show examples of tokenized documents from the Pile, comparing the GPT-2
tokenizer to ours.
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GPT-2 GPT-NeoX-20B

rawdownloadcloneembedreportprint Ġimmunohistochemistry
BuyableInstoreAndOnline Ġimmunohistochemical
cloneembedreportprint Ġtelecommunications
ĠRandomRedditorWithNo Ġimmunofluorescence
Ġtelecommunications Ġimmunosuppressive
channelAvailability ĠBytePtrFromString
Ġdisproportionately Ġmultidisciplinary
ĠTelecommunications Ġhistopathological
ĠguiActiveUnfocused Ġneurodegenerative
ItemThumbnailImage Ġindistinguishable

Table 17: Ten longest tokens (excluding tokens comprising mainly symbols, numbers and spaces) in tokenizer
vocabularies. “Ġ” indicates a word delimiter.

GPT-2 Worst-case Tokenization
Word GPT-2 Tokenization GPT-NeoX-20B Tokenization

hematopoietic (6) hematopoietic (1) hematopoietic
adenocarcinoma (6) adenocarcinoma (1) adenocarcinoma
MERCHANTABILITY (5) MERCHANTABILITY (1) MERCHANTABILITY
CONSEQUENTIAL (5) CONSEQUENTIAL (1) CONSEQUENTIAL
oligonucleotides (5) oligonucleotides (1) oligonucleotides
cytoplasmic (5) cytoplasmic (1) cytoplasmic
corticosteroids (4) corticosteroids (1) corticosteroids
neurodegenerative (4) neurodegenerative (1) neurodegenerative
asymptotic (4) asymptotic (1) asymptotic
aneurysm (4) aneurysm (1) aneurysm

GPT-NeoX-20B Worst-case Tokenization
Word GPT-2 Tokenization GPT-NeoX-20B Tokenization

Schwarzenegger (1) Schwarzenegger (5) Schwarzenegger
Bolshevik (1) Bolshevik (4) Bolshevik
crowdfunding (1) crowdfunding (4) crowdfunding
misogyny (1) misogyny (4) misogyny
McAuliffe (1) McAuliffe (4) McAuliffe
unstoppable (1) unstoppable (4) unstoppable
Timberwolves (1) Timberwolves (4) Timberwolves
excruciating (1) excruciating (4) excruciating
Kaepernick (1) Kaepernick (4) Kaepernick
Valkyrie (1) Valkyrie (4) Valkyrie

Table 18: Worst case word tokenization with respective tokenizers. We show cases where one tokenizer requires
many more tokens to represent a word compared to the other tokenizer.

GPT-2 Tokenization
253 tokens

–-←↩
abstract: ’The maximal minors of a $p\times (m + p)$-matrix of univariate polynomials of degree
$n$ with indeterminate coefficients are themselves polynomials of degree $np$. The subalgebra
generated by their coefficients is the coordinate ring of the quantum Grassmannian, a singular
compactification of the space of rational curves of degree $np$ in the Grassmannian of $p$-

planes in ($m + p$)-space. These subalgebra generators are shown to form a sagbi basis. The
resulting flat deformation from the quantum Grassmannian to a toric variety gives a new “Grö

bner basis style” proof of the Ravi-Rosenthal-Wang formulas in quantum Schubert calculus. The
coordinate ring of the quantum Grassmannian is an algebra with straightening law, which is
normal, Cohen-Macaulay, Gorenstein and Koszul, and the ideal of quantum Plücker relations has a
quadratic Gröbner basis. This holds more generally for skew quantum Schubert varieties. These
results are well-known for the classical Schubert varietie

GPT-NeoX-20B Tokenization
229 tokens

–-←↩
abstract: ’The maximal minors of a $p\times (m + p)$-matrix of univariate polynomials of degree
$n$ with indeterminate coefficients are themselves polynomials of degree $np$. The subalgebra
generated by their coefficients is the coordinate ring of the quantum Grassmannian, a singular
compactification of the space of rational curves of degree $np$ in the Grassmannian of $p$-

planes in ($m + p$)-space. These subalgebra generators are shown to form a sagbi basis. The
resulting flat deformation from the quantum Grassmannian to a toric variety gives a new “Grö

bner basis style” proof of the Ravi-Rosenthal-Wang formulas in quantum Schubert calculus. The
coordinate ring of the quantum Grassmannian is an algebra with straightening law, which is
normal, Cohen-Macaulay, Gorenstein and Koszul, and the ideal of quantum Plücker relations has a
quadratic Gröbner basis. This holds more generally for skew quantum Schubert varieties. These
results are well-known for the classical Schubert varietie

Figure 12: Pile (arXiv) Tokenization Example
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GPT-2 Tokenization
224 tokens

←↩
←↩
**THE TRAP**←↩
←↩
Beverley Kendall←↩
←↩
Copyright © Beverley Kendall 2014←↩
←↩
Published by Season Publishing LLC←↩
←↩
This is a work of fiction. Names, characters, places and incidents are products of the author
’s imagination or are used fictitiously and are not to be construed as real. Any resemblance to
actual events, locales, organizations, or persons, living or dead, is completely coincidental.
←↩←↩
www.beverleykendall.com←↩←↩
Cover Design © Okay Creations, Sarah Hansen←↩←↩
All rights reserved. Except as permitted under the U.S. Copyright Act of 1976, no part of this
publication may be reproduced, distributed or transmitted in any form or by any means, or
stored in a database or retrieval system, without the prior written permission of the author

.←↩
←↩
** License Statement **←↩
←↩
This ebook is licensed for your personal enjoyment only. This ebook may not be re-sold or given
away to other people. If you would like to share this book with another person, please purchase
an additional copy for each reader. If

GPT-NeoX-20B Tokenization
228 tokens

←↩
←↩
**THE TRAP**←↩
←↩
Beverley Kendall←↩
←↩
Copyright © Beverley Kendall 2014←↩
←↩
Published by Season Publishing LLC←↩
←↩
This is a work of fiction. Names, characters, places and incidents are products of the author
’s imagination or are used fictitiously and are not to be construed as real. Any resemblance to
actual events, locales, organizations, or persons, living or dead, is completely coincidental.
←↩←↩
www.beverleykendall.com←↩←↩
Cover Design © Okay Creations, Sarah Hansen←↩←↩
All rights reserved. Except as permitted under the U.S. Copyright Act of 1976, no part of this
publication may be reproduced, distributed or transmitted in any form or by any means, or
stored in a database or retrieval system, without the prior written permission of the author

.←↩
←↩
** License Statement **←↩
←↩
This ebook is licensed for your personal enjoyment only. This ebook may not be re-sold or given
away to other people. If you would like to share this book with another person, please purchase
an additional copy for each reader. If

Figure 13: Pile (BookCorpus2) Tokenization Example
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GPT-2 Tokenization
477 tokens

o?←↩
True←↩
Suppose -3*t = 1 + 8. Let s(d) = d**3 + 6*d**2 + 2*d + 1. Let u be s(t). Suppose 10 = 5*z, 5*a +
0*z = -z + u. Is 4 a factor of a?←↩

True←↩
Suppose 5*l = r - 35, -2*r + 5*l - 15 = -70. Is r a multiple of 4?←↩
True←↩
Suppose 2*l + 11 - 1 = 0. Does 15 divide (-2)/l - 118/(-5)?←↩
False←↩
Suppose 3*k - 3*f + 0*f - 72 = 0, -25 = -5*f. Is 9 a factor of 2/(-4) + k/2?←↩
False←↩
Suppose 6*w + 25 = w. Let t(c) = c + 9. Let u be t(w). Suppose -u*z = -3*z - 10. Is z a multiple
of 5?←↩

True←↩
Let j = 81 + -139. Let i = j + 101. Is 11 a factor of i?←↩
False←↩
Let q(s) = s**3 + 4*s**2 - s + 2. Let u be q(-4). Let o(w) = w**2 + w - 6. Let t be o(u).
Suppose -3*l - 39 = -3*d - 2*l, 0 = 3*d - 2*l - t. Does 9 divide d?←↩

False←↩
Suppose -2*b + 39 + 13 = 0. Is b a multiple of 14?←↩
False←↩
Let q = -7 + 12. Suppose 8*l = q*l + 81. Suppose 129 = 4*f - l. Is 13 a factor of f?←↩
True←↩
Suppose 0 = -4*n + j + 33, 4*n - n + 4*j = 20. Let c = 5 - n. Is 35*1 - (-6)/c a multiple of 11?
←↩
True←↩
Let g(m) = m**2 - 2*m - 3. Let k be g(3). Let j be

GPT-NeoX-20B Tokenization
468 tokens

o?←↩
True←↩
Suppose -3*t = 1 + 8. Let s(d) = d**3 + 6*d**2 + 2*d + 1. Let u be s(t). Suppose 10 = 5*z, 5*a +
0*z = -z + u. Is 4 a factor of a?←↩

True←↩
Suppose 5*l = r - 35, -2*r + 5*l - 15 = -70. Is r a multiple of 4?←↩
True←↩
Suppose 2*l + 11 - 1 = 0. Does 15 divide (-2)/l - 118/(-5)?←↩
False←↩
Suppose 3*k - 3*f + 0*f - 72 = 0, -25 = -5*f. Is 9 a factor of 2/(-4) + k/2?←↩
False←↩
Suppose 6*w + 25 = w. Let t(c) = c + 9. Let u be t(w). Suppose -u*z = -3*z - 10. Is z a multiple
of 5?←↩

True←↩
Let j = 81 + -139. Let i = j + 101. Is 11 a factor of i?←↩
False←↩
Let q(s) = s**3 + 4*s**2 - s + 2. Let u be q(-4). Let o(w) = w**2 + w - 6. Let t be o(u).
Suppose -3*l - 39 = -3*d - 2*l, 0 = 3*d - 2*l - t. Does 9 divide d?←↩

False←↩
Suppose -2*b + 39 + 13 = 0. Is b a multiple of 14?←↩
False←↩
Let q = -7 + 12. Suppose 8*l = q*l + 81. Suppose 129 = 4*f - l. Is 13 a factor of f?←↩
True←↩
Suppose 0 = -4*n + j + 33, 4*n - n + 4*j = 20. Let c = 5 - n. Is 35*1 - (-6)/c a multiple of 11?
←↩
True←↩
Let g(m) = m**2 - 2*m - 3. Let k be g(3). Let j be

Figure 14: Pile (DM Mathematics) Tokenization Example
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GPT-2 Tokenization
430 tokens

<at-dialog title="vm.title" on-close="vm.onClose">←↩
<at-form state="vm.form" autocomplete="off" id="external_test_form">←↩

<at-input-group col="12" tab="20" state="vm.form.inputs" form-id="external_test"></at-
input-group>←↩

<at-action-group col="12" pos="right">←↩
<at-action-button←↩

variant="tertiary"←↩
ng-click="vm.onClose()"←↩

>←↩
::vm.strings.get(’CLOSE’)←↩

</at-action-button>←↩
<at-action-button←↩

variant="primary"←↩
ng-click="vm.onSubmit()"←↩
ng-disabled="!vm.form.isValid || vm.form.disabled"←↩

>←↩
::vm.strings.get(’RUN’)←↩

</at-action-button>←↩
</at-action-group>←↩

</at-form>←↩
</at-dialog>←↩

GPT-NeoX-20B Tokenization
257 tokens

<at-dialog title="vm.title" on-close="vm.onClose">←↩
<at-form state="vm.form" autocomplete="off" id="external_test_form">←↩

<at-input-group col="12" tab="20" state="vm.form.inputs" form-id="external_test"></at-
input-group>←↩

<at-action-group col="12" pos="right">←↩
<at-action-button←↩

variant="tertiary"←↩
ng-click="vm.onClose()"←↩

>←↩
::vm.strings.get(’CLOSE’)←↩

</at-action-button>←↩
<at-action-button←↩

variant="primary"←↩
ng-click="vm.onSubmit()"←↩
ng-disabled="!vm.form.isValid || vm.form.disabled"←↩

>←↩
::vm.strings.get(’RUN’)←↩

</at-action-button>←↩
</at-action-group>←↩

</at-form>←↩
</at-dialog>←↩

Figure 15: Pile (GitHub) Tokenization Example

135



GPT-2 Tokenization
178 tokens

Theresa May is expected to appoint an EU ambassador who “believes in Brexit” in the wake of the
current Brussels representative’s decision to quit after being cut adrift by Downing Street.
←↩
←↩
Sir Ivan Rogers on Tuesday announced his resignation as Britain’s ambassador in Brussels after
it was made clear Mrs May and her senior team had “lost confidence” in him over his “pessim

istic” view of Brexit.←↩
←↩
Government sources made clear that Sir Ivan had “jumped before he was pushed” and that Number
10 believed his negative view of Brexit meant that he could not lead the negotiations after the
Prime Minister triggers Article 50.←↩
←↩
In a 1,400-word resignation letter to his staff leaked on Tuesday night, Sir Ivan launched a
thinly-veiled attack on the "muddled thinking" in Mrs May’s Government.

