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Abstract
“Talk moves” are specific discursive strategies
used by teachers and students to facilitate con-
versations in which students share their think-
ing, and actively consider the ideas of oth-
ers, and engage in rich discussions. Experts
in instructional practices often rely on cues
to identify and document these strategies, for
example by annotating classroom transcripts.
Prior efforts to develop automated systems to
classify teacher talk moves using transformers
achieved a performance of 76.32% F1. In this
paper, we investigate the feasibility of using en-
riched contextual cues to improve model perfor-
mance. We applied state-of-the-art deep learn-
ing approaches for Natural Language Process-
ing (NLP), including Robustly optimized bidi-
rectional encoder representations from trans-
formers (Roberta) with a special input repre-
sentation that supports previous and subsequent
utterances as context for talk moves classifica-
tion. We worked with the publically available
TalkMoves dataset, which contains utterances
sourced from real-world classroom sessions
(human- transcribed and annotated). Through
a series of experimentations, we found that
a combination of previous and subsequent ut-
terances improved the transformers’ ability to
differentiate talk moves (by 2.6% F1). These
results constitute a new state of the art over
previously published results and provide ac-
tionable insights to those in the broader NLP
community who are working to develop similar
transformer-based classification models.

1 Introduction

There is a strong theoretical and empirical basis
for encouraging students’ active participation in
inquiry-based and socially constructed classroom
environments (Vygotsky, 1978; Webb et al., 2008).
Numerous efforts exist to support teachers to be-
come more purposeful and effective in their efforts
to facilitate such environments (Herbel-Eisenmann,
2017; Chen et al., 2020). Most approaches to pro-
viding teachers with detailed feedback about their

discourse strategies require highly trained human
observers (Correnti et al., 2015; Wolf et al., 2005).
However, recent research has shown that the de-
velopment and training of deep learning models
to automate and scale certain discourse analyses
from instructional episodes is feasible (Song et al.,
2021), effective (Demszky et al., 2021), and reli-
able (Donnelly et al., 2017; Jensen et al., 2020;
Suresh et al., 2019).

Accountable talk theory offers well-defined,
research-based practices for teachers to engage
in high-quality instruction, including the use of
specific talk moves that promote students’ equi-
table participation in a rigorous learning environ-
ment (O’Connor et al., 2015; Resnick et al., 2018).
By using talk moves, teachers place the “intel-
lectual heavy lifting” and balance of talk toward
students and help ensure that the discussions will
be purposeful, coherent, and productive (Michaels
et al., 2010). Talk moves support classroom dis-
course to move beyond the traditional Initiate,
Response, Evaluate linguistic sequence (Mehan,
1979); namely, by replacing the act of evaluating
with practices that support a collective understand-
ing that builds on and extends mathematical ideas
(Michaels and O’Connor, 2015).In this way, talk
moves enable dialogue shifts from teacher directed
recitation to true discussions in which knowledge
is informally shared and constructed rather than
transmitted.

This paper draws inspiration from speech recog-
nition systems for spoken dialog systems to in-
vestigate the feasibility of applying a novel input
representation that utilizes tokens from previous
and subsequent utterances to classify teacher talk
moves (Schukat-Talamazzini et al., 1994). We ex-
plore three different context setups: previous-only
utterances, subsequent-only utterances, and both
previous and subsequent utterances (equal numbers
of each) with different window sizes. In addition
to the longer dialog window experiments, we re-
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port findings from fine-tuning transformers such
as BigBird (Zaheer et al., 2020) and Longformer
(Beltagy et al., 2020) which are architected to sup-
port longer sequences. Similarly, we report find-
ings from fine-tuning MathBERT, a transformer
architecture that was trained to establish semantic
correspondence between mathematical formulas
and their corresponding context (Peng et al., 2021).
For training and evaluation, we use the TalkMoves
dataset comprising 567 lesson transcripts derived
from video recordings of K-12 mathematics class-
rooms (Suresh et al., 2022). The main contributions
of this work are summarized as follows:

• We provide evidence for improved perfor-
mance when fine-tuning transfomers with
longer dialog windows.

