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Abstract

Foundation models pre-trained on large corpora
demonstrate significant gains across many natu-
ral language processing tasks and domains e.g.,
law, healthcare, education, etc. However, only
limited efforts have investigated the opportuni-
ties and limitations of applying these powerful
models to science and security applications. In
this work, we develop foundation models of sci-
entific knowledge for chemistry to augment sci-
entists with the advanced ability to perceive and
reason at scale previously unimagined. Specif-
ically, we build large-scale (1.47B parameter)
general-purpose models for chemistry that can
be effectively used to perform a wide range of
in-domain and out-of-domain tasks. Evaluating
these models in a zero-shot setting, we analyze
the effect of model and data scaling, knowledge
depth, and temporality on model performance
in context of model training efficiency.

Our novel findings demonstrate that (1) model
size significantly contributes to the task perfor-
mance when evaluated in a zero-shot setting;
(2) data quality (aka diversity) affects model
performance more than data quantity; (3) sim-
ilarly, unlike previous work (Luu et al., 2021)
temporal order of the documents in the cor-
pus boosts model performance only for specific
tasks, e.g., SciQ; and (4) models pre-trained
from scratch perform better on in-domain tasks
than those tuned from general-purpose models
like Open AI’s GPT-2.

1 Introduction

The emergence of foundation models (Bom-
masani et al., 2021) such as large-scale autoen-
coding models (e.g., BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019)) and autoregressive
language models (e.g., GPT-2 (Radford et al.,
2019), GPT-3 (Brown et al., 2020), Megatron-
Turing (Smith et al., 2022) and Gopher (Rae
et al., 2021)) as well as multimodal vision and
language models, such as FLAVA (Singh et al.,

2021) and Perceiver (Jaegle et al., 2021), estab-
lished a paradigm shift in Artificial Intelligence
(AI). These foundation models, also called neu-
ral platforms, are built using self-supervised pre-
training at scale. They are then able to be easily
adapted to a wide range of downstream tasks via
transfer learning (Bommasani et al., 2021) and fine-
tuning (Lee et al., 2019).

The wide community adoption of foundation
models can be explained by their key properties,
two of which are emergent behavior and homog-
enization – which also make foundation models
appealing for adaption across science and security
domains. Emergence, or emergent behavior, reflect
new behaviors that a model introduces or is capable
of that it was not explicitly trained to perform. Ho-
mogenization is the consolidation of methods for
building machine learning systems across a wide
range of tasks. Another key advantage of scaling
language models is that they perform competitively
on language tasks using in-context learning without
fine-tuning or gradient updates. Thus, in-context
learning allows foundation models to be effectively
used across new downstream tasks with only sim-
ple instructions and a few optional examples.

In this work we focus on a science domain
(chemistry) and demonstrate the value and limi-
tations of large-scale language models evaluated
across a wide range of in-domain (science-focused)
and out-of-domain tasks. Unlike the majority of
work on foundation models that focuses on pre-
training these models on book corpora, web pages,
Wikipedia and mixed sources, e.g., the Pile (Gao
et al., 2020), we pretrain our models on scien-
tific literature. Using scientific literature presents
unique opportunities and challenges. Opportunities
include the scale and diversity of scientific litera-
ture, the explicit structure, and explicit alignment
across different modalities in the papers, e.g., table
and figure references. Challenges include limited
benchmarks that can be used to perform model
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evaluation, model prompting and interactions.
There are three major contributions of this work:

(1) we collect and release a 0.67TB dataset cover-
ing research publication data across 10+ sources
for chemistry; (2) we release 28 auto-regressive
foundation models for chemistry that have been
pretrained from scratch; and (3) we present a rig-
orous evaluation of model performance on 15+ in-
domain and out-of-domain tasks that investigates
the effects of model and data scaling, knowledge
depth (aka diversity), and temporal order on perfor-
mance as described in research questions below.

(RQ1) Science-Focused Benchmarks What are
the strengths and weaknesses of foundation models
pretrained on scientific literature when evaluated
on out-of-domain vs. in-domain tasks?

(RQ2) Scaling Effect How does model scale af-
fect the downstream performance? Do neural scal-
ing laws presented in (Kaplan et al., 2020) hold for
the foundation models for science?

(RQ3) Diversity Effect How does the depth of
scientific knowledge, e.g., from paper abstracts vs.
full text, affect downstream performance?

(RQ4) Temporal Effect How does the recency
of scientific knowledge, e.g., when manipulating
the temporal order of the documents processed by
the model, affect downstream performance?

2 Related Work

In this section we summarize previous efforts in
two categories: mixed-domain continual pretrain-
ing that continues pretraining of a base model
on domain data and in-domain pretraining from
scratch that pretrains a from scratch on domain
data. We present a model summary in Table 1.

Mixed-Domain Continual Pretraining Many
efforts have focused on continual pretraining of a
BERT (Devlin et al., 2018) base model. Several
models have been developed for the biomedical
domain and the most frequently used corpora for
domain-specific continual preraining are PubMed
abstracts and PubMed Central full-text articles
(PMC) (Lee et al., 2020; Peng et al., 2019; Phan
et al., 2021). In the Chemistry domain, Guo et al.
(2021) performed continual pretraining of a base
BERT model on 200K chemistry journal articles
for product extraction (ChemBERT) and reaction
role labeling (ChemRxnBERT).

In-Domain Pretraining from Scratch Previ-
ous work has shown that pretraining models from
scratch on domain-specific data has a signifi-
cant benefit over continual pretraining of general-
domain language models (Gu et al., 2021). This
is mainly due to the availability of in-domain data
for both generating the vocabulary and pretrain-
ing. SciBERT (Beltagy et al., 2019) is pretrained
according to this procedure using the vocabulary
generated from computer science and biomedical
domains. PubMedBERT (Gu et al., 2021) is an-
other example of pretraining the base BERT model
from scratch using PubMed. Unlike any previous
work, we use both continual and from scratch pre-
training to build the largest foundation model for
Chemistry (1.47B) on the largest (0.67TB) and the
most diverse corpus (10+ sources) collected to date.

3 Model Pretraining

Unlike the majority of related models that rely on a
base BERT (or variant) model, we adapt the Open-
AI’s GPT-2 transformer decoder architecture (Rad-
ford et al., 2019) to train autoregressive language
models for Chemistry. To understand the impact
of model size (RQ2), we experiment with four dif-
ferent Transformer sizes: small (S), medium (M),
large (L), and extra-large (XL). These models dif-
fer in the number of decoder layers, hidden size of
the model, and the number of attention heads in
transformer blocks as shown in Table 2.