GPT-NeoX-20B Tokenization
170 tokens

Theresa May is expected to appoint an EU ambassador who “believes in Brexit” in the wake of the
current Brussels representative’s decision to quit after being cut adrift by Downing Street.
←↩
←↩
Sir Ivan Rogers on Tuesday announced his resignation as Britain’s ambassador in Brussels after
it was made clear Mrs May and her senior team had “lost confidence” in him over his “pessim

istic” view of Brexit.←↩
←↩
Government sources made clear that Sir Ivan had “jumped before he was pushed” and that Number
10 believed his negative view of Brexit meant that he could not lead the negotiations after the
Prime Minister triggers Article 50.←↩
←↩
In a 1,400-word resignation letter to his staff leaked on Tuesday night, Sir Ivan launched a
thinly-veiled attack on the "muddled thinking" in Mrs May’s Government.

Figure 16: Pile (OpenWebText2) Tokenization Example

GPT-2 Tokenization
268 tokens

Carotid endarterectomy: operative risks, recurrent stenosis, and long-term stroke rates in a
modern series.←↩

To determine whether carotid endarterectomy (CEA) safely and effectively maintained a durable
reduction in stroke complications over an extended period, we reviewed our data on 478
consecutive patients who underwent 544 CEA’s since 1976. Follow-up was complete in 83% of
patients (mean 44 months). There were 7 early deaths (1.3%), only 1 stroke related (0.2%). Peri

operative stroke rates (overall 2.9%) varied according to operative indications: asymptomatic, 1
.4%; transient ischemic attacks (TIA)/amaurosis fugax (AF), 1.3%; nonhemispheric symptoms (NH),
4.9%; and prior stroke (CVA), 7.1%. Five and 10-year stroke-free rates were 96% and 92% in the
asymptomatic group, 93% and 87% in the TIA/AF group, 92% and 92% in the NH group, and 80% and
73% in the CVA group. Late ipsilateral strokes occurred infrequently (8 patients, 1.7%). Late
deaths were primarily cardiac related (51.3%). Stro

GPT-NeoX-20B Tokenization
250 tokens

Carotid endarterectomy: operative risks, recurrent stenosis, and long-term stroke rates in a
modern series.←↩

To determine whether carotid endarterectomy (CEA) safely and effectively maintained a durable
reduction in stroke complications over an extended period, we reviewed our data on 478
consecutive patients who underwent 544 CEA’s since 1976. Follow-up was complete in 83% of
patients (mean 44 months). There were 7 early deaths (1.3%), only 1 stroke related (0.2%). Peri

operative stroke rates (overall 2.9%) varied according to operative indications: asymptomatic, 1
.4%; transient ischemic attacks (TIA)/amaurosis fugax (AF), 1.3%; nonhemispheric symptoms (NH),
4.9%; and prior stroke (CVA), 7.1%. Five and 10-year stroke-free rates were 96% and 92% in the
asymptomatic group, 93% and 87% in the TIA/AF group, 92% and 92% in the NH group, and 80% and
73% in the CVA group. Late ipsilateral strokes occurred infrequently (8 patients, 1.7%). Late
deaths were primarily cardiac related (51.3%). Stro

Figure 17: Pile (PubMed Abstracts) Tokenization Example
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Abstract

Large-scale language modeling and natural lan-
guage prompting have demonstrated exciting
capabilities for few and zero shot learning in
NLP. However, translating these successes to
specialized domains such as biomedicine re-
mains challenging, due in part to biomedical
NLP’s significant dataset debt – the technical
costs associated with data that are not consis-
tently documented or easily incorporated into
popular machine learning frameworks at scale.
To assess this debt, we crowdsourced cura-
tion of datasheets for 167 biomedical datasets.
We find that only 13% of datasets are avail-
able via programmatic access and 30% lack
any documentation on licensing and permit-
ted reuse. Our dataset catalog is available at:
https://tinyurl.com/bigbio22.

1 Introduction

Natural language prompting has recently demon-
strated significant benefits for language model pre-
training, including unifying task inputs for large-
scale multi-task supervision (Raffel et al., 2019)
and improving zero-shot classification via explicit,
multi-task prompted training data (Wei et al., 2022;
Sanh et al., 2022). With performance gains re-
ported when scaling to thousands of prompted train-
ing tasks (Xu et al., 2022), tools that enable large-
scale integration of expert-labeled datasets hold
great promise for improving zero-shot learning.

However, translating these successes to special-
ized domains such as biomedicine face strong head-
winds due in part to the current state of dataset
accessibility in biomedical NLP. Recently data cas-
cades was proposed as a term-of-art for the costs
of undervaluing data in machine learning (Sam-
basivan et al., 2021). We propose a similar term,
dataset debt, to capture the technical costs (Sculley
et al., 2015) of using datasets which are largely

open and findable, but inconsistently documented,
structured, and otherwise inaccessible via a con-
sistent, programmatic interface. This type of debt
creates significant practical challenges when inte-
grating complex domain-specific corpora into pop-
ular machine learning frameworks.

We claim that biomedical NLP suffers from sig-
nificant dataset debt. For example, while Hug-
gingFace’s popular Datasets library (Lhoest et al.,
2021) contains over 3,000 datasets, biomedical data
are underrepresented and favor tasks with general
domain appeal such as question answering or se-
mantic similarity (PubmedQA, SciTail, BIOSSES).
To assess the state of biomedical dataset debt, we
built, to our knowledge, the largest catalog of meta-
data for publicly available biomedical datasets. We
document provenance, licensing, and other key at-
tributes per (Gebru et al., 2021) to help guide future
efforts for improving dataset access and machine
learning reproducibility.

Our effort found low overall support for pro-
grammatic access, with only 13% (22/167) of
our datasets present in the Datasets hub. Despite
a proliferation of schemas designed to standard-
ize dataset loading and harmonize task semantics.
there remains no consistent, API interface for easily
incorporating biomedical data into language model
training at scale.

2 Data-Centric Machine Learning

Deep learning models are increasingly moving to
commodified architectures. Data-centric machine
learning (vs. model-centric) is inspired by the ob-
servation that the performance gains provided by
novel architectures are often smaller than gains ob-
tained using better training data. We outline some
key challenges and opportunities in data-centric
language modeling. These are broadly applicable
to NLP, but have strong relevance to biomedicine
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and the current state of dataset debt.

2.1 Curating and Cleaning Training Data
Popular language models such as GPT-3 (Brown
et al., 2020) do not incorporate scientific or medical
corpora in their training mixture, contributing to
their lower performance when used in biomedical
domains and few-shot tasks (Moradi et al., 2021).
Additionally, simply training the language model
on in-domain data might lead to non-trivial risks
associated with the recapitulated biases from the
training corpora (Zhang et al., 2020; Gururangan
et al., 2022).

In scientific literature, discounting source prove-
nance could manifest as language models parroting
conflicting or inaccurate scientific findings. Zhao
et al.(Zhao et al., 2022) curated scientific corpora to
identify patient-specific information (e.g., mining
PubMed Central to identify case reports that re-
spect licensing for re-use and re-distribution). With
sufficient metadata and dataset provenance, this
level of curation could be extended to the entire
training corpus for a biomedical language model.

Data cleaning has a large impact on language
model performance. Deduplicating data leads to
more accurate, more generalizable models requir-
ing fewer training steps (Cohen et al., 2013; Lee
et al., 2021). Cleaning up the consistency of answer
response strings was reported to improve biomedi-
cal question answering (Yoon et al., 2021). Dupli-
cation contamination is a serious risk in biomedical
datasets, which often iteratively build or extend
prior annotations, introducing risk of test leakage
in evaluation (Elangovan et al., 2021).

2.2 Programmatic Labeling
Biomedical domains require specialized knowl-
edge, making expert-labeled datasets time-
consuming and expensive to generate. In limited-
data settings, distant and weakly supervised meth-
ods (Craven and Kumlien, 1999) are often used to
combine curated, structured resources (e.g., knowl-
edge bases, ontologies) with expert rules to pro-
grammatically label data. These approaches have
demonstrated success across NER, relation extrac-
tion, and other biomedical applications (Kuleshov
et al., 2019; Fries et al., 2021). However these
approaches typically are applied to real, albeit
unlabeled data, creating challenges when model-
ing rare classes. A recent trend is transforming
structured resources directly into realistic-looking,
but synthetic training examples. KELM (Agarwal

et al., 2021) converts Wiki knowledge graph triplets
into synthesized natural language text for language
model pretraining.

Natural language prompting has emerged as
a powerful technique for zero/few shot learning,
where task guidance from prompts reduces sam-
ple complexity (Le Scao and Rush, 2021). Cross-
lingual prompting (English prompts, non-English
examples) has demonstrated competitive classifi-
cation performance (Lin et al., 2021). Training
language models directly on prompts has resulted
in large gains in zero-shot performance over GPT-
3 as well as producing models with fewer trained
parameters (Sanh et al., 2022; Wei et al., 2022).

PromptSource (Bach et al., 2022) is a recent soft-
ware platform for creating prompts and applying
them to existing labeled datasets to build training
data. These developments highlight a promising
trend toward defining programmatic transforma-
tions on top of existing datasets, enabling them to
be configured into new tasks. However, leverag-
ing large-scale prompting remains challenging in
biomedicine due to the lack of programmatic ac-
cess to a large, diverse collections of biomedical
datasets and tasks.

2.3 Diverse Evaluation and Benchmarking

Inspired by standardized benchmarks in general
domain NLP research (Wang et al., 2018, 2019),
BioNLP takes similar initiatives by establishing a
benchmark of 10 datasets spanning 5 tasks (Peng
et al., 2019, BLUE), an improved benchmark on
BLUE with 13 datasets in 6 tasks (Gu et al., 2022,
BLURB), and a benchmark of 9 different tasks
for Chinese biomedical NLP (Zhang et al., 2021,
CBLUE). While these benchmarks provide tools
for consistent evaluation, only BLURB supports
a leaderboard and none directly provide dataset
access. Evaluation frameworks that provide pro-
grammatic access are often restricted to single and
well-established tasks and impose pre-processing
choices that can make inconsistent performance
comparisons (Crichton et al., 2017; Weber et al.,
2021).

To the best of our knowledge, there are currently
no zero-shot evaluation frameworks for biomedi-
cal data similar to BIG-Bench1, which currently
contains little-to-no biomedical tasks.

Evaluation frameworks must also allow probing
the trained language models’ intrinsic properties,

1https://github.com/google/BIG-bench
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rather than only measure downstream classification
performance. Following (Petroni et al., 2019) in
the general NLP domain, (Sung et al., 2021) intro-
duce BioLAMA, a benchmark making available
49K biomedical knowledge triplets to probe the re-
lational knowledge present in pre-trained language
models.

3 Datasets Summary

3.1 Metadata/Datasheet Curation

Our inclusion criteria targeted expert-annotated
datasets designated as public, reusable research
benchmarks for one or more NLP tasks. We ex-
cluded: (1) multimodal datasets where remov-
ing the non-text modality undermines the task,
e.g., visual question answering, audio transcrip-
tion, image-to-text generation; (2) general re-
source datasets, e.g, the PMC Open Access Subset,
MIMIC-III (Johnson et al., 2016); (3) derived re-
sources, e.g., knowledge bases constructed via text
mining; and (4) modeling artifacts, e.g., static em-
beddings or pretrained language models.

We recruited 8 volunteers to identify datasets
and crowdsource their metadata curation for an
open, community dataset catalog. Participants re-
viewed dataset publications and websites which
described the curation process, and then completed
the metadata schema outlined in Table 1 This
schema loosely assesses compliance with FAIR
data principles (Wilkinson et al., 2016).

Our initial effort identified 101 datasets. We
combined this list with a contemporaneously cu-
rated catalog of biomedical datasets, identified via
systematic literature review (Blagec et al., 2022).
Since the catalog described in Blagec et al. (2022)
was generated using broader inclusion criteria (e.g.,
non-public data, imaging and video datasets) we
identified 104/475 entries that met our criteria.
After merging, we conducted a second round of
crowdsourcing to annotate metadata, resulting in
our current catalog of 167 biomedical datasets.
We did not conduct a formal assessment of inter-
annotator agreement.

4 Results

4.1 Dataset Access

Only 22/167 (13%) of biomedical datasets are avail-
able via the Datasets API, despite 123/167 (74%)
being openly hosted on public websites. The re-
maining datasets require authentication to access

Field Description

Name Dataset name
Task Types NER, NED, QA, NLI, corefer-

ence resolution, etc.
Domain Corpora domain: biomedical

or clinical/health
File Format BioC, JSON, etc.
Annotations Expert label provenance
API Access Available via HuggingFace

Datasets?
Splits Canonical definitions for train-

ing/validation/testing splits
License Provided license type
Languages Included languages
Multilingual Parallel corpora
Publication Manuscript describing dataset
Year Publication year
Citations Google Scholar counts
Homepage Website describing dataset
Public URL Open URL (no authentication)
Dead Link Dataset no longer accessible

Table 1: Metadata collected for all biomedical datasets.
See Appendix A for more details on each category.

(21%) or were dead links (5%).

Format Name Count Total

Structured BioC 5 3%
Structured BRAT 16 10%
Structured CoNLL 11 7%
Structured PubTator 4 2%
Semi-structured XML 26 16%
Semi-structured JSON 43 26%
Semi-structured TSV/CSV 15 9%
Semi-structured TMX 1 1%
Plain Text Standoff 13 8%
Plain Text Text 25 15%
Plain Text ARFF 1 1%
Binary Word 1 1%
Binary Excel 2 1%
Unknown Unknown 4 2%

Table 2: Distribution of file formats for biomedical
datasets.