• We observed that transformer architectures de-
signed to handle longer contexts such as Long-
former do not provide any additional benefit
in differentiating instructional strategies.

• We observed that math-based models pre-
trained on mathematical formula understand-
ing do not provide any improvement over the
generic models.

2 Related Work

This section briefly describes the accountable talk
theory framework, followed by a literature review
on deep learning models for Natural Language Pro-
cessing (NLP) focused on adding additional con-
texts and learning long-term dependencies.

2.1 Accountable talk theory framework

Accountable talk theory identifies and defines an
explicit set of discourse moves intended to elicit a
response within a classroom lesson (O’Connor and
Michaels, 2019). These well-defined discursive
techniques have been incorporated into various in-
structional practices and frameworks e.g., (Boston,
2012; Candela et al., 2020; Michaels et al., 2010).
Their specificity makes talk moves well-suited for
supervised multi-label sentence-pair classification.
A number of research teams have made consider-
able progress in developing automated “intelligent
agents” that are trained to emulate the role of the
teacher. These agents prompt students to use desig-
nated aspects of accountable talk, such as revoicing
and asking students to agree/disagree with another
student. They typically act as facilitators or tutors

during small group, text-based, online settings, tak-
ing part in and helping to focus the discussion at
opportune moments e.g. (Adamson et al., 2013;
Hmelo-Silver et al., 2013; Tegos et al., 2015). (Ja-
cobs et al., 2022) and team developed an online
application that provides personalized feedback to
teachers on their classroom discourse practices, in-
cluding the prevalence of talk moves. The system is
fully automated and requires no human processing
beyond the initial uploading of classroom record-
ings. Such education-focused NLP applications
are in high demand to provide reliable feedback to
teachers based on the accountable talk theory.

2.2 Transformers for additional context and
long-term dependencies

The introduction of transformers has revolutionized
the field of natural language processing. Unlike Re-
current Neural Networks (RNNs) and Long Short
Term Memory networks (LSTMs), where training
is performed sequentially, the design of transformer
architecture enables parallel processing and allows
for the creation of rich latent embeddings (Vaswani
et al., 2017). Latent contextual representation of
utterances through the self-attention mechanism
makes transformers a powerful tool for various
downstream applications such as question answer-
ing and text summarization (Devlin et al., 2018).

Research efforts to learn long-term dependen-
cies with transformers were first introduced in
Transformer-XL (Dai et al., 2019). Transformer-
XL is a novel architecture that focuses on learning
dependencies beyond the fixed length of vanilla
transformers without disrupting the temporal co-
herence. This is achieved by saving the hidden
state sequence of the previous segment to be used
as context for the current segments, also known as
the segment-level recurrence mechanism. In ad-
dition, to better encode the relationship between
words, Transformer-XL uses relative positional em-
beddings. Results show that Transformer-XL can
learn dependencies across the text with a window
size of 900 words. Following Transformer- XL,
(Yang et al., 2019) proposed XL-Net, which is a
generalized autoregressive pretraining method that
leverages the capabilities of Transformer-XL to
solve the pre-train-finetune discrepancy commonly
identified in early architectures such as BERT. XL-
Net introduced two new developments. As an ex-
tension to the standard Causal Language Modeling
(CLM), XL-Net uses permutation language mod-
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eling, which considers all possible permutations
of the words within a sentence during the training
phase. Also, XL-Net uses a secondary attention
stream that focuses on the positional information
of the predicted token. This additional attention
stream led XL-Net to outperform many contempo-
rary transformer architectures in downstream tasks,
such as text classification. Similarly, to address the
problem of processing long sequences with trans-
formers, (Beltagy et al., 2020) introduced Long-
former, which extends vanilla transformers with a
modified self-attention mechanism to process long
documents. The classic self-attention mechanism
in BERT is computationally expensive, which ex-
plains the restriction of the maximum sequence
length of 512 tokens. Instead, Longformer com-
bines dilated sliding windows with global attention
to achieve similar performance. As a result of re-
ducing the computational complexity, Longformer
can process long input sequences beyond the previ-
ously defined segment length of 512 tokens. Like
Longfomers, Big-Bird (Zaheer et al., 2020) uses a
sparse attention mechanism that includes a random
attention component.