Our experiments leverage the GPT-NeoX Python
library (Andonian et al., 2021) developed with
Megatron (Shoeybi et al., 2019) and Deep-
Speed (Rasley et al., 2020). We optimize the au-
toregressive log-likelihood (i.e., cross-entropy loss)
averaged over a 2048-token context. We set the
micro batch size per GPU as 4, and the learning
rate to 2× 10−4, and rely on the cosine decay. We
use an Adam optimizer with β1 = 0.9, β2 = 0.99,
and σ = 10−8 and clip the gradient norm at 1.0.
In addition, ZeRO optimizer (Rajbhandari et al.,
2019) was used to reduce memory footprint by dis-
tributing optimizer states across several processes.

To reduce memory and increase training through-
put, we use mixed-precision training (Rasley et al.,
2020) and the parallel attention and feed-forward
implementations available in GPT-NeoX (Black
et al., 2022). We also use the Rotary positional em-
beddings (Su et al., 2021) instead of the learned po-
sitional embeddings used in the GPT-2 model (Rad-
ford et al., 2019) because they offer performance
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Table 1: Foundation models for science focus on the biomedical, math, computer science and chemistry domains.
We use † to indicate models trained for chemistry.

Model Data Source Pretraining Corpus #Params (B)
Lee et al. 2020 BioBERT Wiki + Books continual pretraining PubMed 0.11

Alsentzer et al. 2019 ClinicalBERT Wiki + Books continual pretraining MIMIC1 0.11
Peng et al. 2019 BlueBERT Wiki + Books continual pretraining PubMed + MIMIC 0.11

Liu et al. 2021 MATH-BERT Arxiv continual pretraining Arxiv 0.11
Guo et al. 2021 Chem(Rxn)BERT † Wiki + Books continual pretraining Chemistry Journals 0.11

Phan et al. 2021 SciFive C4 continual pretraining PubMed 0.22
0.77

Naseem et al. 2021 BioALBERT Wiki + Books continual pretraining PMC + MIMIC-II 0.02
Lewis et al. 2020 BioRoBERTa Wiki + Books continual pretraining PMC + MIMIC-III 0.30
Yuan et al. 2021 KeBioLM PubMed continual pretraining PubMed + UMLS2 0.34

Shin et al. 2020 BioMegatron PubMed from scratch
continual pretraining PubMed 0.80

1.20
Kanakarajan et al. 2021 BioELECTRA PubMed from scratch PubMed 0.11

Miolo et al. 2021 ELECTRAMed PubMed from scratch PubMed 0.11
Beltagy et al. 2019 SciBERT PMC + CS from scratch PMC + CS 0.11

Liu et al. 2021 OAG-BERT OAG from scratch OAG 0.11
Gu et al. 2021 PubMedBERT PubMed from scratch PubMed 0.34

Our Work (autoregressive) † 10+ sources
(Chemistry)

from scratch
continual pretraining

10+ sources
(Chemistry) 1.47

Table 2: Our model configurations: dL is the num-
ber of decoder layers, ddim is the hidden size of the
model, dheads is the number of attention heads. We
compare model configurations between GPT-NeoX and
OpenAI’s GPT-2. GPT-NeoX architecture is originally
from GPT-3 (Brown et al., 2020)

Size Model dL ddim dheads #Params (B)

S GPT-NeoX 12 768 12 0.18GPT-2 12 768 12

M GPT-NeoX 24 1024 16 0.40GPT-2 24 1024 16

L GPT-NeoX 24 1536 16 0.80GPT-2 36 1280 20

XL GPT-NeoX 24 2048 16 1.47GPT-2 48 1600 25

advantages in tasks with longer texts by capturing
relative position dependency in self-attention.

Our models are pretrained across multiple work-
ers with data parallelism. As the largest model in
our experiments fit on a single GPU, we didn’t use
the model (tensor) or pipeline parallelism. Mod-
els are pretrained from scratch for a total of 320K
steps. The original GPT-2 models are fine-tuned
for 150K steps. We perform experiments in a single
DGX-A100 machine with 8 80Gb GPUs.

4 Data Collection and Processing

We collected a large corpus of 53.45 million
chemistry-focused scientific articles and abstracts,
resulting in 670GB of text data. As shown in Ta-
ble 3, our corpus was collected from 10 different
data sources: Arxiv, Aminer (AMiner), CORD-
19 (Wang et al., 2020b), CORE (Pontika et al.,

2016), Microsoft Academic Graph (MAG) (Wang
et al., 2020a), OSTI, PubMed (Gao et al., 2020)
(abstracts and fulltexts), and the Web of Science
(WoS). See Appendix A for full data descriptions.

Table 3: Dataset statistics: combined datasets are after
the de-duplication process. We split datasets to those
that include abstracts 〈A〉 vs. full texts 〈FT〉.

Source #Articles (M) #Tokens (B) Size (Gb)
MAG 〈A〉 34.26 7.43 46
Aminer 〈A〉 18.50 5.80 35
S2ORC 〈A〉 10.44 2.05 32
WoS 〈A〉 7.90 3.31 18
CORD-19 〈A〉 < 0.01 < 0.01 0.2
OSTI 〈A〉 0.05 < 0.01 0.1
Arxiv 〈A〉 0.38 0.04 0.4
PubMed 〈A〉 0.28 0.08 0.5
PubMed 〈FT〉 0.70 7.34 32
CORE 〈FT〉 7.27 215.50 743
Combined 〈A〉 46.94 16.18 67
Combined 〈FT〉 6.52 184.42 603
Combined 〈A+FT〉 53.45 200.61 670

Because the data sources we relied on comprise
research publications from many science domains,
we sampled articles using a list of domain-specific
keywords for chemistry to create the dataset sum-
marized in Table 3. These keywords were ex-
tracted by using a Correlation Explanation (Gal-
lagher et al., 2017) topic model followed by manual
filtering by subject matter experts. This resulted in
a list of more than 1K chemistry-related entities,
ranging from compound names like ethyl acetate,
methyl methacrylate, sulfoxide, etc. to experiment
and procedures like tunneling microscopy, neutral-
ization, enzymatic hydrolysis, etc.
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Figure 1: Summary of data source representation within
the Combined A+F data sample. Coloring illustrates
whether a data source contains peer reviewed (Blue),
mixed (Purple), or not peer reviewed (Red) articles.