Table 2 outlines the diversity of commonly used
biomedical file formats. Most datasets are pro-
vided in semi-structured form (51%), followed by
structured (22%), and non-standard plain text files
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(17%). There are several structured formats which
propose a data model for parsing and standardiz-
ing task semantics (e.g., BRAT (Stenetorp et al.,
2012), BioC (Comeau et al., 2013)). However, for
information extraction tasks which could use these
formats, only 31/86 (36%) actually do.

Table 2 outlines dataset licensing, broken down
into six categories, largely based on commercial vs.
non-commercial restrictions. These cover broad
classes of licensing, ranging from permissive Cre-
ative Commons Share-Alike licenses to dataset-
specific data-use agreements (DUA). Nearly 30%
of datasets are publicly available online yet do not
include any licensing information. A further 16.8%
have DUA requirements, but include unclear lan-
guage on what restrictions are placed on dataset
usage.

License Restrictions Count Percent

Public C/NC 56 33.5%
Public NC 13 7.8%
DUA C/NC 12 7.2%
DUA NC 8 4.8%
DUA ? 28 16.8%
Unknown ? 50 29.9%

Table 3: Dataset licenses. Restrictions are commercial
(C), non-commercial (NC) and unknown (?).

4.2 Dataset and Task Diversity

Biomedical datasets (i.e., tasks built from scientific
publications) made up 68% of available datasets
while clinical datasets (patient notes, health news,
clinical trial reports) made up 32%.

Figure 1: All NLP tasks, broken down into 5 categories
(see legend). Note datasets often support multiple tasks.
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Figure 2: Cumulative count of datasets by task, ordered
by year of dataset release. The black dashed line indi-
cates the total number available via the Datasets API.

Fig.2 shows the overall homogeneity of public
biomedical datasets as of 2022. Information extrac-
tion tasks (e.g., NER, NED, releation extraction,
coreference resolution) comprise 56%, followed
by 20% text classification (e.g, document labeling,
sentiment analysis), 13% question answering, and
6% semantic similarity.

Task Category Eng. Non-Eng.

Information Extraction 128 34
Text Classification 33 10
Question Answering 21 0
Semantic Textual Similarity 10 0
Other 12 6

Table 4: Task category counts by English (Eng.) and
Non-English (Non-Eng.) languages.

Given all tasks, 14 languages are covered. Five
languages make up 95% of all datasets. En-
glish is the majority (80%), followed by Spanish
(7.5%), German (2.4%), French (2.4%), and Chi-
nese (2.4%). Table 4 contains counts of task cate-
gories binned into English and Non-English . Ques-
tion answering and semantic similarity have zero
non-English datasets.

5 Conclusion

In this work, we outlined several challenges in
training biomedical language models. With in-
creasingly large biomedical language models (Yang
et al., 2022), limitations in the quality and proper-
ties of training data grow more stark. We argue that
biomedical NLP suffers from significant dataset
debt, with only 13% of datasets accessible via API
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access and readily usable in state-of-the-art NLP
tools. Current biomedical datasets are homoge-
neous, largely focusing on NER and relation ex-
traction tasks, and predominantly English language.
These limitations highlight opportunities presented
by recent data-centric machine learning methods
such as prompting, which enables experts to inject
task guidance into training and more easily recon-
figure existing datasets into new training tasks.
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A Appendix

A.1 Metadata Overview

This section contains detailed descriptions of each
metadata field collected for the dataset catalog.

A.1.1 Name
The dataset name, preferring short forms
(BC5CDR) as typically used on homepages or sci-
entific publications over verbose ones (“BioCre-
ative 5 Chemical Disease Relation Task").

A.1.2 Task Types
Datasets contain labels for one or more tasks. Ta-
bles 5 and 6 outline the tasks we consider in this
work.

Name Abbreviation

Named Entity Recognition NER
Named Entity Disambiguation NED
Relation Extraction RE
Event Extraction EE
Coreference Resolution COREF
Span Classification SPAN
Document Classification DOC
Sentence Classification SENT
Semantic Textual Similarity STS
Question Answering QA
Translation TRANSL
Paraphrasing PARA
Summarization SUM
Natural Language Inference NLI
Part-of-Speech Tagging POS
Information Retreival IR

Table 5: All task types.

A.1.3 Domain
Source domain of the dataset.

• Biomedical: Tasks are defined for scientific
literature (e.g., PubMed abstacts, full-text pub-
lications from the PMC Open Access Subset).

• Clinical: Tasks are defined for clinical notes
from patient electronic health records, health-
related questions from social media or news
websites, clinical trial reports, etc.

A.1.4 File format
File formats provided by the original dataset cre-
ators.
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Category Abbreviation

Information Extraction NER
Information Extraction NED
Information Extraction RE
Information Extraction EE
Information Extraction COREF
Information Extraction SPAN
Text Classification DOC
Text Classification SENT
Semantic Textual Similarity STS
Question Answering QA
Other TRANSL
Other PARA
Other SUM
Other NLI
Other POS
Other IR

Table 6: Task categories.

A.1.5 Annotations
Provenance of labels used to create a dataset.

• Manual: Expert annotators directly label data
instances. This may include multiple rounds
of adjudication.

• Model-assisted Manual: Experts verify, cor-
rect, or augment the output of a model (e.g.,
pre-annotated entities are used by annotators
to define relations).

• Crowdsourced: Labels are the result of a vot-
ing process over multiple annotator’s labels.

• Rules: Heuristics developed by experts and
applied to unlabeled text to create annotations.
This includes a wide range of weak/distant
supervision techniques.

• Found: Generated from "in-the-wild" data,
such as aligned pairs of translated text mined
from web pages.

• Unlabeled: no human-generated labels (e.g.,
the PMC Open Subset).

A.1.6 API Access
URL of HuggingFace’s Datasets implementation,
otherwise “no".

A.1.7 Splits
Are canonical train, validation, and test sets de-
fined by the dataset creators? If so, which sets are

provided. value ∈ { NONE, train, valid,
test }.

A.1.8 License
License information accompanying the dataset. Un-
known licenses means the annotator could not
find any information or formal legal documents
on the homepage, software repository (e.g, GitHub,
Google Code), or README with the data itself.

• Public: Creative Commons (CC BY 3.0/4.0,
CC BY-SA 3.0/4.0), Public Domain, GNU
Free Documentation License, GNU Common
Public License v3.0, MIT License, Apache
License 2.0

• Public Non-commercial: Creative Commons
(CC BY NC 2.0/3.0/4.0, CC BY-NC-SA 4.0),
CSIRO Data License (Non-commercial), Pub-
lic for Research

• DUA-NC: DUA for non-commercial use only.

• DUA-C/NC: DUA for commercial and non-
commercial uses.

• DUA-UNK: DUA with unknown restrictions.

• Unknown: Public-Unknown, Public w/ Regis-
tration

A.1.9 Languages
Languages used in the labeled dataset.

A.1.10 Multilingual
Dataset contains aligned pairs for two or more lan-
guages.

A.1.11 Publication, Year
URL to the manuscript, DOI, and year of publica-
tion.

A.1.12 Citations
Current citation count from Google Scholar, as of
02-22-2022. This measure was collected to provide
a weak measure of dataset visibility. We note that
citation count is a problematic measure of valuation
and subject to many criticisms (Gruber, 2014).

A.1.13 Homepage, Public URL
URL of website describing and hosting the dataset.
If the dataset has a direct download link, denote if
it is public or only available after authentication.

A.1.14 Dead Link
URL of dataset homepage, as documented in the
source publication, is no longer active.
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A.2 Domain-specific
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Figure 3: Scientific/biomedical domain (e.g., PubMed
abstracts) cumulative distribution of available tasks, or-
dered by year of dataset release.
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Figure 4: Clinical domain (e.g., patient notes) cumula-
tive distribution of available tasks, ordered by year of
dataset release.

A.3 Languages

Task English Non-English

NER 60 18
NED 21 9
RE 22 3
EE 8 0
COREF 8 0
SPAN_CLASS 9 4
SENT_CLASS 12 2
DOC_CLASS 21 8
QA 21 0
STS 10 0
TRANSL 3 5
PARA/SUM 2 0
IR 3 0
NLI 3 0
POS 1 1

Table 7: Tasks by language
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Abstract

Large language models have achieved success
on a number of downstream tasks, particularly
in a few and zero-shot manner. As a conse-
quence, researchers have been investigating
both the kind of information these networks
learn and how such information can be encoded
in the parameters of the model. We survey
the literature on changes in the network during
training, drawing from work outside of NLP
when necessary, and on learned representations
of linguistic features in large language models.
We note in particular the lack of sufficient re-
search on the emergence of functional units –
subsections of the network where related func-
tions are grouped or organized – within large
language models, and motivate future work that
grounds the study of language models in an
analysis of their changing internal structure dur-
ing training time.

1 Introduction

Recent advances in self-supervised learning, dis-
tributed training, and architecture improvements
have enabled training massive language mod-
els (Devlin et al., 2019; Brown et al., 2020; Radford
et al., 2019; Ma et al., 2020; Liu et al., 2019). As
these models have grown larger, so has their per-
formance and generalization to new tasks. Further-
more, these techniques have also shown substan-
tial improvements in learning multilingual (Chen
et al., 2020) and multimodal representations (Rad-
ford et al., 2021). These large language models
(LLMs) have advanced the state of the art in few-
and zero-shot tasks (Radford et al., 2019; Brown
et al., 2020; Radford et al., 2021). However, the
size of these models makes them difficult to eval-
uate, examine, and audit. What structures emerge
from training these neural networks? What internal
representations do these networks learn?

In part, this opacity is implicit in the models
themselves. Many of the fascinating capabilities of

LLMs are “implicitly induced, not explicitly con-
structed” emergent properties (Bommasani et al.,
2021). Emergent properties are those that result
from the structural relations and interactions be-
tween a system's components (Ablowitz, 1939;
Callebaut and Rasskin-Gutman, 2005). One way
of characterizing the emergence of useful proper-
ties from complexity is through self-organization,
wherein complex systems come to develop ordered
patterns from the interactions of their components
(Gershenson et al., 2020). Interactions between
the parts of a system can produce complex global
behavior, for example in the collective behavior of
ants, flocking in birds (Cucker and Smale, 2007),
or in the brain and central nervous system (Dresp-
Langley, 2020; Brown, 2013). In the context of
deep learning models, qualitatively different be-
havior has been observed during phase transitions
in model size or training steps (Steinhardt, 2022).
Current research on understanding the generaliza-
tion abilities of LLMs has largely focused on the
degree to which they learn various linguistic fea-
tures (e.g. syntax) that would support performance
on diverse downstream tasks. Our goal instead is to
motivate research that grounds the learning of these
higher-level representations, and from there, LLMs
generalization abilities, in the emergent structures
that result from self-organization within the net-
works.

To analyze LLMs themselves, we survey current
research on the following topics and identify gaps
in the literature. First, we turn to the development
of internal representations of important features of
language (e.g. syntax). Second, we look at the
structure of the network (neurons, weights, etc.),
how it evolves over time, and the emergence of
functional units therein. In each case, we include
not only research related to trained models, but also
the changes that result over training time (termed
training dynamics). Most research has focused
on the aforementioned internal representations and
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their connection to the downstream performance
and generalization ability of LLMs, with only lim-
ited work on how the network structure changes
over time and that change’s connection to those
representations. We aim to motivate research that
not only applies work on the emergent structures
within networks from outside of NLP to LLMs, but
also develops a language-specific account of useful
functional units that emerge in LLMs. Moreover,
we identify methods for studying emergence and
self-organization in complex systems with poten-
tial applications to analyzing LLM training dynam-
ics and behavior. We conclude with a survey of
explainability methods that allow researchers to
connect structure with function.

2 Internal Representations

Linguistic Structure Representations A signifi-
cant current area of research is dedicated to inter-
preting language models from a linguistic point of
view. The motivation is to know to what extent
models “understand” language, and more specif-
ically, to what extent their generalizations over
language agree with the generalizations about lan-
guage described by linguistics. Following the
hierarchy of language levels (morphology, syn-
tax, discourse) (Dalrymple, 2001), experiments
in probing studies typically address models’ pro-
ficiency on a certain level of language. This
line of research typically comes down to analyz-
ing how linguistic structures are represented in
a model’s knowledge. Such structures represent
syntagmatic/paradigmatic mechanisms of language
(how language units combine and alternate, respec-
tively). It is believed (McCoy et al., 2020) that
rediscovering these structures would help models
get closer to humans performance on a variety of
tasks.

Probing Methods to Test for Linguistic Struc-
ture Probing tasks measure the linguistic aware-
ness of a model’s components, such as layers (Ten-
ney et al., 2019) or groups of neurons (Durrani
et al., 2020), by training an auxiliary model, the
probe, on annotated data. Datasets providing such
linguistically annotated data are called probing
datasets, and cover a wide variety of properties
(parts of speech, parse trees, etc.). A high perfor-
mance of a probe model on a linguistic task implies
that the representation tested encodes the property
of interest. Several studies using probing methods
have reported high accuracy predictions in identi-

fying the underlying linguistic structure (Belinkov
et al., 2017a,b; Peters et al., 2018; Tenney et al.,
2019; Conneau et al., 2018; Zhang and Bowman,
2018; Alain and Bengio, 2017; Hewitt and Man-
ning, 2019; Hewitt and Liang, 2019).