Over the past few years, we have seen an in-
creasing trend in other approaches to supporting
transformers to learn long-term dependencies, such
as modifying pre-training methods and the classic
attention mechanism. For example, to learn de-
pendencies across documents, (Xie et al., 2020)
adopted a simple approach to truncate the docu-
ment used for classification. Similarly, (Joshi et al.,
2019)) used a chunking approach where documents
were broken down into multiple chunks, and the ac-
tivations were then combined to perform the tasks.
Another recent example is the BERT-Seq model for
classifying Collaborative Problem Solving (Pugh
et al., 2021). The BERT-Seq model uses a spe-
cial input representation that combines embeddings
from adjacent utterances as contextual cues for the
model. Building on the prior work, we explored
new ways to enrich transformers with additional
contextual cues.

3 Current Work and Novelty

Currently, generating information about teachers’
discourse strategies requires highly trained instruc-
tional experts to hand-code transcripts from class-
room sessions (Correnti et al., 2015; Wolf et al.,
2005), an approach that is expensive and not read-
ily scalable. Encouragingly, a small number of

researchers have recently trained computer mod-
els to automate and scale discourse analyses from
instructional episodes, detecting educationally im-
portant discursive features such as instructional
talk, authentic teacher questions, elaborated eval-
uation, and uptake (Dale et al., 2022; Demszky
et al., 2021; Jensen et al., 2020). In prior work,
(Suresh et al., 2021b,a) fine-tuned Roberta (Liu
et al., 2019) to classify talk moves for each teacher
utterance from a given classroom transcript. The
input to Roberta was student-teacher sentence pairs,
where the student sentence appeared immediately
prior to the teacher’s utterance. This paper builds
upon the previous work to add contextual cues to
transformers in various ways and evaluate their
performance using the TalkMoves dataset. We ex-
periment with modifying the input representation
by combining multiple previous and subsequent
utterances as context to classify teacher talk moves.
This work serves as an example of how we can
find new ways to use advances in natural language
processing with classic ideas from speech recogni-
tion systems for spoken dialog system to capture
the rich conversations between teachers and stu-
dents in order to improve performance in applied
domains such as education.

4 Method

This section discusses the different approaches we
took to enrich contextual cues in the TalkMoves
model in an effort to enhance performance.

4.1 Data

The TalkMoves dataset used in this study comprises
567 transcripts, including 174,186 teacher and
59,874 student utterances (Suresh et al., 2022). All
the transcripts were human-generated from class-
room audio and video recordings from K-12 math-
ematics classrooms. They were annotated for six
teacher talk moves by two experts who established
high inter-rater reliability (Suresh et al., 2021b,
2022). The talk moves in the dataset follow an un-
even distribution, with certain moves being much
more frequent than others (Figure 1). “Keeping
everyone together” and “pressing for accuracy” are
the most frequently used, whereas “getting students
to relate” and “pressing for reasoning” are the least
common. For training and testing split, we used the
same split specified by (Suresh et al., 2022) in the
TalkMoves dataset. Each teacher utterance in the
TalkMoves dataset is annotated with one of six dif-
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ferent teacher talk moves and "None". These talk
moves are broadly classified into three categories
based on their instructional purpose (Resnick et al.,
2018): (1) accountability to the learning commu-
nity, (2) accountability to content knowledge, and
(3) accountability to rigorous thinking. See Table
1 for a brief description of each talk move, along
with examples.