Data Cleaning Recent research has shown that
duplicates in training data can significantly impact
the downstream task performance of LLMs (Lee
et al., 2021; Carlini et al., 2022). To this end, we
performed deduplication of our corpus based on
overlap of titles within and across data sources. We
processed titles to strip punctuation and casefold
and considered two articles A1 and A2 to be du-
plicates if they had the same processed title. With
this technique, we were able to remove significant
amounts of duplicate scientific articles both within
and across sources. The deduplication process re-
duced our corpus from 875GB to 670GB (67.8M to
53.5M publications), removing 14.3M duplicates.

Tokenization As used in GPT-2 model, we use a
Byte Pair Encoding (BPE) tokenizer. We train BPE
tokenizers for each data sample with a vocabulary
size of 64K as preliminary experiments varying
vocabulary sizes from 64K to 256K for smaller
scale model pretraining did not show significant
differences in performance. We compare the GPT-
2 vocabulary generated from the WebText and the
in-domain vocabularies generated from our cor-
pora and find that the in-domain vocabulary breaks
chemical entities into fewer tokens. For example,
dimethylnitroxide was tokenized into #dimethyl,
#nitr, #oxide using the in-domain vocabulary and
#dim, #ethyl, #nit, #rox, #ide using the GPT-2 vo-
cabulary.

5 Analysis and Results

This section presents the analysis of 28 pretrained
models evaluated on 15+ in-domain and out-of-
domain downstream tasks (RQ1, Section 5.1). We
investigate the effects of model and data scaling
(RQ2, Section 5.2), knowledge diversity (RQ3, Sec-
tion 5.3), and temporal order (RQ4, Section 5.4) on
the downstream performance. We also compare the
results from continual vs. from scratch pretraining
(Section 5.5) and present the analysis of large-scale
training efficiency (Section 5.6).

Baseline Models As we use a similar model ar-
chitecture, we identify Open AI’s GPT-2 (Radford
et al., 2019) as a baseline comparison model. We
compare our performance with four variants of the
original GPT-2 models, corresponding to small (S),
medium (M), large (L), and extra-large (XL) sized
transformer architectures shown in Table 2. We
note that GPT-2 models were pretrained on Web-
Text – 8 million web documents (40Gb). Thus, we
also include a base GPT-2 model (medium) that
has been updated with continual pretraining using
our Combined 〈A+FT〉 dataset.

Our Models We pretrained models with indi-
vidual datasets (AMiner, CORE, MAG, PubMed,
S2ORC, WOS) and combined abstracts and full-
texts. Our goal is to systematically study data
biases in the model performance when pretrain-
ing models with individual datasets. For example,
PubMed publications cover mostly bio-medicinal
terms (Gu et al., 2021), while the majority of
S2ORC publications are from medicine, biology,
physics, and mathematics (Lo et al., 2020). We
only use 4 GPUs for the models pretrained with
individual datasets and 8 GPUs for the rest. This is
to control the number of tokens seen during model
pretraining (320,000 steps * 4 GPUs * 4 micro
batch size * 2,048 context size = 10B tokens) rel-
ative to the maximum number of tokens available
in the respective datasets (as reported in Table 3).
We also trained one XL (4x) model with 4x larger
batch size than what used in XL model to evaluate
the impact of the number of training tokens.

5.1 Zero-shot Performance

We evaluate our models using several benchmarks
to assess the effectiveness in both in-domain and
out-of-domain tasks. The benchmarks we include
are described in Appendix B. We use the lm-
evaluation-harness Python repository (Gao et al.,
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Table 4: Downstream Zero-shot In-Domain Task Performance. We use ‡ to indicate the baseline model tuned from
the base GPT-2 model. Pile performance is reported using perplexity, with all other tasks reported using accuracy.
We highlight the top-4 performance per task in bold, with top performance indicated with an underline. XL (4x)
model is trained with 4x larger batch size that used in other models.

Model Size HT-HC HT-CC ARC-E ARC-C SciQ OpenBookQA Pile

Baseline

S 0.22 0.25 0.44 0.19 0.75 0.16 96.50
M 0.18 0.27 0.49 0.22 0.77 0.19 61.26
L 0.18 0.28 0.53 0.22 0.80 0.19 48.86
XL 0.18 0.26 0.58 0.25 0.83 0.22 42.29
M‡ 0.19 0.31 0.35 0.19 0.61 0.13 87.57

AMiner

S 0.18 0.27 0.43 0.21 0.70 0.17 38.40
M 0.18 0.34 0.45 0.20 0.74 0.16 30.55
L 0.23 0.34 0.49 0.23 0.78 0.18 24.18
XL 0.23 0.34 0.50 0.23 0.77 0.17 25.52

CORE

S 0.19 0.28 0.36 0.19 0.69 0.15 78.24
M 0.22 0.34 0.40 0.20 0.71 0.15 59.19
L 0.17 0.30 0.41 0.19 0.75 0.14 52.95
XL 0.20 0.28 0.47 0.21 0.78 0.15 39.46

MAG

S 0.24 0.28 0.41 0.20 0.66 0.17 38.03
M 0.18 0.27 0.45 0.21 0.68 0.17 30.88
L 0.19 0.36 0.51 0.24 0.80 0.18 24.78
XL 0.20 0.36 0.50 0.22 0.80 0.20 26.09

PubMed-F

S 0.26 0.30 0.41 0.20 0.60 0.16 56.03
M 0.19 0.27 0.43 0.21 0.68 0.18 45.69
L 0.18 0.28 0.43 0.22 0.74 0.17 37.22
XL 0.18 0.27 0.48 0.21 0.77 0.16 35.14

S2ORC

S 0.26 0.33 0.31 0.21 0.31 0.17 59.20
M 0.27 0.22 0.33 0.18 0.31 0.16 45.60
L 0.28 0.23 0.32 0.21 0.31 0.17 42.14
XL 0.24 0.31 0.33 0.19 0.30 0.18 42.35

WoS

S 0.22 0.31 0.33 0.22 0.37 0.17 54.41
M 0.25 0.32 0.32 0.20 0.34 0.16 48.31
L 0.27 0.30 0.32 0.21 0.37 0.17 46.44
XL 0.23 0.34 0.34 0.21 0.39 0.16 45.86

Combined-A XL 0.17 0.28 0.54 0.23 0.83 0.18 22.77
Combined-F XL 0.20 0.30 0.48 0.21 0.79 0.15 40.18
Combined-A+F XL 0.18 0.30 0.48 0.22 0.79 0.17 31.03
Combined-A+F XL (4x) 0.18 0.25 0.55 0.24 0.84 0.17 23.01

2021) for the benchmark implementation.