However, high performance may have confound-
ing factors; there is uncertainty on whether the
probing tasks properly test if representations ac-
tually encode linguistic structure and on how to
interpret the results of probes (Hewitt and Liang,
2019; Zhang and Bowman, 2018; Voita and Titov,
2020; Pimentel et al., 2020b). Toward that end,
the following section reviews several probing ap-
proaches in the context of language models, and
the evaluation criteria used to determine the profi-
ciency of a probe.

Grammatical and Semantic Probing Given the
excellent performance of pre-trained representa-
tions on numerous linguistic tasks (Kitaev and
Klein, 2018; He et al., 2018; Strubell et al., 2018;
Lee et al., 2018), several studies have explored how
semantic and grammatical knowledge are encoded
within language models. Syntactic and morpho-
logical probing encompasses tasks that identify
grammatical structure underlying the vector rep-
resentations within pre-trained models, whereas
semantic probing tasks investigate what meaning
is conveyed within the representation.

Earlier work using part of speech (POS) and
morphological tagging (Belinkov et al., 2017a) in-
dicated that syntactic information may be encoded
in layers of neural models. More recently, investi-
gations have considered whether models learn to
embed entire parse trees in their representations.
In Hewitt and Manning (2019), the authors out-
line structural probing as a method to identify hi-
erarchical, tree-like, structures from vector repre-
sentations of language via the syntactic distance
between embeddings. Their results across several
large language models suggested that Transformer
model encodings possess some hierarchical linguis-
tic structure.

Several studies conducted probing experiments
in multilingual settings. Chi et al. (2020) high-
lighted syntactic generalizations in multilingual
language models via structured probing, and Şahin
et al. (2020) propose a framework for multilingual
morpho-syntactic probing, with 15 probing tasks
for multiple languages, showing that, while cross-
lingual typological regularities can be found with
probing, probing dataset properties strongly impact
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the results (see Section 2.2 for more details about
multilingual models).

Probes have also been used to measure semantic
information within language model representations.
The authors of Belinkov et al. (2017b) posed a
semantic-class labeling task and found that higher
layers of a model tend to perform better at seman-
tic tagging. Similarly, semantic labeling tasks have
been used to indicate that contextualized represen-
tations may encode multiple meanings within a
single vector (Yaghoobzadeh et al., 2019). Con-
trarily, edge probing, developed by Tenney et al.
(2019), implied that contextualized embeddings
show larger gains on syntactic tasks as opposed
to semantic ones (with only modest performance
gains against non-contextualized baselines). There
is no general evidence on how exactly language
levels are distributed across model layers (Rogers
et al., 2020).

Information Theoretic Probing Information-
theoretic probing characterize tasks as a way of esti-
mating the mutual information between an internal
representation and the linguistic property of inter-
est (Pimentel et al., 2020b; Pimentel and Cotterell,
2021; Voita and Titov, 2020; Pimentel et al., 2020a).
Many of these approaches highlight the need to for-
malize the “effort” required in encoding a linguistic
property, often via some form of a control function
(Pimentel et al., 2020b). Counter-intuitively, work
from Pimentel et al. (2020b) suggest that the “best”
probes are ones that always perform highest on the
task; their argument is that “learning” the task is
equivalent to encoding the linguistic property in
the initial representations. They provide approxi-
mations to calculate information gain, finding that
BERT models contain only 12% more information
than non-contextualized baselines.

Criticisms of accuracy-based performance met-
rics have argued that these methods are sensitive
to structure, randomization, and hyperparameter
selection (Voita and Titov, 2020; Hewitt and Liang,
2019; Zhang and Bowman, 2018; Pimentel et al.,
2020b). As an alternative, the minimum description
length (MDL) offers an information theoretic view
on probe quality (Voita and Titov, 2020). Formally,
it describes the “minimum number of bits required
to transmit labels, knowing the representations”,
where better probes are those with smaller code-
lengths, as they suggest the information available
in the representation is sufficiently accessible to
solve the task. Prior studies have shown the MDL

metric is robust and resilient to randomness (Voita
and Titov, 2020). In comparison to the original
POS tagging of Hewitt and Liang (2019), the MDL
metric consistently distinguishes between the lin-
guistic versus the control tasks across differences
in hyperparameters and random seeds. Similarly,
following Zhang and Bowman (2018), evaluation
using MDL revealed longer codelengths for ran-
domly initialized models as opposed to pre-trained
ones.

2.1 Evaluating Probing Performance

Several studies have highlighted the need for inter-
pretable performance scores on probes (Belinkov
et al., 2017b; Peters et al., 2018; Tenney et al., 2019;
Conneau et al., 2018; Zhang and Bowman, 2018;
Alain and Bengio, 2017; Hall Maudslay and Cot-
terell, 2021). Two common themes have emerged
for evaluating the proficiency of a probe: selec-
tivity through control tasks and high informatic
overlap via control functions (Hewitt and Liang,
2019; Pimentel et al., 2020b; Zhu and Rudzicz,
2020). Recent work suggests that both approaches
yield comparable results empirically with similar
error terms theoretically (Zhu and Rudzicz, 2020).

Control Tasks Selectivity is the trade-off be-
tween complexity and performance of the linguistic
task. A “good” probe refers to one that performs
highly on linguistic tasks, but poorly on control
tasks, thus limiting the ability for a probe to “mem-
orize” the task (Hewitt and Liang, 2019).

Arguments preferring “simpler” probes claim
that these models should find “accessible” informa-
tion within the representations (Shi et al., 2016).
The simplest probes employ linear functions, yet
more complex probes have been commonly used,
including multi-layer perceptrons (MLP) or kernel
methods (Belinkov et al., 2017a; Conneau et al.,
2018; White et al., 2021; Adi et al., 2017), suggest-
ing that some linguistic properties may be encoded
non-linearly. Linear functions and MLPs are still
commonly in use (Tenney et al., 2019).

Prior works within the probing literature have
also explored how the size of training data can in-
fluence the performance of the probe (Zhang and
Bowman, 2018; Hewitt and Liang, 2019). In an
investigation considering probes of pre-trained lan-
guage models and an untrained baseline on two
syntactic tasks: POS tagging and Combinatorial
Categorical Grammar (CCG) super-tagging (Hock-
enmaier and Steedman, 2007), probes with an un-
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trained baseline model could surprisingly attain
high performance compared to pre-trained models
(Zhang and Bowman, 2018). However, the probe
performance decreased dramatically when reduc-
ing the amount of available training data when com-
pared to the pre-trained models. This suggested
trained encoders captured enough syntactic infor-
mation, beyond simple word-identities, which en-
abled these representations to achieve high perfor-
mance on the linguistic tasks.

An extensive study on selectivity proposed sev-
eral control tasks for POS tagging and dependency
edge prediction (Hewitt and Liang, 2019). Across
an array of probe architectures (linear, MLP-1,
MLP-2) and hyperparameters, this investigation
considered the effect of the hidden state dimen-
sionality (size), number of training examples, regu-
larization, and early stopping. The most effective
probes were those with constrained hidden dimen-
sions, yielding the most selective probes.

Control Functions Control functions compare
the mutual information against a property of inter-
est and the representation before and after the func-
tion is applied. The objective is used to measure the
information gain of the representation. In Pimentel
et al. (2020b), control functions were used to com-
pare BERT contextualized models against FastText
(Bojanowski et al., 2017) and a one-hot encoding
on POS tagging. Curiously, their results suggested
that BERT models only marginally improved infor-
mation gain against these simpler baselines.

2.2 Emerging Multilingual Structures
Multilingual large language models, such as multi-
lingual BERT (mBERT) (Devlin et al., 2019; De-
vlin, 2018) XLM (Conneau and Lample, 2019) or
XLM-R (Conneau et al., 2020a) have shown im-
pressive results when used for (zero-shot) cross-
lingual transfer; that is, when the pre-trained mul-
tilingual language model is used as the basis for a
task-specific model that is applied to a language in
which it was not trained for. Their efficiency was
proven in a wide variety of tasks, such as sentiment
analysis, natural language inference, and question
answering, to name a few.

Prior to the immense popularity of Transformer-
based models, two approaches of using word
embeddings for cross-lingual tasks have shown
promising results. In the first, representations are
learned separately from individual languages and
then aligned to a shared space, thus producing

cross-lingual word embeddings (Ruder et al., 2019),
that in turn, are used on the target language. In the
second, multilingual representations are learned by
jointly training over multiple languages. Artetxe
and Schwenk (2019), for example, trained a BiL-
STM over 93 languages using parallel corpora, pro-
ducing “universal” embeddings that were success-
fully used in various tasks.

The same two approaches are being explored
with large language models. In Conneau et al.
(2020b), monolingual BERT models that were
trained separately for different languages produced
similar (easily-aligned) representations. Pires et al.
(2019) and Vulić et al. (2020) further showed – as
expected – that the similarity depends on the typo-
logical distance between the languages. Universal
language-agnostic embeddings also emerge when
training multilingual models, even when no explicit
connection (such as parallel corpora or bilingual
dictionaries) between the languages is used during
training, such as in the case of mBERT.

Multiple works looked into the factors that con-
tribute to the successful transfer. These include
domain and language similarity, shared parame-
ters, and perhaps the most straightforward factor:
common (sub-) words between the languages (Wu
and Dredze, 2019; Conneau et al., 2020b; Pires
et al., 2019). Interestingly, Conneau et al. (2020b)
and K et al. (2020) showed that the universal rep-
resentations do not heavily depend on shared vo-
cabulary; instead, multilinguality emerges directly
from the fact that parameters are shared in training,
from the structure of the network, and is affected
by common characteristics of the languages, such
as word order (Dufter and Schütze, 2020). Pires
et al. (2019) discovered that mBERT can also suc-
cessfully transfer between languages with differ-
ent scripts, and that generalization goes beyond
the lexical level, and Chi et al. (2020) found that
syntactic features representations in mBERT over-
lap between languages. Still, Ahmad et al. (2021)
have shown that augmenting mBERT with syntac-
tic information can improve cross-lingual transfer
performance.

The size of each language's corpus in the lan-
guage model's training set has been shown to be
decisive for transfer to that language. Thus, low-
resource languages often benefit more from the
joint training (Wu and Dredze, 2020), while lan-
guages with abundant resources often achieve bet-
ter performance when trained on their own (Nozza
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et al., 2020; Lewis et al., 2020).

2.3 Training Dynamics of Internal
Representation Development

Training dynamics is an emerging field of research,
promising to improve our understanding of knowl-
edge acquisition in neural networks and offering in-
sights into the utility of pre-trained models and em-
bedded representations for downstream tasks. Most
studies of Transformers (e.g. RoBERTa (Zhuang
et al., 2021)) and LSTMs (Hochreiter and Schmid-
huber, 1997) agree that models acquire linguistic
knowledge early in the learning process.

Local syntactic information, such as parts of
speech, is learned earlier than information encod-
ing long-distance dependencies (e.g. topic) (Liu
et al., 2021; Saphra, 2021). Exploration of AL-
BERT (Lan et al., 2019) and LSTM-based networks
reveals different learning patterns for function and
content words with more fine-grained distinctions
within these categories including part of speech
and verb form (Saphra, 2021; Chiang et al., 2020).

Differences in learning trajectory were also ob-
served between layers. In LSTMs, recurrent lay-
ers become more task-independent over the course
of training, while embeddings become more task-
specific (Saphra, 2021). In Transformer-based ar-
chitectures, i.e.: ALBERT and ELECTRA, Chiang
et al. (2020) observe differences in performance
patterns between the top and last layers. Simi-
larly to other areas of research in NLP, most of
the literature on training dynamics concentrate on
English-language models. Another possible direc-
tion for future work is extending studies conducted
on LSTMs to more widely used Transformers.

2.4 Critique of Testing Methods
Recent research has complicated the picture of
grammar learning presented in Sections 2, 2.2,
and 2.3. Specifically, there have been two sepa-
rate but related types of critique leveled at probing
and grammar learning. First, specific to probing,
researchers question whether probes really iden-
tify linguistic representations at all. Secondly, and
more fundamentally, it is unclear to what degree
language models even learn grammar.

Hall Maudslay and Cotterell (2021) suggest that
semantic “cues” may contaminate syntax probes,
making it difficult to evaluate their scores. By
employing “Jabberwocky probing”, where pseudo-
words with no lexical meaning replace the original
components of the sentence in a way that preserves

grammar, the authors discovered that performance
of syntactic probes considerably dropped for large
language models, calling into question whether syn-
tactic probes actually isolate syntactic knowledge
withing language models.

A more fundamental issue for syntax learning
in language models has been their performance
when trained on perturbed or permuted data. Sinha
et al. (2021) use a variety of word order permu-
tations that preserve distributional information to
isolate whether what language models learn is ac-
tually syntax. Word order has been assumed to
be important not only for natural language under-
standing by humans but also by language models,
particularly for learning syntax. Surprisingly then,
word order appears to have less influence than one
would expect on the downstream performance of
language models and their performance on prob-
ing tasks. In part, the authors note that some syn-
tax information can be acquired during fine-tuning
to sufficiently answer tasks that require it. More-
over, in the context of syntax probes, the authors
note that “while natural word order is useful for at
least some probing tasks, the distributional prior of
randomized models alone is enough to achieve a
reasonably high accuracy on syntax sensitive prob-
ing”. Furthermore, the results distinguish between
parametric and non-parametric probes, where per-
formance on the latter using randomization models
degrades significantly. This degradation provides
evidence that non-parametric probes are able to test
for syntax learning in ways that parametric probes
cannot. Similarly, O’Connor and Andreas (2021)
use syntax-level perturbations and ablations to con-
clude that the information in context windows most
useful to language models are local ordering statis-
tics and content words, e.g. nouns, verbs, adverbs,
and adjectives. In other words, it does not appear
that language models make use of syntactic or other
structural information in the context window.