4.2 Research Motivation
In this study, we began working with transform-
ers to classify talk moves. Prior attempts using
non-transformers architecture achieved lower per-
formance (65% F1 compared to 76.32% F1 with
transformers) (Suresh et al., 2019, 2021b). The
fine-tuned Roberta model proposed in (Suresh et al.,
2022) employed a input representation of student-
teacher sentence pairs to combine any given teacher
utterance with the immediately prior student utter-
ance (Suresh et al., 2021b). In order to understand
the gaps in this model’s performance, (Suresh et al.,
2022) conducted an error analysis using a confu-
sion matrix to consider examples where the Talk-
Moves models were underperforming and often
generated misclassifications. An initial analysis of
those examples revealed several instances where
the actual real-world context for the misclassified
teacher utterance extended beyond the current rep-
resentation of the previous student utterance. For
example, consider the following dialogue “Student:
Yes; Teacher: What do you think?”. With limited
context, it seems unclear if the teacher was relating
to what a student said earlier or trying to prompt
them to think. This challenge of limited context
from prior work motivated us to find new ways to
add contextual information to the existing models
in order to improve performance.

4.3 Context-addition experiments
Constraints on the number of sequences in vanilla
transformers, such as BERT and Roberta, prevents
the direct application of transformers where there
is a reliance on long-term dependencies. For exam-
ple, consider a classroom session where a teacher
encourages student X to think based on what stu-
dent Y said earlier in the session. Without the
expanded dialogue context, it can be challenging
for transformers (and even humans) to classify the
utterances. If we could expand the representation
of available information such that it included the
entire classroom session, the transformers may be
more likely to learn to establish the long-term de-

pendencies across the focal utterances or tokens.
Given the importance of local context (Kovaleva
et al., 2019), our input representation was modified
from student-teacher sentence pairs to a fixed-size
window surrounding each teacher utterance. This
adjusted representation is atypical compared to the
recommended input for fine-tuning, where a unique
token separates two sequences (i.e., [SEP] in Bert
and </s> in Roberta) (Devlin et al., 2018; Liu et al.,
2019). There is a general notion that fine-tuning
multiple utterances with multiple separator tokens,
while theoretically possible, is not likely to work
well. This notion was motivated by vanilla trans-
formers, which were originally pre-trained on indi-
vidual sentences or sentence pairs. We challenge
this assumption by including additional past and fu-
ture utterances in our adjusted input representation
(Figure 2).

To establish a baseline performance level and
generate information regarding the impact of con-
text in classifying talk moves, we began with a
simple input representation that includes only the
target teacher utterance without any additional con-
text. The output layer was a softmax over seven
classes i.e., the six talk moves and “none” (no talk
move). We also reproduced results from prior work
on Roberta-base (Suresh et al., 2022). Following
that, we experimented with three context setups:
previous-only utterances, subsequent-only utter-
ances, and both previous and subsequent utterances
(equal numbers of each). In each setup, we evalu-
ated several different window sizes. For example,
the previous-only condition with a window size of
three would have the immediately previous three
utterances (with student(s) and/or the teacher as the
speakers) serving as context cues for classifying
the target utterance. If there was no prior utterance
(such as at the start of a classroom session), we
prepended empty strings. Similarly, given the pre-
vious and subsequent utterances condition with a
window size of two, the target utterance would have
two previous utterances prepended to the left and
two subsequent utterances appended to the right.
Separator tokens differentiated all of the utterances.
As an additional preprocessing step, all utterances
were truncated to 30 tokens long. The choice of
truncation length was decided based on the distri-
bution of sequence length (number of tokens) for
all utterances in the dataset (see Figure 3). A token
size of 30 accounted for more than 95% of the utter-
ances in the dataset (two standard deviations from
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Figure 1: Distribution of teacher talk moves in the TalkMoves dataset

Figure 2: Modifying the input representation to support additional previous and subsequent utterances

the mean of the sequence length of seven tokens).
We then fine-tuned transformers on the TalkMoves
training set with different parameters using Ama-
zon EC2 instances. We followed the recommended
parameters from (Suresh et al., 2019, 2022) includ-
ing learning rate (2e-5, 3e-5, 4e-5, 5e-5), number
of epochs (3-6), batch size (4,8,16,32), warmup
steps (0,100,1000) and maximum sequence length
(512 for Roberta-like models) and (512,1024 for
Longformer and BigBird). The performance on the
testing set after fine-tuning is reported based on F1
measures and MCC (Suresh et al., 2021a). These
measures work well for skewed datasets like Talk-
Moves (Chicco and Jurman, 2020; Suresh et al.,
2021b). The code was implemented in Python 3.8

Figure 3: Number of utterances (frequency) vs sequence
length (number of tokens) in TalkMoves dataset
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Table 1: Teacher talk moves from TalkMoves dataset (Suresh et al., 2022)

Category Talk move Description Example
Teacher Talk Moves

Learning
Community

Keeping everyone to-
gether

Prompting students to be ac-
tive listeners and orienting
students to each other

“What did Eliza just say her
equation was?”