In-domain Evaluation We consider five exist-
ing chemistry benchmarks, specifically Hendryck-
sTest (Hendrycks et al., 2020) for high school
(HT-HC) and college (HT-CC) levels, and science-
focused – ARC (Clark et al., 2018), SciQ (Welbl
et al., 2017), OpenBookQA (Mihaylov et al., 2018),
Pile-PubMed-Abstracts (Gao et al., 2020)). As
shown in Table 4, one or more of our models outper-
form baseline GPT-2 models for the two chemistry
tasks, general science QA (SciQ) and the science-
focused language modelling. Of the remaining
tasks, our models perform within 1-4% of GPT-2
baselines.

Out-of-domain Evaluation We evaluate out-
of-domain performance using 9 commonly used
LLM benchmarks: BoolQ (Clark et al., 2019),
CB (De Marneffe et al., 2019), WIC (Pilehvar and
Camacho-Collados, 2018), WSC (Levesque et al.,

2012), MathQA (Amini et al., 2019), PIQA (Bisk
et al., 2020), PubMedQA (Jin et al., 2019), Lam-
bada (Paperno et al., 2016) and WikiText (Merity
et al., 2016). As shown in Table 5, our models out-
perform baseline GPT-2 models for CB, WIC and
WSC and match the best accuracy for BoolQ but
the GPT-2 baselines outperform on the remaining
tasks, particularly Lambada and Wikitext – the two
general language modeling tasks.

5.2 Scaling Effect

Previous work (Kaplan et al., 2020) has shown that
upstream cross entropy loss scales as a power-law
with model size, dataset size, and the amount of
compute. In this section, we revisit these claims on
scaling Transformer architectures.

Analyzing upstream cross entropy loss Dur-
ing pretraining, we group each dataset into train-
ing/validation/test (949/50/1) splits. We report the
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Table 5: Downstream Out-of-domain Task Performance. We use ‡ to indicate the baseline model tuned from the base
GPT-2 model. Performance on Lambada and Wikitext is reported using perplexity, all other tasks report accuracy .
Top-4 performance highlighted in bold, with best performance indicated with underlines. XL (4x) model is trained
with 4x larger batch size that used in other models.

Model Size BoolQ CB WIC WSC MathQA PIQA PubMedQA Lambada Wikitext

Baseline

S 0.49 0.41 0.49 0.43 0.21 0.63 0.44 40.06 37.37
M 0.59 0.43 0.50 0.40 0.23 0.68 0.53 18.25 26.75
L 0.60 0.45 0.50 0.46 0.23 0.70 0.54 12.97 22.61
XL 0.61 0.39 0.50 0.50 0.24 0.71 0.59 10.63 20.38
M‡ 0.62 0.34 0.50 0.36 0.20 0.55 0.55 2834.51 126.55

AMiner

S 0.41 0.39 0.50 0.44 0.22 0.56 0.46 2825.84 158.85
M 0.40 0.39 0.51 0.41 0.21 0.57 0.43 1802.35 116.93
L 0.61 0.48 0.50 0.47 0.22 0.58 0.36 661.81 87.23
XL 0.50 0.39 0.50 0.37 0.21 0.58 0.43 786.22 91.28

CORE

S 0.62 0.41 0.50 0.37 0.20 0.55 0.55 671.43 100.53
M 0.62 0.41 0.50 0.37 0.21 0.56 0.55 273.06 77.96
L 0.61 0.41 0.50 0.37 0.21 0.57 0.51 173.15 69.62
XL 0.61 0.38 0.50 0.37 0.22 0.58 0.45 79.95 50.47

MAG

S 0.41 0.23 0.50 0.40 0.21 0.56 0.43 1142.83 118.40
M 0.38 0.07 0.50 0.37 0.21 0.57 0.41 628.72 91.36
L 0.51 0.14 0.50 0.35 0.22 0.59 0.39 282.39 67.74
XL 0.40 0.11 0.51 0.62 0.22 0.59 0.34 364.54 70.71

PubMed-F

S 0.58 0.41 0.50 0.45 0.21 0.57 0.54 2670.39 148.88
M 0.61 0.39 0.50 0.38 0.20 0.58 0.49 1742.00 119.74
L 0.57 0.41 0.50 0.38 0.21 0.59 0.42 843.83 95.75
XL 0.60 0.41 0.50 0.39 0.22 0.59 0.49 679.80 90.38

S2ORC

S 0.38 0.41 0.50 0.63 0.20 0.57 0.34 122739.30 403.48
M 0.38 0.43 0.50 0.63 0.22 0.56 0.34 80151.10 330.56
L 0.38 0.46 0.50 0.63 0.21 0.56 0.34 89136.68 327.53
XL 0.38 0.50 0.50 0.63 0.20 0.56 0.33 107065.48 351.81

WoS

S 0.38 0.39 0.50 0.63 0.21 0.55 0.34 140552.69 556.00
M 0.38 0.45 0.50 0.63 0.19 0.54 0.34 182967.37 498.36
L 0.41 0.36 0.47 0.54 0.21 0.56 0.42 148609.73 480.91
XL 0.57 0.34 0.50 0.37 0.20 0.55 0.56 192970.64 509.06

Combined-A XL 0.56 0.16 0.50 0.37 0.21 0.60 0.50 250.88 61.07
Combined-F XL 0.62 0.38 0.50 0.37 0.22 0.57 0.55 72.50 48.96
Combined-A+F XL 0.61 0.41 0.50 0.39 0.23 0.59 0.48 71.43 48.65
Combined-A+F XL (4x) 0.61 0.41 0.50 0.37 0.24 0.60 0.56 30.40 33.05

model performance on validation data using cross
entropy loss in nats. This measure will be averaged
over the 2048-token context. We find that the cross
entropy loss decreases as we increase the model
size (as shown in Figure 2). Larger models reach
a given loss value in a higher rate than the smaller
models. This observation illustrates the relation-
ship between model performance (as measured by
the upstream cross entropy loss) and model size,
confirming (Kaplan et al., 2020).