2.5 Further Research
Despite recent probing studies providing a closer
look at how linguistic structures are distributed in
language models, it is an open question to what ex-
tent this knowledge acquisition differs from that of
humans. While grammatical structures tend to be
learned much faster than downstream knowledge
(Conneau et al., 2018), there is still room for the
study of more specific questions, such as whether
models require more time to acquire the grammar
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of polysynthetic languages, as has been reported
for humans (Kelly et al., 2014).

Another remaining open question is whether lin-
guistic structure knowledge can be transferred be-
tween models with the neurons initialization mech-
anism (Durrani et al., 2021). While rough re-use of
neurons is proven to be helpful in model initializa-
tion (Sanh et al., 2019), for instance, such neuron
“surgery” would potentially lead to even quicker
acquisition of grammatical knowledge.

Generally speaking, the performance of multi-
lingual models is inferior to that of monolingual
ones, especially when enough resources are avail-
able. Yet, high-quality multilingual models remain
a desired objective that can particularly benefit low-
resource languages. Further understanding the fac-
tors that enable learning language-independent rep-
resentations is key for developing better multilin-
gual training or cross-lingual fine-tuning strategies,
especially for transfer between less similar lan-
guage pairs. A particularly interesting question is
whether some tasks require more language-specific
adaptation, because, for instance, they depend on
linguistic information that is currently not general-
ized well enough in multilingual LLMs.

3 Self-Organization and the Emergent
Structure of Networks

3.1 Network Structure
Inspired by the architecture of biological neural
networks (BNNs) and their adaptability to various
tasks, where neurons and circuits are capable of
self-organization, many researchers have investi-
gated how Artificial Neural Networks (ANNs) can
be seen as emergent structures, where interpretabil-
ity of an ANN's parameters can help us to inspect
their functional modularity. Broadly, researchers
have approached this by identifying patterns in the
weights or neurons especially through subgraphs
of the network.

Branch specialization is the organization of
branches – or “sequences of layers which tem-
porarily don’t have access to ‘parallel’ information
which is still passed to later layers” (Voss et al.,
2021) – of the network into functional units, across
different architectures and tasks (Zhang et al., 2020;
Bunel et al., 2020; Voss et al., 2021; Rössig and
Petkovic, 2021). It is somewhat similar to how
neurons are connected by synapses, forming small
functional units called neural circuits that can be
specialized for specific tasks, such as to “medi-

ate reflexes, process sensory information, gener-
ate locomotion and mediate learning and memory”
(Byrne et al., 2012; Luo, 2021). In their work on
AlexNet, Voss et al. (2021) provided initial evi-
dence of self-organization of neurons and circuits
(subgraphs) into functional units in a neural net-
work. This self-organized emergent structure is
consistent “across different architectures and tasks”.
A look at evolving neural structures gives another
perspective. Inspired by neural architecture search
(NAS), So et al. (2019) presented “a first neural ar-
chitecture search conducted to find improved feed-
forward sequence models”, where the search space
contains five branch-level search fields. Recently,
So et al. (2021) introduced Primer (PRIMitives
searched TransformER), which can add improve-
ments in the pre-training and one-shot downstream
task transfer regime. However, branches are used
just for the initialized multi-head attention.

Weight banding is the uniformity in the orga-
nization of the weights in a final layer. In neural
networks, weights are parameters that can trans-
form the input data between the network's hidden
layers. Weight banding resembles another biolog-
ical phenomenon when a neuron multiplies each
input with a synaptic weight, which is represented
as a number that highlights the importance assigned
to that input. The weighted inputs are summed up
in what represents the neuron's output (Iyer et al.,
2013). Petrov et al. (2021) note that many vision
models display a uniform pattern in their final layer.
They investigate the nature of this structural phe-
nomenon, connecting it ultimately to architectural
choices in the network and noting that weight band-
ing can serve as a method of preserving spatial
information.

Clustering is the grouping of neurons or subnet-
works into units that can be used for specific tasks
(Hod et al., 2021). Starting from the fact that modu-
lar systems allow us to have a better understanding
of a system if we can inspect the function of indi-
vidual modules, different clustering methods for
neural networks were proposed. Li et al. (2020) de-
signed a modular neural network based on feature
clustering to decompose features into clusters with
each module processing different features. These
modules work in parallel for a singular task. Filan
et al. (2021) proposed a spectral clustering algo-
rithm for decomposition of trained networks into
clusters, finding that networks can have some sense
of modularity and suggested further work related

151



to clusterability in various domains.
Modularity focuses on the reusability of sub-

networks for multiple tasks (Happel and Murre,
1994; Shukla et al., 2010; Csordás et al., 2021). In
Csordás et al. (2021) neural networks trained on
algorithmic tasks appear to fail to learn general,
modular, compositional algorithms, and require
specific subset weights to handle a particular com-
bination of the input tokens. With these findings,
Csordás et al. (2021) suggest further research about
“function dependent weight sharing in the neural
networks”. Reusable multi-task subnetworks may
also be discovered via Neural Architecture Search
(NAS) methods (Pham et al., 2018). Pasunuru and
Bansal (2019) leverage a technique called multi-
task architecture search (MAS) to find multi-task
cell structures in RNNs, capable of generalization
to unseen tasks.

3.2 Training Dynamics of Network Changes
Understanding the change in network structure over
time is equally as important as identifying structure
in trained models. Here, the focus is on how the
parameters of the model change over the course
of training, which can give insight into the types
of inductive biases that develop and shed light on
the nature of LLMs’ abilities to generalize. The
most recent work covering this in the context of
LLMs focuses on parameter norm growth, which
refers to the growth of the ℓ2 norm during training
time. According to Merrill et al. (2021), neural
networks learn successfully due to inductive biases
introduced during training. Norm growth induces
saturation in Transformer models, which reduces
the attention heads to “generalized hard attention”.
The authors find that computations for argmax and
mean are reducible to saturated attention, which
partially explains why saturated Transformer mod-
els can learn counter languages, a kind of formal
language, and may play a broader role in explaining
their generalization abilities.

3.3 Further Research
As we have noted, most of the work on network
structure is currently outside of NLP, either dealing
with general ANNs or specific to Computer Vision
with AlexNet and general convolutional networks
trained on ImageNet (Voss et al., 2021; Petrov et al.,
2021). This work should be replicated in the con-
text of LLMs to test for the existence of language-
specific functional units and, more generally, deter-
mine whether there are internal network structures

that support the learned representations we discuss
in Section 2. Likewise, since this research is still in
its infancy, it is focused on simple emergent struc-
tures. Future research can incorporate higher-order
emergent structures (Baas, 2000), new methods of
structure detection in networks (Aktas et al., 2019),
and even detection of structures whose form is not
explicitly specified (Shalizi et al., 2006).

Additionally, by viewing the neural networks
in question as time-evolving complex systems we
can leverage older research on self-organization
that has yet to be applied to understanding LLMs.
In particular, Ball et al. (2010) provide a method
for quantifying self-organization based on persis-
tent mutual information. Likewise, Shalizi et al.
(2004) ground self-organization in information the-
ory and Shalizi (2003) extends this method to a
general class of undirected graphs. Methods such
as these can be used to identify and quantify self-
organization in LLMs and better understand their
emergent behavior.

4 Connecting Structure to Function:
Explainable AI (XAI)

The rapid increase in the adoption of AI models in
recent years and their growing impact on human
lives created a need for techniques that offer insight
into the models internal operations.

Since attention-based models (Vaswani et al.,
2017) have become state-of-the-art tools in NLP,
there have been numerous attempts to provide some
understanding of their predictions by visualizing
the attention layer. However, these approaches
have been criticized for their inability to produce
meaningful and coherent interpretations (Wiegreffe
and Pinter, 2019; Bastings and Filippova, 2020;
Serrano and Smith, 2019). To address these limi-
tations, Ghaeini et al. (2018) examine the saliency
of attention and LSTM gating signal in the inter-
mediate layers of ESIM models, an architecture de-
signed for natural language inference tasks (Chen
et al., 2017). Their results show that visualizing
attention saliency allows identifying which parts
of the premise and hypothesis contribute most to
the final score. Moreover, attention saliency maps
compared across different ESIM models reveal dif-
ferences in focus that reflect the differences in their
predictions. According to this study, using saliency
is much more effective than using attention alone.

Another approach to revealing how decisions are
formed across network layers is erasure, where fea-
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tures are deemed irrelevant if their removal has a
minor effect on the prediction. De Cao et al. (2020)
extend this method to learned masking and adapt
it to measure the importance of intermediate states
rather than the inputs. They run the proposed DIFF-
MASK method on BERT (Devlin et al., 2019) and
find that separator tokens play an important role
in the input layer for question answering but not
for sentiment classification, a task where adjectives
and nouns are kept for much longer. Given that
separators serve as delimiters between the ques-
tion and the context, these differences shed light on
the connection between the internal latent structure
and the task, marking a step toward gaining some
understanding of the information flow in the model.

Applying neural models to the NLP domain
poses specific challenges. This opens the way for
research on the extent to which language-specific
characteristics, such as compositionality of mean-
ing, are reflected in the internal representations of
neural networks. The work by Li et al. (2016) lever-
ages several methods including variance-based and
first-derivative saliency (a technique inspired by
back-propagation), to study how models deal with
compositionality of meaning, e.g., negation, in-
tensification and combining meaning from differ-
ent parts of the sentence. The study of recurrent,
LSTM and bi-LSTM networks across time steps
finds that, as decoding proceeds, the task (language
modelling) gradually prevails overbuilding word
representations.

An integrated gradients (Sundararajan et al.,
2017) based method of finding neurons that en-
code individual facts has been proposed by Dai
et al. (2021). This approach builds on the ob-
servation that large pre-trained language models
can remember factual knowledge from the training
corpus. The authors find that knowledge neurons
are located in the feed-forward network of BERT
and view these two-layer perceptron modules as
knowledge memories in the Transformer architec-
ture. The method allows for explicit editing of spe-
cific factual knowledge by manipulating the corre-
sponding knowledge neurons with only a moderate
influence on unrelated knowledge. These findings
are in line with a work by Meng et al. (2022) that
localizes factual knowledge to the feed-forward
layer. Further, this approach makes a distinction
between the notions of knowing and saying a fact
and concludes that, while the feed-forward layers
encode the former, the latter is attended to by the

late self-attention.
Other approaches, e.g. SHAP, DeepLift and

LIME (Lundberg and Lee, 2017; Shrikumar et al.,
2019; Ribeiro et al., 2016) can reveal dependencies
missed by the methods discussed here. In NLP,
the key challenges include performance and, where
applicable, choosing an adequate baseline for word
embeddings. The dynamic progress of research
in natural language processing has led researchers
to review and analyze existing methods of inter-
preting neural models (Belinkov and Glass, 2019;
Danilevsky et al., 2020). While the emerging field
of explainable AI (XAI) is seeing faster growth, a
path for research and discussion on the desired eval-
uation criteria of interpretation methods is opening
up (Jacovi and Goldberg, 2020).

5 Conclusion and Future Directions

In this paper, we provide an overview of research
on network structure, linguistic feature learning,
their training dynamics, and explainability research
that aims to connect network structure and func-
tion. In doing so, we highlight gaps in the liter-
ature and opportunities for future research, both
in each individual research area and as a broad
proposal for grounding research in understanding
large language models. We highlight a few areas
of future research as particularly important given
the gaps in the current literature. For the study of
how, and whether, linguistic structures are learned
by language models, more work is needed to under-
stand the training dynamics of this learning across
a variety of model scales and architectures. More
fundamentally, there is disagreement about what
it means for a model to “encode” linguistic struc-
tures such as syntax, particularly in a multilingual
setting.

More broadly, nascent work on the self-
organization of neurons and subnetwork structures
that emerge during training time has largely not
been applied to LLMs, or neural networks in NLP
more generally. Research in Computer Vision has
shown the existence of emergent functional units
with functions that are semantically meaningful
to humans. In the context of LLMs, such struc-
tures may provide a basis for understanding the
nature of linguistic features that LLMs purportedly
learn, especially when comparing the development
of each during training time. Additional research
is needed to not only determine whether such struc-
tures emerge in LLMs, but also to apply and ex-
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tend the literature on self-organization in complex
systems. This research can also be used for ex-
plainability. Currently, assessment of the quality
of interpretations of the information flow in neu-
ral models is not straightforward. Identification of
modular and emergent structures within networks
may be viewed as a way of moving away from
the binary definition of faithfulness as postulated
by Jacovi and Goldberg (2020). Evidence for the
existence of structures aligning with human per-
ception of language, if found, can help to enable
separate consideration of plausibility from a human
perspective, as proposed in the same study. More
broadly, we propose grounding the study of LLMs
properties in the analysis of the self-organization
of weights and neurons into emergent structures.
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Abstract

Foundation models pre-trained on large corpora
demonstrate significant gains across many natu-
ral language processing tasks and domains e.g.,
law, healthcare, education, etc. However, only
limited efforts have investigated the opportuni-
ties and limitations of applying these powerful
models to science and security applications. In
this work, we develop foundation models of sci-
entific knowledge for chemistry to augment sci-
entists with the advanced ability to perceive and
reason at scale previously unimagined. Specif-
ically, we build large-scale (1.47B parameter)
general-purpose models for chemistry that can
be effectively used to perform a wide range of
in-domain and out-of-domain tasks. Evaluating
these models in a zero-shot setting, we analyze
the effect of model and data scaling, knowledge
depth, and temporality on model performance
in context of model training efficiency.