Learning
Community

Getting students to re-
late to another’s ideas

Prompting students to react to
what a classmate said

“Do you agree with Juan that
the answer is 7/10?”

Learning
Community

Restating Repeating all or part of what
a student said word for word

“Add two here.”

Content
Knowledge

Pressing for accuracy Prompting students to make a
mathematical contribution or
use mathematical language

“Can you give an example of
an ordered pair?”

Rigorous
Thinking

Revoicing Repeating what a student said
but adding on or changing the
wording

“Julia told us she would add
two here.”

Rigorous
Thinking

Pressing for reasoning Prompting students to explain,
provide evidence, share their
thinking behind a decision, or
connect ideas or representa-
tions

“Why could I argue that the
slope should be increasing?”

with Pytorch and HuggingFace library (Wolf et al.,
2019). In addition to the context-addition exper-
iments with Roberta-base, we fine-tuned similar
transformers architectures. XLNet, Longformer
and BigBird are transformer architectures which
support longer sequences. Since the TalkMoves
dataset is composed of utterances from K-12 math-
ematics classrooms, we fine-tuned MathBERT, a
pretrained architecture with focus on mathematical
formula understanding.

5 Results

In this section, we present the results from our
experiments that involved providing additional con-
text to transformers to support the process of learn-
ing long-term dependencies. The experiments were
repeated with ten random seeds, and the average
score is reported (Table 2, 3). For brevity, we re-
port performance only on Roberta-base (the best
performing model from (Suresh et al., 2021b) as
indicated in the first column of (Table 2) and trans-
formers such as Longformer and Bigbird (Table
3). All the models are Base models (Large models
are beyond the scope of this work). In the second
column, we describe the context that was provided
to the target teacher utterance for classification.
For example, Previous 1 should be interpreted as
a single previous utterance prepended to the target

teacher’s utterance. Similarly, Subsequent 1 should
be interpreted as a single subsequent utterance ap-
pended to the target utterance. The third and final
column describes the performance of the testing
set.

For imbalanced datasets like TalkMoves, the
Matthew Correlation Coefficient (MCC) and F1
measure are good indicators of model performance.
An MCC score of +1 indicates a perfect correlation
while 0 indicates a random correlation and -1 indi-
cates a negative correlation. Similarly, the F1 score
ranges from 0-100% where 100% indicates perfect
performance. We begin with the No-Context con-
dition which achieved a performance of 71.93%
F1. On prepending the immediately prior or sub-
sequent student utterance, the model achieved a
performance of 76.32% F1 (Suresh et al., 2022).
Next we turn to results from various context con-
ditions with different window sizes followed by
results from Longformer, BigBird, and other mod-
els. The maximum sequence length in most of
these models was 512 with the exception of Long-
former and Bigbird which had a sequence length
upto 1024. The results presented in this work are
comprehensive but not exhaustive since training
and testing for all possible models and parameters
is infeasible.

The results table clearly illustrates the impor-
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tance of context in enhancing performance. Start-
ing with Roberta-Base, the performance on the
previous-only condition gradually increased with
an increase in window-size and saturated for larger
window-sizes. Similarly, we observed an improve-
ment in performance for the subsequent-only con-
dition. However, we did not see any significant
improvement for larger window-sizes in this con-
dition, possibly due to the negative impact in per-
formance on "Revoicing" and "Restating" which
rely on immediately prior student sentences. More-
over, the combination of previous and subsequent
utterances resulted in the best performing model.
The performance gradually increased proportion-
ally with a window size up to 7 before saturat-
ing. Likewise, the performance on Longformer,
XLNet and BigBird were comparable with simi-
lar input representation. The most surprising re-
sult was the performance on MathBert which was
signficantly lower than other models. In summary,
Roberta-Base with equal previous-subsequent con-
dition (size =7) outperformed rest of the models
and constitutes the state-of-the-art results.