Analyzing downstream task performance Can
we speculate downstream task performance of a
model from the pretraining performance? First, we
find that the models perform considerably well on
Pile in comparison to the Lambada or WikiText.
There is a 48% performance advantage in this task
over the best performing baseline GPT-2 model.
This may be due to the models capturing scientific
language better than general language. It is im-

Figure 2: Distribution of validation loss by model size:
performance improves as the model size increases.

portant to note that we exclude PubMed Abstracts
in the individual data collection to avoid potential
contamination between the training and Pile testing
data. As shown in Table 4, larger models perform
well on these language modeling tasks.

Second, we noticed that the XL (4x) model
trained for more tokens performs significantly bet-
ter than the similar sized XL model. Specifically,
XL (4x) model was trained with 128 total batch
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size compared to the 32 total batch size used in XL
model. XL (4x) model achieves the lowest Lam-
bada and WikiText perplexity values across all our
models trained from scratch (as shown in Table 5).
The same model also achieves the best SciQ perfor-
mance with 0.84 accuracy and comparable in other
tasks performance with the XL model. This experi-
ment highlights the importance of training models
with larger batch size. We note that the baseline
models (Radford et al., 2019) were trained with 4x
larger batch size (total batch size 512) than what
used in XL (4x) model. We believe that the XL
(4x) model can reach the similar perplexity values
when trained for this data scale.

Third, we find that zero-shot task performance
in SciQ, HT-CC and ARC-E increases as we in-
crease the model size (see Table 5). However, there
is no clear relationship between the task perfor-
mance and the model sizes in the rest of bench-
mark datasets. We suggest that pretraining perfor-
mance may not be the ideal indicator to speculate
the overall downstream task performance, espe-
cially in the zero-shot setting. However, model size
significantly contributes to the task performance.

5.3 Diversity Effect

While abstracts often provide a summary of scien-
tific publications, the full text contains more details.
In this section, we analyze the performance of mod-
els trained on paper abstracts versus full texts.

First, the XL models trained with the combined
abstract dataset achieve the lowest perplexity score
(22.77) on the Pile – a 45% performance advantage
over the full text version. There are might be sev-
eral factors that contribute to this, but one may be
the focused language in abstracts.

Second, the model trained with the combined
abstracts achieves the second best accuracy (0.83
in comparison to 0.79 for the full text model) in
SciQ. Some of the models pretrained on individual
abstract data achieve comparable performance in
SciQ, e.g., MAG and AMiner models achieve 0.8
and 0.78 accuracy, respectively. We believe the
diversity of scientific knowledge provided from the
abstract data is useful since SciQ questions span
biology, chemistry, earth science, and physics.

Third, we compare model performance trained
with abstracts vs. full texts in the HT task and see
that the best accuracy is achieved using the MAG
and S2ORC datasets rather than the combined ab-
stracts. This suggests the importance of contextual

knowledge provided by different data sources.
Finally, combined full text model performs better

than the model trained with the abstracts in all out-
of-domain tasks except PIQA. This performance
difference may be due to the more expressive and
diverse language presented in the full texts than in
the abstracts. Thus, expanding full text coverage
may improve out-of-domain task generalization.

5.4 Temporal Effect

Scientific knowledge evolves over time reflecting
new research ideas, innovations, and findings. In
this section, we test how continual pretraining on
temporal-aligned scientific publications impacts
downstream performance. For this experiment,
we maintain two variants of the MAG dataset
with random-ordered and temporal-ordered articles,
splitting each into ten equal subsets. We continue
pretraining a base medium (M) sized model itera-
tively with the subsets in the order they appeared
in the respective data variant. For example, in the
temporally-aligned experiments, we first pretrain a
model with 3.4M (10%) articles from before 1978,
and then use it as the base model to continue pre-
training with another 3.4M (10%) articles from
between 1978 and 1989. We train the initial model
for 150K steps and each subsequent model for 10K
steps with additional data. Figure 3 shows the per-
formance of model checkpoints across in-domain
and out-of-domain tasks.

There are two key findings. First, SciQ and ARC-
E zero-shot task performances improve over time
with the models trained with temporally-ordered
scientific texts (as shown in Figure 3b). For ex-
ample, SciQ accuracy improves from 0.64 to 0.73
from the base model checkpoint to the final model
checkpoint. Similarly, ARC-E accuracy improves
from 0.43 to 0.45. This is due to the temporal order
of the knowledge acquired by the model. When the
model was pretrained with random-ordered data
subsets, we observe only a slight (< 1%) perfor-
mance increase (as shown in Figure 3a).

There are mixed patterns in performance across
out-of-domain tasks. For example, a slight per-
formance increase in the PIQA, CB, PubMedQA,
and WIC over time with the models trained with
temporally-ordered scientific texts. On the other
hand, there is a performance drop in the BoolQ
and WSC over time. This may be due to the
catastrophic forgetting prevalent in continual learn-
ing (Ramasesh et al., 2021). Future work will in-
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(a) Random Order (b) Temporal Order

Figure 3: The effect of temporal order of publications during pretraining. We align publications in the MAG corpus
by year and split them into ten equal subsets. We repeat the process in a randomly-ordered corpus for comparison,
recording model checkpoints after performing continual pretraining on each data subset.

vestigate other confounding factors that may con-
tribute to this performance patterns.

5.5 Continual vs. From Scratch Pretraining

In this section, we test whether the continual pre-
training of a base GPT model with additional
domain-specific data is helpful in the downstream
task performance. We report the zero-shot perfor-
mance of the tuned model across in-domain (Ta-
ble 4) and out-of-domain (Table 5) tasks. We have
two main observations from this experiment.

First, fine-tuned models fall behind other base-
lines in a majority of in-domain tasks. HT-CC is
the only in-domain task that the tuned model out-
performs the rest of models, yet fails to outperform
the best performing model trained from scratch.

Second, fine-tuned models have a significant per-
formance drop in the general language modeling
tasks (Lambada and Wikitext). For example, the
tuned model records 6x performance drop in the
Wikitext compared to the best performing model.
There are several factors in the continual pretrain-
ing that may contribute to this. As the tuned model
uses the original GPT-2 vocabulary, it must use the
fragmented general subwords to tokenize the chem-
istry terms available in our corpora. On the other
hand, the tuned model starts with the suboptimal
initialization from the general-domain language
model (Gu et al., 2021). This initialization may
diverge the model in the optimization process that
may not be recovered.