Our novel findings demonstrate that (1) model
size significantly contributes to the task perfor-
mance when evaluated in a zero-shot setting;
(2) data quality (aka diversity) affects model
performance more than data quantity; (3) sim-
ilarly, unlike previous work (Luu et al., 2021)
temporal order of the documents in the cor-
pus boosts model performance only for specific
tasks, e.g., SciQ; and (4) models pre-trained
from scratch perform better on in-domain tasks
than those tuned from general-purpose models
like Open AI’s GPT-2.

1 Introduction

The emergence of foundation models (Bom-
masani et al., 2021) such as large-scale autoen-
coding models (e.g., BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019)) and autoregressive
language models (e.g., GPT-2 (Radford et al.,
2019), GPT-3 (Brown et al., 2020), Megatron-
Turing (Smith et al., 2022) and Gopher (Rae
et al., 2021)) as well as multimodal vision and
language models, such as FLAVA (Singh et al.,

2021) and Perceiver (Jaegle et al., 2021), estab-
lished a paradigm shift in Artificial Intelligence
(AI). These foundation models, also called neu-
ral platforms, are built using self-supervised pre-
training at scale. They are then able to be easily
adapted to a wide range of downstream tasks via
transfer learning (Bommasani et al., 2021) and fine-
tuning (Lee et al., 2019).

The wide community adoption of foundation
models can be explained by their key properties,
two of which are emergent behavior and homog-
enization – which also make foundation models
appealing for adaption across science and security
domains. Emergence, or emergent behavior, reflect
new behaviors that a model introduces or is capable
of that it was not explicitly trained to perform. Ho-
mogenization is the consolidation of methods for
building machine learning systems across a wide
range of tasks. Another key advantage of scaling
language models is that they perform competitively
on language tasks using in-context learning without
fine-tuning or gradient updates. Thus, in-context
learning allows foundation models to be effectively
used across new downstream tasks with only sim-
ple instructions and a few optional examples.

In this work we focus on a science domain
(chemistry) and demonstrate the value and limi-
tations of large-scale language models evaluated
across a wide range of in-domain (science-focused)
and out-of-domain tasks. Unlike the majority of
work on foundation models that focuses on pre-
training these models on book corpora, web pages,
Wikipedia and mixed sources, e.g., the Pile (Gao
et al., 2020), we pretrain our models on scien-
tific literature. Using scientific literature presents
unique opportunities and challenges. Opportunities
include the scale and diversity of scientific litera-
ture, the explicit structure, and explicit alignment
across different modalities in the papers, e.g., table
and figure references. Challenges include limited
benchmarks that can be used to perform model

160



evaluation, model prompting and interactions.
There are three major contributions of this work:

(1) we collect and release a 0.67TB dataset cover-
ing research publication data across 10+ sources
for chemistry; (2) we release 28 auto-regressive
foundation models for chemistry that have been
pretrained from scratch; and (3) we present a rig-
orous evaluation of model performance on 15+ in-
domain and out-of-domain tasks that investigates
the effects of model and data scaling, knowledge
depth (aka diversity), and temporal order on perfor-
mance as described in research questions below.

(RQ1) Science-Focused Benchmarks What are
the strengths and weaknesses of foundation models
pretrained on scientific literature when evaluated
on out-of-domain vs. in-domain tasks?

(RQ2) Scaling Effect How does model scale af-
fect the downstream performance? Do neural scal-
ing laws presented in (Kaplan et al., 2020) hold for
the foundation models for science?

(RQ3) Diversity Effect How does the depth of
scientific knowledge, e.g., from paper abstracts vs.
full text, affect downstream performance?

(RQ4) Temporal Effect How does the recency
of scientific knowledge, e.g., when manipulating
the temporal order of the documents processed by
the model, affect downstream performance?

2 Related Work

In this section we summarize previous efforts in
two categories: mixed-domain continual pretrain-
ing that continues pretraining of a base model
on domain data and in-domain pretraining from
scratch that pretrains a from scratch on domain
data. We present a model summary in Table 1.

Mixed-Domain Continual Pretraining Many
efforts have focused on continual pretraining of a
BERT (Devlin et al., 2018) base model. Several
models have been developed for the biomedical
domain and the most frequently used corpora for
domain-specific continual preraining are PubMed
abstracts and PubMed Central full-text articles
(PMC) (Lee et al., 2020; Peng et al., 2019; Phan
et al., 2021). In the Chemistry domain, Guo et al.
(2021) performed continual pretraining of a base
BERT model on 200K chemistry journal articles
for product extraction (ChemBERT) and reaction
role labeling (ChemRxnBERT).

In-Domain Pretraining from Scratch Previ-
ous work has shown that pretraining models from
scratch on domain-specific data has a signifi-
cant benefit over continual pretraining of general-
domain language models (Gu et al., 2021). This
is mainly due to the availability of in-domain data
for both generating the vocabulary and pretrain-
ing. SciBERT (Beltagy et al., 2019) is pretrained
according to this procedure using the vocabulary
generated from computer science and biomedical
domains. PubMedBERT (Gu et al., 2021) is an-
other example of pretraining the base BERT model
from scratch using PubMed. Unlike any previous
work, we use both continual and from scratch pre-
training to build the largest foundation model for
Chemistry (1.47B) on the largest (0.67TB) and the
most diverse corpus (10+ sources) collected to date.

3 Model Pretraining

Unlike the majority of related models that rely on a
base BERT (or variant) model, we adapt the Open-
AI’s GPT-2 transformer decoder architecture (Rad-
ford et al., 2019) to train autoregressive language
models for Chemistry. To understand the impact
of model size (RQ2), we experiment with four dif-
ferent Transformer sizes: small (S), medium (M),
large (L), and extra-large (XL). These models dif-
fer in the number of decoder layers, hidden size of
the model, and the number of attention heads in
transformer blocks as shown in Table 2.

Our experiments leverage the GPT-NeoX Python
library (Andonian et al., 2021) developed with
Megatron (Shoeybi et al., 2019) and Deep-
Speed (Rasley et al., 2020). We optimize the au-
toregressive log-likelihood (i.e., cross-entropy loss)
averaged over a 2048-token context. We set the
micro batch size per GPU as 4, and the learning
rate to 2× 10−4, and rely on the cosine decay. We
use an Adam optimizer with β1 = 0.9, β2 = 0.99,
and σ = 10−8 and clip the gradient norm at 1.0.
In addition, ZeRO optimizer (Rajbhandari et al.,
2019) was used to reduce memory footprint by dis-
tributing optimizer states across several processes.

To reduce memory and increase training through-
put, we use mixed-precision training (Rasley et al.,
2020) and the parallel attention and feed-forward
implementations available in GPT-NeoX (Black
et al., 2022). We also use the Rotary positional em-
beddings (Su et al., 2021) instead of the learned po-
sitional embeddings used in the GPT-2 model (Rad-
ford et al., 2019) because they offer performance
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Table 1: Foundation models for science focus on the biomedical, math, computer science and chemistry domains.
We use † to indicate models trained for chemistry.

Model Data Source Pretraining Corpus #Params (B)
Lee et al. 2020 BioBERT Wiki + Books continual pretraining PubMed 0.11

Alsentzer et al. 2019 ClinicalBERT Wiki + Books continual pretraining MIMIC1 0.11
Peng et al. 2019 BlueBERT Wiki + Books continual pretraining PubMed + MIMIC 0.11

Liu et al. 2021 MATH-BERT Arxiv continual pretraining Arxiv 0.11
Guo et al. 2021 Chem(Rxn)BERT † Wiki + Books continual pretraining Chemistry Journals 0.11

Phan et al. 2021 SciFive C4 continual pretraining PubMed 0.22
0.77

Naseem et al. 2021 BioALBERT Wiki + Books continual pretraining PMC + MIMIC-II 0.02
Lewis et al. 2020 BioRoBERTa Wiki + Books continual pretraining PMC + MIMIC-III 0.30
Yuan et al. 2021 KeBioLM PubMed continual pretraining PubMed + UMLS2 0.34

Shin et al. 2020 BioMegatron PubMed from scratch
continual pretraining PubMed 0.80

1.20
Kanakarajan et al. 2021 BioELECTRA PubMed from scratch PubMed 0.11

Miolo et al. 2021 ELECTRAMed PubMed from scratch PubMed 0.11
Beltagy et al. 2019 SciBERT PMC + CS from scratch PMC + CS 0.11

Liu et al. 2021 OAG-BERT OAG from scratch OAG 0.11
Gu et al. 2021 PubMedBERT PubMed from scratch PubMed 0.34

Our Work (autoregressive) † 10+ sources
(Chemistry)

from scratch
continual pretraining

10+ sources
(Chemistry) 1.47

Table 2: Our model configurations: dL is the num-
ber of decoder layers, ddim is the hidden size of the
model, dheads is the number of attention heads. We
compare model configurations between GPT-NeoX and
OpenAI’s GPT-2. GPT-NeoX architecture is originally
from GPT-3 (Brown et al., 2020)

Size Model dL ddim dheads #Params (B)

S GPT-NeoX 12 768 12 0.18GPT-2 12 768 12

M GPT-NeoX 24 1024 16 0.40GPT-2 24 1024 16

L GPT-NeoX 24 1536 16 0.80GPT-2 36 1280 20

XL GPT-NeoX 24 2048 16 1.47GPT-2 48 1600 25

advantages in tasks with longer texts by capturing
relative position dependency in self-attention.

Our models are pretrained across multiple work-
ers with data parallelism. As the largest model in
our experiments fit on a single GPU, we didn’t use
the model (tensor) or pipeline parallelism. Mod-
els are pretrained from scratch for a total of 320K
steps. The original GPT-2 models are fine-tuned
for 150K steps. We perform experiments in a single
DGX-A100 machine with 8 80Gb GPUs.

4 Data Collection and Processing

We collected a large corpus of 53.45 million
chemistry-focused scientific articles and abstracts,
resulting in 670GB of text data. As shown in Ta-
ble 3, our corpus was collected from 10 different
data sources: Arxiv, Aminer (AMiner), CORD-
19 (Wang et al., 2020b), CORE (Pontika et al.,

2016), Microsoft Academic Graph (MAG) (Wang
et al., 2020a), OSTI, PubMed (Gao et al., 2020)
(abstracts and fulltexts), and the Web of Science
(WoS). See Appendix A for full data descriptions.

Table 3: Dataset statistics: combined datasets are after
the de-duplication process. We split datasets to those
that include abstracts 〈A〉 vs. full texts 〈FT〉.

Source #Articles (M) #Tokens (B) Size (Gb)
MAG 〈A〉 34.26 7.43 46
Aminer 〈A〉 18.50 5.80 35
S2ORC 〈A〉 10.44 2.05 32
WoS 〈A〉 7.90 3.31 18
CORD-19 〈A〉 < 0.01 < 0.01 0.2
OSTI 〈A〉 0.05 < 0.01 0.1
Arxiv 〈A〉 0.38 0.04 0.4
PubMed 〈A〉 0.28 0.08 0.5
PubMed 〈FT〉 0.70 7.34 32
CORE 〈FT〉 7.27 215.50 743
Combined 〈A〉 46.94 16.18 67
Combined 〈FT〉 6.52 184.42 603
Combined 〈A+FT〉 53.45 200.61 670

Because the data sources we relied on comprise
research publications from many science domains,
we sampled articles using a list of domain-specific
keywords for chemistry to create the dataset sum-
marized in Table 3. These keywords were ex-
tracted by using a Correlation Explanation (Gal-
lagher et al., 2017) topic model followed by manual
filtering by subject matter experts. This resulted in
a list of more than 1K chemistry-related entities,
ranging from compound names like ethyl acetate,
methyl methacrylate, sulfoxide, etc. to experiment
and procedures like tunneling microscopy, neutral-
ization, enzymatic hydrolysis, etc.
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Figure 1: Summary of data source representation within
the Combined A+F data sample. Coloring illustrates
whether a data source contains peer reviewed (Blue),
mixed (Purple), or not peer reviewed (Red) articles.

Data Cleaning Recent research has shown that
duplicates in training data can significantly impact
the downstream task performance of LLMs (Lee
et al., 2021; Carlini et al., 2022). To this end, we
performed deduplication of our corpus based on
overlap of titles within and across data sources. We
processed titles to strip punctuation and casefold
and considered two articles A1 and A2 to be du-
plicates if they had the same processed title. With
this technique, we were able to remove significant
amounts of duplicate scientific articles both within
and across sources. The deduplication process re-
duced our corpus from 875GB to 670GB (67.8M to
53.5M publications), removing 14.3M duplicates.