The primary motivation of the error analysis us-
ing a confusion matrix was to improve the perfor-
mance on the under-performing talk move cate-
gories and identify patterns among the misclassfied
utterances to be leveraged as features for the mod-
els. When comparing the confusion matrix from
prior work (Suresh et al., 2022) (see Table 4), the
current study shows a significant improvement in
performance across all the teacher talk moves la-
bels except "Restating" (see Table 5). With "Re-
stating", we hypothesize that the decrease in per-
formance was a result of supplementing additional
context. Further analysis has to be performed in
order to validate this claim.

6 Discussion

Based on the results from our experiments to im-
prove the performance of a talk moves classifier
using transformers, it is evident that longer dialog
windows play an important role in differentiating
talk moves. We successfully validated that the local
discursive context is an important feature in classi-
fying teacher talk moves. We generated a 4% F1
increase in performance when including a single
additional utterance (either previous or subsequent)
as compared to the no-context condition. Also,
we observed that previous utterances are more im-
pactful than future utterances for classifying talk

moves. This finding is not surprising given that sev-
eral talk moves, such as the teacher “restating” and
“revoicing” what a student has already said, depend
entirely on previous utterances as context. We also
observed that context windows with a combination
of previous and future utterances outperform either
condition alone. Finally, we found that a window
size of seven previous and subsequent utterances
achieves the best performance. Beyond the iden-
tified size of seven, the performance decreases. It
is possible that much earlier or much later utter-
ances provide confusing or conflicting contextual
information, which hinders model performance. It
is equally likely that longer dialog windows could
lead to overfitting.

Prior efforts to address the imbalanced nature of
TalkMoves dataset through weighted loss resulted
in reduced performance (Suresh et al., 2019). As
an alternative, we attempted to generate synthetic
samples of tokenized utterances through SMOTE
(Synthetic Minority Oversampling Data) (Chawla
et al., 2002). With SMOTE, it was challenging to
retain the syntactic information of the generated
examples. It was also difficult to generate the sup-
porting contextual student and teacher utterances.
Preliminary efforts did not yield any improvement
in performance.

To further improve the performance, we have
identified two future directions that appear worth-
while to consider: (1) experimenting with punctu-
ation and other linguistic markers in the existing
TalkMoves dataset and (2) collecting more training
data. In the TalkMoves dataset, all the punctua-
tion and other non-alphanumeric characters from
the teacher and student utterances were removed.
These text processing steps are typical for most
text-based NLP applications to produce text that
closely aligns with the output of Automated Speech
Recognition (ASR) systems. However, we hypoth-
esize that punctuation could play a significant role
in differentiating one talk move from another. For
example, “Agreed?” with a question mark can be
considered an instance of “Keeping everyone to-
gether” whereas “Agreed” as a statement would be
an instance of “None.” It remains to be determined
the extent to which including punctuation mark-
ers might impact the performance of the models.
Similarly, we can try incorporating speaker turns
to indicate a student or teacher turn in previous and
subsequent utterances as additional features to the
model.
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Table 2: Robert-Base performance with different window sizes

Model Context MCC F1 (%)
Roberta-Base No Context 0.7003 71.93
Roberta-Base Immediate Student (Suresh et al., 2022) 0.7513 76.32
Roberta-Base Previous 1 0.7460 76.01
Roberta-Base Previous 5 0.7579 76.79
Roberta-Base Previous 10 0.7615 77.08
Roberta-Base Previous 15 0.7688 77.63
Roberta-Base Previous 17 0.7657 77.35
Roberta-Base Subsequent 1 0.7232 74.16
Roberta-Base Previous 1 - Subsequent 1 0.7687 78.18
Roberta-Base Previous 2 - Subsequent 2 0.7742 78.49
Roberta-Base Previous 3 - Subsequent 3 0.7764 78.66
Roberta-Base Previous 5 - Subsequent 5 0.7739 78.36
Roberta-Base Previous 7 - Subsequent 7 0.7805 78.92
Roberta-Base Previous 8 - Subsequent 8 0.7802 78.86