5.6 Training Efficiency

We use several dimensions to describe the training
efficiency, i.e., #FLOPs, throughput (speed), and
memory. We compare these compute dimensions

(a) GPU computation in #Floating Point Operations

(b) GPU Memory Allocation

Figure 4: GPU system performance during pretraining.

across the four model sizes described in the Ta-
ble 2. The smallest (S) model has 59% FLOPs of
the largest (XL) model, twice the speed (steps/s),
32% per device GPU memory savings, and 76% to-
tal parameter savings (see Figure 4). With such
compute budget, small (S) models only outper-
forms the XL model in 21% in-domain and 34%
out-of-domain evaluation tasks. This suggests the
importance of compute budget required in scaling
foundation models.

6 Conclusions

In this paper, we collected and released 0.67TB
of research publication data collected across 10+
sources for chemistry. We pretrained and released
25+ foundation models for chemistry. We rig-
orously analyzed model performance on 15+ in-
domain and out-of-domain tasks.

167



References
Emily Alsentzer, John R Murphy, Willie Boag, Wei-

Hung Weng, Di Jin, Tristan Naumann, and Matthew
McDermott. 2019. Publicly available clinical bert
embeddings. arXiv preprint arXiv:1904.03323.

AMiner. https://www.aminer.org/.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-
Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.
2019. Mathqa: Towards interpretable math word
problem solving with operation-based formalisms.
arXiv preprint arXiv:1905.13319.

Alex Andonian, Quentin Anthony, Stella Biderman, Sid
Black, Preetham Gali, Leo Gao, Eric Hallahan, Josh
Levy-Kramer, Connor Leahy, Lucas Nestler, Kip
Parker, Michael Pieler, Shivanshu Purohit, Tri Songz,
Phil Wang, and Samuel Weinbach. 2021. GPT-NeoX:
Large scale autoregressive language modeling in py-
torch.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scibert:
A pretrained language model for scientific text. arXiv
preprint arXiv:1903.10676.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432–7439.

Sid Black, Stella Biderman, Eric Hallahan, Quentin
Anthony, Leo Gao, Laurence Golding, Horace He,
Connor Leahy, Kyle McDonell, Jason Phang, et al.
2022. Gpt-neox-20b: An open-source autoregressive
language model.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli,
Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. 2021. On the opportuni-
ties and risks of foundation models. arXiv preprint
arXiv:2108.07258.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski,
Katherine Lee, Florian Tramer, and Chiyuan Zhang.
2022. Quantifying memorization across neural lan-
guage models. arXiv preprint arXiv:2202.07646.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In NAACL.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind

Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Cord19. https://www.semanticscholar.org/cord19/download.

Marie-Catherine De Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The commitmentbank: Inves-
tigating projection in naturally occurring discourse.
In proceedings of Sinn und Bedeutung, volume 23,
pages 107–124.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Ryan J Gallagher, Kyle Reing, David Kale, and Greg
Ver Steeg. 2017. Anchored correlation explanation:
Topic modeling with minimal domain knowledge.
Transactions of the Association for Computational
Linguistics, 5:529–542.

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-
race He, Anish Thite, Noa Nabeshima, et al. 2020.
The pile: An 800gb dataset of diverse text for lan-
guage modeling. arXiv preprint arXiv:2101.00027.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
Jason Phang, Laria Reynolds, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. 2021. A
framework for few-shot language model evaluation.

Yu Gu, Robert Tinn, Hao Cheng, Michael Lucas, Naoto
Usuyama, Xiaodong Liu, Tristan Naumann, Jianfeng
Gao, and Hoifung Poon. 2021. Domain-specific lan-
guage model pretraining for biomedical natural lan-
guage processing. ACM Transactions on Computing
for Healthcare (HEALTH), 3(1):1–23.

Jiang Guo, A. Santiago Ibanez-Lopez, Hanyu Gao, Vic-
tor Quach, Connor W. Coley, Klavs F. Jensen, and
Regina Barzilay. 2021. Automated chemical reaction
extraction from scientific literature. Journal of Chem-
ical Information and Modeling, 0(0):null. PMID:
34115937.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol
Vinyals, Andrew Zisserman, and Joao Carreira. 2021.
Perceiver: General perception with iterative attention.
In International Conference on Machine Learning,
pages 4651–4664. PMLR.

Qiao Jin, Bhuwan Dhingra, Zhengping Liu, William W
Cohen, and Xinghua Lu. 2019. Pubmedqa: A dataset
for biomedical research question answering. arXiv
preprint arXiv:1909.06146.

168

https://www.aminer.org/
http://github.com/eleutherai/gpt-neox
http://github.com/eleutherai/gpt-neox
http://github.com/eleutherai/gpt-neox
https://www.semanticscholar.org/cord19/download
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.1021/acs.jcim.1c00284
https://doi.org/10.1021/acs.jcim.1c00284


Kamal Kanakarajan, Bhuvana Kundumani, and
Malaikannan Sankarasubbu. 2021. Bioelectra: pre-
trained biomedical text encoder using discriminators.
In Proceedings of the 20th Workshop on Biomedical
Language Processing, pages 143–154.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang.
2019. Mixout: Effective regularization to fine-
tune large-scale pretrained language models. arXiv
preprint arXiv:1909.11299.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang.
2020. Biobert: a pre-trained biomedical language
representation model for biomedical text mining.
Bioinformatics, 36(4):1234–1240.

Katherine Lee, Daphne Ippolito, Andrew Nystrom,
Chiyuan Zhang, Douglas Eck, Chris Callison-Burch,
and Nicholas Carlini. 2021. Deduplicating training
data makes language models better. arXiv preprint
arXiv:2107.06499.

Hector J. Levesque, Ernest Davis, and Leora Morgen-
stern. 2012. The winograd schema challenge. KR’12,
page 552–561. AAAI Press.

Patrick Lewis, Myle Ott, Jingfei Du, and Veselin Stoy-
anov. 2020. Pretrained language models for biomedi-
cal and clinical tasks: Understanding and extending
the state-of-the-art. In Proceedings of the 3rd Clini-
cal Natural Language Processing Workshop, pages
146–157.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blun-
som. 2017. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word
problems. arXiv preprint arXiv:1705.04146.