Tokenization As used in GPT-2 model, we use a
Byte Pair Encoding (BPE) tokenizer. We train BPE
tokenizers for each data sample with a vocabulary
size of 64K as preliminary experiments varying
vocabulary sizes from 64K to 256K for smaller
scale model pretraining did not show significant
differences in performance. We compare the GPT-
2 vocabulary generated from the WebText and the
in-domain vocabularies generated from our cor-
pora and find that the in-domain vocabulary breaks
chemical entities into fewer tokens. For example,
dimethylnitroxide was tokenized into #dimethyl,
#nitr, #oxide using the in-domain vocabulary and
#dim, #ethyl, #nit, #rox, #ide using the GPT-2 vo-
cabulary.

5 Analysis and Results

This section presents the analysis of 28 pretrained
models evaluated on 15+ in-domain and out-of-
domain downstream tasks (RQ1, Section 5.1). We
investigate the effects of model and data scaling
(RQ2, Section 5.2), knowledge diversity (RQ3, Sec-
tion 5.3), and temporal order (RQ4, Section 5.4) on
the downstream performance. We also compare the
results from continual vs. from scratch pretraining
(Section 5.5) and present the analysis of large-scale
training efficiency (Section 5.6).

Baseline Models As we use a similar model ar-
chitecture, we identify Open AI’s GPT-2 (Radford
et al., 2019) as a baseline comparison model. We
compare our performance with four variants of the
original GPT-2 models, corresponding to small (S),
medium (M), large (L), and extra-large (XL) sized
transformer architectures shown in Table 2. We
note that GPT-2 models were pretrained on Web-
Text – 8 million web documents (40Gb). Thus, we
also include a base GPT-2 model (medium) that
has been updated with continual pretraining using
our Combined 〈A+FT〉 dataset.

Our Models We pretrained models with indi-
vidual datasets (AMiner, CORE, MAG, PubMed,
S2ORC, WOS) and combined abstracts and full-
texts. Our goal is to systematically study data
biases in the model performance when pretrain-
ing models with individual datasets. For example,
PubMed publications cover mostly bio-medicinal
terms (Gu et al., 2021), while the majority of
S2ORC publications are from medicine, biology,
physics, and mathematics (Lo et al., 2020). We
only use 4 GPUs for the models pretrained with
individual datasets and 8 GPUs for the rest. This is
to control the number of tokens seen during model
pretraining (320,000 steps * 4 GPUs * 4 micro
batch size * 2,048 context size = 10B tokens) rel-
ative to the maximum number of tokens available
in the respective datasets (as reported in Table 3).
We also trained one XL (4x) model with 4x larger
batch size than what used in XL model to evaluate
the impact of the number of training tokens.

5.1 Zero-shot Performance

We evaluate our models using several benchmarks
to assess the effectiveness in both in-domain and
out-of-domain tasks. The benchmarks we include
are described in Appendix B. We use the lm-
evaluation-harness Python repository (Gao et al.,
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Table 4: Downstream Zero-shot In-Domain Task Performance. We use ‡ to indicate the baseline model tuned from
the base GPT-2 model. Pile performance is reported using perplexity, with all other tasks reported using accuracy.
We highlight the top-4 performance per task in bold, with top performance indicated with an underline. XL (4x)
model is trained with 4x larger batch size that used in other models.

Model Size HT-HC HT-CC ARC-E ARC-C SciQ OpenBookQA Pile

Baseline

S 0.22 0.25 0.44 0.19 0.75 0.16 96.50
M 0.18 0.27 0.49 0.22 0.77 0.19 61.26
L 0.18 0.28 0.53 0.22 0.80 0.19 48.86
XL 0.18 0.26 0.58 0.25 0.83 0.22 42.29
M‡ 0.19 0.31 0.35 0.19 0.61 0.13 87.57

AMiner

S 0.18 0.27 0.43 0.21 0.70 0.17 38.40
M 0.18 0.34 0.45 0.20 0.74 0.16 30.55
L 0.23 0.34 0.49 0.23 0.78 0.18 24.18
XL 0.23 0.34 0.50 0.23 0.77 0.17 25.52

CORE

S 0.19 0.28 0.36 0.19 0.69 0.15 78.24
M 0.22 0.34 0.40 0.20 0.71 0.15 59.19
L 0.17 0.30 0.41 0.19 0.75 0.14 52.95
XL 0.20 0.28 0.47 0.21 0.78 0.15 39.46

MAG

S 0.24 0.28 0.41 0.20 0.66 0.17 38.03
M 0.18 0.27 0.45 0.21 0.68 0.17 30.88
L 0.19 0.36 0.51 0.24 0.80 0.18 24.78
XL 0.20 0.36 0.50 0.22 0.80 0.20 26.09

PubMed-F

S 0.26 0.30 0.41 0.20 0.60 0.16 56.03
M 0.19 0.27 0.43 0.21 0.68 0.18 45.69
L 0.18 0.28 0.43 0.22 0.74 0.17 37.22
XL 0.18 0.27 0.48 0.21 0.77 0.16 35.14

S2ORC

S 0.26 0.33 0.31 0.21 0.31 0.17 59.20
M 0.27 0.22 0.33 0.18 0.31 0.16 45.60
L 0.28 0.23 0.32 0.21 0.31 0.17 42.14
XL 0.24 0.31 0.33 0.19 0.30 0.18 42.35

WoS

S 0.22 0.31 0.33 0.22 0.37 0.17 54.41
M 0.25 0.32 0.32 0.20 0.34 0.16 48.31
L 0.27 0.30 0.32 0.21 0.37 0.17 46.44
XL 0.23 0.34 0.34 0.21 0.39 0.16 45.86

Combined-A XL 0.17 0.28 0.54 0.23 0.83 0.18 22.77
Combined-F XL 0.20 0.30 0.48 0.21 0.79 0.15 40.18
Combined-A+F XL 0.18 0.30 0.48 0.22 0.79 0.17 31.03
Combined-A+F XL (4x) 0.18 0.25 0.55 0.24 0.84 0.17 23.01

2021) for the benchmark implementation.

In-domain Evaluation We consider five exist-
ing chemistry benchmarks, specifically Hendryck-
sTest (Hendrycks et al., 2020) for high school
(HT-HC) and college (HT-CC) levels, and science-
focused – ARC (Clark et al., 2018), SciQ (Welbl
et al., 2017), OpenBookQA (Mihaylov et al., 2018),
Pile-PubMed-Abstracts (Gao et al., 2020)). As
shown in Table 4, one or more of our models outper-
form baseline GPT-2 models for the two chemistry
tasks, general science QA (SciQ) and the science-
focused language modelling. Of the remaining
tasks, our models perform within 1-4% of GPT-2
baselines.

Out-of-domain Evaluation We evaluate out-
of-domain performance using 9 commonly used
LLM benchmarks: BoolQ (Clark et al., 2019),
CB (De Marneffe et al., 2019), WIC (Pilehvar and
Camacho-Collados, 2018), WSC (Levesque et al.,

2012), MathQA (Amini et al., 2019), PIQA (Bisk
et al., 2020), PubMedQA (Jin et al., 2019), Lam-
bada (Paperno et al., 2016) and WikiText (Merity
et al., 2016). As shown in Table 5, our models out-
perform baseline GPT-2 models for CB, WIC and
WSC and match the best accuracy for BoolQ but
the GPT-2 baselines outperform on the remaining
tasks, particularly Lambada and Wikitext – the two
general language modeling tasks.

5.2 Scaling Effect

Previous work (Kaplan et al., 2020) has shown that
upstream cross entropy loss scales as a power-law
with model size, dataset size, and the amount of
compute. In this section, we revisit these claims on
scaling Transformer architectures.

Analyzing upstream cross entropy loss Dur-
ing pretraining, we group each dataset into train-
ing/validation/test (949/50/1) splits. We report the
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Table 5: Downstream Out-of-domain Task Performance. We use ‡ to indicate the baseline model tuned from the base
GPT-2 model. Performance on Lambada and Wikitext is reported using perplexity, all other tasks report accuracy .
Top-4 performance highlighted in bold, with best performance indicated with underlines. XL (4x) model is trained
with 4x larger batch size that used in other models.

Model Size BoolQ CB WIC WSC MathQA PIQA PubMedQA Lambada Wikitext

Baseline

S 0.49 0.41 0.49 0.43 0.21 0.63 0.44 40.06 37.37
M 0.59 0.43 0.50 0.40 0.23 0.68 0.53 18.25 26.75
L 0.60 0.45 0.50 0.46 0.23 0.70 0.54 12.97 22.61
XL 0.61 0.39 0.50 0.50 0.24 0.71 0.59 10.63 20.38
M‡ 0.62 0.34 0.50 0.36 0.20 0.55 0.55 2834.51 126.55

AMiner

S 0.41 0.39 0.50 0.44 0.22 0.56 0.46 2825.84 158.85
M 0.40 0.39 0.51 0.41 0.21 0.57 0.43 1802.35 116.93
L 0.61 0.48 0.50 0.47 0.22 0.58 0.36 661.81 87.23
XL 0.50 0.39 0.50 0.37 0.21 0.58 0.43 786.22 91.28

CORE

S 0.62 0.41 0.50 0.37 0.20 0.55 0.55 671.43 100.53
M 0.62 0.41 0.50 0.37 0.21 0.56 0.55 273.06 77.96
L 0.61 0.41 0.50 0.37 0.21 0.57 0.51 173.15 69.62
XL 0.61 0.38 0.50 0.37 0.22 0.58 0.45 79.95 50.47

MAG

S 0.41 0.23 0.50 0.40 0.21 0.56 0.43 1142.83 118.40
M 0.38 0.07 0.50 0.37 0.21 0.57 0.41 628.72 91.36
L 0.51 0.14 0.50 0.35 0.22 0.59 0.39 282.39 67.74
XL 0.40 0.11 0.51 0.62 0.22 0.59 0.34 364.54 70.71

PubMed-F

S 0.58 0.41 0.50 0.45 0.21 0.57 0.54 2670.39 148.88
M 0.61 0.39 0.50 0.38 0.20 0.58 0.49 1742.00 119.74
L 0.57 0.41 0.50 0.38 0.21 0.59 0.42 843.83 95.75
XL 0.60 0.41 0.50 0.39 0.22 0.59 0.49 679.80 90.38

S2ORC

S 0.38 0.41 0.50 0.63 0.20 0.57 0.34 122739.30 403.48
M 0.38 0.43 0.50 0.63 0.22 0.56 0.34 80151.10 330.56
L 0.38 0.46 0.50 0.63 0.21 0.56 0.34 89136.68 327.53
XL 0.38 0.50 0.50 0.63 0.20 0.56 0.33 107065.48 351.81

WoS

S 0.38 0.39 0.50 0.63 0.21 0.55 0.34 140552.69 556.00
M 0.38 0.45 0.50 0.63 0.19 0.54 0.34 182967.37 498.36
L 0.41 0.36 0.47 0.54 0.21 0.56 0.42 148609.73 480.91
XL 0.57 0.34 0.50 0.37 0.20 0.55 0.56 192970.64 509.06

Combined-A XL 0.56 0.16 0.50 0.37 0.21 0.60 0.50 250.88 61.07
Combined-F XL 0.62 0.38 0.50 0.37 0.22 0.57 0.55 72.50 48.96
Combined-A+F XL 0.61 0.41 0.50 0.39 0.23 0.59 0.48 71.43 48.65
Combined-A+F XL (4x) 0.61 0.41 0.50 0.37 0.24 0.60 0.56 30.40 33.05

model performance on validation data using cross
entropy loss in nats. This measure will be averaged
over the 2048-token context. We find that the cross
entropy loss decreases as we increase the model
size (as shown in Figure 2). Larger models reach
a given loss value in a higher rate than the smaller
models. This observation illustrates the relation-
ship between model performance (as measured by
the upstream cross entropy loss) and model size,
confirming (Kaplan et al., 2020).

Analyzing downstream task performance Can
we speculate downstream task performance of a
model from the pretraining performance? First, we
find that the models perform considerably well on
Pile in comparison to the Lambada or WikiText.
There is a 48% performance advantage in this task
over the best performing baseline GPT-2 model.
This may be due to the models capturing scientific
language better than general language. It is im-

Figure 2: Distribution of validation loss by model size:
performance improves as the model size increases.

portant to note that we exclude PubMed Abstracts
in the individual data collection to avoid potential
contamination between the training and Pile testing
data. As shown in Table 4, larger models perform
well on these language modeling tasks.

Second, we noticed that the XL (4x) model
trained for more tokens performs significantly bet-
ter than the similar sized XL model. Specifically,
XL (4x) model was trained with 128 total batch
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size compared to the 32 total batch size used in XL
model. XL (4x) model achieves the lowest Lam-
bada and WikiText perplexity values across all our
models trained from scratch (as shown in Table 5).
The same model also achieves the best SciQ perfor-
mance with 0.84 accuracy and comparable in other
tasks performance with the XL model. This experi-
ment highlights the importance of training models
with larger batch size. We note that the baseline
models (Radford et al., 2019) were trained with 4x
larger batch size (total batch size 512) than what
used in XL (4x) model. We believe that the XL
(4x) model can reach the similar perplexity values
when trained for this data scale.