Table 3: Performance on classification of teacher talk moves on other models

Model Context MCC F1 (%)
Roberta-Base Previous 7 - Subsequent 7 0.7805 78.92
MathBERT Previous 7 - Subsequent 7 0.6890 70.18
XLNet Previous 7 - Subsequent 7 0.7709 78.06
Longformer Previous 7 - Subsequent 7 0.7752 78.47
BigBird Previous 7 - Subsequent 7 0.7694 77.89
BigBird Previous 10 - Subsequent 10 0.7603 77.11

Another option that warrants considera-
tion is supplementing data for the purpose
of model pretraining. TalkMoves dataset
(github.com/SumnerLab/TalkMoves) is a relatively
small dataset for pretraining transformers when
compared to Roberta which was pretrained on
millions of data points. At the same time, we recog-
nize the challenge in the collecting and annotating
thousands of classroom transcripts. Moreover,
there are important privacy concerns and other
ethical considerations, given that these data involve
minors, use proper names (which can be critical
information for talk moves classification), and can
be challenging to access in large quantities. We
could potentially explore active learning to achieve
greater accuracy with limited samples (Settles,
2009). Active learning is often sought as an option
in machine learning applications where unlabeled
instances are abundantly available (Schröder et al.,
2021).

7 Conclusion

Documenting consequential elements of classroom
instruction and providing teachers with feedback
on their practices are critical endeavors in the edu-
cation field. Taking into consideration the strong
need to provide reliable feedback to teachers on
productive classroom discourse, we need robust
models to automatically classify teacher talk moves
with high reliability. In this paper, we report on
a number of experiments that involved providing
longer dialog windows to the transformers in an
effort to improve model performance. Based on
these experiments, we generated a state-of-the-art
2.6% F1 improvement in performance (78.92% F1)
over the previous models, primarily by adding a
set number of previous and subsequent utterances
to the input representation. Clearly, there are both
challenges and opportunities for the development
of innovative uses of AI techniques, particularly
as they can be incorporated into tools that support
teacher and student learning. The findings from
this research open new avenues for exploration that
can benefit both the education and NLP communi-
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Table 4: Confusion matrix from Roberta-Base with Immediate student utterance as context

Roberta-Base (Immediate Student) Actual Precision Recall F1
0 - None

Predicted

42786 1779 67 54 232 1091 74 0.93 0.93 0.934
1 - Keeping Everyone together 1599 6549 106 139 99 518 30 0.73 0.72 0.73
2 - Getting students to relate 171 177 715 0 2 120 33 0.71 0.59 0.64
3 - Restating 112 18 3 932 21 12 0 0.79 0.85 0.82
4 - Revoicing 562 72 2 47 1063 44 0 0.72 0.59 0.62
5 - Pressing for accuracy 762 367 105 9 51 8289 669 0.82 0.86 0.84
6 - Pressing for reasoning 56 6 315 1 1 86 753 0.79 0.82 0.80

Table 5: Confusion matrix from Roberta-Base with Previous-7 and Subsequent-7 utterances as context. Compared
to Table 4, we see an improvement in F1 score for almost all of the talk moves except Restating.

Roberta-Base (Previous 7 - Subsequent 7) Actual Precision Recall F1
0 - None

Predicted

14594 522 42 40 122 312 16 0.94 0.93 0.94
1 - Keeping Everyone together 512 2321 53 26 26 130 4 0.77 0.76 0.76
2 - Getting students to relate 31 23 206 0 0 37 9 0.64 0.67 0.65
3 - Restating 25 8 1 263 7 2 0 0.73 0.86 0.79
4 - Revoicing 179 24 0 25 326 7 1 0.66 0.58 0.62
5 - Pressing for accuracy 207 112 21 5 12 2678 41 0.84 0.87 0.85
6 - Pressing for reasoning 8 2 1 0 0 27 242 0.77 0.86 0.82

ties who might adopt our methods in applications
where the local context may prove critical to im-
proving performance.
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