Xiao Liu, Da Yin, Xingjian Zhang, Kai Su, Kan Wu,
Hongxia Yang, and Jie Tang. 2021. Oag-bert: Pre-
train heterogeneous entity-augmented academic lan-
guage models. arXiv preprint arXiv:2103.02410.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Kyle Lo, Lucy Lu Wang, Mark Neumann, Rod-
ney Michael Kinney, and Daniel S. Weld. 2020.
S2orc: The semantic scholar open research corpus.
In ACL.

Kelvin Luu, Daniel Khashabi, Suchin Gururangan, Kar-
ishma Mandyam, and Noah A Smith. 2021. Time
waits for no one! analysis and challenges of temporal
misalignment. arXiv preprint arXiv:2111.07408.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. arXiv preprint arXiv:1809.02789.

Giacomo Miolo, Giulio Mantoan, and Carlotta Orsenigo.
2021. Electramed: a new pre-trained language repre-
sentation model for biomedical nlp. arXiv preprint
arXiv:2104.09585.

Usman Naseem, Adam G Dunn, Matloob Khushi, and
Jinman Kim. 2021. Benchmarking for biomedical
natural language processing tasks with a domain spe-
cific albert. arXiv preprint arXiv:2107.04374.

OAG. https://www.microsoft.com/en-
us/research/project/open-academic-graph/.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Quan Ngoc Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernández. 2016. The lambada dataset: Word pre-
diction requiring a broad discourse context. arXiv
preprint arXiv:1606.06031.

Yifan Peng, Shankai Yan, and Zhiyong Lu. 2019. Trans-
fer learning in biomedical natural language process-
ing: an evaluation of bert and elmo on ten bench-
marking datasets. arXiv preprint arXiv:1906.05474.

Long N Phan, James T Anibal, Hieu Tran, Shaurya
Chanana, Erol Bahadroglu, Alec Peltekian, and Gré-
goire Altan-Bonnet. 2021. Scifive: a text-to-text
transformer model for biomedical literature. arXiv
preprint arXiv:2106.03598.

Mohammad Taher Pilehvar and Jose Camacho-Collados.
2018. Wic: the word-in-context dataset for evaluat-
ing context-sensitive meaning representations. arXiv
preprint arXiv:1808.09121.

Nancy Pontika, Petr Knoth, Matteo Cancellieri, and
Samuel Pearce. 2016. Developing infrastructure to
support closer collaboration of aggregators with open
repositories. LIBER Quarterly, 25(4):172–188.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie
Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susan-
nah Young, et al. 2021. Scaling language models:
Methods, analysis & insights from training gopher.
arXiv preprint arXiv:2112.11446.

S Rajbhandari, J Rasley, O Ruwase, and Y He. 2019.
Zero: memory optimization towards training a trillion
parameter models. arxiv e-prints arxiv: 11910.02054
(2019).

169

https://www.microsoft.com/en-us/research/project/open-academic-graph/
https://www.microsoft.com/en-us/research/project/open-academic-graph/
http://oro.open.ac.uk/45935/
http://oro.open.ac.uk/45935/
http://oro.open.ac.uk/45935/


Vinay Venkatesh Ramasesh, Aitor Lewkowycz, and
Ethan Dyer. 2021. Effect of scale on catastrophic
forgetting in neural networks. In International Con-
ference on Learning Representations.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th
ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 3505–3506.

Hoo-Chang Shin, Yang Zhang, Evelina Bakhturina,
Raul Puri, Mostofa Patwary, Mohammad Shoeybi,
and Raghav Mani. 2020. Biomegatron: Larger
biomedical domain language model. arXiv preprint
arXiv:2010.06060.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using model parallelism.
arXiv preprint arXiv:1909.08053.

Amanpreet Singh, Ronghang Hu, Vedanuj Goswami,
Guillaume Couairon, Wojciech Galuba, Marcus
Rohrbach, and Douwe Kiela. 2021. Flava: A founda-
tional language and vision alignment model. arXiv
preprint arXiv:2112.04482.

Shaden Smith, Mostofa Patwary, Brandon Norick,
Patrick LeGresley, Samyam Rajbhandari, Jared
Casper, Zhun Liu, Shrimai Prabhumoye, George
Zerveas, Vijay Korthikanti, et al. 2022. Using deep-
speed and megatron to train megatron-turing nlg
530b, a large-scale generative language model. arXiv
preprint arXiv:2201.11990.

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yun-
feng Liu. 2021. Roformer: Enhanced transformer
with rotary position embedding. arXiv preprint
arXiv:2104.09864.

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-
Han Wu, Yuxiao Dong, and Anshul Kanakia. 2020a.
Microsoft academic graph: When experts are not
enough. Quantitative Science Studies, 1(1):396–413.

Lucy Lu Wang, Kyle Lo, Yoganand Chandrasekhar,
Russell Reas, Jiangjiang Yang, Doug Burdick, Darrin
Eide, Kathryn Funk, Yannis Katsis, Rodney Michael
Kinney, Yunyao Li, Ziyang Liu, William Merrill,
Paul Mooney, Dewey A. Murdick, Devvret Rishi,
Jerry Sheehan, Zhihong Shen, Brandon Stilson,
Alex D. Wade, Kuansan Wang, Nancy Xin Ru Wang,
Christopher Wilhelm, Boya Xie, Douglas M. Ray-
mond, Daniel S. Weld, Oren Etzioni, and Sebastian
Kohlmeier. 2020b. CORD-19: The COVID-19 open
research dataset. In Proceedings of the 1st Work-
shop on NLP for COVID-19 at ACL 2020, Online.
Association for Computational Linguistics.

Johannes Welbl, Nelson F Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209.

Zheng Yuan, Yijia Liu, Chuanqi Tan, Songfang Huang,
and Fei Huang. 2021. Improving biomedical pre-
trained language models with knowledge. arXiv
preprint arXiv:2104.10344.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhut-
dinov, Raquel Urtasun, Antonio Torralba, and Sanja
Fidler. 2015. Aligning books and movies: Towards
story-like visual explanations by watching movies
and reading books. In Proceedings of the IEEE in-
ternational conference on computer vision, pages
19–27.