Third, we find that zero-shot task performance
in SciQ, HT-CC and ARC-E increases as we in-
crease the model size (see Table 5). However, there
is no clear relationship between the task perfor-
mance and the model sizes in the rest of bench-
mark datasets. We suggest that pretraining perfor-
mance may not be the ideal indicator to speculate
the overall downstream task performance, espe-
cially in the zero-shot setting. However, model size
significantly contributes to the task performance.

5.3 Diversity Effect

While abstracts often provide a summary of scien-
tific publications, the full text contains more details.
In this section, we analyze the performance of mod-
els trained on paper abstracts versus full texts.

First, the XL models trained with the combined
abstract dataset achieve the lowest perplexity score
(22.77) on the Pile – a 45% performance advantage
over the full text version. There are might be sev-
eral factors that contribute to this, but one may be
the focused language in abstracts.

Second, the model trained with the combined
abstracts achieves the second best accuracy (0.83
in comparison to 0.79 for the full text model) in
SciQ. Some of the models pretrained on individual
abstract data achieve comparable performance in
SciQ, e.g., MAG and AMiner models achieve 0.8
and 0.78 accuracy, respectively. We believe the
diversity of scientific knowledge provided from the
abstract data is useful since SciQ questions span
biology, chemistry, earth science, and physics.

Third, we compare model performance trained
with abstracts vs. full texts in the HT task and see
that the best accuracy is achieved using the MAG
and S2ORC datasets rather than the combined ab-
stracts. This suggests the importance of contextual

knowledge provided by different data sources.
Finally, combined full text model performs better

than the model trained with the abstracts in all out-
of-domain tasks except PIQA. This performance
difference may be due to the more expressive and
diverse language presented in the full texts than in
the abstracts. Thus, expanding full text coverage
may improve out-of-domain task generalization.

5.4 Temporal Effect

Scientific knowledge evolves over time reflecting
new research ideas, innovations, and findings. In
this section, we test how continual pretraining on
temporal-aligned scientific publications impacts
downstream performance. For this experiment,
we maintain two variants of the MAG dataset
with random-ordered and temporal-ordered articles,
splitting each into ten equal subsets. We continue
pretraining a base medium (M) sized model itera-
tively with the subsets in the order they appeared
in the respective data variant. For example, in the
temporally-aligned experiments, we first pretrain a
model with 3.4M (10%) articles from before 1978,
and then use it as the base model to continue pre-
training with another 3.4M (10%) articles from
between 1978 and 1989. We train the initial model
for 150K steps and each subsequent model for 10K
steps with additional data. Figure 3 shows the per-
formance of model checkpoints across in-domain
and out-of-domain tasks.

There are two key findings. First, SciQ and ARC-
E zero-shot task performances improve over time
with the models trained with temporally-ordered
scientific texts (as shown in Figure 3b). For ex-
ample, SciQ accuracy improves from 0.64 to 0.73
from the base model checkpoint to the final model
checkpoint. Similarly, ARC-E accuracy improves
from 0.43 to 0.45. This is due to the temporal order
of the knowledge acquired by the model. When the
model was pretrained with random-ordered data
subsets, we observe only a slight (< 1%) perfor-
mance increase (as shown in Figure 3a).

There are mixed patterns in performance across
out-of-domain tasks. For example, a slight per-
formance increase in the PIQA, CB, PubMedQA,
and WIC over time with the models trained with
temporally-ordered scientific texts. On the other
hand, there is a performance drop in the BoolQ
and WSC over time. This may be due to the
catastrophic forgetting prevalent in continual learn-
ing (Ramasesh et al., 2021). Future work will in-

166



(a) Random Order (b) Temporal Order

Figure 3: The effect of temporal order of publications during pretraining. We align publications in the MAG corpus
by year and split them into ten equal subsets. We repeat the process in a randomly-ordered corpus for comparison,
recording model checkpoints after performing continual pretraining on each data subset.

vestigate other confounding factors that may con-
tribute to this performance patterns.

5.5 Continual vs. From Scratch Pretraining

In this section, we test whether the continual pre-
training of a base GPT model with additional
domain-specific data is helpful in the downstream
task performance. We report the zero-shot perfor-
mance of the tuned model across in-domain (Ta-
ble 4) and out-of-domain (Table 5) tasks. We have
two main observations from this experiment.

First, fine-tuned models fall behind other base-
lines in a majority of in-domain tasks. HT-CC is
the only in-domain task that the tuned model out-
performs the rest of models, yet fails to outperform
the best performing model trained from scratch.

Second, fine-tuned models have a significant per-
formance drop in the general language modeling
tasks (Lambada and Wikitext). For example, the
tuned model records 6x performance drop in the
Wikitext compared to the best performing model.
There are several factors in the continual pretrain-
ing that may contribute to this. As the tuned model
uses the original GPT-2 vocabulary, it must use the
fragmented general subwords to tokenize the chem-
istry terms available in our corpora. On the other
hand, the tuned model starts with the suboptimal
initialization from the general-domain language
model (Gu et al., 2021). This initialization may
diverge the model in the optimization process that
may not be recovered.

5.6 Training Efficiency

We use several dimensions to describe the training
efficiency, i.e., #FLOPs, throughput (speed), and
memory. We compare these compute dimensions

(a) GPU computation in #Floating Point Operations

(b) GPU Memory Allocation

Figure 4: GPU system performance during pretraining.

across the four model sizes described in the Ta-
ble 2. The smallest (S) model has 59% FLOPs of
the largest (XL) model, twice the speed (steps/s),
32% per device GPU memory savings, and 76% to-
tal parameter savings (see Figure 4). With such
compute budget, small (S) models only outper-
forms the XL model in 21% in-domain and 34%
out-of-domain evaluation tasks. This suggests the
importance of compute budget required in scaling
foundation models.

6 Conclusions

In this paper, we collected and released 0.67TB
of research publication data collected across 10+
sources for chemistry. We pretrained and released
25+ foundation models for chemistry. We rig-
orously analyzed model performance on 15+ in-
domain and out-of-domain tasks.
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A Data Descriptions

AMiner ArnetMiner (AMiner) is a service that
crawls research publications, performs profile ex-
traction of scientists, models academic networks
by integrating publication data from the existing li-
braries. For the experiments described in this work,
we use a sub-sampled version of the data presented
in the Open Academic Graph (OAG) version of the
AMiner dataset, which originally consisted of more
that 172M articles, with 18.5M chemistry-related
abstracts.

CORE COnnecting REpositories (CORE) (Pon-
tika et al., 2016) is a large-scale aggregation sys-
tem which provides an open access to the global
network of scientific journals and publications.
CORE currently contains more than 207M open-
access articles collected from over 10 thousand data
providers, out of which more than 92M are open ac-
cess full-text research papers. We sub-sampled the
original collect into our chemistry-specific corpus
consisting of more than 7M full-text articles.

CORD-19 CORD-19 corpus contains COVID-
19 (Cord19) and other coronavirus-related publi-
cations (e.g. SARS, MERS, etc.) from PubMed’s
PMC open access corpus, bioRxiv, and medRxiv
pre-prints, in addition to COVID-19 articles main-
tained by the World Health Organization (WHO).

MAG Microsoft Academic Graph (MAG) is a
heterogeneous graph created by extracting knowl-
edge from scholarly publications on the web (Wang
et al., 2020a). The data used in this work is a sub-
sample from the OAG version of the MAG dataset,
which originally consisted of > 208M articles, with
34M chemistry-related articles with abstracts.

PubMed PubMed is a domain-specific data
source that allows for search and retrieval of the
biomedical and life sciences literature. It is main-
tained by the National Centre for Biotechnology
Information (NCBI) at the U.S. National Library
of Medicine (NLM). For this work we utilized the
PubMed Central data provided in the Pile corpus
(Gao et al., 2020). As presented in Table 3 the
sub-sampled data consists of documents with more
than 280K abstracts and 700K full text articles.

S2ORC The Semantic Scholar Open Research
Corpus (S2ORC) (Lo et al., 2020) is a large aca-
demic corpus consisting of 81.1M documents. The
data includes the metadata, abstracts, bibliograph-
ical references and full-text publications for over

8M open access research articles. In this work, we
utilize the sub-sampled version of the original data
specific to chemistry, which includes more than
10M abstracts.

WoS The Web of Science (WoS) is a multi-
discipline citation database produced by the In-
stitute of Scientific Information. The platform
hosts over 171M records across various disciplines,
which, when sub-sampled for our chemistry do-
main, rounded to more than 7M records with ab-
stracts available.

B Task Descriptions

HendrycksTest-Chemistry The Hendrycks
Test (Hendrycks et al., 2020) is a large scale
collection of multiple choice questions covering 57
subjects. In our experiments, we subsampled col-
lege chemistry (HT-CC) and high school chemistry
(HT-HC). HT-CC contains 100 questions related to
analytical, organic, inorganic, physical, etc. and
HT-HC contains 203 questions related chemical
reactions, ions, acids and bases, etc.

ARC The ARC dataset (Clark et al., 2018) con-
tains 7,787 genuine grade-school level, science
MCQs and is partitioned into a Challenge Set
(ARC-C) and an Easy Set (ARC-E). Additionally,
14M science-related sentences are provided with
relevant knowledge to answer the ARC questions.

SciQ The SciQ dataset (Welbl et al., 2017) con-
tains 13,679 crowdsourced multiple-choice science
exam questions about Physics, Chemistry and Bi-
ology, among others.

OpenBookQA The OpenBookQA (Mihaylov
et al., 2018) dataset consists of 5,957 multiple
choice questions and 1,326 elementary-level sci-
ence facts. The facts alone do not contain enough
information to correctly answer the multiple choice
questions, therefore the task is designed to evaluate
systems beyond paraphrase matching.

Pile PubMed Abstracts The Pile dataset (Gao
et al., 2020) contains 800GB of diverse text sources
for benchmarking language models. We limit
this task to only include abstracts from the Pile’s
PubMed collection. As this is framed as a language
modeling task, we report word level perplexity.

BoolQ BoolQ (Clark et al., 2019) is a reading
comprehension dataset comprised of 16k real, nat-
urally formed queries to the Google search engine
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with a yes or no answer. Each question-answer pair
is accompanied by a Wikipedia article providing
evidence to support the correct answer.

CB Commitment Bank (CB) (De Marneffe et al.,
2019) is a 3-way classification of textual entail-
ment (true, false, unknown) from 1,200 short text
segments where at least one sentence contains an
embedded clause. The dataset contains passages
from three sources: the Wall Street Journal, the
British National Corpus, and Switchboard.

WIC The Word-in-Context dataset (WIC) (Pile-
hvar and Camacho-Collados, 2018) is a benchmark
for evaluating context-sensitive word embeddings.
The task is to classify if a target word has the same
meaning in two context sentence.

WSC The Winograd Schema Challenge
(WSC) (Levesque et al., 2012) dataset is a
collection of 804 sentences in which the task is to
resolve coreferences.

MathQA MathQA (Amini et al., 2019) is a
dataset containing 37k multiple choice math
word problems built from the existing dataset,
AQuA (Ling et al., 2017).

PIQA The Physical Interactions: Question An-
swering (PIQA) (Bisk et al., 2020) benchmark
dataset provides 21k questions about the physical
world and plausible interactions encountered by
humans. Annotators provided correct and incor-
rect answers to questions extracted from instructa-
bles.com, a website of instructions for completing
many everyday tasks.

PubMedQA The PubMedQA dataset (Jin et al.,
2019) is a collection of 273.5k biomedical re-
search questions and related PubMed articles with
yes/no/maybe answers.

Lambada Lambada (Paperno et al., 2016) con-
tains passages and target sentences from 5,325 nov-
els collected from Book Corpus (Zhu et al., 2015),
and the goal is to predict the last word of the target
sentence given the context passage. This task was
designed to test genuine language understanding
since accurate prediction of the final word would
be improbable without the context passage.

WikiText The Wikitext benchmark (Merity et al.,
2016) is a language modeling dataset of 29k articles
from Wikipedia. Only articles classified as Good or
Featured by Wikipedia editors are included since

they are considered to be well written and neutral
in language. All results are reported on Wikitext-2.
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Névéol, Aurélie, 26

Ott, Simon, 137

Pelloin, Valentin, 17
Peng, Xiaochang, 51
Phang, Jason, 95
Pieler, Michael Martin, 95
Prashanth, Usvsn Sai, 95
Purohit, Shivanshu, 95

Radev, Dragomir, 26
Ren, Xiang, 1, 51
Reynolds, Laria, 95

Samwald, Matthias, 137
Sanjabi, Maziar, 51
Schweter, Stefan, 75
Seelam, Natasha, 137, 146
Serikov, Oleg, 146
Sharma, Shanya, 26
Sharma, Shivam, 160
Su, Ruisi, 137
Subramanian, Megha, 160
Subramonian, Arjun, 26
Suzuki, Jun, 42
Szczechla, Eliza, 146

173



Tae, Jaesung, 26
Talat, Zeerak, 26
Tan, Liang, 51
Tan, Samson, 26
Teehan, Ryan, 146
Tow, Jonathan, 95
Tunuguntla, Deepak, 26

Van Der Wal, Oskar, 26
Van Strien, Daniel, 75
Vasquez, Scott, 160
Volkova, Svitlana, 160

Wang, Ben, 95
Wang, Bo, 137
Weber, Leon, 137
Wei, Xiaokai, 1
Weinbach, Samuel, 95

Xiao, Wei, 1

Zhang, Dejiao, 1
Zhu, Henghui, 1

174