170

https://aclanthology.org/2020.nlpcovid19-acl.1
https://aclanthology.org/2020.nlpcovid19-acl.1


A Data Descriptions

AMiner ArnetMiner (AMiner) is a service that
crawls research publications, performs profile ex-
traction of scientists, models academic networks
by integrating publication data from the existing li-
braries. For the experiments described in this work,
we use a sub-sampled version of the data presented
in the Open Academic Graph (OAG) version of the
AMiner dataset, which originally consisted of more
that 172M articles, with 18.5M chemistry-related
abstracts.

CORE COnnecting REpositories (CORE) (Pon-
tika et al., 2016) is a large-scale aggregation sys-
tem which provides an open access to the global
network of scientific journals and publications.
CORE currently contains more than 207M open-
access articles collected from over 10 thousand data
providers, out of which more than 92M are open ac-
cess full-text research papers. We sub-sampled the
original collect into our chemistry-specific corpus
consisting of more than 7M full-text articles.

CORD-19 CORD-19 corpus contains COVID-
19 (Cord19) and other coronavirus-related publi-
cations (e.g. SARS, MERS, etc.) from PubMed’s
PMC open access corpus, bioRxiv, and medRxiv
pre-prints, in addition to COVID-19 articles main-
tained by the World Health Organization (WHO).

MAG Microsoft Academic Graph (MAG) is a
heterogeneous graph created by extracting knowl-
edge from scholarly publications on the web (Wang
et al., 2020a). The data used in this work is a sub-
sample from the OAG version of the MAG dataset,
which originally consisted of > 208M articles, with
34M chemistry-related articles with abstracts.

PubMed PubMed is a domain-specific data
source that allows for search and retrieval of the
biomedical and life sciences literature. It is main-
tained by the National Centre for Biotechnology
Information (NCBI) at the U.S. National Library
of Medicine (NLM). For this work we utilized the
PubMed Central data provided in the Pile corpus
(Gao et al., 2020). As presented in Table 3 the
sub-sampled data consists of documents with more
than 280K abstracts and 700K full text articles.

S2ORC The Semantic Scholar Open Research
Corpus (S2ORC) (Lo et al., 2020) is a large aca-
demic corpus consisting of 81.1M documents. The
data includes the metadata, abstracts, bibliograph-
ical references and full-text publications for over

8M open access research articles. In this work, we
utilize the sub-sampled version of the original data
specific to chemistry, which includes more than
10M abstracts.

WoS The Web of Science (WoS) is a multi-
discipline citation database produced by the In-
stitute of Scientific Information. The platform
hosts over 171M records across various disciplines,
which, when sub-sampled for our chemistry do-
main, rounded to more than 7M records with ab-
stracts available.

B Task Descriptions

HendrycksTest-Chemistry The Hendrycks
Test (Hendrycks et al., 2020) is a large scale
collection of multiple choice questions covering 57
subjects. In our experiments, we subsampled col-
lege chemistry (HT-CC) and high school chemistry
(HT-HC). HT-CC contains 100 questions related to
analytical, organic, inorganic, physical, etc. and
HT-HC contains 203 questions related chemical
reactions, ions, acids and bases, etc.

ARC The ARC dataset (Clark et al., 2018) con-
tains 7,787 genuine grade-school level, science
MCQs and is partitioned into a Challenge Set
(ARC-C) and an Easy Set (ARC-E). Additionally,
14M science-related sentences are provided with
relevant knowledge to answer the ARC questions.

SciQ The SciQ dataset (Welbl et al., 2017) con-
tains 13,679 crowdsourced multiple-choice science
exam questions about Physics, Chemistry and Bi-
ology, among others.

OpenBookQA The OpenBookQA (Mihaylov
et al., 2018) dataset consists of 5,957 multiple
choice questions and 1,326 elementary-level sci-
ence facts. The facts alone do not contain enough
information to correctly answer the multiple choice
questions, therefore the task is designed to evaluate
systems beyond paraphrase matching.

Pile PubMed Abstracts The Pile dataset (Gao
et al., 2020) contains 800GB of diverse text sources
for benchmarking language models. We limit
this task to only include abstracts from the Pile’s
PubMed collection. As this is framed as a language
modeling task, we report word level perplexity.

BoolQ BoolQ (Clark et al., 2019) is a reading
comprehension dataset comprised of 16k real, nat-
urally formed queries to the Google search engine
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with a yes or no answer. Each question-answer pair
is accompanied by a Wikipedia article providing
evidence to support the correct answer.

CB Commitment Bank (CB) (De Marneffe et al.,
2019) is a 3-way classification of textual entail-
ment (true, false, unknown) from 1,200 short text
segments where at least one sentence contains an
embedded clause. The dataset contains passages
from three sources: the Wall Street Journal, the
British National Corpus, and Switchboard.

WIC The Word-in-Context dataset (WIC) (Pile-
hvar and Camacho-Collados, 2018) is a benchmark
for evaluating context-sensitive word embeddings.
The task is to classify if a target word has the same
meaning in two context sentence.

WSC The Winograd Schema Challenge
(WSC) (Levesque et al., 2012) dataset is a
collection of 804 sentences in which the task is to
resolve coreferences.

MathQA MathQA (Amini et al., 2019) is a
dataset containing 37k multiple choice math
word problems built from the existing dataset,
AQuA (Ling et al., 2017).

PIQA The Physical Interactions: Question An-
swering (PIQA) (Bisk et al., 2020) benchmark
dataset provides 21k questions about the physical
world and plausible interactions encountered by
humans. Annotators provided correct and incor-
rect answers to questions extracted from instructa-
bles.com, a website of instructions for completing
many everyday tasks.

PubMedQA The PubMedQA dataset (Jin et al.,
2019) is a collection of 273.5k biomedical re-
search questions and related PubMed articles with
yes/no/maybe answers.

Lambada Lambada (Paperno et al., 2016) con-
tains passages and target sentences from 5,325 nov-
els collected from Book Corpus (Zhu et al., 2015),
and the goal is to predict the last word of the target
sentence given the context passage. This task was
designed to test genuine language understanding
since accurate prediction of the final word would
be improbable without the context passage.

WikiText The Wikitext benchmark (Merity et al.,
2016) is a language modeling dataset of 29k articles
from Wikipedia. Only articles classified as Good or
Featured by Wikipedia editors are included since

they are considered to be well written and neutral
in language. All results are reported on Wikitext-2.
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